51
|
Su CH, Kuo CL, Lu KW, Yu FS, Ma YS, Yang JL, Chu YL, Chueh FS, Liu KC, Chung JG. Fisetin-induced apoptosis of human oral cancer SCC-4 cells through reactive oxygen species production, endoplasmic reticulum stress, caspase-, and mitochondria-dependent signaling pathways. ENVIRONMENTAL TOXICOLOGY 2017; 32:1725-1741. [PMID: 28181380 DOI: 10.1002/tox.22396] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Oral cancer is one of the cancer-related diseases in human populations and its incidence rates are rising worldwide. Fisetin, a flavonoid from natural products, has been shown to exhibit anticancer activities in many human cancer cell lines but the molecular mechanism of fisetin-induced apoptosis in human oral cancer cells is still unclear; thus, in this study, we investigated fisetin-induced cell death and associated signal pathways on human oral cancer SCC-4 cells in vitro. We examined cell morphological changes, total viable cells, and cell cycle distribution by phase contrast microscopy and flow cytometry assays. Reactive oxygen species (ROS), Ca2+ , mitochondria membrane potential (ΔΨm ), and caspase-8, -9, and -3 activities were also measured by flow cytometer. Results indicate that fisetin induced cell death through the cell morphological changes, caused G2/M phase arrest, induction of apoptosis, promoted ROS and Ca2+ production, and decreased the level of ΔΨm and increased caspase-3, -8, and -9 activities in SCC-4 cells. DAPI staining and DNA gel electrophoresis were also used to confirm fisetin-induced cell apoptosis in SCC-4 cells. Western blotting also found out that Fisetin increased the proapoptotic proteins such as Bax and Bid and decreased the antiapoptotic proteins such as Bcl-2. Furthermore, results also showed that Fisetin increased the cytochrome c, AIF, and Endo G release from mitochondria in SCC-4 cells. We also used ATF-6α, ATF-6β, GADD153, and GRP78 which indicated that fisetin induced cell death through ER stress. Based on those observations, we suggest that fisetin induced cell apoptosis through ER stress, mitochondria-, and caspase-dependent pathways.
Collapse
Affiliation(s)
- Chen-Hsuan Su
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung, 404, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, 84001, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, 82445, Taiwan
| | - Jiun-Long Yang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Fu-Shin Chueh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
52
|
Budisan L, Gulei D, Zanoaga OM, Irimie AI, Sergiu C, Braicu C, Gherman CD, Berindan-Neagoe I. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer. Int J Mol Sci 2017; 18:ijms18061178. [PMID: 28587155 PMCID: PMC5486001 DOI: 10.3390/ijms18061178] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer.
Collapse
Affiliation(s)
- Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Oana Mihaela Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Alexandra Iulia Irimie
- Department of Prosthodontics and Dental Materials, Faculty of Dental Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", 23 Marinescu Street, 400012 Cluj-Napoca, Romania.
| | - Chira Sergiu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Claudia Diana Gherman
- Surgical Clinic II, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania.
- Department of Surgery, University of Medicine and Pharmacy "Iuliu Haţieganu", 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", 400015 Cluj-Napoca, Romania.
| |
Collapse
|
53
|
Yang JS, Lu CC, Kuo SC, Hsu YM, Tsai SC, Chen SY, Chen YT, Lin YJ, Huang YC, Chen CJ, Lin WD, Liao WL, Lin WY, Liu YH, Sheu JC, Tsai FJ. Autophagy and its link to type II diabetes mellitus. Biomedicine (Taipei) 2017; 7:8. [PMID: 28612706 PMCID: PMC5479440 DOI: 10.1051/bmdcn/2017070201] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Autophagy, a double-edged sword for cell survival, is the research object on 2016 Nobel Prize in Physiology or Medicine. Autophagy is a molecular mechanism for maintaining cellular physiology and promoting survival. Defects in autophagy lead to the etiology of many diseases, including diabetes mellitus (DM), cancer, neurodegeneration, infection disease and aging. DM is a metabolic and chronic disorder and has a higher prevalence in the world as well as in Taiwan. The character of diabetes mellitus is hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and failure of producing insulin on pancreatic beta cells. In T2DM, autophagy is not only providing nutrients to maintain cellular energy during fasting, but also removes damaged organelles, lipids and miss-folded proteins. In addition, autophagy plays an important role in pancreatic beta cell dysfunction and insulin resistance. In this review, we summarize the roles of autophagy in T2DM.
Collapse
Affiliation(s)
- Jai-Sing Yang
-
Department of Medical Research, China Medical University Hospital, China Medical University Taichung
404 Taiwan
| | - Chi-Cheng Lu
-
Department of Medical Research, China Medical University Hospital, China Medical University Taichung
404 Taiwan
| | - Sheng-Chu Kuo
-
School of Pharmacy, China Medical University Taichung
404 Taiwan
| | - Yuan-Man Hsu
-
Department of Biological Science and Technology, China Medical University Taichung
404 Taiwan
| | - Shih-Chang Tsai
-
Department of Biological Science and Technology, China Medical University Taichung
404 Taiwan
| | - Shih-Yin Chen
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Yng-Tay Chen
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Ying-Ju Lin
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Yu-Chuen Huang
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Chao-Jung Chen
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Wei-De Lin
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Wen-Lin Liao
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Wei-Yong Lin
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Yu-Huei Liu
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Jinn-Chyuan Sheu
-
Institute of Biomedical Sciences, National Sun Yat-sen University Kaohsiung
804 Taiwan
| | - Fuu-Jen Tsai
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
-
Department of Medical Genetics, China Medical University Hospital, China Medical University Taichung
404 Taiwan
| |
Collapse
|
54
|
Forbes-Hernandez TY, Gasparrini M, Afrin S, Bompadre S, Mezzetti B, Quiles JL, Giampieri F, Battino M. The Healthy Effects of Strawberry Polyphenols: Which Strategy behind Antioxidant Capacity? Crit Rev Food Sci Nutr 2017; 56 Suppl 1:S46-59. [PMID: 26357900 DOI: 10.1080/10408398.2015.1051919] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Current evidence indicates that the consumption of strawberries, a natural source of a wide range of nutritive and bioactive compounds, is associated with the prevention and improvement of chronic-degenerative diseases. Studies involving cells and animals provide evidence on the anti-inflammatory, anticarcinogenic and antiproliferative activity of the strawberry. Epidemiological and clinical studies demonstrate that its acute consumption increases plasma antioxidant capacity, improves circulating inflammatory markers and ameliorates postprandial glycemic response. At the same time, a protracted intake reduces chronic inflammation and improves plasma lipid profile, supporting cardiovascular health, especially in individuals with increased risk for metabolic syndrome. To explain these beneficial effects, much attention has been paid in the past to the antioxidant properties of strawberry polyphenols. However, recent research has shown that their biological and functional activities are related not only to the antioxidant capacity but also to the modulation of many cellular pathways involved in metabolism, survival, proliferation, and antioxidant defenses. The aim of this review is to update and discuss the molecular and cellular mechanisms proposed in recent studies to elucidate the healthy effects of strawberry polyphenols against the most common chronic diseases, such as cancer, cardiovascular diseases, metabolic syndrome, and inflammation.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernandez
- a Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona , Italy.,b Area de Nutrición y Salud, Universidad Internacional Iberoamericana (UNINI) , Campeche Mexico
| | - Massimiliano Gasparrini
- a Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona , Italy
| | - Sadia Afrin
- a Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona , Italy
| | - Stefano Bompadre
- c Dipartimento Scienze Biomediche e Sanità Pubblica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona , Italy
| | - Bruno Mezzetti
- d Dipartimento di Scienze Agrarie , Alimentari e Ambientali, Università Politecnica delle Marche , Ancona , Italy
| | - Josè L Quiles
- e Department of Physiology , Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , Granada , Spain
| | - Francesca Giampieri
- a Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona , Italy.,f Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA) , Santander , Spain
| | - Maurizio Battino
- a Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona , Italy.,f Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA) , Santander , Spain
| |
Collapse
|
55
|
Lee CH, Shih YL, Lee MH, Au MK, Chen YL, Lu HF, Chung JG. Bufalin Induces Apoptosis of Human Osteosarcoma U-2 OS Cells through Endoplasmic Reticulum Stress, Caspase- and Mitochondria-Dependent Signaling Pathways. Molecules 2017; 22:molecules22030437. [PMID: 28287444 PMCID: PMC6155407 DOI: 10.3390/molecules22030437] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Bone cancer is one of the cancer-related diseases, and there are increased numbers of patients with bone cancer worldwide. Therefore the efficacy of treatment of bone cancer is considered extremely vital. Bufalin has been showed to have biological activities including anticancer activities in vitro and in vivo. However, the exact associated mechanisms for bufalin induced apoptosis in human bone cancer cells are still unclear. In the present study, we investigated the effect of bufalin on the cytotoxic effects in U-2 OS human osteosarcoma cells. For examining apoptotic cell deaths, we used flow cytometry assay, Annexin V/PI double staining, and TUNNEL assay. Reactive oxygen species (ROS), Ca2+, mitochondrial membrane potential (ΔΨm), and caspase-8, -9 and -3 activities were measured by flow cytometry assay. Furthermore, western blotting and a confocal laser microscopy examination were used for measuring the alterations of apoptotic associated protein expression and translocation, respectively. The results indicated that bufalin induced cell morphological changes, decreased the viable cell number, induced apoptotic cell death, and increased the apoptotic cell number, and affected apoptotic associated protein expression in U-2 OS cells. Bufalin increased apoptotic proteins such as Bak, and decreased anti-apoptotic proteins such as Bcl-2 and Bcl-x in U-2 OS cells. Furthermore, bufalin increased the protein levels of cytochrome c (Cyto c), AIF (Apoptosis inducing factor) and Endo G (Endonuclease G) in cytoplasm that were also confirmed by confocal microscopy examination. Based on those findings, bufalin induced apoptotic cell death in U-2 OS cells may be via endoplasmic reticulum (ER) stress, caspase-, and mitochondria-dependent pathways; thus, we may suggest that bufalin could be used as an anti-cancer agent for the treatment of osteosarcoma in the future, and further in vivo studies are needed.
