51
|
Feng S, Yao J, Zhang Z, Zhang Y, Zhang Z, Liu J, Tan W, Sun C, Chen L, Yu X. miR‑96 inhibits EMT by targeting AEG‑1 in glioblastoma cancer cells. Mol Med Rep 2017; 17:2964-2972. [PMID: 29257267 PMCID: PMC5783515 DOI: 10.3892/mmr.2017.8227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/20/2017] [Indexed: 12/23/2022] Open
Abstract
The induction of epithelial to mesenchymal transition (EMT) is important for carcinogenesis and cancer progression. Previous studies have estimated that microRNA (miRNA/miR) expression is associated with EMT via the regulation of the expression of target genes. miR-96 has been reported to exhibit a correlation with the EMT process. However, the functional role of miR-96 and its mechanism in glioblastoma multiforme (GBM) remains to be completely elucidated. The objective of the present study was to investigate the functional role and mechanism of miR-96 in the migration and invasion, in addition to proliferation, apoptosis and cell cycle distribution, of GBM. In the present study, the results suggested that the introduction of miR-96 significantly inhibited the migration and invasion, in addition to proliferation and cell cycle progression, of GBM cells and promoted their apoptosis in vitro, leading to the hypothesis that miR-96 may be a potential tumor suppressor. It was subsequently confirmed that astrocyte elevated gene-1 (AEG-1) was a direct target gene of miR-96, using a luciferase assay and reverse transcription-quantitative polymerase chain reaction analysis, in addition to western blotting. miR-96 was observed to downregulate the expression of AEG-1 at the mRNA and protein levels. Notably, AEG-1 may suppress EMT by increasing the expression levels of E-cadherin, an epithelial marker, and decreasing the expression levels of vimentin, a mesenchymal marker. Therefore, it was concluded that miR-96 may impede the EMT process by downregulating AEG-1 in GBM. Additionally, it was observed that inhibition of AEG-1 led to a similar effect compared with overexpression of miR-96 in GBM. In conclusion, the results of the present study demonstrated that miR-96 may act as a tumor suppressor by regulating EMT via targeting of AEG-1, suggesting that miR-96 may be a potential biomarker and anticancer therapeutic target for GBM in the future.
Collapse
Affiliation(s)
- Shiyu Feng
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Jie Yao
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Zhibin Zhang
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Jialin Liu
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Wenlong Tan
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Caihong Sun
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Ling Chen
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| |
Collapse
|
52
|
Yu J, Tian X, Chang J, Liu P, Zhang R. RUNX3 inhibits the proliferation and metastasis of gastric cancer through regulating miR-182/HOXA9. Biomed Pharmacother 2017; 96:782-791. [DOI: 10.1016/j.biopha.2017.08.144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/11/2023] Open
|
53
|
Wang J, Lu Z, Tang H, Wu L, Wang Z, Wu M, Yi X, Wang J. Multiplexed Electrochemical Detection of MiRNAs from Sera of Glioma Patients at Different Stages via the Novel Conjugates of Conducting Magnetic Microbeads and Diblock Oligonucleotide-Modified Gold Nanoparticles. Anal Chem 2017; 89:10834-10840. [PMID: 28956430 DOI: 10.1021/acs.analchem.7b02342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) serve as diagnostic and prognostic biomarkers for a wide variety of cancers. Via the novel conjugates of gold nanoparticle-coated magnetic microbeads (AuNP-MMBs) and the diblock oligonucleotide (ODN)-modified AuNPs, multiplexed electrochemical assay of miRNAs was performed. The hybridization to target miRNAs leads to the conformational change of the hairpin-structured ODN probes, and the attachment of the diblock ODN-modified AuNPs was achieved. By examining the oxidation peak currents of methylene blue (MB) and ferrocene (Fc) moieties residing on the diblock ODNs, simultaneous quantification of miRNA-182 and miRNA-381 was conducted. The detection signals were significantly enhanced due to the numerous MB and Fc tags on the AuNPs. The proposed assay was highly selective for discriminating miRNAs with similar sequences, and detection limits of 0.20 fM and 0.12 fM for miRNA-182 and miRNA-381, respectively, were achieved. The feasibility of the method for sensitive determination of miRNA-182 and miRNA-381 from serum samples of glioma patients at different stages was demonstrated. The sensing protocol thus holds great potential for early diagnosis and treatment of cancer patients.
Collapse
Affiliation(s)
- Jingrui Wang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Zhixuan Lu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Hailin Tang
- SunYat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou, Guangdong 510060, P. R. China
| | - Ling Wu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Zixiao Wang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Minghua Wu
- Cancer Research Institute, Central South University , Changsha, Hunan 410013, P. R. China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| |
Collapse
|
54
|
Belcher SM, Burton CC, Cookman CJ, Kirby M, Miranda GL, Saeed FO, Wray KE. Estrogen and soy isoflavonoids decrease sensitivity of medulloblastoma and central nervous system primitive neuroectodermal tumor cells to chemotherapeutic cytotoxicity. BMC Pharmacol Toxicol 2017; 18:63. [PMID: 28877739 PMCID: PMC5585986 DOI: 10.1186/s40360-017-0160-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/22/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Our previous studies demonstrated that growth and migration of medulloblastoma (MB), the most common malignant brain tumor in children, are stimulated by 17β-estradiol. The growth stimulating effects of estrogens are mediated through ERβ and insulin-like growth factor 1 signaling to inhibit caspase 3 activity and reduce tumor cell apoptosis. The objective of this study was to determine whether estrogens decreased sensitivity of MB cells to cytotoxic actions of chemotherapeutic drugs. METHODS Using in vitro cell viability and clonogenic survival assays, concentration response analysis was used to determine whether the cytoprotective effects of estradiol protected human D283 Med MB cells from the cytotoxic actions of the MB chemotherapeutic drugs cisplatin, vincristine, or lomustine. Additional experiments were done to determine whether the ER antagonist fulvestrant or the selective ER modulator tamoxifen blocked the cytoprotective actions of estradiol. ER-selective agonists and antagonists were used to define receptor specificity, and the impacts of the soy-derived phytoestrogens genistein, daidzein, and s-equol on chemosensitivity were evaluated. RESULTS In D283 Med cells the presence of 10 nM estradiol increased the IC50 for cisplatin-induced inhibition of viability 2-fold from ~5 μM to >10 μM. In clonogenic survival assays estradiol decreased the chemosensitivity of D283 Med cells exposed to cisplatin, lomustine and vincristine. The ERβ selective agonist DPN and low physiological concentrations of the soy-derived phytoestrogens genistein, daidzein, and s-equol also decreased sensitivity of D283 Med cells to cisplatin. The protective effects of estradiol were blocked by the antiestrogens 4-hydroxytamoxifen, fulvestrant (ICI 182,780) and the ERβ selective antagonist PPHTP. Whereas estradiol also decreased chemosensitivity of PFSK-1 cells, estradiol increased sensitivity of Daoy cell to cisplatin, suggesting that ERβ mediated effects may vary in different MB celltypes. CONCLUSIONS These findings demonstrate that E2 and environmental estrogens decrease sensitivity of MB to cytotoxic chemotherapeutics, and that ERβ selective and non-selective inhibition of estrogen receptor activity blocks these cytoprotective actions. These findings support the therapeutic potential of antiestrogen adjuvant therapies for MB, and findings that soy phytoestrogens also decrease sensitivity of MB cells to cytotoxic chemotherapeutics suggest that decreased exposure to environmental estrogens may benefit MB patient responses to chemotherapy.
