51
|
Penas FN, Bott E, Carneiro AB, López SA, Torres Bozza P, Goren NB, Gimenez G, Belaunzarán ML. Modified lipids from Trypanosoma cruzi amastigotes down-regulate the pro-inflammatory response and increase the expression of alternative activation markers in macrophages. Microb Pathog 2025; 198:107140. [PMID: 39581235 DOI: 10.1016/j.micpath.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Herein, we analyzed the in vitro effect induced by total lipid extracts from Trypanosoma cruzi amastigotes of RA and K98 strains, which were obtained after overnight incubation (RAinc and K98inc) to mimic phospholipid hydrolytic processes that occurred adjacent to degenerating amastigote nests in tissues of Chagas disease patients. We demonstrated that RAinc and K98inc might possess bioactive lipid molecules with anti-inflammatory bias since they inactivated the NF-κB pathway, in contrast to intact lipids. Moreover, different M1/M2 macrophage phenotype markers of polarization were analyzed by RT-qPCR which evidenced that RAinc and K98inc promoted an increased expression of the M2 markers Arginase-1, IL-10, FIZZ and YM-1, and a decreased expression of iNOS and proinflammatory cytokines IL-6 and TNF-α. All these results indicate the relevant role of T. cruzi in bioactive lipid molecules, deepening thus our understanding of their contribution to immunomodulatory mechanisms as well as to macrophage polarization that occurs during the course of Chagas disease.
Collapse
Affiliation(s)
- Federico Nicolas Penas
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Emanuel Bott
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Alan Brito Carneiro
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Bartholomew Laboratory, Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Sebastián Andrés López
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Patricia Torres Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Nora Beatriz Goren
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Guadalupe Gimenez
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - María Laura Belaunzarán
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina.
| |
Collapse
|
52
|
Song J, Wu Y, Chen Y, Sun X, Zhang Z. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Mol Med Rep 2025; 31:2. [PMID: 39422035 PMCID: PMC11551531 DOI: 10.3892/mmr.2024.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non‑coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yuqing Wu
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yunli Chen
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xu Sun
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Zhaohui Zhang
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
53
|
Li J, Ma W, Tang Z, Li Y, Zheng R, Xie Y, Li G. Macrophage‑driven pathogenesis in acute lung injury/acute respiratory disease syndrome: Harnessing natural products for therapeutic interventions (Review). Mol Med Rep 2025; 31:16. [PMID: 39513609 PMCID: PMC11551695 DOI: 10.3892/mmr.2024.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common respiratory disease characterized by hypoxemia and respiratory distress. It is associated with high morbidity and mortality. Due to the complex pathogenesis of ALI, the clinical management of patients with ALI/ARDS is challenging, resulting in numerous post‑treatment sequelae and compromising the quality of life of patients. Macrophages, as a class of innate immune cells, play an important role in ALI/ARDS. In recent years, the functions and phenotypes of macrophages have been better understood due to the development of flow cytometry, immunofluorescence, single‑cell sequencing and spatial genomics. However, no macrophage‑targeted drugs for the treatment of ALI/ARDS currently exist in clinical practice. Natural products are important for drug development, and it has been shown that numerous natural compounds from herbal medicine can alleviate ALI/ARDS caused by various factors by modulating macrophage abnormalities. In the present review, the natural products from herbal medicine that can modulate macrophage abnormalities in ALI/ARDS to treat ALI/ARDS are introduced, and their mechanisms of action, discovered in the previous five years (2019‑2024), are presented. This will provide novel ideas and directions for further research, to develop new drugs for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jincun Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wenyu Ma
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Zilei Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yingming Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruiyu Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yuhuan Xie
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
54
|
Tang Q, Fan Y, Sun J, Fan W, Zhao B, Yin Z, Cao Y, Han Y, Su B, Yang C, Yu P, Ning C, Chen L. Remodel Heterogeneous Electrical Microenvironment at Nano-Scale Interface Optimizes Osteogenesis by Coupling of Immunomodulation and Angiogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406090. [PMID: 39692158 DOI: 10.1002/smll.202406090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/02/2024] [Indexed: 12/19/2024]
Abstract
Immunomodulation is essential for implants to regulate tissue regeneration, while bioelectricity plays a fundamental role in regulating immune activities. Under natural preferences, the bone matrix electrical microenvironment is heterogeneous in the nanoscale, which provides fundamental electrical cues to regulate bone immunity and regenerative repair. However, remodeling bone nanoscale heterogeneous electrical microenvironment remains a challenge, and the underlying immune modulation mechanism remains to be explored. In this research, in situ discretely distributed nano-heterojunctions are constructed on titanium oxide nanofibers to mimic the heterogeneous electrical microenvironment exhibited by bone collagen fibers. The material is identified to directly regulate calcium ion channeling for anti-inflammatory polarization of macrophages. Surprisingly, the highly biomimetic heterogeneous electrical microenvironment can induce a pro-angiogenic phenotypic transformation of macrophages, leading to enhanced neo-vascularization at the early stage of osteogenesis. Mechanistic exploration identifies that PI3K signaling pathway-mediated FGF2 secretion may partially explain for strengthened coupling of immunomodulation and angiogenesis, which optimizes subsequent bone regeneration. These findings highlight the significance of biomimetic heterogeneous electrical cues on immune-modulation and provide a design principle for future electroactive implant materials.
Collapse
Affiliation(s)
- Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Youzhun Fan
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenjie Fan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Baoying Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhaoyi Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yaru Cao
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
55
|
Tang W, Li X, Liu H, Xu C, Deng S. The role of macrophages in chronic pain. Cytokine 2025; 185:156813. [PMID: 39577336 DOI: 10.1016/j.cyto.2024.156813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Chronic pain typically lasts or recurs for more than three months and is an unpleasant sensory and emotional experience, including neuropathic pain, long-term tissue damage, tumors, and viral or bacterial infections.The unpleasantness associated with pain affects the basic life of patients and has become a truly global problem. Macrophages, a powerful immune effector cell whose functional plasticity leads to polarization into different subtypes and opposite effects in different environments, are also indispensable in the development of pain.In recent years, there has been an increasing number of studies on the effects of macrophages on pain, and there are multiple pathways that regulate macrophage polarization, including lipopolysaccharide induction and IL-4/IL-13 stimulation.In addition, pathways involving macrophages and macrophage polarization have been found to have an exacerbating or mitigating role in the progression of chronic pain, with M1 macrophages generally exacerbating pain progression and M2 macrophages mitigating pain progression.Therefore, modulating macrophage polarization holds great promise as an intervention in chronic pain. In this paper, we synthesize multiple macrophage pathways as well as mechanisms affecting their pain processes in the context of different types of chronic pain, providing new avenues for chronic pain relief.
Collapse
Affiliation(s)
- Weikang Tang
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Xuan Li
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Huixia Liu
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Chunyan Xu
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Siyao Deng
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China..
| |
Collapse
|
56
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
57
|
Zou X, Xu H, Qian W. Macrophage Polarization in the Osteoarthritis Pathogenesis and Treatment. Orthop Surg 2025; 17:22-35. [PMID: 39638774 PMCID: PMC11735378 DOI: 10.1111/os.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disorder that severely impacts quality of life due to pain and disability. Although the pathophysiology of OA remains incompletely understood, recent research highlights the role of synovial inflammation in OA onset and progression, driven primarily by inflammatory infiltrates, especially macrophages, in the synovium. These macrophages respond to the local microenvironment, polarizing into either pro-inflammatory (M1) or anti-inflammatory (M2) subtypes. This review focuses on the role of macrophage polarization in OA pathogenesis and treatment, emphasizing how M1/M2 polarization is influenced by pathways such as STAT, NF-κB, caspase, and MAPK. These pathways induce low-grade inflammation within OA-affected joints, altering chondrocyte metabolism, inhibiting cartilage repair, and impairing mesenchymal stem cell chondrogenesis, thereby contributing to OA progression. Additionally, this review discusses potential therapies targeting macrophage polarization, encompassing compounds, proteins, cells, and microRNAs, to offer insights into novel treatment strategies for OA.
Collapse
Affiliation(s)
- Xiongfei Zou
- Department of Orthopedic SurgeryPeking Union Medical College HospitalBeijingChina
| | - Hongjun Xu
- Department of Orthopedic SurgeryPeking Union Medical College HospitalBeijingChina
| | - Wenwei Qian
- Department of Orthopedic SurgeryPeking Union Medical College HospitalBeijingChina
| |
Collapse
|
58
|
Ding J, Cheng Z, Ma Y, Zhang T, Du L, Jiang X, Zhu M, Li W, Xu B. Engineering Injectable and Highly Interconnected Porous Silk Fibroin Microspheres for Tissue Regeneration. Adv Healthc Mater 2025; 14:e2402932. [PMID: 39498746 DOI: 10.1002/adhm.202402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Indexed: 11/07/2024]
Abstract
Injectable porous microspheres represent a promising therapeutic platform for cell delivery, drug delivery, and tissue regeneration. Yet, the engineering of silk fibroin microspheres with a highly interconnected porous structure remains an unsolved challenge. In this study, a simple and efficient method is developed that does not require the use of organic solvents to prepare silk fibroin microspheres with a predictable structure. Through extensive screening, the addition of glucose is found to direct the formation of a highly interconnected porous structure from the interior to the surface of silk fibroin microspheres. Compared to silk fibroin microspheres (SF microspheres) produced through a combination of electro-spray, cryopreservation, and freeze drying, silk fibroin-glucose microspheres (SF-Glu microspheres) demonstrates enhanced capabilities in promoting cell adhesion and proliferation in vitro. Both SF-Glu and SF microspheres exhibit the capacity to maintain the sustained release kinetics of the loaded model drug. Furthermore, SF-Glu microspheres facilitate the recruitment of endogenous cells, capillary migration, and macrophage phenotype switch following subcutaneous injection in the rats. This study opens a new avenue for the construction of porous silk fibroin microspheres, which could lead to a broader range of applications in regenerative medicine.
Collapse
Affiliation(s)
- Ji Ding
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Zhaojun Cheng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Clinical Research Academy of Chinese Medicine Guangzhou, Guangzhou, Guangdong Province, 510260, China
- Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou, 510260, China
| | - Yulong Ma
- Department of Stomatology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia, 024000, China
| | - Tongxing Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xiaobing Jiang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Wen Li
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| |
Collapse
|
59
|
Zhu J, Du Y, Backman LJ, Chen J, Ouyang H, Zhang W. Cellular Interactions and Biological Effects of Silk Fibroin: Implications for Tissue Engineering and Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409739. [PMID: 39668424 DOI: 10.1002/smll.202409739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Silk fibroin (SF), the core structural protein derived from Bombyx mori silk, is extensively employed in tissue engineering and regenerative medicine due to its exceptional mechanical properties, favorable biocompatibility, tunable biodegradability, and versatile processing capabilities. Despite these advantages, current research predominantly focuses on SF biomaterials as structural scaffolds or drug carriers, often overlooking their potential role in modulating cellular behavior and tissue regeneration. This review aims to present a comprehensive overview of the inherent biological effects of SF biomaterials, independent of any exogenous biomolecules, and their implications for various tissue regeneration. It will cover in vitro cellular interactions of SF with various cell types, including stem cells and functional tissue cells such as osteoblasts, chondrocytes, keratinocytes, endothelial cells, fibroblasts, and epithelial cells. Moreover, it will summarize in vivo immune responses, cellular responses, and tissue regeneration following SF implantation, specifically focusing on vascular, bone, skin, cartilage, ocular, and tendon/ligament regeneration. Furthermore, it will address current limitations and future perspectives in the design of bioactive SF biomaterials. A comprehensive understanding of these cellular interactions and the biological effects of SF is crucial for predicting regenerative outcomes with precision and for designing SF-based biomaterials tailored to specific properties, enabling broader applications in regenerative medicine.