Collapse
Affiliation(s)
- Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli Country 356, Taiwan.
| | - Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Man-Kuan Au
- Department of Orthopedics, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu 300, Taiwan.
| | - Hsu-Feng Lu
- Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
| |
Collapse
|
56
|
Chang CH, Lee CY, Lu CC, Tsai FJ, Hsu YM, Tsao JW, Juan YN, Chiu HY, Yang JS, Wang CC. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol 2017; 50:873-882. [PMID: 28197628 DOI: 10.3892/ijo.2017.3866] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
Resveratrol is known to be an effective chemo-preventive phytochemical against multiple tumor cells. However, the increasing drug resistance avoids the cancer treatment in oral cavity cancer. In this study, we investigated the oral antitumor activity of resveratrol and its mechanism in cisplatin-resistant human oral cancer CAR cells. Our results demonstrated that resveratrol had an extremely low toxicity in normal oral cells and provoked autophagic cell death to form acidic vesicular organelles (AVOs) and autophagic vacuoles in CAR cells by acridine orange (AO) and monodansylcadaverine (MDC) staining. Either DNA fragmentation or DNA condensation occurred in resveratrol-triggered CAR cell apoptosis. These inhibitors of PI3K class III (3-MA) and AMP-activated protein kinase (AMPK) (compound c) suppressed the autophagic vesicle formation, LC3-II protein levels and autophagy induced by resveratrol. The pan-caspase inhibitor Z-VAD-FMK attenuated resveratrol-triggered cleaved caspase-9, cleaved caspase-3 and cell apoptosis. Resveratrol also enhanced phosphorylation of AMPK and regulated autophagy- and pro-apoptosis-related signals in resveratrol-treated CAR cells. Importantly, resveratrol also stimulated the autophagic mRNA gene expression, including Atg5, Atg12, Beclin-1 and LC3-II in CAR cells. Overall, our findings indicate that resveratrol is likely to induce autophagic and apoptotic death in drug-resistant oral cancer cells and might become a new approach for oral cancer treatment in the near future.
Collapse
Affiliation(s)
- Chao-Hsiang Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chao-Ying Lee
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Je-Wei Tsao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| |
Collapse
|
57
|
Lien JC, Lin MW, Chang SJ, Lai KC, Huang AC, Yu FS, Chung JG. Tetrandrine induces programmed cell death in human oral cancer CAL 27 cells through the reactive oxygen species production and caspase-dependent pathways and associated with beclin-1-induced cell autophagy. ENVIRONMENTAL TOXICOLOGY 2017; 32:329-343. [PMID: 26822499 DOI: 10.1002/tox.22238] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Tetrandrine, a bisbenzylisoquinoline alkaloid, is extracted from the root of the Chinese herb Radix Stephania tetrandra S Moore. This compound has antitumor activity in different cancer cell types. In this study, the effects of tetrandrine on human oral cancer CAL 27 cells were examined. Results indicated that tetrandrine induced cytotoxic activity in CAL 27 cells. Effects were due to cell death by the induction of apoptosis and accompany with autophagy and these effects were concentration- and time-dependent manners. Tetrandrine induced apoptosis was accompanied by alterations in cell morphology, chromatin fragmentation, and caspase activation in CAL 27 cells. Tetrandrine treatment also induced intracellular accumulation of reactive oxygen species (ROS). The generation of ROS may play an important role in tetrandrine-induced apoptosis. Tetrandrine triggered LC3B expression and induced autophagy in CAL 27 cells. Tetrandrine induced apoptosis and autophagy were significantly attenuated by N-acetylcysteine pretreatment that supports the involvement of ROS production. Tetrandrine induced cell death may act through caspase-dependent apoptosis with Beclin-1-induced autophagy in human oral cancer cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 329-343, 2017.
Collapse
Affiliation(s)
- Jin-Cherng Lien
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, 404, Taiwan
| | - Meng-Wei Lin
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei, 231, Taiwan
| | - Shu-Jen Chang
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, China Medical University Beigang Hospital, Yunlin, 651, Taiwan
- School of Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Medicine Nursing and Management College, Yilan, 266, Taiwan
| | - Fu-Shun Yu
- Department of Dentist, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
58
|
Polyphenols and DNA Damage: A Mixed Blessing. Nutrients 2016; 8:nu8120785. [PMID: 27918471 PMCID: PMC5188440 DOI: 10.3390/nu8120785] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 12/26/2022] Open
Abstract
Polyphenols are a very broad group of chemicals, widely distributed in plant foods, and endowed with antioxidant activity by virtue of their numerous phenol groups. They are widely studied as putative cancer-protective agents, potentially contributing to the cancer preventive properties of fruits and vegetables. We review recent publications relating to human trials, animal experiments and cell culture, grouping them according to whether polyphenols are investigated in whole foods and drinks, in plant extracts, or as individual compounds. A variety of assays are in use to study genetic damage endpoints. Human trials, of which there are rather few, tend to show decreases in endogenous DNA damage and protection against DNA damage induced ex vivo in blood cells. Most animal experiments have investigated the effects of polyphenols (often at high doses) in combination with known DNA-damaging agents, and generally they show protection. High concentrations can themselves induce DNA damage, as demonstrated in numerous cell culture experiments; low concentrations, on the other hand, tend to decrease DNA damage.
Collapse
|
59
|
Yuan C, Wang C, Wang J, Kumar V, Anwar F, Xiao F, Mushtaq G, Liu Y, Kamal MA, Yuan D. Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana. Nutr Res 2016; 36:1243-1254. [DOI: 10.1016/j.nutres.2016.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/15/2016] [Accepted: 09/29/2016] [Indexed: 11/16/2022]
|
60
|
3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo. Food Chem Toxicol 2016; 97:177-186. [PMID: 27600294 DOI: 10.1016/j.fct.2016.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/22/2022]
Abstract
Many natural flavonoids have cytostatic and apoptotic properties; however, we little know whether the effect of synthetic 3-hydroxyflavone on metastasis and tumor growth of human osteosarcoma. Here, we tested the hypothesis that 3-hydroxyflavone suppresses human osteosarcoma cells metastasis and tumor growth. 3-hydroxyflavone, up to 50 μM without cytotoxicity, inhibited U2OS and 143B cells motility, invasiveness and migration by reducing matrix metalloproteinase (MMP)-2 and urokinase-type plasminogen activator (u-PA) and also impaired cell adhesion to gelatin. 3-hydroxyflavone significantly reduced p-focal adhesion kinase (FAK) Tyr397, p-FAK Tyr925, p-steroid receptor coactivator (Src), p-mitogen/extracellular signal-regulated kinase (MEK)1/2, p-myosin light chain (MLC)2 Ser19, epithelial cell adhesion molecule, Ras homolog gene family (Rho)A and fibronectin expressions. 3-hydroxyflavone also affected the epithelial-mesenchymal transition (EMT) by down-regulating expressions of Vimentin and α-catenin with activation of the transcription factor Slug. In nude mice xenograft model and tail vein injection model showed that 3-hydroxyflavone reduced 143B tumor growth and lung metastasis. 3-hydroxyflavone possesses the anti-metastatic activity of U2OS and 143B cells by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and suppresses 143B tumor growth in vivo. This may lead to clinical trials of osteosarcoma chemotherapy to confirm the promising result in the future.