Collapse
Affiliation(s)
- Scott M. Belcher
- Department of Biological Science and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC USA
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, OH USA
- Department of Pharmacology and Cell Biophysics, Summer Undergraduate Research Program University of Cincinnati, Cincinnati, OH USA
- Department of Pharmacology and Cell Biophysics, Molecular, Cellular and Biochemical Pharmacology PhD Graduate Program, University of Cincinnati, Cincinnati, OH USA
| | - Caleb C. Burton
- Department of Pharmacology and Cell Biophysics, Summer Undergraduate Research Program University of Cincinnati, Cincinnati, OH USA
| | - Clifford J. Cookman
- Department of Pharmacology and Cell Biophysics, Molecular, Cellular and Biochemical Pharmacology PhD Graduate Program, University of Cincinnati, Cincinnati, OH USA
| | - Michelle Kirby
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, OH USA
| | - Gabriel L. Miranda
- Department of Pharmacology and Cell Biophysics, Summer Undergraduate Research Program University of Cincinnati, Cincinnati, OH USA
| | - Fatima O. Saeed
- Department of Pharmacology and Cell Biophysics, Molecular, Cellular and Biochemical Pharmacology Masters in Safety Pharmacology Training Program, University of Cincinnati, Cincinnati, OH USA
| | - Kathleen E. Wray
- Department of Pharmacology and Cell Biophysics, Summer Undergraduate Research Program University of Cincinnati, Cincinnati, OH USA
| |
Collapse
|
55
|
Zhang X, Ma G, Liu J, Zhang Y. MicroRNA-182 promotes proliferation and metastasis by targeting FOXF2 in triple-negative breast cancer. Oncol Lett 2017; 14:4805-4811. [PMID: 29085483 PMCID: PMC5649577 DOI: 10.3892/ol.2017.6778] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer (BC), is characterized as high proliferation, young age and poor prognosis. MicroRNA-182 (miR-182) was reported to have oncogenic potential in many cancers. We aimed to elucidate pathobiological effects of miR-182 expression by targeting forkhead-box F2 (FOXF2) in TNBC. In this study, we explored the functional role of miR-182 expression in TNBC. Quantitative real-time PCR (qRT-PCR) was applied to evaluate the expression of miR-182 in cell lines and tissues. A series of in vitro and in vivo assays were performed in the MCF-7 and MDA-MB-231 cell lines with miR-182 overexpression. Luciferase reporter assays and western blot analysis were used to identify FOXF2 as the direct and functional target of miR-182. In TNBC tissues and cell lines, we found that miR-182 was significantly upregulated. Transwell assay showed that re-expression of miR-182 increased cell migration and invasion abilities and MTT assay showed that it promoted cell growth in vitro. In vivo assay, re-expression of miR-182 significantly increase tumor volume and enhanced instant metastasis in the lungs of mice. Besides, FOXF2 was identified as a direct and functional target of miR-182. These results indicated that miR-182 plays an important role in the initiation and progression of TNBC by targeting FOXF2 and the miR-182/FOXF2 axis may present a new therapeutic strategy for TNBC in the future.
Collapse
Affiliation(s)
- Xingzeng Zhang
- Department of General Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Genshun Ma
- Department of General Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jianchao Liu
- Department of General Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yajun Zhang
- Department of General Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
56
|
Dambal S, Baumann B, McCray T, Williams L, Richards Z, Deaton R, Prins GS, Nonn L. The miR-183 family cluster alters zinc homeostasis in benign prostate cells, organoids and prostate cancer xenografts. Sci Rep 2017; 7:7704. [PMID: 28794468 PMCID: PMC5550464 DOI: 10.1038/s41598-017-07979-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
The miR-183 cluster, which is comprised of paralogous miRs-183, -96 and -182, is overexpressed in many cancers, including prostate adenocarcinoma (PCa). Prior studies showed that overexpression of individual pre-miRs-182, -96 and -183 in prostate cells decreased zinc import, which is a characteristic feature of PCa tumours. Zinc is concentrated in healthy prostate 10-fold higher than any other tissue, and an >80% decrease in zinc is observed in PCa specimens. Here, we studied the effect of overexpression of the entire 4.8 kb miR-183 family cluster, including the intergenic region which contains highly conserved genomic regions, in prostate cells. This resulted in overexpression of mature miR-183 family miRs at levels that mimic cancer-related changes. Overexpression of the miR-183 cluster reduced zinc transporter and intracellular zinc levels in benign prostate cells, PCa xenografts and fresh prostate epithelial organoids. Microarray analysis of miR-183 family cluster overexpression in prostate cells showed an enrichment for cancer-related pathways including adhesion, migration and wound healing. An active secondary transcription start site was identified within the intergenic region of the miR-183 cluster, which may regulate expression of miR-182. Taken together, this study shows that physiologically relevant expression of the miR-183 family regulates zinc levels and carcinogenic pathways in prostate cells.
Collapse
Affiliation(s)
- Shweta Dambal
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bethany Baumann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Tara McCray
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - LaTanya Williams
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zachary Richards
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ryan Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gail S Prins
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA.,Department of Urology, University of Illinois at Chicago, Chicago, IL, 60612, USA.,University of Illinois Cancer Center, Chicago, IL, 60612, USA
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA. .,University of Illinois Cancer Center, Chicago, IL, 60612, USA.
| |
Collapse
|
57
|
Pillai S, Lo CY, Liew V, Lalloz M, Smith RA, Gopalan V, Lam AKY. MicroRNA 183 family profiles in pheochromocytomas are related to clinical parameters and SDHB expression. Hum Pathol 2017; 64:91-97. [PMID: 28412207 DOI: 10.1016/j.humpath.2017.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 11/25/2022]
Abstract
This study aims to examine the expression profiles of the miR-183 cluster (miR-96/182/183) in pheochromocytoma. Pheochromocytoma tissues were prospectively collected from 50 patients with pheochromocytoma. Expression of miR-183 cluster members and SDHB protein expression were analyzed in these tissues by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. The expression of miR-183 cluster members in pheochromocytomas was correlated with the clinical and pathological parameters of these patients. The expression levels of miR-183 cluster members were predominantly downregulated or deleted in pheochromocytoma. Low expression or deletion of miR-96 was predominantly noted in younger patients with pheochromocytoma (<50 years, P=.01). Female patients in the study group showed marked deletion of miR-182 (P=.05). Deletion of the cluster was also associated with SDHB protein expression in pheochromocytoma. Moreover, patients with low miR-183 cluster expression had a slightly better survival rate when compared with patients with high expression. To conclude, the findings indicate a role for miR-183 cluster members in the pathogenesis and clinical progression of pheochromocytoma.