Collapse
Affiliation(s)
- Jialin Zhu
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
| | - Yan Du
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
| | - Ludvig J Backman
- Department of Medical and Translational Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
- Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, 90187, Sweden
| | - Jialin Chen
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
| | - Hongwei Ouyang
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Zhang
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
| |
Collapse
|
60
|
Guo Z, Zhu Z, Lin X, Wang S, Wen Y, Wang L, Zhi L, Zhou J. Tumor microenvironment and immunotherapy for triple-negative breast cancer. Biomark Res 2024; 12:166. [PMID: 39741315 DOI: 10.1186/s40364-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans. The tumor microenvironment (TME), comprising immune cells, stromal cells, and various cytokines, plays a crucial role in TNBC progression and response to immunotherapy. The high presence of tumor-infiltrating lymphocytes and immune checkpoint proteins in TNBC indicates the potential of immunotherapeutic strategies. However, the complexity of the TME, while offering therapeutic targets, requires further exploration of its multiple roles in immunotherapy. In this review, we discuss the interaction mechanism between TME and TNBC immunotherapy based on the characteristics and composition of TME, and elaborate on and analyze the effect of TME on immunotherapy, the potential of TME as an immune target, and the ability of TME as a biomarker. Understanding these dynamics will offer new insights for enhancing therapeutic approaches and investigating stratification and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Zijie Guo
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Ziyu Zhu
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Xixi Lin
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Shenkangle Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yihong Wen
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Lili Zhi
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
61
|
Zhao Y, Jiang Y, Wang F, Sun L, Ding M, Zhang L, Wu B, Zhang X. High glucose promotes macrophage switching to the M1 phenotype via the downregulation of STAT-3 mediated autophagy. PLoS One 2024; 19:e0314974. [PMID: 39739966 DOI: 10.1371/journal.pone.0314974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
AIM Imbalanced M1/M2 macrophage phenotype activation is a key point in diabetic kidney disease (DKD). Macrophages mainly exhibit the M1 phenotype, which contributes to inflammation and fibrosis in DKD. Studies have indicated that autophagy plays an important role in M1/M2 activation. However, the mechanism by which autophagy regulates the macrophage M1/M2 phenotype in DKD is unknown. Thus, the aim of the present study was to explore whether high glucose-induced macrophages switch to the M1 phenotype via the downregulation of STAT-3-mediated autophagy. METHODS DKD model rats were established in vivo via the intraperitoneal injection of streptozocin (STZ). The rats were sacrificed at 18 weeks for histological and molecular analysis. RAW264.7 cells were cultured in vitro with 30 mM glucose in the presence or absence of a STAT-3 activator (colivelin) and an autophagy activator (rapamycin). Moreover, M1 and M2 macrophage activation models were established as a control group. Immunofluorescence and Western blot analyses were used to detect the expression of autophagy-related proteins (LC3 and Beclin-1), M1 markers (iNOS and CD11c) and M2 markers (MR and CD206). RESULTS In DKD, macrophages exhibit an M1 phenotype. Under high-glucose conditions, RAW264.7 macrophages switched to the M1 phenotype. Autophagy was downregulated in high glucose-induced M1 macrophages. Both the STAT-3 activator and the autophagy activator promoted the transition of glucose-induced M1 macrophages to M2 macrophages. Moreover, STAT-3 activation increased the expression of autophagy markers (LC3 and Beclin-1). However, the autophagy activator had no effect on STAT-3 phosphorylation. CONCLUSION High glucose promotes macrophage switching to the M1 phenotype via the downregulation of STAT-3-mediated autophagy.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| | - Yuteng Jiang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| | - Fengmei Wang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| | - Li Sun
- Department of Nephrology, Xuyi People's Hospital, Huaian, China
| | - Mengyuan Ding
- Department of Nephrology, Xuyi People's Hospital, Huaian, China
| | - Liyuan Zhang
- Department of Nephrology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Beibei Wu
- Institute of Nephrology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| |
Collapse
|
62
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the pan-cancer role of exosomal miRNAs in metastasis across cancers. Comput Struct Biotechnol J 2024; 27:252-264. [PMID: 39866667 PMCID: PMC11763893 DOI: 10.1016/j.csbj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Exosomal microRNAs (exomiRs) play a critical role in intercellular communication, especially in cancer, where they regulate key cellular processes like proliferation, angiogenesis, and metastasis, highlighting their significance as potential diagnostic and therapeutic targets. Here, we aimed to characterize the role of exomiRs, derived from seven cancer types (four cell lines and three tumors), in influencing the pre-metastatic niche (PMN). In each cancer type we extracted high confidence exomiRs (LogFC >= 2 in exosomes relative to control), their experimentally validated targets, and the enriched pathways among those targets. We then selected the top100 high-confidence targets based on their frequency of appearance in the enriched pathways. We observed significantly higher GC content in exomiRs relative to genomic background. Gene Ontology analysis revealed both general cancer processes, such as wound healing and epithelial cell proliferation, as well as cancer-specific processes, such as "angiogenesis" in the kidney and "ossification" in the lung. ExomiR targets were enriched for cancer-specific tumor suppressor genes and downregulated in PMN formed in lungs compared to normal. Motif analysis showed high inter-cancer similarity among motifs enriched in exomiRs. Our analysis recapitulated exomiRs associated with M2 macrophage differentiation and chemoresistance, such as miR-21 and miR-222-3p, regulating signaling pathways like PTEN/PI3/Akt, NF-kB, etc. Additionally, Cox regression analysis in TCGA indicated that exomiR targets are significantly associated with better overall survival of patients. Lastly, support vector machine model using exomiR targets gene expression classified responders and non-responders to therapy with an AUROC ranging from 0.72 to 0.96, higher than previously reported gene signatures.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
63
|
Yao Z, Xiang M, Yang Y, Shao W, Zhang J, Wang L, Liu B, Tang W, Zhang J. A new antibacterial with anti-inflammatory properties promotes wound healing through inhibiting cGAS/STING/NF-κB/IRF3 pathway. Int Immunopharmacol 2024; 143:113303. [PMID: 39366076 DOI: 10.1016/j.intimp.2024.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Benzothiazole-urea hybrid 8l was found to be a potent anti-bacterial agent against methicillin-resistant Staphylococcus aureus (MRSA2858) (MIC = 0.78 μM, Eur J Med Chem. 2022,236:114333). Herein, 8l was further evaluated to remedy the MRSA-infected scald with bacterial infection and severe inflammation. In scalded skin model with MRSA infection, 8l not only effectively reduced bacterial load, but also decreased pro-inflammatory cytokines secretion and promoted collagen deposition to effectively reverse the progression of wound infection and inflammation by blocking cGAS/STING/NF-κB/IRF3 signaling pathway. In vitro model of RAW264.7 cells verified that 8l can inhibit MRSA-induced inflammation via regulating this pathway. All in all, dual anti-bacterial and anti-inflammatory agent 8l could heal MRSA-infected refractory scald by regulating cGAS/STING/NF-κB/IRF3 pathway.
Collapse
Affiliation(s)
- Zongze Yao
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Miaoqing Xiang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yang Yang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Wei Shao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiazhen Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Lei Wang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Biyong Liu
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jing Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
64
|
Liu H, Yuan Y, Johnson-Stephenson TK, Jing C, Zhang M, Huang J, Zen K, Li L, Zhu D. Signal regulatory protein α dynamically mediates macrophage polarization facilitated alleviation of ischemic diseases. Cell Biosci 2024; 14:150. [PMID: 39707436 DOI: 10.1186/s13578-024-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND macrophage-targeting therapy of ischemic disease has made progress in clinic trial. However, the role and underlying mechanism of pro-inflammatory or anti-inflammatory polarized macrophages in modulating ischemic diseases remain incompletely understood. RESULTS here we examine the effect of pro-inflammatory (LPS) and anti-inflammatory (IL-4) macrophage on ischemic diseases in a mouse ischemic hindlimb and heart model, and identify that signal regulatory protein α (Sirpα) modulates macrophage polarization induced angiogenesis via promoting phagocytosis or activating HIF1α nucleus relocation in macrophages, respectively. More importantly, the therapeutic effect of polarized macrophages is controlled by Sirpα in a time-dependent manner. Downregulation of macrophage Sirpα at the early-stage or upregulation of macrophage Sirpα at the late-stage of ischemic disease enhances the therapeutic effect. In contrast, increasing Sirpα at the early-stage or decreasing it at the late-stage leads to failure of inducing ischemic disease resilience. Mechanistically, we find that signal transducer and activator of transcription 3 and 6 (Stat3 and Stat6) mediate downregulation (pro-inflammatory polarization) or upregulation (anti-inflammatory polarization) of Sirpα, respectively. CONCLUSION Our results reveal that dynamic regulation of macrophage by Sirpα plays a critical role in alleviating ischemic diseases.
Collapse
Affiliation(s)
- Haiyi Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yonghui Yuan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | | | - Chenyang Jing
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jun Huang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Dihan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
65
|
Zhao Z, Jia H, Sun Z, Li Y, Liu L. A new perspective on macrophage-targeted drug research: the potential of KDELR2 in bladder cancer immunotherapy. Front Immunol 2024; 15:1485109. [PMID: 39691708 PMCID: PMC11649672 DOI: 10.3389/fimmu.2024.1485109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Bladder cancer was recognized as one of the most common malignant tumors in the urinary system, and treatment options remained largely limited to conventional surgery, radiotherapy, and chemotherapy, which limited patient benefits. Methods Researchers constructed an RNA transcriptome map of bladder cancer by integrating single-cell RNA sequencing and clinical data, identifying potential molecular targets for diagnosis and treatment. We also verified the antitumor activity of the target through in vitro experiment. Results A distinct tumor cell subpopulation characterized by elevated S100A8 expression exhibited high copy number variation, high stemness, and low differentiation. It interacted with myeloid cells via the MIF-(CD74+CD44) and MIF-(CD74+CXCR4) signaling pathways. This study underscored KDELR2's role in promoting cell proliferation, invasion, and migration, providing new therapeutic insights. Prognostic analysis revealed that KDELR2 correlated with poor survival, higher immune scores, and increased macrophage infiltration. Discussion The findings suggested that patients with high KDELR2 expression might benefit from immune checkpoint therapy. KDELR2 was also shown to enhance bladder cancer cell proliferation, invasion, and migration, highlighting it as a promising target for macrophage-focused drug development.
