51
|
Rushing G, Ihrie RA. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone. FRONTIERS IN BIOLOGY 2016; 11:261-284. [PMID: 28367160 PMCID: PMC5371406 DOI: 10.1007/s11515-016-1407-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. OBJECTIVE This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). METHODS A literature search was conducted using Pubmed including the keywords "ventricular-subventricular zone," "neural stem cell," "heterogeneity," "identity" and/or "single cell" to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). RESULTS This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. CONCLUSIONS Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including how these cells may be redirected after injury or genetic manipulation.
Collapse
Affiliation(s)
- Gabrielle Rushing
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca A. Ihrie
- Departments of Cancer Biology and Neurological Surgery, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
52
|
Kartamihardja AAP, Nakajima T, Kameo S, Koyama H, Tsushima Y. Distribution and clearance of retained gadolinium in the brain: differences between linear and macrocyclic gadolinium based contrast agents in a mouse model. Br J Radiol 2016; 89:20160509. [PMID: 27459250 DOI: 10.1259/bjr.20160509] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To investigate the distribution and clearance of retained gadolinium (Gd) in various parts of the brain after intravenously administering a Gd-based contrast agent (GBCA) in normal and renal failure mouse models. METHODS Two different mouse models: normal (n = 12) and renal failure (n = 12) were used. Clinical GBCAs (Gd-DTPA-BMA, 5 mmol kg(-1), or Gd-DOTA, 5 mmol kg(-1)) were intravenously administered five times per week for 4 weeks. Both groups were divided into two subgroups based on the time point for sample collection: 3 days (3d) and 45 days (45d) after the last injection. Normal saline (5 ml kg(-1)) was intravenously administered to mice of the control groups in the same manner. Samples of the following parts of the mouse brain were obtained on dissection: olfactory bulb, cerebral cortex, hippocampus, thalamus, mid-brain, cerebellum, pons and medulla. (158)Gd concentrations in each sample were quantified using inductively coupled plasma mass spectrometry. RESULTS The olfactory bulb had the highest Gd concentration in both Gd-DTPA-BMA and Gd-DOTA groups. Gd retention was higher in the Gd-DTPA-BMA group than in the Gd-DOTA group (p < 0.01). In the Gd-DTPA-BMA group, Gd retention in the 3d subgroups of normal and renal failure models were similar (p = 0.4). At 45d, Gd in the Gd-DTPA-BMA group was not eliminated from the renal failure model (p = 0.1), while that in the Gd-DOTA group was eliminated from both the normal and renal failure mouse models (p < 0.01). CONCLUSION Gd distributions in the brain for both groups were similar, regardless of the renal function and GBCA type. The Gd concentration was highest in the olfactory bulb of both groups. In the Gd-DOTA group, Gd was eliminated from the brain in both mouse models, while in the Gd-DTPA-BMA group, Gd clearance was limited. ADVANCES IN KNOWLEDGE Gd concentration in the brain was not affected by renal function. The clearance of Gd from linear GBCA was limited in both the normal and impaired renal function mouse models.
Collapse
Affiliation(s)
- A Adhipatria P Kartamihardja
- 1 Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,2 Nuclear Medicine and Molecular Imaging Department, Universitas Padjadjaran, Bandung, Indonesia
| | - Takahito Nakajima
- 1 Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satomi Kameo
- 3 Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroshi Koyama
- 3 Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- 1 Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,4 Research Program for Diagnostic and Molecular Imaging, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| |
Collapse
|
53
|
Huilgol D, Tole S. Cell migration in the developing rodent olfactory system. Cell Mol Life Sci 2016; 73:2467-90. [PMID: 26994098 PMCID: PMC4894936 DOI: 10.1007/s00018-016-2172-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
54
|
Jara N, Cifuentes M, Martínez F, Salazar K, Nualart F. Cytoarchitecture, Proliferative Activity and Neuroblast Migration in the Subventricular Zone and Lateral Ventricle Extension of the Adult Guinea Pig Brain. Stem Cells 2016; 34:2574-2586. [DOI: 10.1002/stem.2430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nery Jara
- Departamento De Biología Celular, Laboratorio De Neurobiología Y Células Madres, Centro De Microscopía Avanzada CMA-BIOBIO, Facultad De Ciencias Biológicas; Universidad De Concepción; Concepción Chile
| | - Manuel Cifuentes
- Departamento De Biología Celular; Génetica Y Fisiología, Laboratorio De Fisiología Animal, Facultad De Ciencias, Centro De Investigaciones Biomédicas En Red De Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Universidad De Málaga; Málaga España
| | - Fernando Martínez
- Departamento De Biología Celular, Laboratorio De Neurobiología Y Células Madres, Centro De Microscopía Avanzada CMA-BIOBIO, Facultad De Ciencias Biológicas; Universidad De Concepción; Concepción Chile
| | - Katterine Salazar
- Departamento De Biología Celular, Laboratorio De Neurobiología Y Células Madres, Centro De Microscopía Avanzada CMA-BIOBIO, Facultad De Ciencias Biológicas; Universidad De Concepción; Concepción Chile
| | - Francisco Nualart
- Departamento De Biología Celular, Laboratorio De Neurobiología Y Células Madres, Centro De Microscopía Avanzada CMA-BIOBIO, Facultad De Ciencias Biológicas; Universidad De Concepción; Concepción Chile
| |
Collapse
|
55
|
Tognatta R, Miller RH. Contribution of the oligodendrocyte lineage to CNS repair and neurodegenerative pathologies. Neuropharmacology 2016; 110:539-547. [PMID: 27108096 DOI: 10.1016/j.neuropharm.2016.04.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/01/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
The concept of the oligodendrocyte lineage as simply a source of myelinating cells in the vertebrate CNS is undergoing radical revision. Elucidation of the origins of oligodendrocytes in the CNS has led to identification of important signaling pathways, the timing and mechanism of lineage commitments and overlapping as well as redundant functionality among oligodendrocytes. The realization that a significant proportion of the oligodendrocyte lineage cells remain in a proliferative and immature state suggests they have roles other than as a reservoir of myelinating cells. While early studies were focused on understanding the development of oligodendrocytes, more recent work has begun to define the role of oligodendrocyte lineage cells in CNS functionality and the identification of new avenues for neural repair. A relatively unexplored aspect of the oligodendrocyte lineage is their contribution either directly or indirectly to the pathology of neurodegenerative diseases such as ALS and Alzheimer's disease. Here we briefly consider the potential role of oligodendrocyte lineage cells as mediators of neural repair and neurodegeneration in the vertebrate CNS. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Reshmi Tognatta
- George Washington University, School of Medicine and Health Sciences, 2300 Eye Street NW, Ross Hall 709G, Washington, DC, 20037, USA
| | - Robert H Miller
- George Washington University, School of Medicine and Health Sciences, 2300 Eye Street NW, Ross Hall 709G, Washington, DC, 20037, USA.
| |
Collapse
|
56
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
57
|
Chamaa F, Sweidan W, Nahas Z, Saade N, Abou-Kheir W. Thalamic Stimulation in Awake Rats Induces Neurogenesis in the Hippocampal Formation. Brain Stimul 2016; 9:101-108. [DOI: 10.1016/j.brs.2015.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 11/16/2022] Open
|
58
|
Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res 2015; 1628:327-342. [DOI: 10.1016/j.brainres.2015.04.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
|
59
|
DeCarolis NA, Kirby ED, Wyss-Coray T, Palmer TD. The Role of the Microenvironmental Niche in Declining Stem-Cell Functions Associated with Biological Aging. Cold Spring Harb Perspect Med 2015; 5:5/12/a025874. [PMID: 26627453 DOI: 10.1101/cshperspect.a025874] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is strongly correlated with decreases in neurogenesis, the process by which neural stem and progenitor cells proliferate and differentiate into new neurons. In addition to stem-cell-intrinsic factors that change within the aging stem-cell pool, recent evidence emphasizes new roles for systemic and microenvironmental factors in modulating the neurogenic niche. This article focuses on new insights gained through the use of heterochronic parabiosis models, in which an old mouse and a young circulatory system are joined. By studying the brains of both young and old mice, researchers are beginning to uncover circulating proneurogenic "youthful" factors and "aging" factors that decrease stem-cell activity and neurogenesis. Ultimately, the identification of factors that influence stem-cell aging may lead to strategies that slow or even reverse age-related decreases in neural-stem-cell (NSC) function and neurogenesis.