Collapse
Affiliation(s)
- Suja Pillai
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia
| | - Chung Y Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Victor Liew
- Department of Surgery, Gold Coast Private Hospital, Gold Coast, Southport, Q4215, Australia
| | - Minella Lalloz
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia
| | - Robert A Smith
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Kelvin Grove, Q4059, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia.
| |
Collapse
|
58
|
Dai J, Li Q, Bing Z, Zhang Y, Niu L, Yin H, Yuan G, Pan Y. Comprehensive analysis of a microRNA expression profile in pediatric medulloblastoma. Mol Med Rep 2017; 15:4109-4115. [PMID: 28440450 PMCID: PMC5436210 DOI: 10.3892/mmr.2017.6490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor of the central nervous system among children. Medulloblastoma is an embryonal tumor, of which little is known about the pathogenesis. Several efforts have been made to understand the molecular aspects of its tumorigenic pathways; however, these are poorly understood. microRNA (miRNA), a type of non-coding short RNA, has been proven to be associated with a number of physiological processes and pathological processes of serious diseases, including brain tumors. Differentially expressed miRNAs serve an important role in numerous types of malignancy. The present study aims to define a differentially expressed set of miRNAs in medulloblastoma tumor tissue, compared with normal samples, to improve the understanding of the tumorigenesis. It was identified that 22 miRNAs were upregulated and 26 miRNAs were downregulated in the tumor tissue compared with the normal group. However, when the medulloblastoma tissue was compared with normal cerebellum tissue, 9 miRNAs were identified to be up or downregulated in the tumor samples. The differentially expressed miRNAs in the tumor tissue were identified in order to clarify the networks and pathways of tumorigenesis using Ingenuity Pathway Analysis. Subsequently, key regulatory genes associated with the development of medulloblastoma were identified, including tumor protein p53, insulin like growth factor 1 receptor, argonaute 2, mitogen-activated protein kinases 1 and 3, sirtuin 1 and Y box binding protein 1.
Collapse
Affiliation(s)
- Junqiang Dai
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiao Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Yinian Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Liang Niu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guoqiang Yuan
- Institute of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
59
|
Wang WM, Lu G, Su XW, Lyu H, Poon WS. MicroRNA-182 Regulates Neurite Outgrowth Involving the PTEN/AKT Pathway. Front Cell Neurosci 2017; 11:96. [PMID: 28442995 PMCID: PMC5385363 DOI: 10.3389/fncel.2017.00096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/20/2017] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs are implicated in neuronal development and maturation. Neuronal maturation, including axon outgrowth and dendrite tree formation, is regulated by complex mechanisms and related to several neurodevelopmental disorders. We demonstrated that one neuron-enriched microRNA, microRNA-182 (miR-182), played a significant role in regulating neuronal axon outgrowth and dendrite tree formation. Overexpression of miR-182 promoted axon outgrowth and complexity of the dendrite tree while also increasing the expression of neurofilament-M and neurofilament-L, which provide structural support for neurite outgrowth. However, a reduction of miR-182 inhibited neurite outgrowth. Furthermore, we showed that miR-182 activated the AKT pathway by increasing AKT phosphorylation on S473 and T308 and inhibiting PTEN activity by increasing phosphorylation on S380. Inhibition of AKT activity with the PI3-K inhibitor LY294002 could downregulate AKT and PTEN phosphorylation and suppress axon outgrowth. In addition, we showed that BCAT2 might be the target of miR-182 that takes part in the regulation of neuronal maturation; blockage of endogenous BCAT2 promotes axon outgrowth and AKT activity. These observations indicate that miR-182 regulates axon outgrowth and dendrite maturation involving activation of the PTEN/AKT pathway.
Collapse
Affiliation(s)
- Wu M Wang
- Division of Neurosurgery, Department of Surgery, Prince of Wales HospitalThe Chinese University of Hong Kong, Hong Kong, China
| | - Gang Lu
- Division of Neurosurgery, Department of Surgery, Prince of Wales HospitalThe Chinese University of Hong Kong, Hong Kong, China
| | - Xian W Su
- Division of Neurosurgery, Department of Surgery, Prince of Wales HospitalThe Chinese University of Hong Kong, Hong Kong, China
| | - Hao Lyu
- Division of Neurosurgery, Department of Surgery, Prince of Wales HospitalThe Chinese University of Hong Kong, Hong Kong, China
| | - Wai S Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales HospitalThe Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
60
|
Boulay G, Awad ME, Riggi N, Archer TC, Iyer S, Boonseng WE, Rossetti NE, Naigles B, Rengarajan S, Volorio A, Kim JC, Mesirov JP, Tamayo P, Pomeroy SL, Aryee MJ, Rivera MN. OTX2 Activity at Distal Regulatory Elements Shapes the Chromatin Landscape of Group 3 Medulloblastoma. Cancer Discov 2017; 7:288-301. [PMID: 28213356 DOI: 10.1158/2159-8290.cd-16-0844] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
Medulloblastoma is the most frequent malignant pediatric brain tumor and is divided into at least four subgroups known as WNT, SHH, Group 3, and Group 4. Here, we characterized gene regulation mechanisms in the most aggressive subtype, Group 3 tumors, through genome-wide chromatin and expression profiling. Our results show that most active distal sites in these tumors are occupied by the transcription factor OTX2. Highly active OTX2-bound enhancers are often arranged as clusters of adjacent peaks and are also bound by the transcription factor NEUROD1. These sites are responsive to OTX2 and NEUROD1 knockdown and could also be generated de novo upon ectopic OTX2 expression in primary cells, showing that OTX2 cooperates with NEUROD1 and plays a major role in maintaining and possibly establishing regulatory elements as a pioneer factor. Among OTX2 target genes, we identified the kinase NEK2, whose knockdown and pharmacologic inhibition decreased cell viability. Our studies thus show that OTX2 controls the regulatory landscape of Group 3 medulloblastoma through cooperative activity at enhancer elements and contributes to the expression of critical target genes.Significance: The gene regulation mechanisms that drive medulloblastoma are not well understood. Using chromatin profiling, we find that the transcription factor OTX2 acts as a pioneer factor and, in cooperation with NEUROD1, controls the Group 3 medulloblastoma active enhancer landscape. OTX2 itself or its target genes, including the mitotic kinase NEK2, represent attractive targets for future therapies. Cancer Discov; 7(3); 288-301. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.