Collapse
Affiliation(s)
- Zhiyi Zhao
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongling Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yumeng Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
66
|
Mo K, Wang Y, Lu C, Li Z. Insight into the role of macrophages in periodontitis restoration and development. Virulence 2024; 15:2427234. [PMID: 39535076 PMCID: PMC11572313 DOI: 10.1080/21505594.2024.2427234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Periodontitis is one of the chronic diseases that have the greatest impact on human health, and it is associated with several other chronic diseases. Tissue damage associated with periodontitis is often connected with immune response. Immune cells are a crucial component of the human immune system and are directly involved in periodontitis during the inflammatory phase of the disease. Macrophages, as a key component of the immune system, are responsible for defence, antigen presentation and phagocytosis in healthy tissue. They are also closely linked to the development and resolution of periodontitis, through mechanisms such as macrophage polarization, pattern recognition receptors recognition, efferocytosis, and Specialized Pro-resolving Mediators (SPMs) production. Additionally, apoptosis and autophagy are also known to play a role in the recovery of periodontitis. This review aims to investigate the aforementioned mechanisms in more detail and identify novel therapeutic approaches for periodontitis.
Collapse
Affiliation(s)
- Keyin Mo
- School of Stomatology, Jinan University, Guangzhou, China
| | - Yijue Wang
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
67
|
Golmohammadi M, Zamanian MY, Al‐Ani AM, Jabbar TL, Kareem AK, Aghaei ZH, Tahernia H, Hjazi A, Jissir SA, Hakimizadeh E. Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review. Animal Model Exp Med 2024; 7:853-867. [PMID: 39219410 PMCID: PMC11680487 DOI: 10.1002/ame2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer (BC) continues to be a significant global health issue, with a rising number of cases requiring ongoing research and innovation in treatment strategies. Curcumin (CUR), a natural compound derived from Curcuma longa, and similar compounds have shown potential in targeting the STAT3 signaling pathway, which plays a crucial role in BC progression. AIMS The aim of this study was to investigate the effects of curcumin and its analogues on BC based on cellular and molecular mechanisms. MATERIALS & METHODS The literature search conducted for this study involved utilizing the Scopus, ScienceDirect, PubMed, and Google Scholar databases in order to identify pertinent articles. RESULTS This narrative review explores the potential of CUR and similar compounds in inhibiting STAT3 activation, thereby suppressing the proliferation of cancer cells, inducing apoptosis, and inhibiting metastasis. The review demonstrates that CUR directly inhibits the phosphorylation of STAT3, preventing its movement into the nucleus and its ability to bind to DNA, thereby hindering the survival and proliferation of cancer cells. CUR also enhances the effectiveness of other therapeutic agents and modulates the tumor microenvironment by affecting tumor-associated macrophages (TAMs). CUR analogues, such as hydrazinocurcumin (HC), FLLL11, FLLL12, and GO-Y030, show improved bioavailability and potency in inhibiting STAT3, resulting in reduced cell proliferation and increased apoptosis. CONCLUSION CUR and its analogues hold promise as effective adjuvant treatments for BC by targeting the STAT3 signaling pathway. These compounds provide new insights into the mechanisms of action of CUR and its potential to enhance the effectiveness of BC therapies.
Collapse
Affiliation(s)
| | - Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Ahmed Muzahem Al‐Ani
- Department of Medical Laboratories TechnologyAL‐Nisour University CollegeBaghdadIraq
| | | | - Ali Kamil Kareem
- Biomedical Engineering DepartmentAl‐Mustaqbal University CollegeHillahIraq
| | - Zeinab Hashem Aghaei
- Preventative Gynecology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Tahernia
- Molecular Medicine Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesPrince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | | | - Elham Hakimizadeh
- Physiology‐Pharmacology Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
68
|
Zhou Z, Li C, Zeng Y, Huang T, Jiang X, Yu DG, Wang K. Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review. Int J Biol Macromol 2024; 282:136688. [PMID: 39447788 DOI: 10.1016/j.ijbiomac.2024.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
69
|
Cao Y, Chen B, Liu Q, Mao Y, He Y, Liu X, Zhao X, Chen Y, Li X, Li Y, Liu L, Guo C, Liu S, Tan F, Lu H, Liu J, Chen C. Dissolvable microneedle-based wound dressing transdermally and continuously delivers anti-inflammatory and pro-angiogenic exosomes for diabetic wound treatment. Bioact Mater 2024; 42:32-51. [PMID: 39280578 PMCID: PMC11399477 DOI: 10.1016/j.bioactmat.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Due to overactive inflammation and hindered angiogenesis, self-healing of diabetic wounds (DW) remains challenging in the clinic. Platelet-derived exosomes (PLT-Exos), a novel exosome capable of anti-inflammation and pro-angiogenesis, show great potential in DW treatment. However, previous administration of exosomes into skin wounds is topical daub or intradermal injection, which cannot intradermally deliver PLT-Exos into the dermis layer, thus impeding its long-term efficacy in anti-inflammation and pro-angiogenesis. Herein, a dissolvable microneedle-based wound dressing (PLT-Exos@ADMMA-MN) was developed for transdermal and long-term delivery of PLT-Exos. Firstly, a photo-crosslinking methacrylated acellular dermal matrix-based hydrogel (ADMMA-GEL), showing physiochemical tailorability, fast-gelling performance, excellent biocompatibility, and pro-angiogenic capacities, was synthesized as a base material of our dressing. For endowing the dressing with anti-inflammation and pro-angiogenesis, PLT-Exos were encapsulated into ADMMA-GEL with a minimum effective concentration determined by our in-vitro experiments. Then, in-vitro results show that this dressing exhibits excellent properties in anti-inflammation and pro-angiogenesis. Lastly, in-vivo experiments showed that this dressing could continuously and transdermally deliver PLT-Exos into skin wounds to switch local macrophage into M2 phenotype while stimulating neovascularization, thus proving a low-inflammatory and pro-angiogenic microenvironment for DW healing. Collectively, this study provides a novel wound dressing capable of suppressing inflammation and stimulating vascularization for DW treatment.
Collapse
Affiliation(s)
- Yanpeng Cao
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Bei Chen
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China
| | - Qixing Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Yiyang Mao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusheng He
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Xiaoren Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Xin Zhao
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Yaowu Chen
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Xiying Li
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Yabei Li
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Liang Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Chengwu Guo
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Shiyu Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Fenghua Tan
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Hongbin Lu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China
| | - Jun Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Can Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
70
|
Wang X, Meng G, Zhang Z, Zhao J, Wang S, Hua D, JingZhang, Zhang J. Prodigiosin hydrogel to promote healing of trauma-infected multidrug-resistant Staphylococcus aureus mice wounds. Int J Pharm X 2024; 8:100306. [PMID: 39678263 PMCID: PMC11638630 DOI: 10.1016/j.ijpx.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/17/2024] Open
Abstract
Wound infections caused by Multidrug-resistant Staphylococcus aureus (MRSA) have been regarded as a challenging problem in clinic for the long time. In this study, based on the excellent antimicrobial effect of prodigiosin(PG) and the ability of hydrogel dressing in terms of tissue repair and regeneration, we prepared the PG hydrogel as a treatment for the wound infection induced by MRSA. Rheological tests indicated that PG hydrogel as a semi-solid gel had good mechanical properties. In ex vitro drug permeation studies and dermatokinetic studies showed that PG hydrogel had high PG permeability and were capable of short-term retention in the skin. In addition, in vivo experiments for mouse skin wounds showed that the serum levels of inflammatory factors including IL-β and other inflammatory factors were reduced, the inflammatory infiltration of tissues was reduced, the transcript levels of genes such as COL1A1 were up-regulated at different stages of wound healing, and the relative abundance of genera such as Desulfovibrio was lowered after treatment with PG hydrogel, which facilitated wound healing in mice. Our study would provide a new solution to the clinical shortage of drugs for the treatment of MRSA infection and provide a research basis for improving the comprehensive values of PG.
Collapse
Affiliation(s)
- Xin Wang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangfan Meng
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zongyu Zhang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiacheng Zhao
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shaoyu Wang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dongliang Hua
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - JingZhang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jie Zhang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
71
|
Xin Z, Xu R, Dong Y, Jin S, Ge X, Shen X, Guo S, Fu Y, Zhang P, Jiang H. Impaired autophagy-mediated macrophage polarization contributes to age-related hyposalivation. Cell Prolif 2024; 57:e13714. [PMID: 39004782 PMCID: PMC11628751 DOI: 10.1111/cpr.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Age-related dysfunction of salivary glands (SGs) leading to xerostomia or dry mouth is typically associated with increased dental caries and difficulties in mastication, deglutition or speech. Inflammaging-induced hyposalivation plays a significant role in aged SGs; however, the mechanisms by which ageing shapes the inflammatory microenvironment of SGs remain unclear. Here, we show that reduced salivary secretion flow rate in aged human and mice SGs is associated with impaired autophagy and increased M1 polarization of macrophages. Our study reveals the crucial roles of SIRT6 in regulating macrophage autophagy and polarization through the PI3K/AKT/mTOR pathway, as demonstrated by generating two conditional knock out mice. Furthermore, triptolide (TP) effectively rejuvenates macrophage autophagy and polarization via targeting this pathway. We also design a local delivery of TP-loaded apoptotic extracellular vesicles (ApoEVs) to improve age-related SGs dysfunction therapeutically. Collectively, our findings uncover a previously unknown link between SIRT6-regulated autophagy and macrophage polarization in age-mediated hyposalivation, while our locally therapeutic strategy exhibits potential preventive effects for age-related hyposalivation.
Collapse
Affiliation(s)
- Zhili Xin
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Yangjiele Dong
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Shenghao Jin
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Xin Shen
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Songsong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
72
|
Song L, Yang C, Ji G, Hu R. The role and potential treatment of macrophages in patients with infertility and endometriosis. J Reprod Immunol 2024; 166:104384. [PMID: 39442472 DOI: 10.1016/j.jri.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Endometriosis is characterized as a macrophage-related ailment due to its strong link with immune dysfunction. Understanding the status of macrophage polarization in the context of endometriosis-related infertility is crucial for advancing diagnostic and therapeutic strategies. Our comprehensive review delves into the foundational understanding of macrophages and their profound influence on both endometriosis and infertility. Additionally, we illuminate the complex role of macrophages in infertility and endometriosis specifically. Finally, we focused on four critical dimensions: follicular fluid, the intraperitoneal environment, endometrial receptivity, and strategies for managing endometriosis. It is clear that throughout the progression of endometriosis, the diverse polarization states of macrophages play a pivotal role in the internal reproductive environment of infertile individuals grappling with this condition. Modulating macrophage polarization in the reproductive environment of endometriosis patients could address infertility challenges more effectively, offering a promising pathway for treating infertility associated with endometriosis.