Collapse
Affiliation(s)
- Nathan A DeCarolis
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Elizabeth D Kirby
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305 Center for Tissue Regeneration, Repair, and Restoration, Veterans Administration, Palo Alto Health Care Systems, Palo Alto, California 94304
| | - Theo D Palmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305 Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
60
|
Abstract
Multiple hippocampal transection (MHT) is a novel surgical procedure that serves to disrupt seizure propagation fibers within the hippocampus without impairing verbal memory or the loss of stem cells. Given the paucity of literature regarding the utility and long-term outcome of MHT, a review is presented of the current literature to support the utility of this procedure in the treatment of intractable temporal lobe epilepsy. Long-term outcome analysis of this technique has been reported by 2 independent groups. Both groups used intraoperative electrocorticography. All patients underwent multiple subpial transection on the neocortex and MHT on the hippocampus.
Collapse
Affiliation(s)
- Arun Angelo Patil
- Creighton University Medical Center, Division of Neurosurgery, 601 North 30th Street, Omaha, NE 68131, USA.
| | - Andrea Jennifer Chamczuk
- Creighton University Medical Center, Division of Neurosurgery, 601 North 30th Street, Omaha, NE 68131, USA
| | | |
Collapse
|
61
|
Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A. Brain size and limits to adult neurogenesis. J Comp Neurol 2015; 524:646-64. [PMID: 26417888 DOI: 10.1002/cne.23896] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022]
Abstract
The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
| | - Shawn F Sorrells
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA.,University of California, San Francisco, CA, 94143, USA
| | - Jose M Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, 46980 Valencia, Spain
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
62
|
Kagiava A, Sargiannidou I, Bashiardes S, Richter J, Schiza N, Christodoulou C, Gritti A, Kleopa KA. Gene delivery targeted to oligodendrocytes using a lentiviral vector. J Gene Med 2015; 16:364-73. [PMID: 25394283 DOI: 10.1002/jgm.2813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Most leukodystrophies result from mutations in genes expressed in oligodendrocytes that may cause autonomous loss of function of cell structural proteins. Therefore, effective gene delivery to oligodendrocytes is necessary to develop future treatments. MATERIALS To achieve this, we cloned a lentiviral vector in which the enhanced green fluorescent protein (EGFP) expression was driven by the oligodendrocyte specific 2,3-cyclic nucleotide 3-phosphodiesterase promoter. The vector was inserted into C57BL/6 neonatal mouse brain by combined intraventricular and parenchymal injections. RESULTS Assessment of EGFP expression revealed a widespread distribution, specifically in cells of the oligodendrocyte linage, starting from postnatal day 6 (P6) in the subventricular zone and spreading through migrating oligodendrocyte precursors. By P30, it was detectable throughout the brain and persisted for at least 3 months, showing an increase both in the number of expressing cells and in intensity over time. EGFP expression was restricted to oligodendrocyte linage cells. On average, 20.3 ± 2.56% of all oligodendrocytes in different central nervous system areas were EGFP-positive, with regional variations. CONCLUSIONS Lentiviral gene delivery using an oligodendrocyte-specific promoter may achieve widespread and long-lasting expression selectively in oligodendrocytes, offering a possibility for gene therapy in certain leukodystrophies, although the relatively low rates of oligodendrocyte transduction are a limitation that remains to be overcome.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Hirako A, Sun J, Furukawa S, Takeuchi T, Sugiyama A. Effect of methotrexate on rostral migratory stream in newborn rats. J Vet Med Sci 2015; 77:1565-71. [PMID: 26136044 PMCID: PMC4710711 DOI: 10.1292/jvms.15-0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Two-day-old rats were treated with subcutaneous injections of methotrexate (MTX) 5 mg/kg
and 150 mg/kg, and their rostral migratory streams (RMS) were examined time-dependently.
MTX treatment increased pyknotic and TUNEL-positive cells and decreased mitotic and
phospho-Histone H3-positive cells at almost all time points in the vertical arm, elbow and
horizontal arm regions of the RMS. There were more TUNEL-positive cells ratio in the MTX
150 mg/kg group than in the MTX 5 mg/kg group. Treatment with MTX 150 mg/kg decreased the
cellularity in the vertical arm region on Postnatal day (PD) 4, but that with the MTX 5
mg/kg did not. TUNEL-positive cells ratio was the highest in the vertical arm region,
followed by elbow and horizontal regions in both MTX-treated groups. TUNEL-positive cells
ratio in the vertical arm and elbow regions reached their peaks on PD 4 in both
MTX-treated groups, and both MTX-treatments significantly decreased Phospho-Histone
H3-positive cells ratio on PDs 2.5 and 3 in the vertical arm, elbow and horizontal arm
regions. The phospho-Histone H3-positive cells ratio in the vertical arm region recovered
on PD4 in the MTX 150 mg/kg group. These findings suggested that RMS required a great
amount of folic acid on PD 2 and that the folic acid-requirement differed depending on the
anatomical region of the RMS. To our knowledge, this is the first report demonstrating the
effect of MTX on the RMS and the necessity of the folic acid metabolism on RMS development
in newborn rats.
Collapse
Affiliation(s)
- Ayano Hirako
- Department of Veterinary Laboratory Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Minami 4-101 Koyama-cho, Tottori, Tottori 680-8553, Japan
| | | | | | | | | |
Collapse
|
64
|
Protracted brain development in a rodent model of extreme longevity. Sci Rep 2015; 5:11592. [PMID: 26118676 PMCID: PMC4484490 DOI: 10.1038/srep11592] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/27/2015] [Indexed: 12/11/2022] Open
Abstract
Extreme longevity requires the continuous and large-scale adaptation of organ systems to delay senescence. Naked mole rats are the longest-living rodents, whose nervous system likely undergoes life-long adaptive reorganization. Nevertheless, neither the cellular organization of their cerebral cortex nor indices of structural neuronal plasticity along extreme time-scales have been established. We find that adult neurogenesis and neuronal migration are not unusual in naked mole rat brains. Instead, we show the prolonged expression of structural plasticity markers, many recognized as being developmentally controlled, and multi-year-long postnatal neuromorphogenesis and spatial synapse refinement in hippocampal and olfactory structures of the naked mole rat brain. Neurophysiological studies on identified hippocampal neurons demonstrated that morphological differentiation is disconnected from the control of excitability in all neuronal contingents regardless of their ability to self-renew. Overall, we conclude that naked mole rats show an extremely protracted period of brain maturation that may permit plasticity and resilience to neurodegenerative processes over their decades-long life span. This conclusion is consistent with the hypothesis that naked mole rats are neotenous, with retention of juvenile characteristics to permit survival in a hypoxic environment, with extreme longevity a consequence of greatly retarded development.