Collapse
Affiliation(s)
- Gaylor Boulay
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Mary E Awad
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nicolo Riggi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tenley C Archer
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sowmya Iyer
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wannaporn E Boonseng
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nikki E Rossetti
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Beverly Naigles
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shruthi Rengarajan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Angela Volorio
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - James C Kim
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jill P Mesirov
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Pablo Tamayo
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Scott L Pomeroy
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin J Aryee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Miguel N Rivera
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
61
|
Wang J, Wang W, Li J, Wu L, Song M, Meng Q. miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1. Onco Targets Ther 2017; 10:667-679. [PMID: 28223824 PMCID: PMC5308578 DOI: 10.2147/ott.s121864] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The constitutive activation of the Ras–MEK–ERK signaling pathway in oral cavity squamous cell carcinoma (OSCC) has been found to be tightly controlled at multiple levels under physiological conditions. RASA1 and SPRED1 are two important negative regulators of this pathway, but the exact regulating mechanism remains unclear. In this study, we aimed to explore the potential regulating mechanisms involved in the Ras–MEK–ERK signaling pathway in OSCC. Materials and methods MicroRNA (miRNA) expression was detected by quantitative reverse-transcription polymerase chain reaction. The protein levels of RASA1, SPRED1, and signaling proteins were detected by Western blot. Cell growth was determined using CCK-8 reagent, colony formation was stained by crystal violet, and cell invasion was tested using transwell chambers. Cell apoptosis and the cell cycle were then analyzed by flow cytometry. The binding of miR182 with RASA1 or SPRED1 was evaluated by luciferase reporter assays on a dual-luciferase reporter system. Results The expression of miR182 was found to be upregulated significantly in malignant oral carcinoma tissues compared with the adjacent nonmalignant tissues, and was inversely correlated with protein levels of RASA1 and SPRED1. Overexpression of miR182 in OSCC cell lines sustained Ras–MEK–ERK signaling-pathway activation, and promoted cell proliferation, cell-cycle progression, colony formation, and invasion capacity, whereas miR182 downregulation alleviated these properties significantly in vitro. Furthermore, we demonstrated that miR182 exerted its oncogenic role in OSCC by directly targeting and suppressing RASA1 and SPRED1. Conclusion Our results bring new insights into the important role of miR182 in the activation of the Ras–MEK–ERK signaling pathway, and suggest that miR182 may be used as a potential target for treatment of OSCC, prompting further investigation into miRNA antisense oligonucleotides for cancer therapy.
Collapse
Affiliation(s)
- Jinhui Wang
- Department of Clinical Laboratory, Harbin First Hospital
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Jichen Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Liji Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Mei Song
- Department of Clinical Laboratory, Harbin First Hospital
| | - Qinggang Meng
- Department of Osteological Surgery, Harbin First Hospital, Harbin, People's Republic of China
| |
Collapse
|
62
|
Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiol Dis 2017; 102:11-20. [PMID: 28161391 DOI: 10.1016/j.nbd.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
63
|
Pavlakis E, Tonchev AB, Kaprelyan A, Enchev Y, Stoykova A. Interaction between transcription factors PAX6/PAX6-5a and specific members of miR-183-96-182 cluster, may contribute to glioma progression in glioblastoma cell lines. Oncol Rep 2017; 37:1579-1592. [DOI: 10.3892/or.2017.5411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/02/2017] [Indexed: 11/06/2022] Open
|
64
|
Spitschak A, Meier C, Kowtharapu B, Engelmann D, Pützer BM. MiR-182 promotes cancer invasion by linking RET oncogene activated NF-κB to loss of the HES1/Notch1 regulatory circuit. Mol Cancer 2017; 16:24. [PMID: 28122586 PMCID: PMC5267421 DOI: 10.1186/s12943-016-0563-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Background Dominant-activating mutations in the RET proto-oncogene, a receptor tyrosine kinase, are responsible for the development of medullary thyroid carcinoma (MTC) and causative for multiple endocrine neoplasia (MEN) type 2A and 2B. These tumors are highly aggressive with a high propensity for early metastasis and chemoresistance. This attribute makes this neoplasia an excellent model for probing mechanisms underlying cancer progression. Methods The expression level of miR-182 was measured in MTC tumor specimens and in TT cells by real-time RT-PCR. TT cells and modified NThy-ori 3.1 that stably express RETM918T were used to investigate RET-dependent regulation of miR-182. Identification and validation of miR-182 targets and pathways was accomplished with luciferase assays, qRT-PCR, Western blotting and immunofluorescence. In vitro, overexpression and knockdown experiments were carried out to examine the impact of miR-182 and HES1 on invasion and migration. Results We found that miR-182 expression is significantly upregulated in MTC patient samples and tumor-derived cell lines harboring mutated RET. Inhibition of RET oncogenic signaling through a dominant-negative RET∆TK mutant in TT cells reduces miR-182, whereas overexpression of RETM918T in NThy-ori 3.1 cells increases miR-182 levels. We further show that overexpression of this miRNA in NThy.miR-182 cells promotes the invasive and migratory properties without affecting cell proliferation. MiR-182 is upregulated after RET induced NF-κB translocation into the nucleus via binding of NF-κB to the miR-182 promoter. Database analysis revealed that HES1, a repressor of the Notch pathway, is a target of miR-182, whose upregulation correlates with loss of HES1 transcription in MTC tissue samples and mutant RET cell lines. Moreover, we demonstrated that the 3′UTR of the HES1 mRNA bearing the targeting sequence for miR-182 clearly reduced luciferase reporter activity in cells expressing miR-182. Decreased expression of HES1 promotes migration by upregulating Notch1 inhibitor Deltex1 and consequent repression of Notch1. Conclusion We demonstrate a novel mechanism for MTC aggressiveness in which mutated RET/NF-κB-driven expression of miR-182 impedes HES1 activation in a negative feedback loop. This observation might open new possibilities to treat RET oncogene associated metastatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0563-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Bhavani Kowtharapu
- Current address: Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany.
| |
Collapse
|
65
|
Identification of Factors for the Preoperative Prediction of Tumour Subtype and Prognosis in Patients with T1 Lung Adenocarcinoma. DISEASE MARKERS 2017; 2016:9354680. [PMID: 28115792 PMCID: PMC5220495 DOI: 10.1155/2016/9354680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/26/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Aims. Identification of factors that can predict the subtypes of lung adenocarcinoma preoperatively is important for selecting the appropriate surgical procedure and for predicting postoperative survival. Methods. We retrospectively evaluated 87 patients with lung adenocarcinomas ≤30 mm. Results. Preoperative radiological findings, serum CEA level, serum microRNA-183 (miR-183) level, and tumour size differed significantly between patients with adenocarcinoma in situ (AIS) or minimally invasive adenocarcinoma (MIA) and those with invasive adenocarcinoma (IAC). Receiver operating characteristic curves and univariate analysis revealed that patients who were older than 57 years or had a pure solid nodule or a tumour with mixed ground-glass opacity (mGGO), a tumour >11 mm, a serum CEA level >2.12 ng/mL, or a serum miR-183 level >1.233 (2-ΔΔCt) were more likely to be diagnosed with IAC than with AIS or MIA. The combination of all five factors had an area under the curve of 0.946, with a sensitivity of 89.13% and a specificity of 95.12%. Moreover, patients with a cut-off value >0.499 for the five-factor combination had poor overall survival. Conclusions. The five-factor combination enables clinicians to distinguish AIS or MIA from IAC, thereby aiding in selecting the appropriate treatment, and to predict the prognosis of lung adenocarcinoma patients.
