51
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
52
|
Marshall C, Hitman GA, Partridge CJ, Clark A, Ma H, Shearer TR, Turner MD. Evidence that an isoform of calpain-10 is a regulator of exocytosis in pancreatic beta-cells. Mol Endocrinol 2004; 19:213-24. [PMID: 15471947 DOI: 10.1210/me.2004-0064] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Calpain-10 (CAPN10) is the first type 2 diabetes susceptibility gene to be identified through a genome scan, with polymorphisms being associated with altered CAPN10 expression. Functional data have been hitherto elusive, but we report here a corresponding increase between CAPN10 expression level and regulated insulin secretion. Pancreatic beta-cell secretory granule exocytosis is mediated by the soluble N-ethylmaleimide-sensitive fusion protein attachment receptor protein complex of synaptosomal-associated protein of 25 kDa (SNAP-25), syntaxin 1, and vesicle-associated membrane protein 2. We report, for the first time, direct binding of a calpain-10 isoform with members of this complex. Furthermore, SNAP-25 undergoes a Ca2+-dependent partial proteolysis during exocytosis, with calpain protease inhibitor similarly suppressing both insulin secretion and SNAP-25 proteolysis. Based upon these findings, we postulate that an isoform of calpain-10 is a Ca2+-sensor that functions to trigger exocytosis in pancreatic beta-cells.
Collapse
Affiliation(s)
- Catriona Marshall
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, Whitechapel, London E1 1BB, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
53
|
Miyata T, Ohnishi H, Suzuki J, Yoshikumi Y, Ohno H, Mashima H, Yasuda H, Ishijima T, Osawa H, Satoh K, Sunada K, Kita H, Yamamoto H, Sugano K. Involvement of syntaxin 4 in the transport of membrane-type 1 matrix metalloproteinase to the plasma membrane in human gastric epithelial cells. Biochem Biophys Res Commun 2004; 323:118-24. [PMID: 15351710 DOI: 10.1016/j.bbrc.2004.08.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 11/17/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) localized on the plasma membrane plays a central role in various normal biological responses including tissue remodeling, wound heeling, and angiogenesis and in cancer cell invasion and metastasis, by functioning as a collagenase and activating other matrix metalloproteinases. In order to elucidate the molecular mechanism of the MT1-MMP targeted localization on the plasma membrane, we examined the participation of syntaxin proteins in MT1-MMP intracellular transport to the plasma membrane in human gastric epithelial AGS cells. Western blotting showed that syntaxin 3 and 4 proteins, which are known to function in intracellular transport towards the plasma membrane, were expressed in AGS cells. Immunocytochemistry revealed that transient transfection of AGS cells with dominant-negative mutant syntaxin 4 decreased plasma membrane MT1-MMP expression. In contrast, transient transfection with either dominant-negative mutant syntaxin 3 or 7 did not affect MT1-MMP localization on the plasma membrane. Cell surface biotinylation assay and Matrigel chamber assay demonstrated that stable transfection with dominant-negative mutant syntaxin 4 decreased the amount of MT1-MMP on the plasma membranes and inhibited the cell invasiveness. We suggest that syntaxin 4 is involved in the intracellular transport of MT1-MMP toward the plasma membrane.
Collapse
Affiliation(s)
- Tomohiko Miyata
- Department of Gastroenterology, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Das V, Nal B, Dujeancourt A, Thoulouze MI, Galli T, Roux P, Dautry-Varsat A, Alcover A. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 2004; 20:577-88. [PMID: 15142526 DOI: 10.1016/s1074-7613(04)00106-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 03/05/2004] [Accepted: 03/10/2004] [Indexed: 11/15/2022]
Abstract
The mechanism by which T cell antigen receptors (TCR) accumulate at the immunological synapse has not been fully elucidated. Since TCRs are continuously internalized and recycled back to the cell surface, we investigated the role of polarized recycling in TCR targeting to the immunological synapse. We show here that the recycling endosomal compartment of T cells encountering activatory antigen-presenting cells (APCs) polarizes towards the T cell-APC contact site. Moreover, TCRs in transit through recycling endosomes are targeted to the immunological synapse. Inhibition of T cell polarity, constitutive TCR endocytosis, or recycling reduces TCR accumulation at the immunological synapse. Conversely, increasing the amount of TCRs in recycling endosomes before synapse formation enhanced their accumulation. Finally, we show that exocytic t-SNAREs from T cells cluster at the APC contact site and that tetanus toxin inhibits TCR accumulation at the immunological synapse, indicating that vesicle fusion mediated by SNARE complexes is involved in TCR targeting to the immunological synapse.