Collapse
|
65
|
Fernández-Hernández I, Rhiner C. New neurons for injured brains? The emergence of new genetic model organisms to study brain regeneration. Neurosci Biobehav Rev 2015; 56:62-72. [PMID: 26118647 DOI: 10.1016/j.neubiorev.2015.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/15/2022]
Abstract
Neuronal circuits in the adult brain have long been viewed as static and stable. However, research in the past 20 years has shown that specialized regions of the adult brain, which harbor adult neural stem cells, continue to produce new neurons in a wide range of species. Brain plasticity is also observed after injury. Depending on the extent and permissive environment of neurogenic regions, different organisms show great variability in their capacity to replace lost neurons by endogenous neurogenesis. In Zebrafish and Drosophila, the formation of new neurons from progenitor cells in the adult brain was only discovered recently. Here, we compare properties of adult neural stem cells, their niches and regenerative responses from mammals to flies. Current models of brain injury have revealed that specific injury-induced genetic programs and comparison of neuronal fitness are implicated in brain repair. We highlight the potential of these recently implemented models of brain regeneration to identify novel regulators of stem cell activation and regenerative neurogenesis.
Collapse
Affiliation(s)
| | - Christa Rhiner
- Institute of Cell Biology, IZB, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
66
|
Diabetes and stem cell function. BIOMED RESEARCH INTERNATIONAL 2015; 2015:592915. [PMID: 26075247 PMCID: PMC4449886 DOI: 10.1155/2015/592915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment.
Collapse
|
67
|
Kandasamy M, Rosskopf M, Wagner K, Klein B, Couillard-Despres S, Reitsamer HA, Stephan M, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Hörsten S, Aigner L. Reduction in subventricular zone-derived olfactory bulb neurogenesis in a rat model of Huntington's disease is accompanied by striatal invasion of neuroblasts. PLoS One 2015; 10:e0116069. [PMID: 25719447 PMCID: PMC4342015 DOI: 10.1371/journal.pone.0116069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/05/2014] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease (HD) is an inherited progressive neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene (HTT). The primary neuropathology of HD has been attributed to the preferential degeneration of medium spiny neurons (MSN) in the striatum. Reports on striatal neurogenesis have been a subject of debate; nevertheless, it should be considered as an endogenous attempt to repair the brain. The subventricular zone (SVZ) might offer a close-by region to supply the degenerated striatum with new cells. Previously, we have demonstrated that R6/2 mice, a widely used preclinical model representing an early onset HD, showed reduced olfactory bulb (OB) neurogenesis but induced striatal migration of neuroblasts without affecting the proliferation of neural progenitor cell (NPCs) in the SVZ. The present study revisits these findings, using a clinically more relevant transgenic rat model of late onset HD (tgHD rats) carrying the human HTT gene with 51 CAG repeats and mimicking many of the neuropathological features of HD seen in patients. We demonstrate that cell proliferation is reduced in the SVZ and OB of tgHD rats compared to WT rats. In the OB of tgHD rats, although cell survival was reduced, the frequency of neuronal differentiation was not altered in the granule cell layer (GCL) compared to the WT rats. However, an increased frequency of dopamenergic neuronal differentiation was noticed in the glomerular layer (GLOM) of tgHD rats. Besides this, we observed a selective proliferation of neuroblasts in the adjacent striatum of tgHD rats. There was no evidence for neuronal maturation and survival of these striatal neuroblasts. Therefore, the functional role of these invading neuroblasts still needs to be determined, but they might offer an endogenous alternative for stem or neuronal cell transplantation strategies.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Michael Rosskopf
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Wagner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Klein
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sebastien Couillard-Despres
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
| | - Herbert A. Reitsamer
- Department of Ophthalmology, SALK, Paracelsus Medical University, Salzburg, Austria
| | - Michael Stephan
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Huu Phuc Nguyen
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Jürgen Winkler
- Division of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Friedrich-Alexander-University Erlangen-Nurnberg, Erlangen, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
68
|
Lin R, Cai J, Nathan C, Wei X, Schleidt S, Rosenwasser R, Iacovitti L. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol Dis 2015; 74:229-39. [DOI: 10.1016/j.nbd.2014.11.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023] Open
|
69
|
Michailidou I, de Vries HE, Hol EM, van Strien ME. Activation of endogenous neural stem cells for multiple sclerosis therapy. Front Neurosci 2015; 8:454. [PMID: 25653584 PMCID: PMC4299409 DOI: 10.3389/fnins.2014.00454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability. A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions.
Collapse
Affiliation(s)
- Iliana Michailidou
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Netherlands
| | - Elly M Hol
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Miriam E van Strien
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
70
|
Regulation of subventricular zone-derived cells migration in the adult brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:1-21. [PMID: 25895704 DOI: 10.1007/978-3-319-16537-0_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The subventricular zone of the lateral ventricles (SVZ) is the largest source of neural stem cells (NSCs) in the adult mammalian brain. Newly generated neuroblasts from the SVZ form cellular chains that migrate through the rostral migratory stream (RMS) into the olfactory bulb (OB), where they become mature neurons. Migration through the RMS is a highly regulated process of intrinsic and extrinsic factors, orchestrated to achieve direction and integration of neuroblasts into OB circuitry. These factors include internal cytoskeletal and volume regulators, extracellular matrix proteins, and chemoattractant and chemorepellent proteins. All these molecules direct the cells away from the SVZ, through the RMS, and into the OB guaranteeing their correct integration. Following brain injury, some neuroblasts escape the RMS and migrate into the lesion site to participate in regeneration, a phenomenon that is also observed with brain tumors. This review focuses on factors that regulate the migration of SVZ precursor cells in the healthy and pathologic brain. A better understanding of the factors that control the movement of newly generated cells may be crucial for improving the use of NSC-replacement therapy for specific neurological diseases.
Collapse
|
71
|
Human and monkey striatal interneurons are derived from the medial ganglionic eminence but not from the adult subventricular zone. J Neurosci 2014; 34:10906-23. [PMID: 25122892 DOI: 10.1523/jneurosci.1758-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In adult rodent and monkey brains, newly born neurons in the subventricular zone (SVZ) in the wall of the lateral ventricle migrate into the olfactory bulb (OB) via the rostral migratory stream (RMS). A recent study reported that interneurons are constantly generating in the adult human striatum from the SVZ. In contrast, by taking advantage of the continuous expression of Sp8 from the neuroblast stage through differentiation into mature interneurons, we found that the adult human SVZ does not generate new interneurons for the striatum. In the adult human SVZ and RMS, very few neuroblasts were observed, and most of them expressed the transcription factor Sp8. Neuroblasts in the adult rhesus monkey SVZ-RMS-OB pathway also expressed Sp8. In addition, we observed that Sp8 was expressed by most adult human and monkey OB interneurons. However, very few Sp8+ cells were in the adult human striatum. This suggests that neuroblasts in the adult human SVZ and RMS are likely destined for the OB, but not for the striatum. BrdU-labeling results also revealed few if any newly born neurons in the adult rhesus monkey striatum. Finally, on the basis of transcription factor expression, we provide strong evidence that the vast majority of interneurons in the human and monkey striatum are generated from the medial ganglionic eminence during embryonic developmental stages, as they are in rodents. We conclude that, although a small number of neuroblasts exist in the adult human SVZ, they do not migrate into the striatum and become mature striatal interneurons.