Collapse
|
61
|
Wang B, Wang J, Zhao XH. In vitroActivities of the Four Structurally Similar Flavonols Weakened by the Prior Thermal and Oxidative Treatments to a Human Colorectal Cancer Line. J Food Biochem 2016. [DOI: 10.1111/jfbc.12310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bo Wang
- Key Laboratory of Dairy Science, Ministry of Education; Northeast Agricultural University; Harbin 150030 PR China
- College of Pharmacy, Heilongjiang University of Chinese Medicine; Harbin PR China
| | - Jing Wang
- Key Laboratory of Dairy Science, Ministry of Education; Northeast Agricultural University; Harbin 150030 PR China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education; Northeast Agricultural University; Harbin 150030 PR China
- Synergetic Innovation Center of Food Safety and Nutrition; Northeast Agricultural University; Harbin 150030 PR China
| |
Collapse
|
62
|
Lin CC, Lee MH, Lin JH, Lin ML, Chueh FS, Yu CC, Lin JP, Chou YC, Hsu SC, Chung JG. Crude extract of Rheum palmatum L. Induces cell cycle arrest S phase and apoptosis through mitochondrial-dependent pathways in U-2 OS human osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:957-969. [PMID: 25689151 DOI: 10.1002/tox.22105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Cancer is the second cause of death in children. Osteosarcoma is the most common primary malignancy of solid bone cancer primarily affecting adolescents and young adults. In the Chinese population, the crude extract of Rheum palmatum L. (CERP) has been used for treating different diseases, including SARS, rheumatoid arthritis, coxsackievirus B3, and human colon cancer cell, pancreatic cancer. There are no reports on CERP and human osteosarcoma cells. The present study examined effects of CERP on cytotoxicity including cell cycle distribution and cell death (apoptosis) in U-2 OS human osteosarcoma cells. CERP significantly induced S phase arrest in U-2 OS cells in a dose-dependent. CERP produced DNA damage and DNA condensation. Other effects of CERP were stimulation of ROS and Ca(2+) , mitochondria impairment, and activation of caspase-3, -8, and -9. CERP increased the levels of Bax, Bak, Bad, cyclin B, Fas, PARP, GRP78, GADD153, AIF, Endo G, Calpain-2, p21, and p27, but decreased the levels of Bcl-2, BCL-X, XIAP, Akt, CDC25A, CDK2, Cyclin A, and Cyclin E of U-2 OS cells. It was also observed that CERP promoted the expression of AIF, Endo G, GADD153, and cytochrome c. These results indicate that CERP has anticancer effects in vitro and provide the foundation for in vivo studies of animal models of osteosarcoma. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 957-969, 2016.
Collapse
Affiliation(s)
- Chin-Chung Lin
- Department of Chinese Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, 420, Taiwan
- General Education Center, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Ming-Huei Lee
- General Education Center, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
- Department of Urology, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, 420, Taiwan
| | - Ju-Hwa Lin
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Jing-Pin Lin
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Yu-Cheng Chou
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
| | - Shu-Chun Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
63
|
Guarrera PM, Savo V. Wild food plants used in traditional vegetable mixtures in Italy. JOURNAL OF ETHNOPHARMACOLOGY 2016; 185:202-34. [PMID: 26944238 DOI: 10.1016/j.jep.2016.02.050] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mixtures of wild food plants, part of the Mediterranean diet, have potential benefits for their content in bioactive compounds, minerals and fibers. In Italy, wild plants are still consumed in various ways, for their taste, effects on health and nutritional value. In this paper, we provide a list of wild plants used in vegetable mixtures, indicating their phytochemical and nutritional profile, highlighting those not yet studied. AIM OF THE STUDY We provide a first complete review of traditional uses of wild food plants used as vegetables and their preparations (e.g., salads, soups, rustic pies). We also highlight their phytochemical constituents. MATERIALS AND METHODS We carried out an extensive literature review of ethnobotanical publications from 1894 to date for finding plants used in traditional vegetable mixtures. We also performed an online search for scientific papers providing the phytochemical profile of plants that were cited at least twice in recipes found in the literature. RESULTS We list a total of 276 wild taxa used in traditional vegetable mixtures, belonging to 40 families. Among these, the most represented are Asteraceae (88), Brassicaceae (33), Apiaceae (21), Amaranthaceae (12). Many plants are cited in many recipes across several Italian regions. Among the most cited plant we note: Reichardia picroides (L.) Roth, Sanguisorba minor Scop., Taraxacum campylodes G. E. Haglund, Urtica dioica L. Tuscany is the region with the highest number of food recipes that incorporate wild plants used as vegetables. We also list the phytochemical constituents and some pharmacological activities of the plants cited at least twice. Finally, we discuss topics such as the taste of plants used in the recipes. CONCLUSIONS Nineteen edible wild plants, such as Asparagus albus L., Campanula trachelium L., Hypochaeris laevigata (L.) Benth. & Hook f., Phyteuma spicatum L., Scolymus grandiflorus Desf., are not yet studied as regards their phytochemical and nutritional profile. Some plants should be avoided due to the presence of toxic compounds such as Adenostyles alliariae (Gouan) A. Kern or Ranunculus repens L.
Collapse
Affiliation(s)
- P M Guarrera
- Istituto Centrale per la Demoetnoantropologia, MIBACt, Piazza Marconi, 8-10, 00144 Rome, Italy.
| | - V Savo
- Hakai Institute, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A1S6
| |
Collapse
|
64
|
Lee CF, Yang JS, Tsai FJ, Chiang NN, Lu CC, Huang YS, Chen C, Chen FA. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells. Int J Oncol 2016; 48:2007-14. [PMID: 26984266 DOI: 10.3892/ijo.2016.3420] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/30/2016] [Indexed: 11/05/2022] Open
Abstract
Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting.
Collapse
Affiliation(s)
- Chiu-Fang Lee
- Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Ni-Na Chiang
- Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung, Taiwan, R.O.C
| | - Chi-Cheng Lu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Yu-Syuan Huang
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan, R.O.C
| | - Chun Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan, R.O.C
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan, R.O.C
| |
Collapse
|
65
|
Guo H, Ren F, Zhang L, Zhang X, Yang R, Xie B, Li Z, Hu Z, Duan Z, Zhang J. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol Med Rep 2016; 13:2791-800. [PMID: 26847723 DOI: 10.3892/mmr.2016.4845] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/11/2015] [Indexed: 11/05/2022] Open
Abstract
Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haiqing Guo
- Department of Hepatitis C and Drug‑Induced Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Feng Ren
- Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, P.R. China
| | - Li Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, P.R. China
| | - Rongrong Yang
- Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, P.R. China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, P.R. China
| | - Zhuo Li
- Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, P.R. China
| | - Zhongjie Hu
- Department of Hepatitis C and Drug‑Induced Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jing Zhang
- Department of Hepatitis C and Drug‑Induced Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
66
|
Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway. Tumour Biol 2016; 37:10247-56. [PMID: 26831667 DOI: 10.1007/s13277-016-4912-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.