Collapse
Affiliation(s)
- Vincent Das
- Unité de Biologie des Interactions Cellulaires, Centre National de la Recherche Scientifique, Unité de Recherche Associée-2582, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Derré I, Isberg RR. Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect Immun 2004; 72:3048-53. [PMID: 15102819 PMCID: PMC387905 DOI: 10.1128/iai.72.5.3048-3053.2004] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila vacuole biogenesis was analyzed by using a cell-free system. We show that calnexin, Sec22b, and Rab1 are recruited to the vacuole very shortly after bacterial uptake, and we have identified Rab1 as a potential host factor involved in the endoplasmic reticulum recruitment process.
Collapse
Affiliation(s)
- Isabelle Derré
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
56
|
|
57
|
Gupta GD, Free SJ, Levina NN, Keränen S, Heath IB. Two divergent plasma membrane syntaxin-like SNAREs, nsyn1 and nsyn2, contribute to hyphal tip growth and other developmental processes in Neurospora crassa. Fungal Genet Biol 2004; 40:271-86. [PMID: 14599895 DOI: 10.1016/s1087-1845(03)00109-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly polarized exocytosis of vesicles at hyphal apices is an essential requirement of tip growth. This requirement may be met by the localization and/or activation of an apical SNARE-based machinery. We have cloned nsyn1 and nsyn2, SNAREs predicted to function at the plasma membrane in Neurospora crassa. Transformation of extra copies of nsyn1 into wild-type strains displayed effects consistent with quelling of nsyn1 expression, which was lethal in most transformants. All surviving transformants grew slowly, conidiated poorly, and were male sterile. In addition, antisense nsyn1 strains grew slowly, with abnormal hyphal diameters and polarity and defective conidiation. For nsyn2, several repeat induced point mutation (RIP) crosses produced no, or poorly germinating ascospores. Those that germinated produced slow-growing hyphae with abnormal branching. The defects in nsyn1 and nsyn2 mutants are consistent with differential impaired vesicle fusion in hyphal tips and other developmental stages.
Collapse
Affiliation(s)
- Gagan D Gupta
- Department of Biology, York University, 4700 Keele Street, Ont., M3J1P3, Toronto, Canada.
| | | | | | | | | |
Collapse
|
58
|
Richardson SCW, Winistorfer SC, Poupon V, Luzio JP, Piper RC. Mammalian late vacuole protein sorting orthologues participate in early endosomal fusion and interact with the cytoskeleton. Mol Biol Cell 2003; 15:1197-210. [PMID: 14668490 PMCID: PMC363107 DOI: 10.1091/mbc.e03-06-0358] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In Saccharomyces cerevisiae, the class C vacuole protein sorting (Vps) proteins, together with Vam2p/Vps41p and Vam6p/Vps39p, form a complex that interacts with soluble N-ethylmaleimide-sensitive factor attachment protein receptor and Rab proteins to "tether" vacuolar membranes before fusion. To determine a role for the corresponding mammalian orthologues, we examined the function, localization, and protein interactions of endogenous mVps11, mVps16, mVps18, mVam2p, and mVam6. We found a significant proportion of these proteins localized to early endosome antigen-1 and transferrin receptor-positive early endosomes in Vero, normal rat kidney, and Chinese hamster ovary cells. Immunoprecipitation experiments showed that mVps18 not only interacted with Syntaxin (Syn)7, vesicle-associated membrane protein 8, and Vti1-b but also with Syn13, Syn6, and the Sec1/Munc18 protein mVps45, which catalyze early endosomal fusion events. Moreover, anti-mVps18 antibodies inhibited early endosome fusion in vitro. Mammalian mVps18 also associated with mVam2 and mVam6 as well as with the microtubule-associated Hook1 protein, an orthologue of the Drosophila Hook protein involved in endosome biogenesis. Using in vitro binding and immunofluorescence experiments, we found that mVam2 and mVam6 also associated with microtubules, whereas mVps18, mVps16, and mVps11 associated with actin filaments. These data indicate that the late Vps proteins function during multiple soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated fusion events throughout the endocytic pathway and that their activity may be coordinated with cytoskeletal function.