Collapse
|
72
|
Takamori Y, Wakabayashi T, Mori T, Kosaka J, Yamada H. Organization and cellular arrangement of two neurogenic regions in the adult ferret (Mustela putorius furo) brain. J Comp Neurol 2014; 522:1818-38. [PMID: 24214369 DOI: 10.1002/cne.23503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 01/03/2023]
Abstract
In the adult mammalian brain, two neurogenic regions have been characterized, the subventricular zone (SVZ) of the lateral ventricle (LV) and the subgranular zone (SGZ) of the dentate gyrus (DG). Despite remarkable knowledge of rodents, the detailed arrangement of neurogenic regions in most mammals is poorly understood. In this study, we used immunohistochemistry and cell type-specific antibodies to investigate the organization of two germinal regions in the adult ferret, which belongs to the order Carnivora and is widely used as a model animal with a gyrencephalic brain. From the SVZ to the olfactory bulb, doublecortin-positive cells tended to organize in chain-like clusters, which are surrounded by a meshwork of astrocytes. This structure is homologous to the rostral migratory stream (RMS) described in other species. Different from rodents, the horizontal limb of the RMS emerges directly from the LV, and the anterior region of the LV extends rostrally and reached the olfactory bulb. In the DG, glial fibrillary acidic protein-positive cells with long radial processes as well as doublecortin-positive cells are oriented in the SGZ. In both regions, doublecortin-positive cells showed characteristic morphology and were positive for polysialylated-neural cell adhesion molecule, beta-III tubulin, and lamin B1 (intense staining). Proliferating cells were detected in both regions using antibodies against proliferating cell nuclear antigen and phospho-histone H3. These observations demonstrate that the two neurogenic regions in ferrets have a similar cellular composition as those of other mammalian species despite anatomical differences in the brain.
Collapse
Affiliation(s)
- Yasuharu Takamori
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, 573-1010, Japan
| | | | | | | | | |
Collapse
|
73
|
Lee MC, Rakwal R, Shibato J, Inoue K, Chang H, Soya H. DNA microarray-based analysis of voluntary resistance wheel running reveals novel transcriptome leading robust hippocampal plasticity. Physiol Rep 2014; 2:2/11/e12206. [PMID: 25413326 PMCID: PMC4255813 DOI: 10.14814/phy2.12206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In two separate experiments, voluntary resistance wheel running with 30% of body weight (RWR), rather than wheel running (WR), led to greater enhancements, including adult hippocampal neurogenesis and cognitive functions, in conjunction with hippocampal brain‐derived neurotrophic factor (BDNF) signaling (Lee et al., J Appl Physiol, 2012; Neurosci Lett., 2013). Here we aimed to unravel novel molecular factors and gain insight into underlying molecular mechanisms for RWR‐enhanced hippocampal functions; a high‐throughput whole‐genome DNA microarray approach was applied to rats performing voluntary running for 4 weeks. RWR rats showed a significant decrease in average running distances although average work levels increased immensely, by about 11‐fold compared to WR, resulting in muscular adaptation for the fast‐twitch plantaris muscle. Global transcriptome profiling analysis identified 128 (sedentary × WR) and 169 (sedentary × RWR) up‐regulated (>1.5‐fold change), and 97 (sedentary × WR) and 468 (sedentary × RWR) down‐regulated (<0.75‐fold change) genes. Functional categorization using both pathway‐ or specific‐disease‐state‐focused gene classifications and Ingenuity Pathway Analysis (IPA) revealed expression pattern changes in the major categories of disease and disorders, molecular functions, and physiological system development and function. Genes specifically regulated with RWR include the newly identified factors of NFATc1, AVPR1A, and FGFR4, as well as previously known factors, BDNF and CREB mRNA. Interestingly, RWR down‐regulated multiple inflammatory cytokines (IL1B, IL2RA, and TNF) and chemokines (CXCL1, CXCL10, CCL2, and CCR4) with the SYCP3, PRL genes, which are potentially involved in regulating hippocampal neuroplastic changes. These results provide understanding of the voluntary‐RWR‐related hippocampal transcriptome, which will open a window to the underlying mechanisms of the positive effects of exercise, with therapeutic value for enhancing hippocampal functions. New information on the voluntary RWR influenced transcriptome in rat hippocampus. Selected gene candidates may be a critical role in the development of hippocampal adaptations in RWR.
Collapse
Affiliation(s)
- Min Chul Lee
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, TsukubaIbaraki, Japan International Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Randeep Rakwal
- Organization for Educational Initiatives, University of Tsukuba, TsukubaIbaraki, Japan
| | - Junko Shibato
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, TsukubaIbaraki, Japan Department of Anatomy, Showa University School of Medicine, ShinagawaTokyo, Japan
| | - Koshiro Inoue
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, TsukubaIbaraki, Japan
| | - Hyukki Chang
- Human Movement Science, College of Natural Science, Seoul Women's University, Nowon-guSeoul, Korea
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, TsukubaIbaraki, Japan
| |
Collapse
|
74
|
Patzke N, LeRoy A, Ngubane NW, Bennett NC, Medger K, Gravett N, Kaswera-Kyamakya C, Gilissen E, Chawana R, Manger PR. The distribution of doublecortin-immunopositive cells in the brains of four afrotherian mammals: the Hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus). BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:227-41. [PMID: 25377859 DOI: 10.1159/000367934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022]
Abstract
Adult neurogenesis in the mammalian brain is now a widely accepted phenomenon, typically occurring in two forebrain structures: the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ). Until recently, the majority of studies have focused on laboratory rodents, and it is under debate whether the process of adult neurogenesis occurs outside of the SGZ and the SVZ in other mammalian species. In the present study, we investigated potential adult neurogenetic sites in the brains of two elephant shrews/sengis, a golden mole and a rock hyrax, all members of the superorder Afrotheria. Doublecortin (DCX) immunoreactivity was used as a proxy to visualise adult neurogenesis, which is expressed in neuronal precursor cells and immature neurons. In all four species, densely packed DCX-positive cells were present in the SVZ, from where cells appear to migrate along the rostral migratory stream towards the olfactory bulb (OB). DCX-immunopositive cells were present in the granular cell layer and the glomerular layer of the OB. In the hippocampus, DCX-immunopositive cells were observed in the SGZ and in the granular layer of the dentate gyrus, with DCX-immunopositive processes extending into the molecular layer. In addition to these well-established adult neurogenic regions, DCX-immunopositive cells were also observed in layer II of the neocortex and the piriform cortex. While the present study reveals a similar pattern of adult neurogenesis to that reported previously in other mammals, further studies are needed to clarify if the cortical DCX-immunopositive cells are newly generated neurons or cells undergoing cortical remodelling.