Collapse
|
67
|
Sun HY, Liu BB, Hu JY, Xu LJ, Chan SW, Chan CO, Mok DKW, Zhang DM, Ye WC, Chen SB. Novel cycloartane triterpenoid from Cimicifuga foetida (Sheng ma) induces mitochondrial apoptosis via inhibiting Raf/MEK/ERK pathway and Akt phosphorylation in human breast carcinoma MCF-7 cells. Chin Med 2016; 11:1. [PMID: 26759603 PMCID: PMC4709995 DOI: 10.1186/s13020-015-0073-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/09/2015] [Indexed: 11/29/2022] Open
Abstract
Background Cycloartane triterpenoids exhibited anticancer effects. This study aims to identify any potential novel anticancer cycloartane triterpenoids from Cimicifuga foetida L. rhizome (Sheng ma) and the mode of actions. Methods Cycloartane triterpenoids were isolated from the C. foetida rhizome by a series of column chromatography and identified by IR, MS and NMR. Their anticancer effects on several human cancer cell lines, MCF-7, HepG2, HepG2/ADM, HeLa, and PC3, and normal human mammary epithelial cells MCF10A were investigated by colony formation and MTT assays. Morphological analysis of apoptosis induction was performed by acridine orange/ethidium bromide dual-staining and Hoechst 33258 nuclear staining. The cell-cycle profile and annexin V staining were evaluated by flow cytometry. Apoptosis were investigated by measuring changes in mitochondrial membrane potential and analyzing expression of cell cycle- and apoptosis-related proteins in MCF-7 cells by Western blotting. Results A novel cycloartane triterpenoid, 25-O-acetyl-7,8-didehydrocimigenol-3-O-β-d-(2-acetyl)xylopyranoside (ADHC-AXpn), together with the known 7,8-didehydrocimigenol-3-O-β-d-xylopyranoside (DHC-Xpn) were isolated. MCF-7 growth was significantly inhibited by ADHC-AXpn in a dose- and time-dependent manner (IC50: 27.81 µM at 48 h; P = 0.004 vs. control at 25 μM for 48 h treatment), and ADHC-AXpn was selectively cytotoxic for cancerous cells (MCF-7, HepG2/ADM, HepG2 and HELA cells) based on its higher IC50 values for normal cells MCF10A (IC50: 78.63 µM at 48 h) than for tumor cells. In MCF-7 cells, ADHC-AXpn induced G2/M cell cycle arrest by mediating cyclin-B1, and CDK1 and its phosphorylation; and induced apoptosis through the mitochondrial-mediated apoptotic pathway, with inhibition of Akt activation. As ADHC-AXpn suppressed phosphorylation of ERK1/2, Raf and Akt proteins in MCF-7 cells, its apoptotic effect might be associated with Raf/MEK/ERK signaling and Akt activation. Conclusions ADHC-AXpn significantly suppressed the growth of MCF-7 cells, induced mitochondrial apoptosis and cell-cycle arrest, and inhibited Raf/MEK/ERK signaling pathway and Akt phosphorylation.
Collapse
Affiliation(s)
- Hai-Yan Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China ; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Hong Kong Polytechnic University, Hong Kong, China
| | - Bei-Bei Liu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Hong Kong Polytechnic University, Hong Kong, China
| | - Jian-Yang Hu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Li-Jia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shun-Wan Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-On Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Hong Kong Polytechnic University, Hong Kong, China
| | - Daniel K W Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Si-Bao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China ; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
68
|
Different concentrations of kaempferol distinctly modulate murine embryonic stem cell function. Food Chem Toxicol 2016; 87:148-56. [DOI: 10.1016/j.fct.2015.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023]
|
69
|
Hung FM, Shang HS, Tang NY, Lin JJ, Lu KW, Lin JP, Ko YC, Yu CC, Wang HL, Liao JC, Lu HF, Chung JG. Effects of diallyl trisulfide on induction of apoptotic death in murine leukemia WEHI-3 cells in vitro and alterations of the immune responses in normal and leukemic mice in vivo. ENVIRONMENTAL TOXICOLOGY 2015; 30:1343-1353. [PMID: 24890016 DOI: 10.1002/tox.22005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
Diallyl trisulfide (DATS), a chemopreventive dietary constituent and extracted from garlic, has been shown to against cultured many types of human cancer cell liens but the fate of apoptosis in murine leukemia cells in vitro and immune responses in leukemic mice remain elusive. Herein, we clarified the actions of DATS on growth inhibition of murine leukemia WEHI-3 cells in vitro and used WEHI-3 cells to generate leukemic mice in vivo, following to investigate the effects of DATS in animal model. In in vitro study, DATS induced apoptosis of WEHI-3 cells through the G0/G1 phase arrest and induction of caspase-3 activation. In in vivo study DATS decreased the weight of spleen of leukemia mice but did not affect the spleen weight of normal mice. DATS promoted the immune responses such as promotions of the macrophage phagocytosis and NK cell activities in WEHI-3 leukemic and normal mice. However, DATS only promotes NK cell activities in normal mice. DATS increases the surface markers of CD11b and Mac-3 in leukemia mice but only promoted CD3 in normal mice. In conclusion, the present study indicates that DATS induces cell death through induction of apoptosis in mice leukemia WHEI-3 cells. DATS also promotes immune responses in leukemia and normal mice in vivo.
Collapse
MESH Headings
- Allyl Compounds/pharmacology
- Allyl Compounds/therapeutic use
- Animals
- Anticarcinogenic Agents/pharmacology
- Anticarcinogenic Agents/therapeutic use
- Antigens, Differentiation/immunology
- Apoptosis/drug effects
- Caspase 3/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Cytotoxicity, Immunologic/drug effects
- Garlic/chemistry
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Leukemia, Experimental/immunology
- Leukemia, Experimental/prevention & control
- Lymphocyte Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Mice
- Mice, Inbred BALB C
- Neoplasm Transplantation
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Spleen/drug effects
- Spleen/immunology
- Sulfides/pharmacology
- Sulfides/therapeutic use
Collapse
Affiliation(s)
- Fang-Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - Hung-Sheng Shang
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Nou-Ying Tang
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jen-Jyh Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jing-Pin Lin
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Yang-Ching Ko
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi, 600, Taiwan
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Hai-Lung Wang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, 300, Taiwan
| | - Jung-Chi Liao
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, 300, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, 112, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, 242, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
70
|
Kim SH, Hwang KA, Choi KC. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J Nutr Biochem 2015; 28:70-82. [PMID: 26878784 DOI: 10.1016/j.jnutbio.2015.09.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
As a phytoestrogen, kaempferol (Kaem) is one of bioflavonoids, which are found in a variety of vegetables including broccoli, tea and tomato. In this study, the antiproliferative effects of Kaem in triclosn (TCS)-induced cell growth were examined in MCF-7 breast cancer cells. TCS promoted the cell viability of MCF-7 cells via estrogen receptor α (ERα) as did 17β-estradiol (E2), a positive control. On the other hand, Kaem significantly suppressed E2 or TCS-induced cell growth. To elucidate the molecular mechanisms of TCS and Kaem, alterations in the expressions of cell cycle, apoptosis and metastasis-related genes were identified using western blot assay. The treatment of the cells with TCS up-regulated the protein expressions of cyclin D1, cyclin E and cathepsin D, while down-regulated p21 and bax expressions. Kaem reversed TCS-induced gene expressions in an opposite manner. The phosphorylation of IRS-1, AKT, MEK1/2 and ERK was increased by TCS, indicating that TCS induced MCF-7 cell proliferation via nongenomic ER signaling pathway associated with IGF-1R. Kaem presented an antagonistic activity on this signaling by down-regulating the protein expression of pIRS-1, pAkt and pMEK1/2 promoted by E2 or TCS. In an in vivo xenografted mouse model, tumor growth was induced by treatment with E2 or TCS, which was identified in the measurement of tumor volume, hematoxylin and eosin staining, bromodeoxyuridine and immunohistochemistry assay. On the contrary, E2 or TCS-induced breast tumor growth was inhibited by co-treatment with Kaem, which is consistent with in vitro results. Taken together, these results revealed that Kaem has an anticancer effect against procancer activity of E2 or TCS, a xenoestrogen, in breast cancer and may be suggested as a prominent agent to neutralize breast cancer risk caused by TCS.
Collapse
Affiliation(s)
- Seung-Hee Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763 Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763 Republic of Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763 Republic of Korea.
| |
Collapse
|
71
|
Kuo YJ, Yang JS, Lu CC, Chiang SY, Lin JG, Chung JG. Ethanol extract of Hedyotis diffusa willd upregulates G0/G1 phase arrest and induces apoptosis in human leukemia cells by modulating caspase cascade signaling and altering associated genes expression was assayed by cDNA microarray. ENVIRONMENTAL TOXICOLOGY 2015; 30:1162-1177. [PMID: 24677778 DOI: 10.1002/tox.21989] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
The authors' previous study has shown that water extract of Hedyotis diffusa Willd (HDW) promoted immune response and exhibited anti-leukemic activity in BALB/c leukemic mice in vivo. In this study, the anti-proliferation effects of ethanol extract of H. diffusa Willd (EEHDW) on lung cancer cell lines (A549, H1355, and LLC), leukemia cell lines (HL-60, WEHI-3), and a mouse melanoma cell line (B16F10) in vitro were investigated. The results demonstrated that EEHDW suppressed the cell proliferation of A549, H1355, HL-60, WEHI-3, and B16F10 cells as well as reduced cell viability in a concentration-dependent manner. We found that EEHDW inhibited the cell proliferation of HL-60 cells in concentration-dependent manner. In addition, EEHDW triggered an arrest of HL-60 cells at G0/G1 phase and sub-G1 population (apoptotic cells). EEHDW provoked DNA condensation and DNA damage in HL-60 cells. The activities of caspase-3, caspase-8, and caspase-9 were elevated in EEHDW-treated HL-60 cells. DNA microarray to investigate and display the gene levels related to cell growth, signal transduction, apoptosis, cell adhesion, cell cycle, DNA damage and repair, transcription and translation was also used. These findings suggest that EEHDW may be a potential herbal medicine and therapeutic agent for the treatment of leukemia.