Collapse
Affiliation(s)
- Simon C W Richardson
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
59
|
Abstract
The SNARE superfamily has become, since its discovery approximately a decade ago, the most intensively studied element of the protein machinery involved in intracellular trafficking. Intracellular membrane fusion in eukaryotes requires SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins that form complexes bridging the two membranes. Although common themes have emerged from structural and functional studies of SNAREs and other components of the eukaryotic membrane fusion machinery, there is still much to learn about how the assembly and activity of this machinery is choreographed in living cells.
Collapse
Affiliation(s)
- Daniel Ungar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
60
|
Williams AL, Ehm S, Jacobson NC, Xu D, Hay JC. rsly1 binding to syntaxin 5 is required for endoplasmic reticulum-to-Golgi transport but does not promote SNARE motif accessibility. Mol Biol Cell 2003; 15:162-75. [PMID: 14565970 PMCID: PMC307537 DOI: 10.1091/mbc.e03-07-0535] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although some of the principles of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function are well understood, remarkably little detail is known about sec1/munc18 (SM) protein function and its relationship to SNAREs. Popular models of SM protein function hold that these proteins promote or maintain an open and/or monomeric pool of syntaxin molecules available for SNARE complex formation. To address the functional relationship of the mammalian endoplasmic reticulum/Golgi SM protein rsly1 and its SNARE binding partner syntaxin 5, we produced a conformation-specific monoclonal antibody that binds only the available, but not the cis-SNARE-complexed nor intramolecularly closed form of syntaxin 5. Immunostaining experiments demonstrated that syntaxin 5 SNARE motif availability is nonuniformly distributed and focally regulated. In vitro endoplasmic reticulum-to-Golgi transport assays revealed that rsly1 was acutely required for transport, and that binding to syntaxin 5 was absolutely required for its function. Finally, manipulation of rsly1-syntaxin 5 interactions in vivo revealed that they had remarkably little impact on the pool of available syntaxin 5 SNARE motif. Our results argue that although rsly1 does not seem to regulate the availability of syntaxin 5, its function is intimately associated with syntaxin binding, perhaps promoting a later step in SNARE complex formation or function.
Collapse
Affiliation(s)
- Antionette L Williams
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | |
Collapse
|
61
|
Tufariello JM, Chan J, Flynn JL. Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. THE LANCET. INFECTIOUS DISEASES 2003; 3:578-90. [PMID: 12954564 DOI: 10.1016/s1473-3099(03)00741-2] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most people infected with Mycobacterium tuberculosis contain the initial infection and develop latent tuberculosis. This state is characterised by evidence of an immune response against the bacterium (a positive tuberculin skin test) but no signs of active infection. It can be maintained for the lifetime of the infected person. However, reactivation of latent infection occurs in about 10% of infected individuals, leading to active and contagious tuberculosis. An estimated 2 billion people worldwide are infected with M tuberculosis--an enormous reservoir of potential tuberculosis cases. The establishment and reactivation of latent infection depend on several factors, related to both host and bacterium. Elucidation of the host immune mechanisms that control the initial infection and prevent reactivation has begun. The bacillus is well adapted to the human host and has a range of evasion mechanisms that contribute to its ability to avoid elimination by the immune system and establish a persistent infection. We discuss here current understanding of both host and bacterial factors that contribute to latent and reactivation tuberculosis.