Collapse
|
66
|
Mahmoodian Sani MR, Hashemzadeh-Chaleshtori M, Saidijam M, Jami MS, Ghasemi-Dehkordi P. MicroRNA-183 Family in Inner Ear: Hair Cell Development and Deafness. J Audiol Otol 2016; 20:131-138. [PMID: 27942598 PMCID: PMC5144812 DOI: 10.7874/jao.2016.20.3.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/09/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023] Open
Abstract
miRNAs are essential factors of an extensively conserved post-transcriptional process controlling gene expression at mRNA level. Varoius biological processes such as growth and differentiation are regulated by miRNAs. Web of Science and PubMed databases were searched using the Endnote software for the publications about the role miRNA-183 family in inner ear: hair cell development and deafness published from 2000 to 2016. A triplet of these miRNAs particularly the miR-183 family is highly expressed in vertebrate hair cells, as with some of the peripheral neurosensory cells. Point mutations in one member of this family, miR-96, underlie DFNA50 autosomal deafness in humans and lead to abnormal hair cell development and survival in mice. In zebrafish, overexpression of the miR-183 family induces extra and ectopic hair cells, while knockdown decreases the number of hair cell. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cell in the eye, nose and inner ear. In the inner ear, mechanosensory hair cells have a robust expression level. Despite much similarity of these miRs sequences, small differences lead to distinct targeting of messenger RNAs targets. In the near future, miRNAs are likely to be explored as potential therapeutic agents to repair or regenerate hair cells, cell reprogramming and regenerative medicine applications in animal models because they can simultaneously down-regulate dozens or even hundreds of transcripts.
Collapse
Affiliation(s)
- Mohammad Reza Mahmoodian Sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Sharekord, Iran
| | - Payam Ghasemi-Dehkordi
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Sharekord, Iran
| |
Collapse
|
67
|
Chen Y, Wei Q, Chen X, Li C, Cao B, Ou R, Hadano S, Shang HF. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2016; 9:69. [PMID: 27582688 PMCID: PMC4987348 DOI: 10.3389/fnmol.2016.00069] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/29/2016] [Indexed: 02/05/2023] Open
Abstract
Background: Accumulating evidence indicates that miRNAs play an important role in the development of amyotrophic lateral sclerosis (ALS). Most of previous studies on miRNA dysregulation in ALS focused on the alterative expression in ALS animal model or in limited samples from European patients with ALS. In the present study, the miRNA expression profiles were investigated in Chinese ALS patients to explore leukocytes miRNAs as a potential biomarker for the diagnosis of ALS. Methods: We analyzed the expression profiles of 1733 human mature miRNAs using microarray technology in leukocytes obtained from 5 patients with sporadic ALS (SALS) and 5 healthy controls. An independent group of 83 SALS patients, 24 Parkinson's disease (PD) patients and 61 controls was used for validation by real-time polymerase chain reaction assay. Area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. In addition, target genes and signaling information of validated differential expression miRNAs were predicted using Bioinformatics. Results: Eleven miRNAs, including four over-expressed and seven under-expressed miRNAs detected in SALS patients compared to healthy controls were selected for validation. Four under-expressed microRNAs, including hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935, were confirmed in validation stage by comparison of 83 SALS patients and 61 HCs. Moreover, we identified a miRNA panel (hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935) having a high diagnostic accuracy of SALS (AUC 0.857 for the validation group). However, only hsa-miR-183 was significantly lower in SALS patients than that in PD patients and in HCs, while no differences were found between PD patients and HCs. By bioinformatics analysis, we obtained a large number of target genes and signaling information that are linked to neurodegeneration. Conclusion: This study provided evidence of abnormal miRNA expression patterns in the peripheral blood leukocytes of SALS patients. Leukocytes miRNAs provide a promising opportunity for detection of SALS. The specificity of under-expression of hsa-miR-183 in SALS needs to be confirmed by further miRNA studies on other neurodegenerative diseases.
Collapse
Affiliation(s)
- YongPing Chen
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - QianQian Wei
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - XuePing Chen
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - ChunYu Li
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - RuWei Ou
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of MedicineIsehara, Japan; The Institute of Medical Sciences, Tokai UniversityIsehara, Japan; Research Center for Brain and Nervous Diseases, Tokai University Graduate School of MedicineIsehara, Japan
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| |
Collapse
|
68
|
Ivanov DP, Coyle B, Walker DA, Grabowska AM. In vitro models of medulloblastoma: Choosing the right tool for the job. J Biotechnol 2016; 236:10-25. [PMID: 27498314 DOI: 10.1016/j.jbiotec.2016.07.028] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
The recently-defined four molecular subgroups of medulloblastoma have required updating of our understanding of in vitro models to include molecular classification and risk stratification features from clinical practice. This review seeks to build a more comprehensive picture of the in vitro systems available for modelling medulloblastoma. The subtype classification and molecular characterisation for over 40 medulloblastoma cell-lines has been compiled, making it possible to identify the strengths and weaknesses in current model systems. Less than half (18/44) of established medulloblastoma cell-lines have been subgrouped. The majority of the subgrouped cell-lines (11/18) are Group 3 with MYC-amplification. SHH cell-lines are the next most common (4/18), half of which exhibit TP53 mutation. WNT and Group 4 subgroups, accounting for 50% of patients, remain underrepresented with 1 and 2 cell-lines respectively. In vitro modelling relies not only on incorporating appropriate tumour cells, but also on using systems with the relevant tissue architecture and phenotype as well as normal tissues. Novel ways of improving the clinical relevance of in vitro models are reviewed, focusing on 3D cell culture, extracellular matrix, co-cultures with normal cells and organotypic slices. This paper champions the establishment of a collaborative online-database and linked cell-bank to catalyse preclinical medulloblastoma research.
Collapse
Affiliation(s)
- Delyan P Ivanov
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK.