Collapse
Affiliation(s)
- Yu-Jui Kuo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Chi-Cheng Lu
- Department of Life Sciences, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, 402, Taiwan
| | - Su-Yin Chiang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jaung-Geng Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan, People's Republic of China
| |
Collapse
|
72
|
Kashif M, Bano S, Naqvi S, Faizi S, Ahmed Mesaik M, Azeemi KS, Farooq AD. Cytotoxic and antioxidant properties of phenolic compounds from Tagetes patula flower. PHARMACEUTICAL BIOLOGY 2015; 53:672-681. [PMID: 25539472 DOI: 10.3109/13880209.2014.936471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Tagetes patula Linn. (Asteraceae) (French Marigold) flowers are used by local practitioners for cancer treatment; however, it lacks scientific justification. OBJECTIVE Identification of bioactive compounds in T. patula flower for cytotoxic and growth inhibition in human cancer cell lines along with its antioxidant properties using chemical and cell based systems. MATERIALS AND METHODS The T. patula flower methanol extract, its seven fractions, and three phenolic compounds including methyl protocatechuate (1), patuletin (2), and patulitrin (3) were evaluated using sulforhodamine-B assay against HeLa, HT-144, NCI-H460, MCF-7, PC-3, and SF-268 human cancer cell lines. In parallel, antioxidant activity was evaluated using chemical (DPPH(·), deoxyribose, and lipid peroxidation assays) and cell-based chemiluminescence systems (human neutrophils and mice macrophages). RESULTS The methanol extract and ethyl acetate insoluble fraction exhibited cytotoxic and growth inhibitory effects against HeLa in which 2 exhibited highest cell growth inhibition (GI50: 0.6 ± 0.1 µg/ml) and cytotoxicity (LC50: 2.5 ± 0.1 µg/ml). It also scavenged LOO(·) (IC50: 6.5 ± 0.7 µg/ml) and [Formula: see text] (IC50: 27.5 ± 1.3 μg/ml) in chemical systems and human neutrophils, respectively. However, 1 preferably scavenged H2O2-Cl(-) (IC50: 0.5 ± 0.01 μg/ml) in mice macrophages. DISCUSSION AND CONCLUSION Compound 2 from T. patula flower exhibited both growth inhibitory and cytotoxic properties while 1 and 3 were only growth inhibitory against HeLa. 1-3 also displayed antioxidant properties implying its probable role in growth inhibition/cytotoxic action. The present study provides scientific evidence for the use of T. patula flower in cancer treatment by traditional healer.
Collapse
Affiliation(s)
- Muhammad Kashif
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| | | | | | | | | | | | | |
Collapse
|
73
|
Kumar M, Kaur P, Kumar S, Kaur S. Antiproliferative and Apoptosis Inducing Effects of Non-Polar Fractions from Lawsonia inermis L. in Cervical (HeLa) Cancer Cells. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:249-60. [PMID: 25931778 PMCID: PMC4411381 DOI: 10.1007/s12298-015-0285-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 05/03/2023]
Abstract
Two non-polar fractions viz. hexane (Hex-LI) and chloroform fraction (CHCl3-LI) of Lawsonia inermis were studied for their antiproliferative potential in various cancer cell lines viz. HeLa, MCF-7, A549 and C6 glioma cells. Both the fractions showed more than 60 % of growth inhibition in all the tested cell lines at highest tested concentration. In clonogenic assay, different concentrations of Hex-LI and CHCl3-LI decreased the number and size of colonies as compared to control in HeLa cells. The apoptotic effects as nuclear condensation, fragmentation were visualized with Hoechst-33342 staining of HeLa cells using confocal microscope. Both fractions induced apoptotic cell death in human cervical carcinoma (HeLa) cells as evident from flow cytometric analysis carried out using Annexin V-FITC and propidium iodide dyes. CHCl3-LI treated cells significantly induced apoptosis (25.43 %) in comparison to control. Results from Neutral Comet assay demonstrated that both fractions induced double stranded breaks (DSB's) in HeLa cells. Our data indicated that Hex-LI and CHCl3-LI treated cells showed significant increase of 32.2 and 18.56 % reactive oxygen species (ROS) levels in DCFH-DA assay respectively. Further, experimental studies to decipher exact pathway via which these fractions induce cell death are in progress.
Collapse
Affiliation(s)
- Manish Kumar
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Paramjeet Kaur
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Subodh Kumar
- />Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Satwinderjeet Kaur
- />Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
74
|
Wu LY, Lu HF, Chou YC, Shih YL, Bau DT, Chen JC, Hsu SC, Chung JG. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:365-82. [PMID: 25779644 DOI: 10.1142/s0192415x1550024x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60 cells, which may be the factors for kaempferol induced cell death in vitro.
Collapse
Affiliation(s)
- Lung-Yuan Wu
- I-Shou University, The School of Chinese Medicine for Post Baccalaureate, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Azevedo C, Correia-Branco A, Araújo JR, Guimarães JT, Keating E, Martel F. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr Cancer 2015; 67:504-13. [PMID: 25719685 DOI: 10.1080/01635581.2015.1002625] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.
Collapse
Affiliation(s)
- Cláudia Azevedo
- a Department of Biochemistry , Faculty of Medicine , University of Porto , Porto , Portugal
| | | | | | | | | | | |
Collapse
|
76
|
Chung MJ, Pandey RP, Choi JW, Sohng JK, Choi DJ, Park YI. Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. Int Immunopharmacol 2015; 25:302-10. [PMID: 25698556 DOI: 10.1016/j.intimp.2015.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/12/2015] [Accepted: 01/28/2015] [Indexed: 12/21/2022]
Abstract
The modification of natural flavonoid by glycosylation alters their physicochemical and pharmacokinetic properties, such as increased water solubility and stability, reduced toxicity, and sometimes enhanced or even new pharmacological activities. Kaempferol (KF), a plant flavonoid, and its glycosylated derivative, kaempferol-3-O-rhamnoside (K-3-rh), were evaluated and compared for their anti-inflammatory, anti-oxidant, and anti-asthmatic effects in an asthma model mouse. The results showed that K-3-rh fully maintained its anti-inflammatory and anti-asthmatic effects compared with KF in an asthma model mouse. Both KF and K-3-rh significantly reduced the elevated inflammatory cell numbers in the bronchoalveolar lavage fluid (BALF). KF and K-3-rh also significantly inhibited the increase in Th2 cytokines (IL-4, IL-5, and IL-13) and TNF-α protein levels through inhibition of the phosphorylation Akt and effectively suppressed eosinophilia in a mouse model of allergic asthma. The total immunoglobulin (Ig) E levels in the serum and BALF were also blocked by KF and K-3-rh to similar extents. K-3-rh exerts similar or even slightly higher inhibitory effects on Th2 cytokines and IgE production compared with KF, whereas K-3-rh was less effective at DPPH radical scavenging and the inhibition of ROS generation in inflammatory cells compared with KF. These results suggested that the K-3-rh, as well as KF, may also be a promising candidate for the development of health beneficial foods or therapeutic agents that can prevent or treat allergic asthma.
Collapse
Affiliation(s)
- Mi Ja Chung
- Department of Food Science and Nutrition, College of Health, Welfare and Education, Gwangju University, Gwangju 503-703, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asansi, Chungnam 336-708, Republic of Korea
| | - Ji Won Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asansi, Chungnam 336-708, Republic of Korea
| | - Doo Jin Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Republic of Korea.
| |
Collapse
|
77
|
Liao CL, Lin JH, Lien JC, Hsu SC, Chueh FS, Yu CC, Wu PP, Huang YP, Lin JG, Chung JG. The crude extract of Corni Fructus inhibits the migration and invasion of U-2 OS human osteosarcoma cells through the inhibition of matrix metalloproteinase-2/-9 by MAPK signaling. ENVIRONMENTAL TOXICOLOGY 2015; 30:53-63. [PMID: 23955962 DOI: 10.1002/tox.21894] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Osteosarcoma is the most common primary malignancy of the bone cancers. In the Chinese population, the crude extract of Corni Fructus (CECF) has been used as Traditional Chinese medicine to treat several different diseases for hundreds of years. In the present study, effects of CECF on inhibition of migration and invasion in U-2 OS human osteosarcoma cells were examined. CECF significantly inhibited migration and invasion of U-2 OS human osteosarcoma cells. We also found that CECF inhibited activities of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). CECF decreased protein levels of FAK, PKC, SOS1, MKK7, MEKK3, GRB2, NF-κB p65, COX-2, HIF-1α, PI3K, Rho A, ROCK-1, IRE-1α, p-JNK1/2, p-ERK1/2, p-p38, Ras, p-PERK, MMP-2, MMP-9, and VEGF in U-2 OS cells. Results of this study indicate that CECF may have potential as a novel anticancer agent for the treatment of osteosarcoma by inhibiting migration and invasion of cancer cells.