Collapse
Affiliation(s)
- Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Li WJ, Mao FX, Chen HJ, Qian LH, Buzby JS. Treatment with UDP-glucose, GDNF, and memantine promotes SVZ and white matter self-repair by endogenous glial progenitor cells in neonatal rats with ischemic PVL. Neuroscience 2014; 284:444-458. [PMID: 25453769 DOI: 10.1016/j.neuroscience.2014.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/26/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023]
Abstract
Periventricular leukomalacia (PVL) is one of the foremost neurological conditions leading to long-term abnormalities in premature infants. Since it is difficult to prevent initiation of this damage in utero, promoting the innate regenerative potential of the brain after birth may provide a more feasible, prospective therapy for PVL. Treatment with UDP-glucose (UDPG), an endogenous agonist of G protein-coupled receptor 17 (GPR17) that may enhance endogenous self-repair potentiality, glial cell line-derived neurotrophic factor (GDNF), a neurotrophic factor associated with the growth and survival of nerve cells, and memantine, a noncompetitive antagonist of N-methyl-d-aspartate (NMDA) receptors that block ischemia-induced glutamate signal transduction, has been reported to achieve functional, neurological improvement in neonatal rats with PVL. The aim of the present study was to further explore whether UDPG, GDNF and/or memantine could promote corresponding self-repair of the subventricular zone (SVZ) and white matter (WM) in neonatal rats with ischemia-induced PVL. SVZ or WM tissue samples and cultured glial progenitor cells derived from a 5 day-old neonatal rat model of PVL were utilized for studying response to UDPG, GDNF and memantine in vivo and in vitro, respectively. Labeling with 5'-bromo-2'-deoxyuridine and immunofluorescent cell lineage markers after hypoxia-ischemia or oxygen-glucose deprivation (OGD) revealed that UDPG, GDNF and memantine each significantly increased glial progenitor cells and preoligodendrocytes (preOLs), as well as more differentiated immature and mature oligodendrocyte (OL), in both the SVZ and WM in vivo or in vitro. SVZ and WM glial cell apoptosis was also significantly reduced by UDPG, GDNF or memantine, both in vivo and in vitro. These results indicated that UDPG, GDNF or memantine may promote endogenous self-repair by stimulating proliferation of glial progenitor cells derived from both the SVZ and WM, activating their differentiation into more mature OLs, and raising the survival rate of these newly generated glial cells in neonatal rats with ischemic PVL.
Collapse
Affiliation(s)
- W-J Li
- Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Shanghai 200092, China
| | - F-X Mao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou 450052, China
| | - H-J Chen
- Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Shanghai 200092, China.
| | - L-H Qian
- Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Shanghai 200092, China
| | - J S Buzby
- Hematology Research and Advanced Diagnostics Laboratories, 510 Research Institute, Children's Hospital of Orange County, 1201 W. La Veta Avenue, Orange, CA 92868, United States.
| |
Collapse
|
76
|
Chronic inhibition of brain phospholipase A2 in adult rats impairs the survival of newborn mature neurons in the hippocampus. J Neural Transm (Vienna) 2014; 122:619-28. [PMID: 25160937 DOI: 10.1007/s00702-014-1305-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/22/2014] [Indexed: 01/03/2023]
Abstract
Adult neurogenesis occurs in the hippocampal dentate gyrus (DG) and lateral ventricles, and includes cell proliferation and neuronal differentiation, maturation and survival. In vitro studies suggest a role for phospholipase A2 (PLA2) in neuronal differentiation/maturation and survival. This study aimed to investigate the effect of in vivo chronic inhibition of brain PLA2 in adult rats on the number of newborn mature neurons in the DG. Male Wistar rats were injected with BrdU (cell proliferation marker) and 2 weeks later (beginning of neuronal maturation) sham-operated or infused intracerebroventricularly with either vehicle (DMSO in saline) or PLA2 inhibitor (MAFP dissolved in the vehicle) for 14 days via osmotic minipump. The animals were euthanised 28 days post-BrdU and their brains immunostained for BrdU and BrdU plus NeuN (mature neuronal marker) for analysis of surviving cells. MAFP reduced the number of BrdU(+) cells in the ventral DG (p < 0.05 vs. sham; p < 0.01 vs. DMSO) and the number of BrdU(+)NeuN(+) cells in the ventral (p < 0.01 vs. sham and DMSO) and whole DG (p < 0.02 vs. sham and DMSO). There was no effect of MAFP in the dorsal DG. These findings show that chronic PLA2 inhibition in adult rat hippocampus decreases the number of newborn mature neurons in the ventral DG (reflecting in the whole DG), perhaps by impairing neuronal maturation and survival, and suggest that PLA2 inhibition reported in the hippocampus of Alzheimer disease subjects might partly contribute to the neurogenic abnormalities found in the DG in this disease.
Collapse
|
77
|
Yuan TF, Li J, Ding F, Arias-Carrion O. Evidence of adult neurogenesis in non-human primates and human. Cell Tissue Res 2014; 358:17-23. [PMID: 25130142 DOI: 10.1007/s00441-014-1980-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/25/2014] [Indexed: 01/19/2023]
Abstract
Adult neurogenesis in rodents has been extensively studied. Here, we briefly summarize the studies of adult neurogenesis based on non-human primate brains and human postmortem brain samples in recent decades. The differences between rodent, primate and human neurogenesis are discussed. We conclude that these differences may contribute to distinct physiological roles and the self-repair mechanisms in the brain across species.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, China,
| | | | | | | |
Collapse
|
78
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
79
|
Southwell DG, Nicholas CR, Basbaum AI, Stryker MP, Kriegstein AR, Rubenstein JL, Alvarez-Buylla A. Interneurons from embryonic development to cell-based therapy. Science 2014; 344:1240622. [PMID: 24723614 DOI: 10.1126/science.1240622] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many neurologic and psychiatric disorders are marked by imbalances between neural excitation and inhibition. In the cerebral cortex, inhibition is mediated largely by GABAergic (γ-aminobutyric acid-secreting) interneurons, a cell type that originates in the embryonic ventral telencephalon and populates the cortex through long-distance tangential migration. Remarkably, when transplanted from embryos or in vitro culture preparations, immature interneurons disperse and integrate into host brain circuits, both in the cerebral cortex and in other regions of the central nervous system. These features make interneuron transplantation a powerful tool for the study of neurodevelopmental processes such as cell specification, cell death, and cortical plasticity. Moreover, interneuron transplantation provides a novel strategy for modifying neural circuits in rodent models of epilepsy, Parkinson's disease, mood disorders, and chronic pain.
Collapse
Affiliation(s)
- Derek G Southwell
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Alfaro-Cervello C, Cebrian-Silla A, Soriano-Navarro M, Garcia-Tarraga P, Matías-Guiu J, Gomez-Pinedo U, Molina Aguilar P, Alvarez-Buylla A, Luquin MR, Garcia-Verdugo JM. The Adult Macaque Spinal Cord Central Canal Zone Contains Proliferative Cells And Closely Resembles The Human. J Comp Neurol 2014; 522:1800-17. [DOI: 10.1002/cne.23501] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/04/2013] [Accepted: 10/30/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Clara Alfaro-Cervello
- Laboratorio de Neurobiología Comparada; Instituto Cavanilles, Universidad de Valencia; CIBERNED Valencia 46980 Spain
| | - Arantxa Cebrian-Silla
- Laboratorio de Neurobiología Comparada; Instituto Cavanilles, Universidad de Valencia; CIBERNED Valencia 46980 Spain
| | - Mario Soriano-Navarro
- Laboratorio de Neurobiología Comparada; Instituto Cavanilles, Universidad de Valencia; CIBERNED Valencia 46980 Spain
| | - Patricia Garcia-Tarraga
- Laboratorio de Neurobiología Comparada; Instituto Cavanilles, Universidad de Valencia; CIBERNED Valencia 46980 Spain
| | - Jorge Matías-Guiu
- Instituto de Neurociencias; IdISSC, Hospital Clínico San Carlos Madrid 28040 Spain
| | - Ulises Gomez-Pinedo
- Instituto de Neurociencias; IdISSC, Hospital Clínico San Carlos Madrid 28040 Spain
| | - Pilar Molina Aguilar
- Servicio de Patología; Instituto de Medicina Legal de Valencia; Valencia 46013 Spain
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and Institute for Regeneration Medicine; University of California at San Francisco; San Francisco California 94143, USA
| | - Maria-Rosario Luquin
- Laboratorio de Terapia Regenerativa, Departmento de Neurología, División de Neurociencias, Centro de Investigacion Médica Aplicada; Universidad de Navarra; Pamplona 31008 Spain
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada; Instituto Cavanilles, Universidad de Valencia; CIBERNED Valencia 46980 Spain
| |
Collapse
|
81
|
Schaeffer EL, Cerulli FG, Souza HOX, Catanozi S, Gattaz WF. Synergistic and additive effects of enriched environment and lithium on the generation of new cells in adult mouse hippocampus. J Neural Transm (Vienna) 2014; 121:695-706. [DOI: 10.1007/s00702-014-1175-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
|
82
|
Modrek AS, Bayin NS, Placantonakis DG. Brain stem cells as the cell of origin in glioma. World J Stem Cells 2014; 6:43-52. [PMID: 24567787 PMCID: PMC3927013 DOI: 10.4252/wjsc.v6.i1.43] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/06/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
Glioma incidence rates in the United States are near 20000 new cases per year, with a median survival time of 14.6 mo for high-grade gliomas due to limited therapeutic options. The origins of these tumors and their many subtypes remain a matter of investigation. Evidence from mouse models of glioma and human clinical data have provided clues about the cell types and initiating oncogenic mutations that drive gliomagenesis, a topic we review here. There has been mixed evidence as to whether or not the cells of origin are neural stem cells, progenitor cells or differentiated progeny. Many of the existing murine models target cell populations defined by lineage-specific promoters or employ lineage-tracing methods to track the potential cells of origin. Our ability to target specific cell populations will likely increase concurrently with the knowledge gleaned from an understanding of neurogenesis in the adult brain. The cell of origin is one variable in tumorigenesis, as oncogenes or tumor suppressor genes may differentially transform the neuroglial cell types. Knowledge of key driver mutations and susceptible cell types will allow us to understand cancer biology from a developmental standpoint and enable early interventional strategies and biomarker discovery.