Collapse
Affiliation(s)
- Linlin Song
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Caihong Yang
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Guiyi Ji
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
73
|
Visarnta S, Ratisoontorn C, Panichuttra A, Sinpitaksakul P, Chantarangsu S, Dhanuthai K. Macrophage polarization in human periapical lesions in relation to histopathological diagnosis, clinical features and lesion volume: An ex vivo study. Int Endod J 2024; 57:1829-1847. [PMID: 39222032 DOI: 10.1111/iej.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
AIM To evaluate M1 and M2 macrophage polarization in radicular cysts and periapical granulomas through an immunohistochemical analysis and the correlation between macrophage polarization and histopathological diagnosis, clinical characteristics and lesion volume using cone-beam computed tomography. METHODOLOGY Periapical biopsies diagnosed as radicular cysts (n = 52) and periapical granulomas (n = 51) were analysed by immunohistochemical method. Teeth with periapical lesion with no history of root canal treatment (primary lesion) and lesions persistent to root canal treatment (persistent lesions) were included. Pathological diagnosis, patients' age, gender and clinical characteristics were obtained from treatment records. A cone-beam computed tomographic periapical volume index (CBCTPAVI) score was assigned to each periapical lesion based on the volume of the lesion. Immuno-expressions of CD68 and CD163 were quantified. The CD68/CD163 ratio was adopted to represent M1 or M2 macrophage polarization. Mann-Whitney U test was used to determine the different CD68/CD163 ratio between groups of radicular cyst and periapical granuloma. Spearman's correlation test was performed to assess the correlation between the CD68/CD163 ratio and lesion volume and CBCTPAVI score. RESULTS Radicular cysts and periapical granulomas had CD68/CD163 median of 2.05 (IQR = 1.33) and 1.26 (IQR = 0.81), respectively. A significantly higher CD68/CD163 ratio was observed in radicular cysts (p < .001). In contrast, periapical granulomas had significantly lower median of CD68/CD163 ratio. Larger lesions had a higher median of CD68/CD163 ratio, while smaller lesions had lower median of CD68/CD163 ratio (p = .007, rs = .262). CD68/CD163 ratio was significantly correlated with the CBCTPAVI score in the overall periapical lesions (p = .002, rs = .306). The higher CD68/CD163 ratio in larger lesions indicated a higher degree of M1 polarization compared to smaller lesions. Regarding the pathological diagnosis, there was a significant positive correlation between CBCTPAVI score and CD68/CD163 ratio in periapical granulomas (p < .001, rs = .453), whereas the negative correlation was observed for radicular cysts (p < .001, rs = -.471). CONCLUSIONS Periapical granulomas are characterized by a M2-dominant macrophage polarization, while radicular cysts have significantly higher M1 macrophages. The higher degree of M1 macrophage polarization was significantly correlated with larger volume and higher CBCTPAVI scores of overall periapical lesion and periapical granuloma.
Collapse
Affiliation(s)
- Supanant Visarnta
- Section of Endodontics, Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chootima Ratisoontorn
- Section of Endodontics, Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Anchana Panichuttra
- Section of Endodontics, Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phonkit Sinpitaksakul
- Department of Radiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Soranun Chantarangsu
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kittipong Dhanuthai
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
74
|
Luo JY, Zheng S, Yang J, Ma C, Ma XY, Wang XX, Fu XN, Mao XZ. Development and validation of biomarkers related to anoikis in liver cirrhosis based on bioinformatics analysis. World J Hepatol 2024; 16:1306-1320. [PMID: 39606164 PMCID: PMC11586749 DOI: 10.4254/wjh.v16.i11.1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/29/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND According to study, anoikis-related genes (ARGs) have been demonstrated to play a significant impact in cirrhosis, a major disease threatening human health worldwide. AIM To investigate the relationship between ARGs and cirrhosis development to provide insights into the clinical treatment of cirrhosis. METHODS RNA-sequencing data related to cirrhosis were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between cirrhotic and normal tissues were intersected with ARGs to derive differentially expressed ARGs (DEARGs). The DEARGs were filtered using the least absolute shrinkage and selection operator, support vector machine recursive feature elimination, and random forest algorithms to identify biomarkers for cirrhosis. These biomarkers were used to create a nomogram for predicting the prognosis of cirrhosis. The proportions of diverse immune cell subsets in cirrhotic vs normal tissues were compared using the CIBERSORT computational method. In addition, the linkage between immune cells and biomarkers was assessed, and a regulatory network of mRNA, miRNA, and transcription factors was constructed relying on the biomarkers. RESULTS The comparison of cirrhotic and normal tissue samples led to the identification of 635 DEGs. Subsequent intersection of the DEGs with ARGs produced a set of 26 DEARGs. Subsequently, three DEARGs, namely, ACTG1, STAT1, and CCR7, were identified as biomarkers using three machine-learning algorithms. The proportions of M1 and M2 macrophages, resting CD4 memory T cells, resting mast cells, and plasma cells significantly differed between cirrhotic and normal tissue samples. The proportions of M1 and M2 macrophages, resting CD4 memory T cells, and resting mast cells were significantly correlated with the expression of the three biomarkers. The mRNA-miRNA-TF network showed that ACTG1, CCR7, and STAT1 were regulated by 28, 42, and 35 miRNAs, respectively. Moreover, AR, MAX, EP300, and FOXA1 were found to regulate four miRNAs related to the biomarkers. CONCLUSION This study revealed ACTG1, STAT1, and CCR7 as biomarkers of cirrhosis, providing a reference for developing novel diagnostic and therapeutic strategies for cirrhosis.
Collapse
Affiliation(s)
- Jiang-Yan Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Sheng Zheng
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming 650011, Yunnan Province, China.
| | - Juan Yang
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming 650011, Yunnan Province, China
| | - Chi Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Xiao-Ying Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Xing-Xing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Xin-Nian Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Xiao-Zhou Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| |
Collapse
|
75
|
Yan F, Li W, Sun X, Wang L, Liu Z, Zhong Z, Guo Z, Liu Z, Gao M, Zhang J, Wang C, Dong G, Li C, Chen S, Xiong H, Zhang H. Sappanone A Ameliorates Concanavalin A-induced Immune-Mediated Liver Injury by Regulating M1 Macrophage Polarization. Inflammation 2024:10.1007/s10753-024-02189-x. [PMID: 39589634 DOI: 10.1007/s10753-024-02189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
Sappanone A (SAP), a high-isoflavone compound derived from the traditional Chinese medicine Sumu, exhibits various pharmacological activities, including anti-inflammatory and anti-oxidant effects. However, its protective effects on the liver have rarely been reported. The aim of this study was to investigate the effects of SAP on immune-mediated liver injury induced by concanavalin A (Con A) in mice and to explore the underlying molecular mechanisms. Mice were administered SAP intraperitoneally (50 mg/kg body weight). Three hours later, Con A (18 mg/kg) was injected via the tail vein to induce liver damage. Livers and blood were collected 12 h after Con A challenge. Liver cell apoptosis, oxidative stress, and M1 macrophage activation in vivo were investigated. Bone marrow-derived macrophages were used to confirm the effects of SAP on M1 polarization in vitro. The results indicated that SAP decreased transaminase levels, inhibited apoptosis, and improved oxidative stress in mouse livers. Furthermore, SAP significantly reduced the proportion of macrophages, inhibited the expression of CD86, and downregulated the expression of M1 macrophage-related inflammatory cytokines. Moreover, SAP-treated macrophages alleviated liver damage caused by Con A compared to non-SAP-treated macrophages. Mechanistically, SAP inhibited the phosphorylation of key molecules in the MAPK and NF-κB signaling pathways in macrophages, resulting in an inhibitory effect on M1 macrophage activation. Taken together, SAP alleviates immune-mediated liver injury induced by Con A by suppressing M1 macrophage polarization, which is partially associated with NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Wenbo Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Xueyang Sun
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhihong Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhaoming Zhong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhengran Guo
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Ziyu Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Shang Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
76
|
Nishimura T, Mizokami R, Yamanaka M, Takahashi M, Yoshida Y, Ogawa Y, Noguchi S, Tomi M. Fetal ezrin expression affects macrophages and regulatory T cells in mouse placental decidua. Biochem Biophys Res Commun 2024; 735:150842. [PMID: 39427376 DOI: 10.1016/j.bbrc.2024.150842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Ezrin is a cross-linker protein between membrane proteins and cytosolic actin, abundantly expressed in the placenta among the ERM protein family. Ezrin gene knockout mice exhibit fetal growth restriction after gestational day (GD) 15.5. This study aimed to clarify the effect of ezrin on immune cells that influence fetal growth and immune tolerance. Ezrin heterozygous knockout (Ez+/-) mice were interbred, and the gene expressions and immune cell distributions in the placentas of wild-type (Ez+/+) and ezrin knockout (Ez-/-) fetuses were analyzed. IL-6 expression in the placenta of Ez-/- fetuses was significantly higher than in Ez+/+ fetuses at GD 15.5. The mRNA expression of IL-6 in the uterine decidua attached to Ez-/- fetuses was higher compared to that attached to Ez+/+ fetuses but not in the junctional zone and labyrinth. Classical M1 and M2 macrophages in the decidua were analyzed by flow cytometry using CD86 and CD206 as markers. M1 macrophages increased in the decidua attached to Ez-/- mice compared to Ez+/+ mice, while M2 macrophages did not increase. CD4-positive T cells showed a reduction in the decidua attached to Ez-/- fetuses. Further analysis involved the subcutaneous administration of tacrolimus in pregnant Ez+/- mice from GD 8.5 to GD 15.5, which prevented the decrease in fetal body weight and decidual CD4-positive T cells in Ez-/- mice at GD 15.5. These results suggest that impaired expression of fetoplacental-derived ezrin induces inflammatory conditions in the uterine decidua through M1 polarization of macrophages, increased IL-6, and decreased CD4-positive T cells, including Treg cells.