Collapse
Affiliation(s)
- JoAnn M Tufariello
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
62
|
Marz KE, Lauer JM, Hanson PI. Defining the SNARE complex binding surface of alpha-SNAP: implications for SNARE complex disassembly. J Biol Chem 2003; 278:27000-8. [PMID: 12730228 DOI: 10.1074/jbc.m302003200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
N-Ethylmaleimide-sensitive factor (NSF) and its adaptor protein alpha-soluble NSF attachment protein (alpha-SNAP) sustain membrane trafficking by disassembling soluble NSF attachment protein receptor (SNARE) complexes that form during membrane fusion. To better understand the role of alpha-SNAP in this process, we used site-directed mutagenesis to identify residues in alpha-SNAP that interact with SNARE complexes. We find that mutations in charged residues distributed over a concave surface formed by the N-terminal nine alpha-helices of alpha-SNAP affect its ability to bind synaptic SNARE complex and promote its disassembly by NSF. Replacing basic residues on this surface with alanines reduced SNARE complex binding and disassembly, whereas replacing acidic residues with alanines enhanced alpha-SNAP efficacy in both assays. These findings show that the ability of NSF to take apart SNARE complexes depends upon electrostatic interactions between alpha-SNAP and the acidic surface of the SNARE complex and provide insight into how NSF and alpha-SNAP work together to drive disassembly.
Collapse
Affiliation(s)
- Karla E Marz
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
63
|
Suzuki J, Ohnishi H, Wada A, Hirayama T, Ohno H, Ueda N, Yasuda H, Iiri T, Wada Y, Futai M, Mashima H. Involvement of syntaxin 7 in human gastric epithelial cell vacuolation induced by the Helicobacter pylori-produced cytotoxin VacA. J Biol Chem 2003; 278:25585-90. [PMID: 12730232 DOI: 10.1074/jbc.m212445200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Helicobacter pylori-produced cytotoxin VacA induces intracellular vacuolation. The formed vacuole is assumed to be a hybrid of late endosome and lysosome. To elucidate the molecular mechanism of VacA-induced vacuolation, we examined the participation of syntaxin 7 in the human gastric epithelial cell line AGS. Immunocytochemistry revealed that endogenous syntaxin 7 was localized to vacuoles induced by VacA. Northern and Western blotting demonstrated that VacA intoxication increased syntaxin 7 mRNA and protein expression, respectively, in a time-dependent manner. Transient transfection of dominant-negative mutant syntaxin 7, which lacks a carboxyl-terminal transmembrane domain, inhibited VacA-induced vacuolation. In contrast, transient transfection of wild-type syntaxin 7, dominant-negative mutant syntaxin 1a, or dominant-negative mutant syntaxin 4 did not alter VacA-induced vacuolation. Furthermore, under VacA treatment, neutral red dye uptake, a parameter of VacA-induced vacuolation, was inhibited in cells stably transfected with mutant syntaxin 7 but not in cells stably transfected with wild-type syntaxin 7, mutant syntaxin 1a, or mutant syntaxin 4. Sequential immunocytochemical observation confirmed that expression of mutant syntaxin 7 did not affect VacA attachment to or internalization into AGS cells. We suggest that syntaxin 7 is involved in the intracellular vacuolation induced by VacA.
Collapse
Affiliation(s)
- Junko Suzuki
- Department of Gastroenterology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Joglekar AP, Xu D, Rigotti DJ, Fairman R, Hay JC. The SNARE motif contributes to rbet1 intracellular targeting and dynamics independently of SNARE interactions. J Biol Chem 2003; 278:14121-33. [PMID: 12566453 DOI: 10.1074/jbc.m300659200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum/Golgi SNARE rbet1 cycles between the endoplasmic reticulum and Golgi and is essential for cargo transport in the secretory pathway. Although the quaternary SNARE complex containing rbet1 is known to function in membrane fusion, the structural role of rbet1 is unclear. Furthermore, the structural determinants for rbet1 targeting and its cyclical itinerary have not been investigated. We utilized protein interaction assays to demonstrate that the rbet1 SNARE motif plays a structural role similar to the carboxyl-terminal helix of SNAP-25 in the synaptic SNARE complex and demonstrated the importance to SNARE complex assembly of a conserved salt bridge between rbet1 and sec22b. We also examined the potential role of the rbet1 SNARE motif and SNARE interactions in rbet1 localization and dynamics. We found that, in contrast to what has been observed for syntaxin 5, the rbet1 SNARE motif was essential for proper targeting. To test whether SNARE interactions were important for the targeting function of the SNARE motif, we used charge repulsion mutations at the conserved salt bridge position that rendered rbet1 defective for binary, ternary, and quaternary SNARE interactions. We found that heteromeric SNARE interactions are not required at any step in rbet1 targeting or dynamics. Furthermore, the heteromeric state of the SNARE motif does not influence its interaction with the COPI coat or efficient recruitment onto transport vesicles. We conclude that protein targeting is a completely independent function of the rbet1 SNARE motif, which is capable of distinct classes of protein interactions.