Collapse
|
83
|
Oyarce K, Bongarzone ER, Nualart F. Unconventional Neurogenic Niches and Neurogenesis Modulation by Vitamins. ACTA ACUST UNITED AC 2014. [PMID: 26203401 DOI: 10.4172/2157-7633.1000184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the generation of new neurons occurs in adult mammals, it has been classically described in two defined regions of the brain denominated neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus. In these regions, neural stem cells give rise to new neurons and glia, which functionally integrate into the existing circuits under physiological conditions. However, accumulating evidence indicates the presence of neurogenic potential in other brain regions, from which multipotent precursors can be isolated and differentiated in vitro. In some of these regions, neuron generation occurs at low levels; however, the addition of growth factors, hormones or other signaling molecules increases the proliferation and differentiation of precursor cells. In addition, vitamins, which are micronutrients necessary for normal brain development, and whose deficiency produces neurological impairments, have a regulatory effect on neural stem cells in vitro and in vivo. In the present review, we will describe the progress that has been achieved in determining the neurogenic potential in other regions, known as unconventional niches, as well as the characteristics of the neural stem cells described for each region. Finally, we will revisit the roles of commonly known vitamins as modulators of precursor cell proliferation and differentiation, and their role in the complex and tight molecular signaling that impacts these neurogenic niches.
Collapse
Affiliation(s)
- Karina Oyarce
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| |
Collapse
|
84
|
Hauser KF, Knapp PE. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:231-313. [PMID: 25175867 PMCID: PMC4304845 DOI: 10.1016/b978-0-12-801284-0.00009-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Anatomy & Neurobiology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
85
|
Long term follow-up after multiple hippocampal transection (MHT). Seizure 2013; 22:731-4. [DOI: 10.1016/j.seizure.2013.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 12/14/2022] Open
|
86
|
Lazarov O, Marr RA. Of mice and men: neurogenesis, cognition and Alzheimer's disease. Front Aging Neurosci 2013; 5:43. [PMID: 23986699 PMCID: PMC3753540 DOI: 10.3389/fnagi.2013.00043] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/04/2013] [Indexed: 01/18/2023] Open
Abstract
Neural stem cells are maintained in the subgranular layer of the dentate gyrus and in the subventricular zone in the adult mammalian brain throughout life. Neurogenesis is continuous, but its extent is tightly regulated by environmental factors, behavior, hormonal state, age, and brain health. Increasing evidence supports a role for new neurons in cognitive function in rodents. Recent evidence delineates significant similarities and differences between adult neurogenesis in rodents and humans. Being context-dependent, neurogenesis in the human brain might be manifested differently than in the rodent brain. Decline in neurogenesis may play a role in cognitive deterioration, leading to the development of progressive learning and memory disorders, such as Alzheimer's disease. This review discusses the different observations concerning neurogenesis in the rodent and human brain, and their functional implications for the healthy and diseased brain.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at ChicagoChicago, IL, USA
| | - Robert A. Marr
- Department of Neuroscience, Rosalind Franklin University of Medicine and ScienceNorth Chicago, IL, USA
| |
Collapse
|
87
|
Gil-Perotín S, Duran-Moreno M, Cebrián-Silla A, Ramírez M, García-Belda P, García-Verdugo JM. Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec (Hoboken) 2013; 296:1435-52. [PMID: 23904071 DOI: 10.1002/ar.22746] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 01/17/2023]
Abstract
The possibility of obtaining large numbers of cells with potential to become functional neurons implies a great advance in regenerative medicine. A source of cells for therapy is the subventricular zone (SVZ) where adult neural stem cells (NSCs) retain the ability to proliferate, self-renew, and differentiate into several mature cell types. The neurosphere assay, a method to isolate, maintain, and expand these cells has been extensively utilized by research groups to analyze the biological properties of aNSCs and to graft into injured brains from animal models. In this review we briefly describe the neurosphere assay and its limitations, the methods to optimize culture conditions, the identity and the morphology of aNSC-derived neurospheres (including new ultrastructural data). The controversy regarding the identity and "stemness" of cells within the neurosphere is revised. The fine morphology of neurospheres, described thoroughly, allows for phenotypical characterization of cells in the neurospheres and may reveal slight changes that indirectly inform about cell integrity, cell damage, or oncogenic transformation. Along this review we largely highlight the critical points that researchers have to keep in mind before extrapolating results or translating experimental transplantation of neurosphere-derived cells to the clinical setting.
Collapse
Affiliation(s)
- Sara Gil-Perotín
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, C/Catedratico Jose Beltran no 2, Paterna, Valencia, CIBERNED, Spain
| | | | | | | | | | | |
Collapse
|
88
|
Iwai M, Ikeda T, Hayashi T, Sato K, Nagata T, Nagano I, Shoji M, Ikenoue T, Abe K. Temporal profile of neural stem cell proliferation in the subventricular zone after ischemia/hypoxia in the neonatal rat brain. Neurol Res 2013; 28:461-8. [PMID: 16759450 DOI: 10.1179/016164105x49283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Ischemia/hypoxia (I/H) causes severe neonatal brain injury, such as periventricular leukomaracia and hypoxic/ischemic encephalopathy. Neural stem cell research could lead to a treatment for such disorders. In order to elucidate the dynamic changes in neural stem cells in the neonatal brain after I/H, we investigated the proliferation of new cells in the subventricular zone (SVZ). METHODS Seven-day-old Wister rats were subjected to ligation of the left carotid artery followed by 2 hours of hypoxic stress (8% O(2) and 92% N(2), at 33 degrees C). In order to elucidate the dynamic change of neural stem cells in the SVZ, single bromodeoxyuridine (BrdU; 50 mg/kg) was administered 2 hours before death 1, 7, 14 and 21 days after I/H. Immunohistochemical and immunofluorescent studies for BrdU and doublecortin (DCX) were carried out. As a control, a group of rats was subjected to sham surgery (incision of skin, but no ligation of the carotid artery) and no I/H. RESULTS The numbers of BrdU-labeled cells in the SVZ, for both the ipsilateral side and the contralateral side of the I/H brain, were twice the level of the control at 7 days after I/H, but the numbers for both sides returned to the control level at 21 days. In the ipsilateral side of the I/H brain, the number of BrdU-labeled cells in the SVZb (lining the upper wall of lateral ventricle) was 4-fold at 7 days and 15-fold at 21 days after I/H compared with the control level. This chronological pattern is very similar to the pattern for I/H results of the posterior periventricle (pPV). DCX appeared in most BrdU-labeled cells in the SVZb and pPV. DISCUSSION These findings indicate that I/H enhances neural stem cell proliferation in the SVZ, and some newborn cells migrate as neural precursors to the SVZb and pPV after I/H in the neonatal rat brain.