Collapse
Affiliation(s)
- Tomohiro Nishimura
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan; Faculty of Pharmacy, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba, 279-0013, Japan.
| | - Ryo Mizokami
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Mayuko Yamanaka
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masaya Takahashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuko Yoshida
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuya Ogawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Saki Noguchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
77
|
Arleo A, Montagner A, Giovannini C, Suzzi F, Piscaglia F, Gramantieri L. Multifaceted Aspects of Dysfunctional Myelopoiesis in Cancer and Therapeutic Perspectives with Focus on HCC. Biomolecules 2024; 14:1496. [PMID: 39766202 PMCID: PMC11673139 DOI: 10.3390/biom14121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Myelopoiesis provides for the formation and continued renewal of cells belonging primarily to the innate immune system. It is a highly plastic process that secures the response to external and internal stimuli to face acute and changing needs. Infections and chronic diseases including cancer can modulate it by producing several factors, impacting proliferation and differentiation programs. While the lymphocytic compartment has attracted major attention due to the role of adaptive immunity in anticancer immune response, in recent years, research has found convincing evidence that confirms the importance of innate immunity and the key function played by emergency myelopoiesis. Due to cancer's ability to manipulate myelopoiesis to its own advantage, the purpose of this review is to outline myelopoiesis processes within the tumor microenvironment and suggest possible therapeutic lines of research to restore the physiological functioning of the host's immune system, with a special outlook on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
78
|
Wong K, Tan XH, Li J, Hui JHP, Goh JCH. An In Vitro Macrophage Response Study of Silk Fibroin and Silk Fibroin/Nano-Hydroxyapatite Scaffolds for Tissue Regeneration Application. ACS Biomater Sci Eng 2024; 10:7073-7085. [PMID: 39381957 DOI: 10.1021/acsbiomaterials.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent years, silk fibroin (SF) has been incorporated with low crystallinity nanohydroxyapatite (nHA) as a scaffold for various tissue regeneration applications due to the mechanical strength of SF and osteoconductive properties of nHA. However, currently, there is a lack of understanding of the immune response toward the degradation products of SF with nHA composite after implantation. It is known that particulate fragments from the degradation of a biomaterial can trigger an immune response. As the scaffold is made of degradable materials, the degradation products may contribute to the inflammation. Therefore, in this study, the effects of the enzymatic degradation of the SF/nHA scaffold on macrophage response were investigated in comparison to the control SF scaffold. Since the degradation products of a scaffold can influence macrophage polarization, it can be hypothesized that as the SF and SF/nHA scaffolds were degraded in vitro using protease XIV solution, the degradation products can contribute to the polarization of THP-1-derived macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype. The results demonstrated that the initial (day 1) degradation products of the SF/nHA scaffold elicited a pro-inflammatory response, while the latter (day 24) degradation products of the SF/nHA scaffold elicited an anti-inflammatory response. Moreover, the degradation products from the SF scaffold elicited a higher anti-inflammatory response due to the faster degradation of the SF scaffold and a higher amino acid concentration in the degradation solution. Hence, this paper can help elucidate the contributory effects of the degradation products of SF and SF/nHA scaffolds on macrophage response and provide greater insights into designing silk-based biomaterials with tunable degradation rates that can modulate macrophage response for future tissue regeneration applications.
Collapse
Affiliation(s)
- Kallista Wong
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Xuan Hao Tan
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Hoi Po Hui
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Cho Hong Goh
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| |
Collapse
|
79
|
Cole BJ, Easley JT, Nyska A, Rousselle S. Anterior cruciate ligament reconstruction in a translational model in sheep using biointegrative mineral fiber reinforced screws. Sci Rep 2024; 14:27408. [PMID: 39521891 PMCID: PMC11550828 DOI: 10.1038/s41598-024-75914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Anterior cruciate ligament reconstruction (ACLR) is one of the more common procedures performed worldwide and perhaps the most widely studied construct in orthopedic literature. Interference screws are reliable and frequently used for ligament reconstruction, providing rigid fixation and facilitates graft incorporation allowing for the physiologic loads of early rehabilitation. The purpose of this study was to determine the bio-integration profile and quality of soft tissue graft when using mineral fiber-reinforced screws in an ACLR interference model. Nine sheep underwent ACLR using harvested autologous tendon graft fixated with 4.75 mm screws made of continuous mineral fibers. Histopathology and imaging evaluation at 28, 52, 104, 132-weeks (W) demonstrated mesenchymal tissue ingrowth into implant wall at 28 W, which increased at 52 W and peaked at 104 W. At 132 W, implants fully replaced by newly remodeled bone. Graft cellularity was evident at 28 W and continued to increase through 132 W as the tendon ossified at sites of bone contact. Pro-healing M2-macrophages and giant cells remained infrequent, with minor increases between 52 W and 104 W, attributed to expected phagocytic response. Pro-inflammatory cells (i.e., M1-macrophages, polymorphonuclears) were absent through the entire study course. In conclusion, bio-integrative screws provide secure soft tissue fixation with replacement by bone demonstrating graft cellularization over time.
Collapse
Affiliation(s)
- Brian J Cole
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Jeremiah T Easley
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Abraham Nyska
- Toxicologic Pathology , Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
80
|
Punyawatthananukool S, Matsuura R, Wongchang T, Katsurada N, Tsuruyama T, Tajima M, Enomoto Y, Kitamura T, Kawashima M, Toi M, Yamanoi K, Hamanishi J, Hisamori S, Obama K, Charoensawan V, Thumkeo D, Narumiya S. Prostaglandin E 2-EP2/EP4 signaling induces immunosuppression in human cancer by impairing bioenergetics and ribosome biogenesis in immune cells. Nat Commun 2024; 15:9464. [PMID: 39487111 PMCID: PMC11530437 DOI: 10.1038/s41467-024-53706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
While prostaglandin E2 (PGE2) is produced in human tumor microenvironment (TME), its role therein remains poorly understood. Here, we examine this issue by comparative single-cell RNA sequencing of immune cells infiltrating human cancers and syngeneic tumors in female mice. PGE receptors EP4 and EP2 are expressed in lymphocytes and myeloid cells, and their expression is associated with the downregulation of oxidative phosphorylation (OXPHOS) and MYC targets, glycolysis and ribosomal proteins (RPs). Mechanistically, CD8+ T cells express EP4 and EP2 upon TCR activation, and PGE2 blocks IL-2-STAT5 signaling by downregulating Il2ra, which downregulates c-Myc and PGC-1 to decrease OXPHOS, glycolysis, and RPs, impairing migration, expansion, survival, and antitumor activity. Similarly, EP4 and EP2 are induced upon macrophage activation, and PGE2 downregulates c-Myc and OXPHOS in M1-like macrophages. These results suggest that PGE2-EP4/EP2 signaling impairs both adaptive and innate immunity in TME by hampering bioenergetics and ribosome biogenesis of tumor-infiltrating immune cells.
Collapse
MESH Headings
- Dinoprostone/metabolism
- Humans
- Animals
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Signal Transduction
- Female
- Tumor Microenvironment/immunology
- Mice
- Energy Metabolism
- Ribosomes/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/genetics
- Neoplasms/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Oxidative Phosphorylation
- Glycolysis
- Macrophages/metabolism
- Macrophages/immunology
- Mice, Inbred C57BL
- Cell Line, Tumor
- Immune Tolerance
Collapse
Affiliation(s)
| | - Ryuma Matsuura
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Thamrong Wongchang
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Division of Pharmacology, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Nao Katsurada
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Department of Medical Technology and Sciences, Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, 607-8175, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yutaka Enomoto
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshio Kitamura
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, 650-0047, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Shigeo Hisamori
- Department of Gastrointestinal Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Varodom Charoensawan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
- AMED-FORCE, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
- Foundation for Biomedical Research and Innovation at Kobe, Kobe, 650-0047, Japan.
| |
Collapse
|
81
|
Gong P, Ding Y, Li W, Yang J, Su X, Tian R, Zhou Y, Wang T, Jiang J, Liu R, Fang J, Feng C, Shao C, Shi Y, Li P. Neutrophil-Driven M2-Like Macrophages Are Critical for Skin Fibrosis in a Systemic Sclerosis Model. J Invest Dermatol 2024; 144:2426-2439.e3. [PMID: 38580106 DOI: 10.1016/j.jid.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/04/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
Systemic sclerosis (SSc) is a challenging autoimmune disease characterized by progressive fibrosis affecting the skin and internal organs. Despite the known infiltration of macrophages and neutrophils, their precise contributions to SSc pathogenesis remain elusive. In this study, we elucidated that CD206hiMHCIIlo M2-like macrophages constitute the predominant pathogenic immune cell population in the fibrotic skin of a bleomycin-induced SSc mouse model. These cells emerged as pivotal contributors to the profibrotic response by orchestrating the production of TGF-β1 through a MerTK signaling-dependent manner. Notably, we observed that neutrophil infiltration was a prerequisite for accumulation of M2-like macrophages. Strategies such as neutrophil depletion or inhibition of CXCR1/2 were proven effective in reducing M2-like macrophages, subsequently mitigating SSc progression. Detailed investigations revealed that in fibrotic skin, neutrophil-released neutrophil extracellular traps were responsible for the differentiation of M2-like macrophages. Our findings illuminate the significant involvement of the neutrophil-macrophage-fibrosis axis in SSc pathogenesis, offering critical information for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Pixia Gong
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yayun Ding
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wen Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jie Yang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiao Su
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ruifeng Tian
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tingting Wang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Junjie Jiang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chao Feng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
82
|
Gaigeard N, Cardon A, Le Goff B, Guicheux J, Boutet MA. Unveiling the macrophage dynamics in osteoarthritic joints: From inflammation to therapeutic strategies. Drug Discov Today 2024; 29:104187. [PMID: 39306233 DOI: 10.1016/j.drudis.2024.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Osteoarthritis (OA) is an incurable, painful, and debilitating joint disease affecting over 500 million people worldwide. The OA joint tissues are infiltrated by various immune cells, particularly macrophages, which are able to induce or perpetuate inflammation. Notably, synovitis and its macrophage component represent a target of interest for developing treatments. In this review, we describe the latest advances in understanding the heterogeneity of macrophage origins, phenotypes, and functions in the OA joint and the effect of current symptomatic therapies on these cells. We then highlight the therapeutic potential of anticytokines/chemokines, nano- and microdrug delivery, and future strategies to modulate macrophage functions in OA.
Collapse
Affiliation(s)
- Nicolas Gaigeard
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Anaïs Cardon
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Benoit Le Goff
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Marie-Astrid Boutet
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France; Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M6BQ London, UK.
| |
Collapse
|
83
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic tumor microenvironment. EMBO Rep 2024; 25:5080-5112. [PMID: 39415049 PMCID: PMC11549407 DOI: 10.1038/s44319-024-00288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are prime therapeutic targets due to their pro-tumorigenic functions, but varying efficacy of macrophage-targeting therapies highlights our incomplete understanding of how macrophages are regulated within the tumor microenvironment (TME). The circadian clock is a key regulator of macrophage function, but how circadian rhythms of macrophages are influenced by the TME remains unknown. Here, we show that conditions associated with the TME such as polarizing stimuli, acidic pH, and lactate can alter circadian rhythms in macrophages. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate pH-driven changes in circadian rhythms are not mediated solely by cAMP signaling. Remarkably, circadian disorder of TAMs was revealed by clock correlation distance analysis. Our data suggest that heterogeneity in circadian rhythms within the TAM population level may underlie this circadian disorder. Finally, we report that circadian regulation of macrophages suppresses tumor growth in a murine model of pancreatic cancer. Our work demonstrates a novel mechanism by which the TME influences macrophage biology through modulation of circadian rhythms.