Collapse
Affiliation(s)
- Ashwini P Joglekar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
65
|
Hu G, Zhang Z, Wensel TG. Activation of RGS9-1GTPase acceleration by its membrane anchor, R9AP. J Biol Chem 2003; 278:14550-4. [PMID: 12560335 DOI: 10.1074/jbc.m212046200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GTPase-accelerating protein (GAP) complex RGS9-1.G beta(5) plays an important role in the kinetics of light responses by accelerating the GTP hydrolysis of G alpha(t) in vertebrate photoreceptors. Much, but not all, of this complex is tethered to disk membranes by the transmembrane protein R9AP. To determine the effect of the R9AP membrane complex on GAP activity, we purified recombinant R9AP and reconstituted it into lipid vesicles along with the photon receptor rhodopsin. Full-length RGS9-1.G beta(5) bound to R9AP-containing vesicles with high affinity (K(d) < 10 nm), but constructs lacking the DEP (dishevelled/EGL-10/pleckstrin) domain bound with much lower affinity, and binding of those lacking the entire N-terminal domain (i.e. the dishevelled/EGL-10/pleckstrin domain plus intervening domain) was not detectable. Formation of the membrane-bound complex with R9AP increased RGS9-1 GAP activity by a factor of 4. Vesicle titrations revealed that on the time scale of phototransduction, the entire reaction sequence from GTP uptake to GAP-catalyzed hydrolysis is a membrane-delimited process, and exchange of G alpha(t) between membrane surfaces is much slower than hydrolysis. Because in rod cells different pools exist of RGS9-1.G beta(5) that are either associated with R9AP or not, regulation of the association between R9AP and RGS9-1.G beta(5) represents a potential mechanism for the regulation of recovery kinetics.
Collapse
Affiliation(s)
- Guang Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
66
|
Abstract
Membrane fusion, one of the most fundamental processes in life, occurs when two separate lipid membranes merge into a single continuous bilayer. Fusion reactions share common features, but are catalyzed by diverse proteins. These proteins mediate the initial recognition of the membranes that are destined for fusion and pull the membranes close together to destabilize the lipid/water interface and to initiate mixing of the lipids. A single fusion protein may do everything or assemblies of protein complexes may be required for intracellular fusion reactions to guarantee rigorous regulation in space and time. Cellular fusion machines are adapted to fit the needs of different reactions but operate by similar principles in order to achieve merging of the bilayers.
Collapse
Affiliation(s)
- Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
67
|
Nakayama T, Mikoshiba K, Yamamori T, Akagawa K. Expression of syntaxin 1C, an alternative splice variant of HPC-1/syntaxin 1A, is enhanced by phorbol-ester stimulation in astroglioma: participation of the PKC signaling pathway. FEBS Lett 2003; 536:209-14. [PMID: 12586365 DOI: 10.1016/s0014-5793(03)00015-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Syntaxin 1C is an alternative splice variant of HPC-1/syntaxin 1A; the latter participates in neurotransmitter release and is assigned to the gene domain responsible for Williams' syndrome (WS). It is expressed in the soluble fraction extracted from human astroglioma cell lines T98G and U87MG. Quantitative immunoblot and indirect immunofluorescence analyses revealed that the expression of syntaxin 1C was upregulated by phorbol 12-myristate 13-acetate (PMA), but not by forskolin. A protein kinase C (PKC) inhibitor suppressed this enhancement. These results suggest that syntaxin 1C expression is regulated via the PKC signal pathway. This is the first report of a signal transduction system that directly affects the expression of syntaxin protein.