| | - Beth Coyle
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - David A Walker
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - Anna M Grabowska
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
69
|
Hanaford AR, Archer TC, Price A, Kahlert UD, Maciaczyk J, Nikkhah G, Kim JW, Ehrenberger T, Clemons PA, Dančík V, Seashore-Ludlow B, Viswanathan V, Stewart ML, Rees MG, Shamji A, Schreiber S, Fraenkel E, Pomeroy SL, Mesirov JP, Tamayo P, Eberhart CG, Raabe EH. DiSCoVERing Innovative Therapies for Rare Tumors: Combining Genetically Accurate Disease Models with In Silico Analysis to Identify Novel Therapeutic Targets. Clin Cancer Res 2016; 22:3903-14. [PMID: 27012813 PMCID: PMC5055054 DOI: 10.1158/1078-0432.ccr-15-3011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE We used human stem and progenitor cells to develop a genetically accurate novel model of MYC-driven Group 3 medulloblastoma. We also developed a new informatics method, Disease-model Signature versus Compound-Variety Enriched Response ("DiSCoVER"), to identify novel therapeutics that target this specific disease subtype. EXPERIMENTAL DESIGN Human neural stem and progenitor cells derived from the cerebellar anlage were transduced with oncogenic elements associated with aggressive medulloblastoma. An in silico analysis method for screening drug sensitivity databases (DiSCoVER) was used in multiple drug sensitivity datasets. We validated the top hits from this analysis in vitro and in vivo RESULTS Human neural stem and progenitor cells transformed with c-MYC, dominant-negative p53, constitutively active AKT and hTERT formed tumors in mice that recapitulated Group 3 medulloblastoma in terms of pathology and expression profile. DiSCoVER analysis predicted that aggressive MYC-driven Group 3 medulloblastoma would be sensitive to cyclin-dependent kinase (CDK) inhibitors. The CDK 4/6 inhibitor palbociclib decreased proliferation, increased apoptosis, and significantly extended the survival of mice with orthotopic medulloblastoma xenografts. CONCLUSIONS We present a new method to generate genetically accurate models of rare tumors, and a companion computational methodology to find therapeutic interventions that target them. We validated our human neural stem cell model of MYC-driven Group 3 medulloblastoma and showed that CDK 4/6 inhibitors are active against this subgroup. Our results suggest that palbociclib is a potential effective treatment for poor prognosis MYC-driven Group 3 medulloblastoma tumors in carefully selected patients. Clin Cancer Res; 22(15); 3903-14. ©2016 AACR.
Collapse
Affiliation(s)
- Allison R Hanaford
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tenley C Archer
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Neurology, Boston Children's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Antoinette Price
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ulf D Kahlert
- Department of Neurosurgery, Heinrich-Heine University Hospital, Duesseldorf, Germany
| | - Jarek Maciaczyk
- Department of Neurosurgery, Heinrich-Heine University Hospital, Duesseldorf, Germany
| | - Guido Nikkhah
- Department of Neurosurgery, University Hospital, Stuttgart, Germany
| | - Jong Wook Kim
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tobias Ehrenberger
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Paul A Clemons
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Vlado Dančík
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | | | - Vasanthi Viswanathan
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Michelle L Stewart
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Matthew G Rees
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Alykhan Shamji
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Stuart Schreiber
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Ernest Fraenkel
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Scott L Pomeroy
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Neurology, Boston Children's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Jill P Mesirov
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Medicine, University of California San Diego, La Jolla, California. Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Pablo Tamayo
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Medicine, University of California San Diego, La Jolla, California. Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Eric H Raabe
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland. Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
70
|
Chiang CH, Chu PY, Hou MF, Hung WC. MiR-182 promotes proliferation and invasion and elevates the HIF-1α-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res 2016; 6:1785-1798. [PMID: 27648365 PMCID: PMC5004079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023] Open
Abstract
The feature of imperfect complementary effect of miRNAs to mRNAs implies that miRNAs may simultaneously target different mRNAs to affect multiple aspects of tumorigenesis. In our previous results, we demonstrated that miR-182 was over-expressed in breast cancer cell lines and clinical tumor tissues and its up-regulation increased tumorigenicity and invasiveness by repressing a tumor suppressor RECK. In this study, we showed that overexpression miR-182 regulated actin distribution and filopodia formation to increase invasiveness of breast cancer cells. In addition, miR-182 enhanced cell cycle progression and proliferation. We further identified the E3 ubiquitin-protein ligase FBXW7 as a target gene of miR-182. We also demonstrated that miR-182-overexpressing cells were highly sensitive to hypoxia. Under hypoxic condition, HIF-1α and VEGF-A proteins were significantly upregulated in these cells. In addition, the conditioned medium of miR-182-overexpressing cells contained more VEGF-A than the control cells and induced angiogenesis more efficiently in vitro. All these effects could be counteracted by ectopic expression of FBXW7 in cells or neutralization of VEGF-A in the conditioned media by specific antibody. Finally, our data showed that miR-182 expression was inversely correlated with FBXW7 in breast tumor tissues. In conclusion, our study explores a novel mechanism by which miR-182 elevates HIF-1α expression to promote breast cancer progression.
Collapse
Affiliation(s)
- Chi-Hsiang Chiang
- National Institute of Cancer Research, National Health Research InstitutesTainan, Taiwan, Republic of China
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial HospitalChanghua City, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan, Republic of China
- Department of Surgery, Kaohsiung Municipal Hsiao Kang HospitalKaohsiung, Taiwan, Republic of China
- Cancer Center, Kaohsiung Medical University HospitalKaohsiung, Taiwan, Republic of China
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan, Taiwan, Republic of China
- Cancer Center, Kaohsiung Medical University HospitalKaohsiung, Taiwan, Republic of China
- Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan, Republic of China
| |
Collapse
|
71
|
Cheung CCM, Lun SWM, Chung GTY, Chow C, Lo C, Choy KW, Lo KW. MicroRNA-183 suppresses cancer stem-like cell properties in EBV-associated nasopharyngeal carcinoma. BMC Cancer 2016; 16:495. [PMID: 27431799 PMCID: PMC4950376 DOI: 10.1186/s12885-016-2525-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 07/06/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated epithelial malignancy that exhibits distinct geographical and ethnic prevalence. Although the contemporary therapeutic approach of radio-/chemotherapy provides excellent results for patients with early-stage disease, it is far from satisfactory for those with disease remission and distant metastasis. Promising therapeutic strategies for advanced and relapsed NPC are still lacking. We recently identified and characterized a cancer stem-like cell (CSC) subpopulation in NPC that appeared to play an important role in tumor progression. Microarray analysis revealed downregulation of several stemness-inhibiting miRNAs in these CSC cells. Among these miRNAs, miR-96 and miR-183 showed the highest fold change and were selected to elucidate their role in repressing NPC CSC properties. METHODS MiR-96 and miR-183 expression in NPC CSCs was detected by qRT-PCR. Transient and stable transfection was performed in EBV-positive NPC C666-1 cells to examine the effects of ectopic expression of miR-96 and miR-183 on repressing cell growth and CSC properties. Anchorage-dependent (colony formation) and anchorage-independent (tumor sphere formation) growths of these miR-96 and miR-183 expressing cells were determined. Expression of multiple CSC markers and related molecules were accessed by flow cytometry and Western blotting. The tumorigenicity of the stable miR-96- and miR-183-transfected NPC cells was examined in an in vivo nude mice model. RESULTS Downregulation of miR-96 and miR-183 was confirmed in NPC spheroids. Using transient or stable transfection, we showed that ectopic expression of miR-96 and miR-183 suppressed cell growth and tumor sphere formation in NPC. Reduced NICD3 and NICD4 in miR-96- and miR-183-expressing NPC cells suggests the involvement of the NOTCH signaling pathway in their tumor suppressive function. Finally, we showed that the tumorigenicity of cells stably expressing miR-183 was significantly inhibited in the in vivo nude mice model. CONCLUSIONS miR-183 is a tumor-suppressive miRNA in EBV-associated NPC. Its abilities to suppress CSC properties in vitro and effectively reduce tumor growth in vivo shed light on its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Chartia Ching-Mei Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Samantha Wei-Man Lun
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Grace Tin-Yun Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Chit Chow
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Carman Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kwong-Wai Choy
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. .,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
72
|
Li Y, Jiang T, Shao L, Liu Y, Zheng C, Zhong Y, Zhang J, Chang Q. Mir-449a, a potential diagnostic biomarker for WNT group of medulloblastoma. J Neurooncol 2016; 129:423-431. [PMID: 27406588 DOI: 10.1007/s11060-016-2213-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/06/2016] [Indexed: 01/20/2023]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. The 5 year disease-free survival rate is rather low. There is a consensus that MB can be divided into at least four clinically, transcriptionally, and genetically distinct molecular variants, being designated as wingless (WNT), sonic hedgehog (SHH), Group 3 and Group 4. It poses a great challenge to the design of therapeutic strategy for MB patients. Intensive clinical intervention, including high dose radiotherapy, is commonly used in treatment of high risk MB, most of which are considered to be Group 3 patients. But such intensive therapy should be avoided to protect neurologic function of patients in the lower risk WNT group. In present study, MB subgroup assignment in formalin-fixed paraffin embedded (FFPE) specimens from 45 Chinese patients were performed by Nanostring platform using 22 well-known signature genes. Based on comparative expression profiles of miRNA real-time PCR microarray in MB cells with and without treatment of demethylation reagent, as well as MSP assay, miR-449a was demonstrated to be significantly silenced by aberrant DNA methylation in tumor cells. Real-time PCR showed that expression level of miR-449a in WNT group was significantly different from other subgroups, although it was down-regulated in most of the MB samples. In conclusion, current study demonstrates for the first time the feasibility of using the Nanostring assay for subgrouping of MBs in Chinese patients. In addition, MiR-449a, a candidate tumor suppressor regulated by hypermethylation, is a novel potential diagnostic marker for WNT group of MBs.