Collapse
Affiliation(s)
- Amelia M Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Kristina Morris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Cameron Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
84
|
Parekh NM, Desai RS, Bansal SP, Shirsat PM, Prasad PS. The role of M1 (CD11c) and M2 (CD163) interplay in the pathogenesis of oral submucous fibrosis and its malignant transformation: An immunohistochemical analysis. Cytokine 2024; 183:156742. [PMID: 39217916 DOI: 10.1016/j.cyto.2024.156742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES The M1/M2 macrophage framework is crucial in organ fibrosis and its progression to malignancy. This study investigated the possible role of M1/M2 macrophage interplay in the pathogenesis of oral submucous fibrosis (OSF) and its malignant transformation by analysing immunohistochemical expression of CD11c (M1) and CD163 (M2) markers. METHODS Immunohistochemistry was performed using primary antibodies against CD11c and CD163 on ten formalin-fixed paraffin-embedded tissue blocks for each group: (i) Stage 1 OSF, (ii) Stage 2 OSF, (iii) Stage 3 OSF, (iv) Stage 4 OSF, (v) well-differentiated squamous cell carcinoma (WDSCC) with OSF, and (vi) WDSCC without OSF. Ten cases of healthy buccal mucosa (NOM) served as controls. RESULTS Epithelial quick scores of M1 (CD11c) in NOM, Stages 1-4 OSF, and WDSCC with and without OSF were 0, 1.8, 2.9, 0.4, 0, 0, and 0, while connective tissue scores were 0, 3.2, 4.3, 2.7, 0.5, 1.2, and 2.4, respectively. Epithelial scores for M2 (CD163) were 0, 0.8, 0.8, 2.1, 0.6, 0.8, and 0.2, and connective tissue scores were 0, 1.8, 2.6, 3.9, 2.2, 5, and 4.4, respectively. Stages 3 and 4 OSF, WDSCC with and without OSF exhibited higher M2/M1 ratios compared to NOM and Stages 1-2 OSF. CONCLUSION The interaction between M1 (CD11c) and M2 (CD163) macrophages, leading to M2 polarisation, plays a crucial role in the pathogenesis of OSF and its potential malignant transformation.
Collapse
Affiliation(s)
- Nishreen M Parekh
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| | - Rajiv S Desai
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India.
| | - Shivani P Bansal
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| | - Pankaj M Shirsat
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| | - Pooja S Prasad
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| |
Collapse
|
85
|
Manzhulo I, Tyrtyshnaia A, Egoraeva A, Ivashkevich D, Girich A, Manzhulo O. Anti-inflammatory and anti-apoptotic activity of synaptamide improves the morphological state of neurons in traumatic brain injury. Neuropharmacology 2024; 258:110094. [PMID: 39094830 DOI: 10.1016/j.neuropharm.2024.110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Traumatic brain injuries (TBI) of varying severity are becoming more frequent all over the world. The process of neuroinflammation, in which macrophages and microglia are key players, underlies all types of brain damage. The present study focuses on evaluating the therapeutic potential of N-docosahexaenoylethanolamine (DHEA, synaptamide), which is an endogenous metabolite of docosahexaenoic acid in traumatic brain injury. Previously, several in vitro and in vivo models have shown significant anti-neuroinflammatory and synaptogenic activity of synaptamide. The results of the present study show that synaptamide by subcutaneous administration (10 mg/kg/day, 7 days) exerts anti-inflammatory and anti-apoptotic effects in the thalamus and cerebral cortex of experimental animals (male C57BL/6 mice). Were analyzed the dynamics of changes in the activity of Iba-1- and CD68-positive microglia/macrophages, the level of production of pro-inflammatory cytokines (IL1β, IL6, TNFα) and pro-apoptotic proteins (Bad, Bax), the expression of pro- and anti-inflammatory markers (CD68, CD206, arg-1). ATF3 transcription factor distribution and neuronal state in the thalamus and cerebral cortex of animals with craniotomy, traumatic brain injury, and therapy are quantitatively assessed. The obtained data showed that synaptamide: (1) has no effect on the total pool of microglia/macrophages; (2) inhibits the activity of pro-inflammatory microglia/macrophages and cytokines they produce; (3) increases the expression of CD206 but not arg-1; (4) has anti-apoptotic effect and (5) improves the morphological state of neurons. The results obtained confirm the high therapeutic potential of synaptamide in the therapy of traumatic brain injury.
Collapse
Affiliation(s)
- Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia.
| | - Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Anastasia Egoraeva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Darya Ivashkevich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Alexander Girich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Olga Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| |
Collapse
|
86
|
Gawryjołek M, Wiciński M, Zabrzyńska M, Ohla J, Zabrzyński J. Effect of Vitamin D Supplementation on Inflammatory Markers in Obese Patients with Acute and Chronic Orthopedic Conditions. Nutrients 2024; 16:3735. [PMID: 39519568 PMCID: PMC11547427 DOI: 10.3390/nu16213735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Numerous studies have shown that vitamin D may play an important role in modulating the inflammatory process. This study aimed to evaluate the effect of vitamin D supplementation on inflammatory markers in patients with orthopedic disorders and obesity. Thirty-three obese subjects were included in the study and were divided into two groups based on their medical condition: acute orthopedic diseases and chronic orthopedic diseases. Inclusion criteria for the research included age 18-75 years, BMI > 30 kg/m2, vitamin D deficiency, and no previous vitamin D supplementation. Samples were collected before and after 3 months of 4000 IU/day vitamin D supplementation. The study used enzyme-linked immunosorbent assay (ELISA) and measured serum levels of markers such as chitinase-3-like protein 1 (YKL-40), interleukin 6 (IL-6), interleukin 17 (IL-17), tumor necrosis factor (TNF-α), and adiponectin. After 3 months of vitamin D supplementation, a statistically significant increase in vitamin D and IL-17 levels was observed in the group with acute orthopedic diseases. Similarly, after supplementation, a statistically significant increase in vitamin D, IL-6 and TNF-α levels was observed in the group with chronic orthopedic diseases. Moreover, after vitamin D supplementation, statistically significantly higher adiponectin levels were observed in the chronic orthopedic group than in the acute orthopedic group. Despite high-dose vitamin D supplementation, inflammatory markers increased in acute and chronic orthopedic conditions. Based on our study, vitamin D does not reduce inflammation in patients with orthopedic conditions and obesity.
Collapse
Affiliation(s)
- Michał Gawryjołek
- Department of Orthopaedics and Traumatology, Dr L. Blazek Multi-Specialty Hospital, 88-100 Inowroclaw, Poland
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maria Zabrzyńska
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland;
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (J.O.); (J.Z.)
| | - Jan Zabrzyński
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (J.O.); (J.Z.)
| |
Collapse
|
87
|
Zhang T, Tai Z, Miao F, Zhao Y, Wang W, Zhu Q, Chen Z. Bioinspired nanovesicles derived from macrophage accelerate wound healing by promoting angiogenesis and collagen deposition. J Mater Chem B 2024. [PMID: 39480489 DOI: 10.1039/d3tb02158k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Macrophages play a crucial role in the process of wound healing. In order to effectively inhibit excessive inflammation and facilitate skin wound healing, it is necessary to transform overactive M1 macrophages in injured tissues into the M2 type. In this study, we have successfully generated bioinspired nanovesicles (referred to as M2BNVs) from M2 type macrophages. These nanovesicles not only possess physical and biological properties that closely resemble exosomes, but also offer a simpler preparation process and more abundant yield. Owing to their distinctive endogenous cargo, M2BNVs have the ability to re-educate M1 macrophages, shifting their phenotype towards the M2 type which is known to promote healing and possess anti-inflammatory properties. Consequently, M2BNVs effectively improve the prevailing pro-inflammatory microenvironment within the wound. Furthermore, M2BNVs also facilitate wound tissue regeneration and angiogenesis. Collectively, our findings demonstrate the potential of M2BNVs in promoting wound healing in mice.
Collapse
Affiliation(s)
- Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Yingchao Zhao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Weifan Wang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
88
|
Chowdhury D, Sharma M, Jahng JWS, Singh U. Extracellular Vesicles Derived From Entamoeba histolytica Have an Immunomodulatory Effect on THP-1 Macrophages. J Parasitol Res 2024; 2024:7325606. [PMID: 39502090 PMCID: PMC11537751 DOI: 10.1155/2024/7325606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Recent studies have shown that extracellular vesicles (EVs) secreted by various parasites are capable of modulating the host's innate immune responses, such as by altering macrophage (Mϕ) phenotypes and functions. Studies have shown that Mϕ promote early host responses to amoebic infection by releasing proinflammatory cytokines that are crucial to combating amoebiasis. Here, we are reporting for the first time the effect of EVs released by Entamoeba histolytica (EhEVs) on human THP-1 differentiated Mϕ (THP-1 Mϕ). We show that the EhEVs are internalized by THP-1 Mϕ which leads to differential regulation of various cytokines associated with both M1 and M2 Mϕ. We also saw that EhEV treatment thwarted Type 2 immune-response-related transcriptome pSTAT6 in the THP-1 Mϕ. Furthermore, EhEVs stimulated Mϕ to reduce their energy demand by suppressing oxidative phosphorylation (OXPHOS) and adenosine triphosphate (ATP) production. Hence, the human parasite E. histolytica-derived EVs are capable of eliciting an immune response from Mϕ that may contribute to overall infection status.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Manu Sharma
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James W. S. Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Upinder Singh
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
89
|
Chang RC, Whitlock RS, Joloya E, To KT, Huang Y, Blumberg B. Tributyltin Enhances Macrophage Inflammation and Lipolysis, Contributing to Adipose Tissue Dysfunction. J Endocr Soc 2024; 8:bvae187. [PMID: 39502475 PMCID: PMC11535727 DOI: 10.1210/jendso/bvae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Indexed: 11/08/2024] Open
Abstract
Tributyltin (TBT) is a synthetic chemical widely used in industrial and commercial applications. TBT exposure has been proven to elicit obesogenic effects. Gestational exposure led to increased white adipose tissue depot size in exposed (F1, F2) animals and in unexposed generations (F3, F4), an example of transgenerational inheritance. TBT exerts these effects in part by increasing the number and size of white adipocytes, altering the fate of multipotent mesenchymal stromal stem cells to favor the adipocyte lineage, altering adipokine secretion, and modulating chromatin structure. Adipose tissue resident macrophages are critical regulators in adipose tissue; however, the effects of TBT on adipose tissue macrophages remained unclear. Here we investigated the effects of TBT on macrophages and consequent impacts on adipocyte function. TBT significantly enhanced palmitate-induced inflammatory gene expression in mouse bone marrow derived macrophages and this effect was attenuated by the antagonizing action of the nuclear receptor peroxisome proliferator activated receptor gamma. TBT-treated macrophages decreased lipid accumulation in white adipocytes differentiated from mesenchymal stromal stem cells accompanied by increased expression of lipolysis genes. Lastly, ancestral TBT exposure increased Tnf expression in adipose tissue resident macrophages in both exposed (F2) and unexposed (F3) generations, suggesting that TBT exposure led to an inherited predisposition toward inflammatory adipose tissue macrophages that can manipulate adipose tissue function. These findings provide new insights into the interplay between adipocytes and adipose tissue macrophages in obesity, further establishing a role for obesogens such as TBT in the development of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Richard C Chang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Ryan Scott Whitlock
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Erika Joloya
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Kaitlin Thanh To
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Yikai Huang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
90
|
Palmieri A, Pellati A, Lauritano D, Lucchese A, Carinci F, Scapoli L, Martinelli M. Drugs That Induce Gingival Overgrowth Drive the Pro-Inflammatory Polarization of Macrophages In Vitro. Int J Mol Sci 2024; 25:11441. [PMID: 39518992 PMCID: PMC11546752 DOI: 10.3390/ijms252111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Several attempts have been made to elucidate the pathogenesis of drug-induced gingival overgrowth (DIGO), which is triggered by the chronic use of certain drugs that fall into three main categories: anticonvulsants, immunosuppressants, and calcium channel blockers. Previous research suggests that cytokines and impaired cellular functions play a role in DIGO. Of particular interest are macrophages, immune cells that can switch between M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes in response to exogenous signals and stimuli. An imbalance between M1 and M2 macrophage populations may underlie DIGO. M1 may contribute to the initial tissue damage in DIGO, while M2 may then attempt to repair the damage with anti-inflammatory mechanisms. To test the hypothesis that drugs associated with DIGO could influence macrophage polarization, human monocytes (precursors of macrophages) were induced to differentiate into M0-naïve macrophages and then exposed to drugs: diphenylhydantoin, gabapentin, mycophenolate, and amlodipine. Quantitative real-time PCR amplification was used to measure the expression of specific genes associated with macrophage polarization. All of the drugs tested induced M0 macrophages to overexpress genes typical of the M1 phenotype, such as CCL5, CXCL10, and IDO1. This investigation provides the first evidence of a link between drugs that cause DIGO and M1 pro-inflammatory macrophage polarization. The knowledge gained from this research could be valuable for future DIGO treatment strategies.