Collapse
Affiliation(s)
- Masanori Iwai
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Adult neurogenesis in eight Megachiropteran species. Neuroscience 2013; 244:159-72. [PMID: 23597831 DOI: 10.1016/j.neuroscience.2013.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 12/26/2022]
Abstract
The present study evaluated, using immunohistochemical methods, the presence and characteristics of proliferating and newly generated neurons in the brain of eight wild-caught adult Megachiropteran species. For the neurogenic patterns observed, direct homologies are evident in other mammalian species; however, there were several distinctions in the presence or absence of proliferating and immature neurons, and migratory streams that provide important clues regarding the use of the brain in the analysis of Chiropteran phylogenetic affinities. In all eight species studied, numerous Ki-67- and doublecortin (DCX)-immunopositive cells were identified in the subventricular zone (SVZ). These cells migrated to the olfactory bulb through a Primate-like rostral migratory stream (RMS) that is composed of dorsal and ventral substreams which merge before entering the olfactory bulb. Some cells were observed emerging from the RMS coursing caudally and dorsally to the rostral neocortex. In the dentate gyrus of all species, Ki-67- and DCX-expressing cells were observed in the granular cell layer and hilus. Similar to Primates, proliferating cells and immature neurons were identified in the SVZ of the temporal horn of Megachiropterans. These cells migrated to the rostral and caudal piriform cortex through a Primate-like temporal migratory stream. Sparsely distributed Ki-67-immunopositive, but DCX-immunonegative, cells were identified in the tectum, brainstem and cerebellum. The observations from this study add to a number of neural characteristics that phylogenetically align Megachiropterans to Primates.
Collapse
|
90
|
Adult neurogenesis in a giant otter shrew (Potamogale velox). Neuroscience 2013; 238:270-9. [PMID: 23485806 DOI: 10.1016/j.neuroscience.2013.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/10/2013] [Accepted: 02/17/2013] [Indexed: 01/19/2023]
Abstract
Adult neurogenesis in mammals is typically observed in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone. We investigated adult neurogenesis in the brain of a giant otter shrew (Potamogale velox), a semi-aquatic, central African rainforest mammal of the family Tenrecidae that belongs to the superorder Afrotheria. We examined neurogenesis immunohistochemically, using the endogenous marker doublecortin (DCX), which stains neuronal precursor cells and immature neurons. Our results revealed densely packed DCX-positive cells in the entire extent of the subventricular zone from where cells migrated along the rostral migratory stream to the olfactory bulb. In the olfactory bulb, DCX-expressing cells were primarily present in the granular cell layer with radially orientated dendrites and in the glomerular layer representing periglomerular cells. In the hippocampus, DCX-positive cells were identified in the subgranular and granular layers of the dentate gyrus and strongly labelled DCX-positive processes, presumably dendrites and axons of the newly generated granular cells, were observed in the CA3 regions. In addition, DCX immunoreactive cells were present in the olfactory tubercle, the piriform cortex and the endopiriform nucleus. While DCX-positive fibres have been previously observed in the anterior commissure of the hedgehog and mole, we were able to demonstrate the presence of DCX-positive cells presumably migrating across the anterior commissure. Taken together, the giant otter shrew reveals patterns of neurogenesis similar to that seen in other mammals; however, the appearance of possible neuronal precursor cells in the anterior commissure is a novel observation.
Collapse
|
91
|
Cell proliferation pattern in adult zebrafish forebrain is sexually dimorphic. Neuroscience 2012; 226:367-81. [DOI: 10.1016/j.neuroscience.2012.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022]
|
92
|
Azim K, Fiorelli R, Zweifel S, Hurtado-Chong A, Yoshikawa K, Slomianka L, Raineteau O. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains. PLoS One 2012; 7:e49087. [PMID: 23166605 PMCID: PMC3499551 DOI: 10.1371/journal.pone.0049087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest that the subventricular zone (SVZ) of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling “stem” cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess neural stem cells or progenitor diversity and population sizes in physiological or experimental paradigms.
Collapse
Affiliation(s)
- Kasum Azim
- Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland
| | - Roberto Fiorelli
- Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland
| | - Stefan Zweifel
- Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland
| | | | | | - Lutz Slomianka
- Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Olivier Raineteau
- Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
93
|
Rocamonde B, Paradells S, Barcia J, Barcia C, García Verdugo J, Miranda M, Romero Gómez F, Soria J. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience 2012; 224:102-15. [DOI: 10.1016/j.neuroscience.2012.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 12/30/2022]
|
94
|
Curtis MA, Low VF, Faull RLM. Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 2012; 72:990-1005. [PMID: 22539366 DOI: 10.1002/dneu.22028] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
For more than a decade, we have known that the human brain harbors progenitor cells capable of becoming mature neurons in the adult human brain. Since the original landmark article by Eriksson et al. in 1998 (Nat Med 4:1313-1317), there have been many studies investigating the effect that depression, epilepsy, Alzheimer's disease, Huntington's disease, and Parkinson's disease have on the germinal zones in the adult human brain. Of particular interest is the demonstration that there are far fewer progenitor cells in the hippocampal subgranular zone (SGZ) compared with the subventricular zone (SVZ) in the human brain. Furthermore, the quantity of progenitor cell proliferation in human neurodegenerative diseases differs from that of animal models of neurodegenerative diseases; there is minimal progenitor proliferation in the SGZ and extensive proliferation in the SVZ in the human. In this review, we will present the data from a range of human and rodent studies from which we can compare the amount of proliferation of cells in the SVZ and SGZ in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Maurice A Curtis
- Department of Anatomy with Radiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
95
|
Liu S, Zhang C, Shu H, Wion D, Yang H. Cortical dysplasia: a possible substrate for brain tumors. Future Oncol 2012; 8:251-8. [PMID: 22409462 DOI: 10.2217/fon.12.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The similarities between brain tumor stem cells and neural stem cells suggest a possible stem cell origin of tumorigenesis. Recently, cells with features of stem cells have been observed in lesions of adult and pediatric cortical dysplasia (CD). Given the evidence for a close relationship between CD and certain brain tumors, together with the finding that CD neural stem cells/progenitors are abnormally developed, we propose that CD is a possible substrate for brain tumors. The neural stem cells/progenitors in CD have accumulating abnormalities, and these abnormal stem/progenitor cells may be the initiating, transformed cells of brain tumors, when subsequently exposed to a carcinogen.