Collapse
Affiliation(s)
- Takahiro Nakayama
- Department of Physiology, Kyorin University School of Medicine, Tokyo 181-8611,
| | | | | | | |
Collapse
|
68
|
Hasegawa H, Zinsser S, Rhee Y, Vik-Mo EO, Davanger S, Hay JC. Mammalian ykt6 is a neuronal SNARE targeted to a specialized compartment by its profilin-like amino terminal domain. Mol Biol Cell 2003; 14:698-720. [PMID: 12589064 PMCID: PMC150002 DOI: 10.1091/mbc.e02-09-0556] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SNAREs are required for specific membrane fusion throughout the endomembrane system. Here we report the characterization of rat ykt6, a prenylated SNARE selectively expressed in brain neurons. Immunofluorescence microscopy in neuronal and neuroendocrine cell lines revealed that membrane-associated ykt6 did not colocalize significantly with any conventional markers of endosomes, lysosomes, or the secretory pathway. However, ykt6-containing membranes displayed very minor overlaps with lysosomes and dense-core secretory granules and were similar to lysosomes in buoyant density. Thus, ykt6 appears to be specialized for the trafficking of a unique membrane compartment, perhaps related to lysosomes, involved in aspects of neuronal function. Targeting of this SNARE to the ykt6 compartment was mediated by its profilin-like amino-terminal domain, even in the absence of protein prenylation. Although several other R-SNAREs contain related amino-terminal domains, only the ykt6 version was able to confer the specialized localization. Rat ykt6, which contains an arginine in its SNARE motif zero-layer, was found to behave like other R-SNAREs in its SNARE assembly properties. Interestingly, cytosolic ykt6, constituting more than half of the total cellular pool, appeared to be conformationally inactive for SNARE complex assembly, perhaps indicative of a regulatory mechanism that prevents promiscuous and potentially deleterious SNARE interactions.
Collapse
Affiliation(s)
- Haruki Hasegawa
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
69
|
Abstract
Intracellular membrane fusion requires the complex coordination of SNARE, rab/ypt, and rab effector function. In the yeast Saccharomyces cerevisiae, fusion of endosome-derived vesicles with the late Golgi depends on a cascade of protein-protein interactions that results in the recruitment to Golgi membranes of a conserved docking complex, VFT. This complex binds to Ypt6-GTP, which is necessary for its localization to the Golgi, and also to the SNARE Tlg1p. We show here that the VFT complex contains a fourth, previously uncharacterized, subunit, Vps51p (Ykr020w). Yeast cells lacking VPS51 have defects in vacuole morphology and recycling of the SNARE Snc1p to the plasma membrane, but still assemble a core VFT complex consisting of Vps52p, Vps53p, and Vps54p that localizes properly to the Golgi. Binding to Ypt6-GTP is a property of Vps52p. In contrast, binding to Tlg1p is mediated by a short sequence at the N terminus of Vps51p. Recent evidence suggests that components of a number of rab/ypt effector complexes share a common, distantly related helical coiled-coil motif. We show that each VFT subunit requires this coiled-coil motif for assembly into the complex.