Collapse
Affiliation(s)
- Annalisa Palmieri
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (L.S.); (M.M.)
| | - Agnese Pellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (A.P.); (D.L.); (F.C.)
| | - Dorina Lauritano
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (A.P.); (D.L.); (F.C.)
| | - Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesco Carinci
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (A.P.); (D.L.); (F.C.)
| | - Luca Scapoli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (L.S.); (M.M.)
| | - Marcella Martinelli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (L.S.); (M.M.)
| |
Collapse
|
91
|
Mangum KD, denDekker A, Li Q, Tsoi LC, Joshi AD, Melvin WJ, Wolf SJ, Moon JY, Audu CO, Shadiow J, Obi AT, Wasikowski R, Barrett EC, Bauer TM, Boyer K, Ahmed Z, Davis FM, Gudjonsson J, Gallagher KA. The STAT3/SETDB2 axis dictates NF-κB-mediated inflammation in macrophages during wound repair. JCI Insight 2024; 9:e179017. [PMID: 39435663 PMCID: PMC11530128 DOI: 10.1172/jci.insight.179017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
Macrophage transition from an inflammatory to reparative phenotype after tissue injury is controlled by epigenetic enzymes that regulate inflammatory gene expression. We have previously identified that the histone methyltransferase SETDB2 in macrophages drives tissue repair by repressing NF-κB-mediated inflammation. Complementary ATAC-Seq and RNA-Seq of wound macrophages isolated from mice deficient in SETDB2 in myeloid cells revealed that SETDB2 suppresses the inflammatory gene program by inhibiting chromatin accessibility at NF-κB-dependent gene promoters. We found that STAT3 was required for SETDB2 expression in macrophages, yet paradoxically, it also functioned as a binding partner of SETDB2 where it repressed SETDB2 activity by inhibiting its interaction with the NF-κB component, RELA, leading to increased RELA/NF-κB-mediated inflammatory gene expression. Furthermore, RNA-Seq in wound macrophages from STAT3-deficient mice corroborated this and revealed STAT3 and SETDB2 transcriptionally coregulate overlapping genes. Finally, in diabetic wound macrophages, STAT3 expression and STAT3/SETDB2 binding were increased. We have identified what we believe to be a novel STAT3/SETDB2 axis that modulates macrophage phenotype during tissue repair and may be an important therapeutic target for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Kevin D. Mangum
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Aaron denDekker
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Qinmengge Li
- Department of Dermatology
- Department of Computation Medicine and Bioinformatics; and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C. Tsoi
- Department of Dermatology
- Department of Computation Medicine and Bioinformatics; and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Amrita D. Joshi
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - William J. Melvin
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Sonya J. Wolf
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Jadie Y. Moon
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Christopher O. Audu
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - James Shadiow
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Andrea T. Obi
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | | | - Emily C. Barrett
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Tyler M. Bauer
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Kylie Boyer
- Section of Vascular Surgery, Department of Surgery
| | - Zara Ahmed
- Section of Vascular Surgery, Department of Surgery
| | - Frank M. Davis
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| |
Collapse
|
92
|
Liu Z, Chen Z, Zhang J, Liu J, Li B, Zhang Z, Cai M, Zhang Z. Role of tumor-derived exosomes mediated immune cell reprograming in cancer. Gene 2024; 925:148601. [PMID: 38788817 DOI: 10.1016/j.gene.2024.148601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Tumor-derived exosomes (TDEs), as topologies of tumor cells, not only carry biological information from the mother, but also act as messengers for cellular communication. It has been demonstrated that TDEs play a key role in inducing an immunosuppressive tumor microenvironment (TME). They can reprogram immune cells indirectly or directly by delivering inhibitory proteins, cytokines, RNA and other substances. They not only inhibit the maturation and function of dendritic cells (DCs) and natural killer (NK) cells, but also remodel M2 macrophages and inhibit T cell infiltration to promote immunosuppression and create a favorable ecological niche for tumor growth, invasion and metastasis. Based on the specificity of TDEs, targeting TDEs has become a new strategy to monitor tumor progression and enhance treatment efficacy. This paper reviews the intricate molecular mechanisms underlying the immunosuppressive effects induced by TDEs to establish a theoretical foundation for cancer therapy. Additionally, the challenges of TDEs as a novel approach to tumor treatment are discussed.
Collapse
Affiliation(s)
- Zening Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zichao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Junqiu Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Baohong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenyong Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meichao Cai
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhen Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
93
|
Wang X, Wang S, Mu H, Yang C, Dong W, Wang X, Wang J. Macrophage-derived amphiregulin promoted the osteogenic differentiation of chondrocytes through EGFR/Yap axis and TGF-β activation. Bone 2024; 190:117275. [PMID: 39383984 DOI: 10.1016/j.bone.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Endochondral ossification represents a crucial biological process in skeletal development and bone defect repair. Macrophages, recognized as key players in the immune system, are now acknowledged for their substantial role in promoting endochondral ossification within cartilage. Concurrently, the epidermal growth factor receptor (EGFR) ligand amphiregulin (Areg) has been documented for its contributory role in restoring bone tissue homeostasis post-injury. However, the mechanism by which macrophage-secreted Areg facilitates bone repair remains elusive. In this study, the induction of macrophage depletion through in vivo administration of clodronate liposomes was employed in a standard open tibial fracture mouse model to assess bone healing using micro-computed tomography (micro-CT) analysis, histomorphology, and ELISA serum evaluations. The investigation revealed sustained expression of Areg during the fracture healing period in wild-type mice. Macrophage depletion significantly reduced the number of macrophages on the local bone surface and vital organs. This reduction led to diminished Areg secretion, decreased collagen production, and delayed fracture healing. However, histological and micro-CT assessments at 7 and 21 days post-local Areg treatment exhibited a marked improvement of bone healing compared to the vehicle control. In vitro studies demonstrated an increase of Areg secretion by the Raw264.7 cells upon ATP stimulation. Indirect co-culture of Raw264.7 and ATDC5 cells indicated that Areg overexpression enhanced the osteogenic potential of chondrocytes, and vice versa. This osteogenic promotion was attributed to Areg's activation of the membrane receptor EGFR in the ATDC5 cell line, the enhanced phosphorylation of transcription factor Yap, and the facilitation of the expression of bioactive TGF-β by chondrocytes. Collectively, this research elucidates the direct mechanistic effects of macrophage-secreted Areg in promoting bone homeostasis following bone injury.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xinru Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jaiwei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
94
|
Zhang M, Xu X, Su L, Zeng Y, Lin J, Li W, Zou Y, Li S, Lin B, Li Z, Chen H, Huang Y, Xu Q, Chen H, Cheng F, Dai D. Oral administration of Sophora Flavescens-derived exosomes-like nanovesicles carrying CX5461 ameliorates DSS-induced colitis in mice. J Nanobiotechnology 2024; 22:607. [PMID: 39379937 PMCID: PMC11463058 DOI: 10.1186/s12951-024-02856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Ulcerative colitis (UC) belongs to chronic inflammatory disease with a relapsing characterization. Conventional oral drugs of UC are restricted in clinical by premature degradation in the gastrointestinal tract, modest efficacy, and adverse effects. CX5461 can treat autoimmune disease, immunological rejection, and vascular inflammation. However, low solubility, intravenous administration, and non-inflammatory targeting limited its clinical application. Herein, this work aims to develop Sophora Flavescens-derived exosomes-like nanovesicles carrying CX5461 (SFELNVs@CX5461) for efficient CX5461 oral delivery for UC therapy. We identified SFELNVs as nano-diameter (80 nm) with negative zeta potential (-32mV). Cellular uptake has shown that SFELNVs were targeted uptake by macrophages, thus increasing drug concentration. Additionally, oral SFELNVs@CX5461 exhibited good safety and stability, as well as inflammation-targeting ability in the gastrointestinal tract of dextran sodium sulfate (DSS)-induced colitis mice. In vivo, oral administration of SFELNVs and CX5461 could relieve mice colitis. More importantly, combined SFELNVs and CX5461 alleviated mice colitis by inhibiting pro-inflammatory factors (TNF-α, IL-1β, and IL-6) expression and promoting M2 macrophage polarization. Furthermore, SFELNVs promoted M2 polarization by miR4371c using miRNA sequencing. Our results suggest that SFELNVs@CX5461 represents a novel orally therapeutic drug that can ameliorate colitis, and a promising targeting strategy for safe UC therapy.