Collapse
Affiliation(s)
- Yongxiao Li
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Liwei Shao
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Yan Liu
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Chen Zheng
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Yanfeng Zhong
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Jing Zhang
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
- Department of Neuropathology, University of Washington, Seattle, WA, USA
| | - Qing Chang
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China.
| |
Collapse
|
73
|
Wang Z, Murakami R, Yuki K, Yoshida Y, Noda M. Bioinformatic Studies to Predict MicroRNAs with the Potential of Uncoupling RECK Expression from Epithelial-Mesenchymal Transition in Cancer Cells. Cancer Inform 2016; 15:91-102. [PMID: 27226706 PMCID: PMC4874744 DOI: 10.4137/cin.s34141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
RECK is downregulated in many tumors, and forced RECK expression in tumor cells often results in suppression of malignant phenotypes. Recent findings suggest that RECK is upregulated after epithelial-mesenchymal transition (EMT) in normal epithelium-derived cells but not in cancer cells. Since several microRNAs (miRs) are known to target RECK mRNA, we hypothesized that certain miR(s) may be involved in this suppression of RECK upregulation after EMT in cancer cells. To test this hypothesis, we used three approaches: (1) text mining to find miRs relevant to EMT in cancer cells, (2) predicting miR targets using four algorithms, and (3) comparing miR-seq data and RECK mRNA data using a novel non-parametric method. These approaches identified the miR-183-96-182 cluster as a strong candidate. We also looked for transcription factors and signaling molecules that may promote cancer EMT, miR-183-96-182 upregulation, and RECK downregulation. Here we describe our methods, findings, and a testable hypothesis on how RECK expression could be regulated in cancer cells after EMT.
Collapse
Affiliation(s)
- Zhipeng Wang
- Laboratory for Malignancy Control Research, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanako Yuki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Yoshida
- Laboratory for Malignancy Control Research, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Noda
- Laboratory for Malignancy Control Research, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.; Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
74
|
Gebremedhn S, Salilew-Wondim D, Hoelker M, Rings F, Neuhoff C, Tholen E, Schellander K, Tesfaye D. MicroRNA-183-96-182 Cluster Regulates Bovine Granulosa Cell Proliferation and Cell Cycle Transition by Coordinately Targeting FOXO1. Biol Reprod 2016; 94:127. [PMID: 27122636 PMCID: PMC6702798 DOI: 10.1095/biolreprod.115.137539] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/19/2016] [Indexed: 12/12/2022] Open
Abstract
Large-scale expression profiling of micro-RNAs (miRNAs) in bovine granulosa cells from dominant and subordinate follicles on Day 19 of the estrous cycle revealed enriched micro-RNA-183-96-182 cluster miRNAs in preovulatory dominant follicles that coordinately regulate the forkhead box protein O1 (FOXO1) gene. However, little is known about the role of this cluster in bovine granulosa cell function. We used an in vitro granulosa cell culture model to investigate this role. Granulosa cells aspirated from small growing follicles (3-5 mm in diameter) were cultured in Dulbecco modified Eagle medium/F-12 medium supplemented with fetal bovine serum and transfected with locked nucleic acid-based miRNA mimics, inhibitors, and corresponding negative controls. Overexpression of the miRNA cluster resulted in suppression of FOXO1 mRNA and protein, whereas inhibition of the cluster increased expression of FOXO1 mRNA. Overexpression also increased the relative rate of cell proliferation, whereas inhibition slowed it down. Similarly, the proportion of cells under G0/G1 arrest declined, whereas the ratio of cells in S phase increased in response to miR-183-96-182 overexpression. Selective knockdown of FOXO1 mRNA using anti-FOXO1 small interfering RNA increased the rate of granulosa cell proliferation, decreased the proportion of cells under G0/G1 arrest, and increased the proportion of cells in the S phase of cell cycle. Our data suggest that miR-183-96-182 cluster miRNAs promote proliferation and G1/S transition of bovine granulosa cells by coordinately targeting FOXO1, suggesting a critical role in granulosa cell function. MicroRNA-183-96-182 cluster regulates bovine granulosa cell function by targeting FOXO1 gene.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Franca Rings
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| |
Collapse
|
75
|
Zhu W, Zhou K, Zha Y, Chen D, He J, Ma H, Liu X, Le H, Zhang Y. Diagnostic Value of Serum miR-182, miR-183, miR-210, and miR-126 Levels in Patients with Early-Stage Non-Small Cell Lung Cancer. PLoS One 2016; 11:e0153046. [PMID: 27093275 PMCID: PMC4836744 DOI: 10.1371/journal.pone.0153046] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/21/2016] [Indexed: 11/29/2022] Open
Abstract
Blood-circulating miRNAs could be useful as a biomarker to detect lung cancer early. We investigated the serum levels of four different miRNAs in patients with non-small cell lung cancer (NSCLC) and assessed their diagnostic value for NSCLC. Serum samples from 112 NSCLC patients and 104 controls (20 current smokers without lung cancer, 23 pneumonia patients, 21 gastric cancer patients, and 40 healthy controls) were subjected to Taqman probe-based quantitative reverse transcription–polymerase chain reaction (RT-PCR). The data showed that the serum levels of miR-182, miR-183, and miR-210 were significantly upregulated and that the miR-126 level was significantly downregulated in NSCLC patients, compared with the healthy controls. Further receiver operating characteristic (ROC) curve analysis revealed that the serum miR-182, miR-183, miR-210, or miR-126 level could serve as a diagnostic biomarker for NSCLC early detection, with a high sensitivity and specificity. The combination of these four miRNAs with carcinoembryonic antigen (CEA) further increased the diagnostic value, with an area under the curve (AUC) of 0.965 (sensitivity, 81.3%; specificity, 100.0%; and accuracy, 90.8%) using logistic regression model analysis. In addition, the relative levels of serum miR-182, miR-183, miR-210, and miR-126 could distinguish NSCLC or early-stage NSCLC from current tobacco smokers without lung cancer and pneumonia or gastric cancer patients with a high sensitivity and specificity. Data from the current study validated that the four serum miRNAs could serve as a tumor biomarker for NSCLC early diagnosis.