Collapse
Affiliation(s)
- Symeon Siniossoglou
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
70
|
Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci U S A 2002; 99:16069-74. [PMID: 12446836 PMCID: PMC138566 DOI: 10.1073/pnas.242401399] [Citation(s) in RCA: 354] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lymphatic microvasculature is uniquely adapted for the continuous removal of interstitial fluid and proteins and is an important entry point for leukocytes and tumor cells. Specialized functions of lymphatics suggest differences in the molecular composition of the lymphatic and blood vascular endothelium. However, the extent to which the two cell types differ is still unclear, and few molecules that are truly specific to lymphatic endothelial cells have been identified to date. We have isolated primary lymphatic and blood microvascular endothelial cells from human skin by immunoselection with the lymphatic marker LYVE-1 and demonstrate that the two cell lineages express distinct sets of vascular markers and respond differently to growth factors and extracellular matrix. Comparative microarray analysis of gene-expression profiles revealed a number of unique molecular properties that distinguish lymphatic and blood vascular endothelium. The molecular profile of lymphatic endothelium seems to reflect characteristic functional and structural features of the lymphatic capillaries. Classification of the differentially expressed genes into functional groups revealed particularly high levels of genes implicated in protein sorting and trafficking, indicating a more active role of lymphatic endothelium in uptake and transport of molecules than previously anticipated. The identification of a large number of genes selectively expressed by lymphatic endothelium should facilitate the discovery of hitherto unknown lymphatic vessel markers and provide a basis for the analysis of the molecular mechanisms accounting for the characteristic functions of lymphatic capillaries.
Collapse
Affiliation(s)
- Simona Podgrabinska
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
The seven botulinum neurotoxin serotypes share less than 50% sequence homology and are immunologically distinct. The neurotoxins inhibit release of the neurotransmitter acetylcholine from the axon terminals of motor neurons, preganglionic sympathetic and parasympathetic neurons, and postganglionic parasympathetic nerves by a multi-step mechanism that differs slightly, but significantly, for each serotype. The inhibition is long lasting but temporary. The resulting muscle paralysis has provided the basis for therapeutic use of botulinum toxin types A and B in a variety of focal dystonias. The safety of the botulinum toxins, when administered focally, has permitted their widespread use in a number of other painful conditions.
Collapse
|
72
|
Loranger SS, Linder ME. SNAP-25 traffics to the plasma membrane by a syntaxin-independent mechanism. J Biol Chem 2002; 277:34303-9. [PMID: 12114505 DOI: 10.1074/jbc.m202125200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are essential for vesicle docking and fusion. SNAP-25, syntaxin 1A, and synaptobrevin/vesicle-associated membrane protein (VAMP) are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. It has been proposed that interactions of SNAP-25 with syntaxin 1A are required for initial membrane attachment of SNAP-25 (Vogel, K., Cabaniols, J.-P., and Roche, P. (2000) J. Biol. Chem. 275, 2959-2965). However, we have shown previously that residues 85-120 of the SNAP-25 interhelical domain, which do not interact with syntaxin, are necessary and sufficient for palmitoylation and plasma membrane localization of a green fluorescent protein reporter molecule (Gonzalo, S., Greentree, W. K., and Linder, M. E. (1999) J. Biol. Chem. 274, 21313-21318). To clarify the role of syntaxin in membrane targeting of SNAP-25, we studied a SNAP-25 point mutant (G43D) that does not interact with syntaxin. SNAP-25 G43D/green fluorescent protein was palmitoylated and localized at the plasma membrane. Newly synthesized SNAP-25 G43D had the same kinetics of membrane association as the wild-type protein. Furthermore, expression of a cytosolic mutant syntaxin 1A did not interfere with SNAP-25 membrane interactions or palmitoylation in the neuronal cell line NG108-15. Exogenously expressed SNAP-25 targets efficiently to the plasma membrane in cells of neuronal origin but only partially in HeLa cells, a neurosecretion-incompetent line. This phenotype was not rescued when syntaxin 1A was co-expressed with SNAP-25. Our data support a syntaxin-independent mechanism of membrane targeting for SNAP-25.
Collapse
Affiliation(s)
- Stephanie S Loranger
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
73
|
Abstract
During the past two years, a large amount of biochemical, biophysical and low- to high-resolution structural data have provided mechanistic insights into the machinery of protein folding and unfolding. It has emerged that dual functionality in terms of folding and unfolding might exist for some systems. The majority of folding/unfolding machines adopt oligomeric ring structures in a cooperative fashion and utilise the conformational changes induced by ATP binding/hydrolysis for their specific functions.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Centre for Structural Biology, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Flowers Building, South Kensington, SW7 2AZ, London, UK.
| | | | | |
Collapse
|