Collapse
Affiliation(s)
- Manqi Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Xichao Xu
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518052, China
| | - Liqian Su
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqing Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Jingxiong Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Wenwen Li
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Yigui Zou
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Sicong Li
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Boxian Lin
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Ziyuan Li
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Hu Chen
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Yuheng Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China.
| | - Dongling Dai
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China.
| |
Collapse
|
95
|
Hourani T, Sharma A, Luwor RB, Achuthan AA. Transforming growth factor-β in tumor microenvironment: Understanding its impact on monocytes and macrophages for its targeting. Int Rev Immunol 2024; 44:82-97. [PMID: 39377520 DOI: 10.1080/08830185.2024.2411998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
TGF-β is a pivotal cytokine that orchestrates various aspects of cancer progression, including tumor growth, metastasis, and immune evasion. In this review, we present a comprehensive overview of the multifaceted role of transforming growth factor β (TGF-β) in cancer biology, focusing on its intricate interactions with monocytes and macrophages within the tumor microenvironment (TME). We specifically discuss how TGF-β modulates monocyte and macrophage activities, leading to immunosuppression and tumor progression. We conclude with the current translational and clinical efforts targeting TGF-β, recognizing the promising role of this strategy in immunooncology.
Collapse
Affiliation(s)
- Tetiana Hourani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Rodney B Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Federation University, Ballarat, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
96
|
Tao SH, Lei YQ, Tan YM, Yang YB, Xie WN. Chinese herbal formula in the treatment of metabolic dysfunction-associated steatotic liver disease: current evidence and practice. Front Med (Lausanne) 2024; 11:1476419. [PMID: 39440040 PMCID: PMC11493624 DOI: 10.3389/fmed.2024.1476419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, continues to rise with rapid economic development and poses significant challenges to human health. No effective drugs are clinically approved. MASLD is regarded as a multifaceted pathological process encompassing aberrant lipid metabolism, insulin resistance, inflammation, gut microbiota imbalance, apoptosis, fibrosis, and cirrhosis. In recent decades, herbal medicines have gained increasing attention as potential therapeutic agents for the prevention and treatment of MASLD, due to their good tolerance, high efficacy, and low toxicity. In this review, we summarize the pathological mechanisms of MASLD; emphasis is placed on the anti-MASLD mechanisms of Chinese herbal formula (CHF), especially their effects on improving lipid metabolism, inflammation, intestinal flora, and fibrosis. Our goal is to better understand the pharmacological mechanisms of CHF to inform research on the development of new drugs for the treatment of MASLD.
Collapse
Affiliation(s)
- Shao-Hong Tao
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Qing Lei
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yi-Mei Tan
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Bo Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Ning Xie
- Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, China
| |
Collapse
|
97
|
Yang Y, Wang J, Lin X, Zhang Z, Zhang M, Tang C, Kou X, Deng F. TNF-α-licensed exosome-integrated titaniumaccelerated T2D osseointegration by promoting autophagy-regulated M2 macrophage polarization. Biochem Biophys Res Commun 2024; 727:150316. [PMID: 38959732 DOI: 10.1016/j.bbrc.2024.150316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes (T2D) is on a notable rise worldwide, which leads to unfavorable outcomes during implant treatments. Surface modification of implants and exosome treatment have been utilized to enhance osseointegration. However, there has been insufficient approach to improve adverse osseointegration in T2D conditions. In this study, we successfully loaded TNF-α-treated mesenchymal stem cell (MSC)-derived exosomes onto micro/nano-network titanium (Ti) surfaces. TNF-α-licensed exosome-integrated titanium (TNF-exo-Ti) effectively enhanced M2 macrophage polarization in hyperglycemic conditions, with increased secretion of anti-inflammatory cytokines and decreased secretion of pro-inflammatory cytokines. In addition, TNF-exo-Ti pretreated macrophage further enhanced angiogenesis and osteogenesis of endothelial cells and bone marrow MSCs. More importantly, TNF-exo-Ti markedly promoted osseointegration in T2D mice. Mechanistically, TNF-exo-Ti activated macrophage autophagy to promote M2 polarization through inhibition of the PI3K/AKT/mTOR pathway, which could be abolished by PI3K agonist. Thus, this study established TNF-α-licensed exosome-immobilized titanium surfaces that could rectify macrophage immune states and accelerate osseointegration in T2D conditions.
Collapse
Affiliation(s)
- Yang Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jinyang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xiaoxuan Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Manjin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510055, China
| | - Cuizhu Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
98
|
Li XJ, Xiao SJ, Xie YH, Chen J, Xu HR, Yin Y, Zhang R, Yang T, Zhou TY, Zhang SY, Hu P, Gao LM, Peng HP. Structural characterization and immune activity evaluation of a polysaccharide from Lyophyllum Decastes. Int J Biol Macromol 2024; 278:134628. [PMID: 39128736 DOI: 10.1016/j.ijbiomac.2024.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
An innovative acidic hydrolysate fingerprinting workflow was proposed for the characterization of Lyophyllum Decastes polysaccharide (LDP) by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). The crude polysaccharides were firstly separated and purified by using DE-52 column and the BRT GPC purification system, respectively. The molecular weight and monosaccharide content of homogeneous polysaccharides were ascertained by utilizing HPGPC and ion chromatography separately. Secondly, the linkage of LDP was identified by methylation analysis and 1D/2D NMR spectra. The UPLC-MS/MS was used to scan and identify the acidic hydrolysate products of LDP using the PGC column. The oligosaccharides were collected by chromatography and identified by mass spectrometry. Thirdly, the expression of IL-1β, IL-6, iNOS, TNF-α and IFNAR-I was measured in order to assess the immunological activity of LDP. Besides, the targeted receptors identification of polysaccharides was performed by screening the expression of TLRs family protein. The results showed that oligosaccharide fragments with different molecular weights can be obtained by partial hydrolysis, which further verified that the structures of LDP polysaccharides was a 1-6-linked β-glucan. Moreover, the LDP polysaccharide can up-regulate the content of IL-1β, IL-6, iNOS, TNF-α and IFNAR-I and plays an important immunoregulation role through TLRs family.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China.
| | - Shi-Jun Xiao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Yi Heng Xie
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Jiang Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Hai-Rong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Yuan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Rui Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Tong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Tong-Yu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Si-Yan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Pei Hu
- Jiangzhong Pharmaceutical Co., Ltd., No.1899 Meiling Road, Nanchang 330103, PR China
| | - Li-Ming Gao
- Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University Department of Gastroenterology, PR China
| | - Hui-Ping Peng
- Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University Department of Gastroenterology, PR China.
| |
Collapse
|
99
|
Campitiello R, Soldano S, Gotelli E, Hysa E, Montagna P, Casabella A, Paolino S, Pizzorni C, Sulli A, Smith V, Cutolo M. The intervention of macrophages in progressive fibrosis characterizing systemic sclerosis: A systematic review. Autoimmun Rev 2024; 23:103637. [PMID: 39255852 DOI: 10.1016/j.autrev.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND AIM Systemic sclerosis (SSc) is an immune mediated connective tissue disease characterized by microvascular dysfunction, aberrant immune response, and progressive fibrosis. Although the immuno-pathophysiological mechanisms underlying SSc are not fully clarified, they are often associated with a dysfunctional macrophage activation toward an alternative (M2) phenotype induced by cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF-β)] involved in the fibrotic and anti-inflammatory process. A spectrum of macrophage activation state has been identified ranging from M1 to M2 phenotype, gene expression of phenotype markers, and functional aspects. This systematic review aims to analyze the importance of M2 macrophage polatization during the immune mediated process and the identification of specific pathways, cytokines, and chemokines involved in SSc pathogenesis. Moreover, this review provides an overview on the in vitro and in vivo studies aiming to test therapeutic strategies targeting M2 macrophages. METHODS A systematic literature review was performed according to the preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA). The search encompassed the online medical databases PubMed and Embase up to the 30th of June 2024. Original research manuscripts (in vitro study, in vivo study), animal model and human cohort, were considered for the review. Exclusion criteria encompassed reviews, case reports, correspondences, and conference abstracts/posters. The eligible manuscripts main findings were critically analyzed, discussed, and summarized in the correspondent tables. RESULTS Out of the 77 screened abstracts, 49 papers were deemed eligible. Following a critical analysis, they were categorized according to the primary (29 original articles) and secondary (20 original articles) research objectives of this systematic review. The data from the present systematic review suggest the pivotal role of M2 macrophages differentiation and activation together with the dysregulation of the immune system in the SSc pathogenesis. Strong correlations have been found between M2 macrophage presence and clinical manifestations in both murine and human tissue samples. Interestingly, the presence of M2 cell surface markers on peripheral blood monocytes has been highlighted, suggesting a potential biomarker role for this finding. Therapeutic effects reducing M2 macrophage activities have been observed and/or tested for existing and for new drugs, demonstrating potential efficacy in modulating the pro-fibrotic immune response for treatment of SSc. CONCLUSIONS The increased M2 macrophage activation in course of SSc seems to offer new insights on the self-amplifying inflammatory and fibrotic response by the immune system on such disease. Therefore, the revaluation of immunomodulatory and ongoing antifibrotic therapies, as well as novel therapeutical approaches in SSc that contribute to limit the M2 macrophage activation are matter of intense investigations.
Collapse
Affiliation(s)
- Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Andrea Casabella
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, University of Ghent, Ghent, Belgium; Department of Internal Medicine, Ghent University Hospital, University of Ghent, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, Flemish Institute for Biotechnology, Inflammation Research Center, Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
100
|
Jin J, Yang Y, Yang J, Sun Z, Wang D, Qin Y, Ruan C, Li D, Pan Y, Wu J, Zhang C, Hu Y, Lei P. Macrophage metabolic reprogramming-based diabetic infected bone defect/bone reconstruction though multi-function silk hydrogel with exosome release. Int J Biol Macromol 2024; 278:134830. [PMID: 39154694 DOI: 10.1016/j.ijbiomac.2024.134830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Diabetic infected bone defects (DIBD) with abnormal immune metabolism are prone to the hard-to-treat bacterial infections and delayed bone regeneration, which present significant challenges in clinic. Control of immune metabolism is believed to be important in regulating fundamental immunological processes. Here, we developed a macrophage metabolic reprogramming hydrogel composed of modified silk fibroin (Silk-6) and poly-l-lysine (ε-PL) and further integrated with M2 Macrophage-derived Exo (M2-Exo), named Silk-6/ε-PL@Exo. This degradable hydrogel showed a broad-spectrum antibacterial performance against both Gram-positive and -negative bacteria. More importantly, the release of M2-Exo from Silk-6/ε-PL@Exo could target M1 macrophages, modulating the activity of the key enzyme hexokinase II (HK2) to control the inflammation-related NF-κB pathway, alleviate lactate accumulation, and inhibit glycolysis to normalize the cycle, thereby promoting M1-to-M2 balance. Using a rat model of DIBD, Silk-6/ε-PL@Exo hydrogel promoted infection control, balanced immune responses and accelerated the bone defect healing. Overall, this study demonstrates that this Silk-6/ε-PL @Exo is a promising filler biomaterial with multi-function to treat DIBD and emphasizes the importance of metabolic reprogramming in bone regeneration.
Collapse
Affiliation(s)
- Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yiqi Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dongyu Wang
- Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Chengxin Ruan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dongdong Li
- Department of Orthopedic Surgery, Ningxia Medicial University, Yinchuan 200233, China
| | - Yi Pan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiangdong Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chi Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Pengfei Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|