Collapse
Affiliation(s)
- Shiyong Liu
- Epilepsy Center of the Neurosurgery Department, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China
| | | | | | | | | |
Collapse
|
96
|
Kishimoto N, Alfaro-Cervello C, Shimizu K, Asakawa K, Urasaki A, Nonaka S, Kawakami K, Garcia-Verdugo JM, Sawamoto K. Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish. J Comp Neurol 2012; 519:3549-65. [PMID: 21800305 DOI: 10.1002/cne.22722] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the brain of adult mammals, neuronal precursors are generated in the subventricular zone in the lateral wall of the lateral ventricles and migrate into the olfactory bulbs (OBs) through a well-studied route called the rostral migratory stream (RMS). Recent studies have revealed that a comparable neural stem cell niche is widely conserved at the ventricular wall of adult vertebrates. However, little is known about the migration route of neuronal precursors in nonmammalian adult brains. Here, we show that, in the adult zebrafish, a cluster of neuronal precursors generated in the telencephalic ventricular zone migrates into the OB via a route equivalent to the mammalian RMS. Unlike the mammalian RMS, these neuronal precursors are not surrounded by glial tubes, although radial glial cells with a single cilium lined the telencephalic ventricular wall, much as in embryonic and neonatal mammals. To observe the migrating neuronal precursors in living brain tissue, we established a brain hemisphere culture using a zebrafish line carrying a GFP transgene driven by the neurogenin1 (ngn1) promoter. In these fish, GFP was observed in the neuronal precursors migrating in the RMS, some of which were aligned with blood vessels. Numerous ngn1:gfp-positive cells were observed migrating tangentially in the RMS-like route medial to the OB. Taken together, our results suggest that the RMS in the adult zebrafish telencephalon is a functional migratory pathway. This is the first evidence for the tangential migration of neuronal precursors in a nonmammalian adult telencephalon.
Collapse
Affiliation(s)
- Norihito Kishimoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Malik SZ, Lewis M, Isaacs A, Haskins M, Van Winkle T, Vite CH, Watson DJ. Identification of the rostral migratory stream in the canine and feline brain. PLoS One 2012; 7:e36016. [PMID: 22606243 PMCID: PMC3350506 DOI: 10.1371/journal.pone.0036016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/25/2012] [Indexed: 01/18/2023] Open
Abstract
In the adult rodent brain, neural progenitor cells migrate from the subventricular zone of the lateral ventricle towards the olfactory bulb in a track known as the rostral migratory stream (RMS). To facilitate the study of neural progenitor cells and stem cell therapy in large animal models of CNS disease, we now report the location and characteristics of the normal canine and feline RMS. The RMS was found in Nissl-stained sagittal sections of adult canine and feline brains as a prominent, dense, continuous cellular track beginning at the base of the anterior horn of the lateral ventricle, curving around the head of the caudate nucleus and continuing laterally and ventrally to the olfactory peduncle before entering the olfactory tract and bulb. To determine if cells in the RMS were proliferating, the thymidine analog 5-bromo-2-deoxyuridine (BrdU) was administered and detected by immunostaining. BrdU-immunoreactive cells were present throughout this track. The RMS was also immunoreactive for markers of proliferating cells, progenitor cells and immature neurons (Ki-67 and doublecortin), but not for NeuN, a marker of mature neurons. Luxol fast blue and CNPase staining indicated that myelin is closely apposed to the RMS along much of its length and may provide guidance cues for the migrating cells. Identification and characterization of the RMS in canine and feline brain will facilitate studies of neural progenitor cell biology and migration in large animal models of neurologic disease.
Collapse
Affiliation(s)
- Saafan Z. Malik
- Department of Neurosurgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Melissa Lewis
- Department of Clinical Studies, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alison Isaacs
- Department of Neurosurgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark Haskins
- Department of Clinical Studies, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas Van Winkle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Charles H. Vite
- Department of Clinical Studies, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Deborah J. Watson
- Department of Neurosurgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
98
|
Mogi K, Adachi T, Izumi S, Toyoizumi R. Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo. Fluids Barriers CNS 2012; 9:9. [PMID: 22534239 PMCID: PMC3350447 DOI: 10.1186/2045-8118-9-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/25/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND It has long been known that cerebrospinal fluid (CSF), its composition and flow, play an important part in normal brain development, and ependymal cell ciliary beating as a possible driver of CSF flow has previously been studied in mammalian fetuses in vitro. Lower vertebrate animals are potential models for analysis of CSF flow during development because they are oviparous. Albino Xenopus laevis larvae are nearly transparent and have a straight, translucent brain that facilitates the observation of fluid flow within the ventricles. The aim of these experiments was to study CSF flow and circulation in vivo in the developing brain of living embryos, larvae and tadpoles of Xenopus laevis using a microinjection technique. METHODS The development of Xenopus larval brain ventricles and the patterns of CSF flow were visualised after injection of quantum dot nanocrystals and polystyrene beads (3.1 or 5.8 μm in diameter) into the fourth cerebral ventricle at embryonic/larval stages 30-53. RESULTS The fluorescent nanocrystals showed the normal development of the cerebral ventricles from embryonic/larval stages 38 to 53. The polystyrene beads injected into stage 47-49 larvae revealed three CSF flow patterns, left-handed, right-handed and non-biased, in movement of the beads into the third ventricle from the cerebral aqueduct (aqueduct of Sylvius). In the lateral ventricles, anterior to the third ventricle, CSF flow moved anteriorly along the outer wall of the ventricle to the inner wall and then posteriorly, creating a semicircle. In the cerebral aqueduct, connecting the third and fourth cerebral ventricles, CSF flow moved rostrally in the dorsal region and caudally in the ventral region. Also in the fourth ventricle, clear dorso-ventral differences in fluid flow pattern were observed. CONCLUSIONS This is the first visualisation of the orchestrated CSF flow pattern in developing vertebrates using a live animal imaging approach. CSF flow in Xenopus albino larvae showed a largely consistent pattern, with the exception of individual differences in left-right asymmetrical flow in the third ventricle.
Collapse
Affiliation(s)
- Kazue Mogi
- Research Institute for Integrated Science, Kanagawa University, Tsuchiya 2946, Hiratsuka city 259-1293, Japan.
| | | | | | | |
Collapse
|
99
|
Adult neurogenesis in the brain of the Mozambique tilapia, Oreochromis mossambicus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:427-49. [PMID: 22491885 DOI: 10.1007/s00359-012-0721-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/18/2023]
Abstract
Although the generation of new neurons in the adult nervous system ('adult neurogenesis') has been studied intensively in recent years, little is known about this phenomenon in non-mammalian vertebrates. Here, we examined the generation, migration, and differentiation of new neurons and glial cells in the Mozambique tilapia (Oreochromis mossambicus), a representative of one of the largest vertebrate taxonomic orders, the perciform fish. The vast majority of new cells in the brain are born in specific proliferation zones of the olfactory bulb; the dorsal and ventral telencephalon; the periventricular nucleus of the posterior tuberculum, optic tectum, and nucleus recessi lateralis of the diencephalon; and the valvula cerebelli, corpus cerebelli, and lobus caudalis of the cerebellum. As shown in the olfactory bulb and the lateral part of the valvula cerebelli, some of the young cells migrate from their site of origin to specific target areas. Labeling of mitotic cells with the thymidine analog 5-bromo-2'-deoxyuridine, combined with immunostaining against the neuron-specific marker protein Hu or against the astroglial marker glial fibrillary acidic protein demonstrated differentiation of the adult-born cells into both neurons and glia. Taken together, the present investigation supports the hypothesis that adult neurogenesis is an evolutionarily conserved vertebrate trait.
Collapse
|
100
|
Azim K, Zweifel S, Klaus F, Yoshikawa K, Amrein I, Raineteau O. Early Decline in Progenitor Diversity in the Marmoset Lateral Ventricle. Cereb Cortex 2012; 23:922-31. [DOI: 10.1093/cercor/bhs085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|