Collapse
Affiliation(s)
- Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Giampieri F, Forbes-Hernandez TY, Gasparrini M, Alvarez-Suarez JM, Afrin S, Bompadre S, Quiles JL, Mezzetti B, Battino M. Strawberry as a health promoter: an evidence based review. Food Funct 2015; 6:1386-98. [DOI: 10.1039/c5fo00147a] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The health effects of strawberry bioactive compounds depend on the activation and modulation of several genetic and molecular mechanisms.
Collapse
Affiliation(s)
- Francesca Giampieri
- Dipartimento di Scienze Agrarie
- Alimentari e Ambientali
- Università Politecnica delle Marche
- Ancona
- Italy
| | - Tamara Y. Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica
- Facoltà di Medicina
- Università Politecnica delle Marche
- Ancona
- Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica
- Facoltà di Medicina
- Università Politecnica delle Marche
- Ancona
- Italy
| | | | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica
- Facoltà di Medicina
- Università Politecnica delle Marche
- Ancona
- Italy
| | - Stefano Bompadre
- Dipartimento Scienze Biomediche e Sanità Pubblica
- Facoltà di Medicina
- Università Politecnica delle Marche
- Ancona
- Italy
| | - Josè L. Quiles
- Department of Physiology
- Institute of Nutrition and Food Technology ‘‘José Mataix”
- Biomedical Research Centre
- University of Granada
- Spain
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie
- Alimentari e Ambientali
- Università Politecnica delle Marche
- Ancona
- Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica
- Facoltà di Medicina
- Università Politecnica delle Marche
- Ancona
- Italy
| |
Collapse
|
79
|
Deguelin inhibits the migration and invasion of U-2 OS human osteosarcoma cells via the inhibition of matrix metalloproteinase-2/-9 in vitro. Molecules 2014; 19:16588-608. [PMID: 25322282 PMCID: PMC6271177 DOI: 10.3390/molecules191016588] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is the most common malignant primary bone tumor in children and young adults and lung metastasis is the main cause of death in those patients. Deguelin, a naturally occurring rotenoid, is known to be an Akt inhibitor and to exhibit cytotoxic effects, including antiproliferative and anticarcinogenic activities, in several cancers. In the present study, we determined if deguelin would inhibit migration and invasion in U-2 OS human osteosarcoma cells. Deguelin significantly inhibited migration and invasion of U-2 OS human osteosarcoma cells which was associated with a reduction of activities of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). Furthermore, results from western blotting indicated that deguelin decreased the cell proliferation and cell growth-associated protein levels, such as SOS1, PKC, Ras, PI3K, p-AKT(Ser473), IRE-1α, MEKK3, iNOS, COX2, p-ERK1/2, p-JNK1/2, p-p38; the cell motility and focal adhesion-associated protein levels, such as Rho A, FAK, ROCK-1; the invasion-associated protein levels, such as TIMP1, uPA, MMP-2. MMP-9, MMP-13, MMP-1 and VEGF in U-2 OS cells. Confocal microscopy revealed that deguelin reduced NF-κB p65, Rho A and ROCK-1 protein levels in cytosol. MMP-7, MMP-9 and Rho A mRNA levels were suppressed by deguelin. These in vitro results provide evidence that deguelin may have potential as a novel anti-cancer agent for the treatment of osteosarcoma and provides the rationale for in vivo studies in animal models.
Collapse
|
80
|
Wang S, Zhu F, Meckling KA, Marcone MF. Antioxidant capacity of food mixtures is not correlated with their antiproliferative activity against MCF-7 breast cancer cells. J Med Food 2014; 16:1138-45. [PMID: 24328703 DOI: 10.1089/jmf.2013.0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combining different foods may produce additive, synergistic, or antagonistic interactions that may modify certain physiological effects (i.e., anticancer properties). For investigating these interactions and potential synergetic combinations, thirteen foods from three categories, including fruits (raspberries, blackberries, apples, grapes), vegetables (broccoli, tomatoes, mushrooms, purple cauliflowers, onions), and legumes (soy beans, adzuki beans, red kidney beans, black beans), were evaluated for their inhibitory activity against MCF-7 breast cancer cells. Grape, onion, and adzuki bean showed maximal growth inhibition of MCF-7 from the fruit, vegetable, and legume groups, respectively. When these three foods were combined in pairs, unique interactions were observed that were not seen when individual extracts were used. Combining onion and grape resulted in a synergistic antiproliferative effect (APE) against MCF-7 compared with either onion or grape treatment alone. In contrast, combining grape and adzuki bean resulted in an antagonistic interaction. Additionally, four antioxidant assays (total phenolic contents, ferric reducing antioxidant power, 2,2-diphenyl-1-picrylhydrazyl, and oxygen radical absorbance capacity) were further used to evaluate the antioxidant capacities (AC) of individual foods and their combinations. Combining raspberry and adzuki bean extracts demonstrated synergistic AC in all four assays, but they did not show synergistic APE against the MCF-7 cells. Combining broccoli and soy produced antioxidant antagonism, but did not have an antagonistic APE against MCF-7. The synergistic or antagonistic AC of food mixtures did not correlate with the synergistic or antagonistic APE against MCF-7. Further investigation is to determine the mechanisms of these interactions and to predict and enhance the therapeutic benefits of foods and food components through strategic food combinations.
Collapse
Affiliation(s)
- Sunan Wang
- 1 Canadian Food and Wine Institute , Niagara College, Niagara-on-the-Lake, Ontario, Canada
| | | | | | | |
Collapse
|
81
|
Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem 2014; 86:103-12. [PMID: 25147152 DOI: 10.1016/j.ejmech.2014.08.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/30/2022]
Abstract
Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g., tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine (e.g., Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Its anti-oxidant/anti-inflammatory effects have been demonstrated in various disease models, including those for encephalomyelitis, diabetes, asthma, and carcinogenesis. Moreover, kaempferol act as a scavenger of free radicals and superoxide radicals as well as preserve the activity of various anti-oxidant enzymes such as catalase, glutathione peroxidase, and glutathione-S-transferase. The anticancer effect of this flavonoid is mediated through different modes of action, including anti-proliferation, apoptosis induction, cell-cycle arrest, generation of reactive oxygen species (ROS), and anti-metastasis/anti-angiogenesis activities. In addition, kaempferol was found to exhibit its anticancer activity through the modulation of multiple molecular targets including p53 and STAT3, through the activation of caspases, and through the generation of ROS. The anti-tumor effects of kaempferol have also been investigated in tumor-bearing mice. The combination of kaempferol and conventional chemotherapeutic drugs produces a greater therapeutic effect than the latter, as well as reduces the toxicity of the latter. In this review, we summarize the anti-oxidant/anti-inflammatory and anticancer effects of kaempferol with a focus on its molecular targets and the possible use of this flavonoid for the treatment of inflammatory diseases and cancer.
Collapse
|
82
|
Yang EJ, Kim GS, Jun M, Song KS. Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct 2014; 5:1395-402. [PMID: 24770605 DOI: 10.1039/c4fo00068d] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is thought that the neuronal cell loss caused by oxidative stress is the primary mechanism underlying the pathogenesis of several neurodegenerative disorders. Glutamate is an endogenous neurotransmitter, but at high concentrations it can act as a neurotoxicant by increasing the intracellular levels of reactive oxygen species (ROS). Therefore, the development of factors that can attenuate glutamate-induced oxidative stress in neuronal cells is a good strategy by which new drugs could be discovered that may treat or prevent neurodegenerative diseases. Here, the neuroprotective effects of kaempferol (KF) isolated from the stems of butterbur (Petasites japonicus) were examined in glutamate-treated hippocampal neuronal cells (HT22). The administration of KF (25 μM) resulted in a significant increase in cell viability (105.18 ± 7.48%) compared with the control (100.00 ± 3.05%), while glutamate (5 mM) reduced cell viability by 39.94 ± 1.61%. The glutamate-induced calcium (Ca(2+)) influx (1.93 ± 0.08-fold) was significantly reduced by 0.89 ± 0.02-fold following the administration of 25 μM KF. Additionally, when HT22 cells were stressed with excessive glutamate, there was a 3.70 ± 0.01-fold increase in intracellular ROS generation, even though this was effectively attenuated by KF (25 μM, 0.72 ± 0.01-fold). The protective effects of KF in HT22 cells were later confirmed using a lactate dehydrogenase (LDH) assay and a FITC-annexin V/propidium iodide double staining procedure. These findings also revealed that the neuroprotective effects of KF are a result of the regulation of the expression levels of proteins, such as Bcl-2, Bid, apoptosis-inducing factor (AIF), and mitogen-activated protein kinase (MAPK). This is the first report to investigate the neuroprotective influence of KF in glutamate-treated HT22 cells. These data demonstrate that KF may be a useful candidate for pharmacological therapies that can prevent and treat neurodegenerative diseases such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daehak-ro 80, Sankyuk-dong, Deagu 702-701, Republic of Korea.
| | | | | | | |
Collapse
|
83
|
Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 2014; 8:122-146. [PMID: 25125885 PMCID: PMC4127821 DOI: 10.4103/0973-7847.134247] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/27/2014] [Accepted: 06/10/2014] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are ubiquitous in nature. They are also in food, providing an essential link between diet and prevention of chronic diseases including cancer. Anticancer effects of these polyphenols depend on several factors: Their chemical structure and concentration, and also on the type of cancer. Malignant cells from different tissues reveal somewhat different sensitivity toward flavonoids and, therefore, the preferences of the most common dietary flavonoids to various human cancer types are analyzed in this review. While luteolin and kaempferol can be considered as promising candidate agents for treatment of gastric and ovarian cancers, respectively, apigenin, chrysin, and luteolin have good perspectives as potent antitumor agents for cervical cancer; cells from main sites of flavonoid metabolism (colon and liver) reveal rather large fluctuations in anticancer activity probably due to exposure to various metabolites with different activities. Anticancer effect of flavonoids toward blood cancer cells depend on their myeloid, lymphoid, or erythroid origin; cytotoxic effects of flavonoids on breast and prostate cancer cells are highly related to the expression of hormone receptors. Different flavonoids are often preferentially present in certain food items, and knowledge about the malignant tissue-specific anticancer effects of flavonoids could be purposely applied both in chemoprevention as well as in cancer treatment.
Collapse
Affiliation(s)
- Katrin Sak
- Non Government Organization Praeventio, Tartu, Estonia
| |
Collapse
|
84
|
LU CHICHENG, CHEN HAOPING, CHIANG JOHUA, JIN YIAN, KUO SHENGCHU, WU TIANSHUNG, HOUR MANNJEN, YANG JAISING, CHIU YUJEN. Quinazoline analog HMJ-30 inhibits angiogenesis: Involvement of endothelial cell apoptosis through ROS-JNK-mediated death receptor 5 signaling. Oncol Rep 2014; 32:597-606. [DOI: 10.3892/or.2014.3250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 11/06/2022] Open
|
85
|
Simultaneous determination of five free and total flavonoids in rat plasma by ultra HPLC–MS/MS and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:1-10. [DOI: 10.1016/j.jchromb.2014.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 11/19/2022]
|
86
|
Song W, Dang Q, Xu D, Chen Y, Zhu G, Wu K, Zeng J, Long Q, Wang X, He D, Li L. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncol Rep 2014; 31:1350-6. [PMID: 24399193 DOI: 10.3892/or.2014.2965] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/02/2013] [Indexed: 11/06/2022] Open
Abstract
Kaempferol has been shown to inhibit cell growth, induce apoptosis and cell cycle arrest in several tumors, but not in renal cell carcinoma (RCC). In the present study, we investigated the effects of kaempferol and the underlying mechanism(s) on the cell growth of RCC cells. MTT assay and colony formation assay were used to study cell growth, and flow cytometry was used to study apoptosis and cell cycles in different RCC cells treated with various doses of kaempferol. A significant inhibition on cell growth, induction of apoptosis and cell cycle arrest were observed in 786-O and 769-P cells after kaempferol treatment compared with the control group. Moreover, the results clearly showed that kaempferol causes a strong inhibition of the activation of the EGFR/p38 signaling pathways, upregulation of p21 expression and downregulation of cyclin B1 expression in human RCC cells, together with activation of PARP cleavages, induction of apoptotic death and inhibition of cell growth. Collectively, our results suggest that kaempferol may serve as a candidate for chemo-preventive or chemotherapeutic agents for RCC.
Collapse
Affiliation(s)
- Wenbin Song
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qiang Dang
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Defeng Xu
- School of Pharmaceutical and Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingzhi Long
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
87
|
Chueh FS, Chen YY, Huang AC, Ho HC, Liao CL, Yang JS, Kuo CL, Chung JG. Bufalin-inhibited migration and invasion in human osteosarcoma U-2 OS cells is carried out by suppression of the matrix metalloproteinase-2, ERK, and JNK signaling pathways. ENVIRONMENTAL TOXICOLOGY 2014; 29:21-29. [PMID: 21922632 DOI: 10.1002/tox.20769] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
Bufalin has been shown to exhibit multiple pharmacological activities, including induction of apoptosis in many types of cancer cell lines. Osteosarcoma is a type of cancer which is difficult to treat and the purpose of this study was to investigate the effects of bufalin on the migration and invasion of human osteosarcoma U-2 OS cells. The wound healing assay and Boyden chamber transwell assay were used for examining the migration of U-2 OS cells. Western blotting and gelatin zymography assays were used for theexpression and activities of metalloproteinase (MMP)-2, MMP-7 or MMP-9 levels. Western blotting analysis also was used for measuring the levels of growth factor receptor-bound protein 2 (GRB2), son of sevenless homolog 1 (SOS1), c-Jun N-terminal kinases 1/2 (JNK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 in bufalin-treated U-2 OS cells. Bufalin inhibited the cell migration and invasion of U-2 OS cells in vitro. Moreover, bufalin reduced MMP-2 and MMP-9 enzyme activities of U-2 OS cells. Bufalin also suppressed the protein level of MMP-2 and reduced the levels of mitogen-activated protein kinases (MAPKs) such as JNK1/2 and ERK1/2 signals in U-2 OS cells. Our results suggest that signaling pathways for bufalin-inhibited migration and invasion of U-2 OS cells might be mediated through blocking MAPK signaling and resulting in the inhibition of MMP-2. Bufalin could be a useful agent to develop as a novel antitumor agent by virtue of its ability to inhibit tumor cell migration and invasion.
Collapse
Affiliation(s)
- Fu-Shin Chueh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Inoue-Choi M, Oppeneer SJ, Robien K. Reality check: there is no such thing as a miracle food. Nutr Cancer 2013; 65:165-8. [PMID: 23441603 DOI: 10.1080/01635581.2013.748921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recent episode of the Dr. Oz Show suggested endive, red onion, and sea bass as foods that can decrease the risk of ovarian cancer by up to 75%. However, the scientific evidence supporting these recommendations is limited. This commentary discusses some of the concerns related to the promotion of "miracle foods" by the media. Nutritional scientists and epidemiologists should be cognizant of the public health messages that are taken from their individual studies and not sensationalize the findings of a single study.
Collapse
Affiliation(s)
- Maki Inoue-Choi
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota 55454, USA.
| | | | | |
Collapse
|
89
|
Nepal M, Li L, Cho HK, Park JK, Soh Y. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway. Food Chem Toxicol 2013; 62:238-45. [DOI: 10.1016/j.fct.2013.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/31/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022]
|
90
|
Wang Y, Chen J, Zhang D, Zhang Y, Wen Y, Li L, Zheng L. Tumoricidal effects of a selenium (Se)-polysaccharide from Ziyang green tea on human osteosarcoma U-2 OS cells. Carbohydr Polym 2013; 98:1186-90. [DOI: 10.1016/j.carbpol.2013.07.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 02/02/2023]
|
91
|
Hsu SC, Lin JH, Weng SW, Chueh FS, Yu CC, Lu KW, Wood WG, Chung JG. Crude extract of Rheum palmatum inhibits migration and invasion of U-2 OS human osteosarcoma cells by suppression of matrix metalloproteinase-2 and -9. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2013.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
92
|
Huang SH, Hsu MH, Hsu SC, Yang JS, Huang WW, Huang AC, Hsiao YP, Yu CC, Chung JG. Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways. Hum Exp Toxicol 2013; 33:270-83. [PMID: 23760257 DOI: 10.1177/0960327113491508] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have reported previously that phenethyl isothiocyanate (PEITC) induces apoptosis in human osteosarcoma U-2 OS cells. Cytotoxic activity of PEITC towards other cancer cells such as human malignant melanoma and skin cancer cells has not been reported. In this study, the anticancer activity of PEITC towards human malignant melanoma cancer A375.S2 cells was investigated. To determine the mechanisms of PEITC inhibition of cell growth, the following end points were determined in A375.S2 cells: cell morphological changes, cell cycle arrest, DNA damage and fragmentation assays and morphological assessment of nuclear change, reactive oxygen species (ROS) and Ca(2+) generations, mitochondrial membrane potential disruption, and nitric oxide and 10-N-nonyl acridine orange productions, expression and activation of caspase-3 and -9, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, poly (adenosine diphosphate-ribose) polymerase, and cytochrome c release, apoptosis-inducing factor and endonuclease G. PEITC induced morphological changes in time- and dose-dependent manner. PEITC induced G2/M phase arrest and induced apoptosis via endoplasmic reticulum stress-mediated mitochondria-dependent pathway. Western blot analysis showed that PEITC promoted Bax expression and inhibited Bcl-2 expression associated with the disintegration of the outer mitochondrial membrane causing cytochrome c release, and activation of caspase-9 and -3 cascade leading to apoptosis. We conclude that PEITC-triggered apoptotic death in A375.S2 cells occurs through ROS-mediated mitochondria-dependent pathways.
Collapse
Affiliation(s)
- S-H Huang
- 1Department of Biotechnology, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Newly synthesized quinazolinone HMJ-38 suppresses angiogenetic responses and triggers human umbilical vein endothelial cell apoptosis through p53-modulated Fas/death receptor signaling. Toxicol Appl Pharmacol 2013; 269:150-62. [DOI: 10.1016/j.taap.2013.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/09/2013] [Accepted: 03/12/2013] [Indexed: 01/28/2023]
|
94
|
CHEN HUIJYE, LIN CHUNGMING, LEE CHAOYING, SHIH NAICHEN, PENG SHUFEN, TSUZUKI MINORU, AMAGAYA SAKAE, HUANG WENWEN, YANG JAISING. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncol Rep 2013; 30:925-32. [DOI: 10.3892/or.2013.2490] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/22/2013] [Indexed: 11/05/2022] Open
|
95
|
Huang AC, Chang CL, Yu CS, Chen PY, Yang JS, Ji BC, Lin TP, Chiu CF, Yeh SP, Huang YP, Lien JC, Chung JG. Induction of apoptosis by curcumin in murine myelomonocytic leukemia WEHI-3 cells is mediated via endoplasmic reticulum stress and mitochondria-dependent pathways. ENVIRONMENTAL TOXICOLOGY 2013; 28:255-266. [PMID: 21793155 DOI: 10.1002/tox.20716] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 02/14/2011] [Accepted: 02/20/2011] [Indexed: 05/31/2023]
Abstract
Curcumin, derived from the food flavoring spice turmeric (Curcuma longa), has been shown to exhibit anticancer activities and induce apoptosis in many types of cancer cell lines. In our previous study, curcumin was able to inhibit murine myelomonocytic leukemia WEHI-3 cells in vivo. However, there is no report addressing the cytotoxic responses and the mechanisms underlying curcumin-induced apoptotic cell death in WEHI-3 cells. Therefore, we hypothesized that that curcumin affected WEHI-3 cells and triggered cell death through apoptotic signaling pathways. The effects of curcumin on WEHI-3 cells were investigated by using flow cytometric analysis, comet assay, confocal laser microscopy and Western blotting. In this study, we found that curcumin induced apoptosis in WEHI-3 cells in a dose-dependent (5-20 μM) manner. Interestingly, curcumin enhanced the level of the antiapoptotic protein Bcl-2 which might show that curcumin-induced apoptosis is done through the ER stress signaling pathways based on the increase of CIEBP homologous protein (CHOP), activating transcription factor 6 (ATF-6), inositol-requiring enzyme 1 (IRE1), and caspase-12 in WEHI-3 cells. Moreover, curcumin increased the reactive oxygen species (ROS) production and cytosolic Ca²⁺ release, and induced DNA damage, but decreased the level of mitochondrial membrane potential (ΔΨm ) in WEHI-3 cells. In conclusion, curcumin-induced apoptosis occurs through the ROS-affected, mitochondria-mediated and ER stress-dependent pathways. The evaluation of curcumin as a potential therapeutic agent for treatment of leukemia seems warranted.
Collapse
Affiliation(s)
- An-Cheng Huang
- Department of Nursing, ST. Mary's Medicine Nursing and Management College, Yilan 266, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
HUANG WENWEN, TSAI SHIHCHANG, PENG SHUFEN, LIN MENGWEI, CHIANG JOHUA, CHIU YUJEN, FUSHIYA SHINJI, TSENG MICHAELT, YANG JAISING. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int J Oncol 2013; 42:2069-77. [DOI: 10.3892/ijo.2013.1909] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/12/2013] [Indexed: 11/05/2022] Open
|
97
|
Chen YF, Yang JS, Chang WS, Tsai SC, Peng SF, Zhou YR. Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells. J Biomed Sci 2013; 20:18. [PMID: 23506616 PMCID: PMC3610241 DOI: 10.1186/1423-0127-20-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/13/2013] [Indexed: 02/06/2023] Open
Abstract
Background Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells. Results In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment. Conclusions The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells
Collapse
Affiliation(s)
- Yuh-Fung Chen
- Department of Pharmacology, College of Medicine, China Medical University, No 91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| | | | | | | | | | | |
Collapse
|
98
|
He N, Shi X, Zhao Y, Tian L, Wang D, Yang X. Inhibitory effects and molecular mechanisms of selenium-containing tea polysaccharides on human breast cancer MCF-7 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:579-588. [PMID: 23270479 DOI: 10.1021/jf3036929] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dietary supplementation of selenium-enriched tea is known to have an anticancer health benefit. This study was to investigate the inhibitory effect of selenium-containing tea polysaccharides (Se-GTPs) from a new variety of selenium-enriched Ziyang green tea against human MCF-7 breast cancer cells. Se-GTPs dose-dependently exhibited an effective cell growth inhibition with an IC(50) of 140.1 μg/mL by inducing MCF-7 cancer cells to undergo G2/M phase arrest and apoptosis. The blockade of cell cycle was associated with an up-regulation of p53 expression, but not CDK2. Se-GTPs clearly triggered the mitochondrial apoptotic pathway, as indicated by an increase in Bax/Bcl-2 ratio and subsequent caspase-3 and caspase-9 activation. It was also found that the generation of intracellular ROS is a critical mediator in Se-GTPs-induced cell growth inhibition. These findings suggest that Se-GTPs may serve as a potential novel dietary agent for human breast cancer chemoprevention.
Collapse
Affiliation(s)
- Nianwu He
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | | | | | |
Collapse
|
99
|
Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2012; 138:2099-107. [PMID: 23497863 DOI: 10.1016/j.foodchem.2012.11.139] [Citation(s) in RCA: 577] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/03/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023]
Abstract
Kaempferol is a polyphenol antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary kaempferol in reducing the risk of chronic diseases, especially cancer. Epidemiological studies have shown an inverse relationship between kaempferol intake and cancer. Kaempferol may help by augmenting the body's antioxidant defence against free radicals, which promote the development of cancer. At the molecular level, kaempferol has been reported to modulate a number of key elements in cellular signal transduction pathways linked to apoptosis, angiogenesis, inflammation, and metastasis. Significantly, kaempferol inhibits cancer cell growth and angiogenesis and induces cancer cell apoptosis, but on the other hand, kaempferol appears to preserve normal cell viability, in some cases exerting a protective effect. The aim of this review is to synthesize information concerning the extraction of kaempferol, as well as to provide insights into the molecular basis of its potential chemo-preventative activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the aforementioned processes. Chemoprevention using nanotechnology to improve the bioavailability of kaempferol is also discussed.
Collapse
Affiliation(s)
- Allen Y Chen
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA.
| | | |
Collapse
|
100
|
LIU CHINYU, YANG JAISING, HUANG SHIHMING, CHIANG JOHUA, CHEN MINGHUA, HUANG LIJIAU, HA HOYU, FUSHIYA SHINJI, KUO SHENGCHU. Smh-3 induces G2/M arrest and apoptosis through calcium-mediated endoplasmic reticulum stress and mitochondrial signaling in human hepatocellular carcinoma Hep3B cells. Oncol Rep 2012; 29:751-62. [DOI: 10.3892/or.2012.2166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022] Open
|