Collapse
Affiliation(s)
- WangYu Zhu
- Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
- Lung Cancer Research Center, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
| | - KaiYu Zhou
- Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
| | - Yao Zha
- Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
| | - DongDong Chen
- Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
| | - JianYing He
- Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
| | - HaiJie Ma
- Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
| | - XiaoGuang Liu
- Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
- Lung Cancer Research Center, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
| | - HanBo Le
- Department of Cardio-Thoracic Surgery, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
- Lung Cancer Research Center, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
- * E-mail: (YKZ); (HBL)
| | - YongKui Zhang
- Department of Cardio-Thoracic Surgery, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
- Lung Cancer Research Center, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, 316021, China
- * E-mail: (YKZ); (HBL)
| |
Collapse
|
76
|
Sajadimajd S, Yazdanparast R, Akram S. Involvement of Numb-mediated HIF-1α inhibition in anti-proliferative effect of PNA-antimiR-182 in trastuzumab-sensitive and -resistant SKBR3 cells. Tumour Biol 2016; 37:5413-26. [PMID: 26563369 DOI: 10.1007/s13277-015-4297-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
Trastuzumab is a humanized monoclonal antibody against the human epidermal growth factor receptor 2 (HER2) that is overexpressed in about 25 % of breast cancer patients. However, primary and/or acquired resistance to trastuzumab develops in most affected persons. In this study, we explored the functional role of miR-182 inhibition with aiming the sensitization of SKBR3 cells to trastuzumab. Cell viability, apoptosis, colony formation, and migration capacities of SKBR3(S) (sensitive) and SKBR3(R) (resistant) cells were assessed to determine the anti-proliferative effects of PNA-antimiR-182. In addition, the expression levels of miR-182, mRNA of FOXO1, and Bim as well as the protein levels of HER2 and Notch1 signaling factors were evaluated by stem-loop RT-qPCR, RT-qPCR, and Western blot, respectively. The results indicated that miR-182 might play a causal role in the mechanism of trastuzumab. In line with that, PNA-antimiR-182 inhibited synergistically the viability of both the sensitive and resistant cell groups. Furthermore, the inhibitory effect of PNA-anitmiR-182 on migration in SKBR3 cells was more than the induction of apoptosis. In addition, PNA-antimiR-182 reduced the levels of NICD, Hes1, HIF-1α, and p-Akt in both cell groups, while it augmented the intracellular content of FOXO1 and Numb suppressor proteins. In other words, PNA-antimiR-182-mediated upregulation of Numb was associated with downregulation of HIF-1α and Hes1. Consequently, downregulation of miR-182 might find therapeutical value for overcoming trastuzumab resistance. Graphical Abstract The crosstalk between HER2 and Notch1 signaling pathway is mediated by miR-182.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran.
| | - Sadeghirizi Akram
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| |
Collapse
|
77
|
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNA molecules that mediate post-transcriptional gene suppression by incomplete matches with their host mRNAs. In the central nervous system, miRNAs that functionally interact with their target genes constitute a flexible, robust and buffered regulatory network, exerting diverse roles in brain evolution and development. However, distinct variation either in hub miRNA expression levels or patterns may initiate and/or progress various adult-onset nerve-related diseases. In this review, we will summarize the current knowledge about the general hallmarks of brain miRNAs that act as vital determinants in increasingly complicated neural activities. We endeavor to provide a constructive insight into the neuroscience research in the quest to comprehend molecular underpinnings of physiological functions and pathological disorders in central nervous system.
Collapse
Affiliation(s)
- Wei Chen
- a Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center; Peking Union Medical Collage (PUMC) ; Beijing , PR China
| | | |
Collapse
|
78
|
MicroRNA-183 functions as the tumor suppressor via inhibiting cellular invasion and metastasis by targeting MMP-9 in cervical cancer. Gynecol Oncol 2016; 141:166-74. [PMID: 26873866 DOI: 10.1016/j.ygyno.2016.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE MicroRNAs have been reported to play an important role in the invasion and metastasis of cervical cancer. miR-183 was found to inhibit or promote the invasion and metastasis of multiple solid tumors. However, the roles of miR-183 in cervical cancer are unclear. METHODS In this study, miR-183 expression levels were measured in 53 cervical cancer and 13 normal cervical tissues by qRT-PCR. The effects of forced expression of miR-183 on cervical cancer cells invasion and metastasis were investigated using Transwell uncoated or coated with growth factor-reduced Matrigel for migration or invasion assays, respectively. RESULTS We found that miR-183 expression levels were significantly down-regulated in cervical cancer tissues compared with normal tissues (0.15±0.011 to 0.86±0.049). Ectopic expression of miR-183 resulted in the suppression of invasion and migration of cervical cancer cell lines, siha and Hela cells (p<0.0001). Bioinformatics analysis revealed that MMP-9 was the potential target of miR-183 and it was found that MMP-9 was remarkably up-regulated in cervical cancer. Furthermore, a dual-luciferase reporter assay showed that MMP-9 as a target of miR-183 (p<0.0001). The invasion and metastasis ability of siha and Hela was suppressed when MMP-9 was down-regulated in vitro (p<0.0001). CONCLUSIONS In conclusion, our study revealed that miR-183 might be a tumor suppressor via inhibiting the invasion and metastasis of cervical cancer cells through targeting MMP-9, indicating that miR-183 may be a novel potential therapeutic target for cervical cancer.
Collapse
|
79
|
Crippa S, Nemir M, Ounzain S, Ibberson M, Berthonneche C, Sarre A, Boisset G, Maison D, Harshman K, Xenarios I, Diviani D, Schorderet D, Pedrazzini T. Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways. Cardiovasc Res 2016; 110:73-84. [PMID: 26857418 PMCID: PMC4798047 DOI: 10.1093/cvr/cvw031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023] Open
Abstract
Aims The adult mammalian heart has poor regenerative capacity. In contrast, the zebrafish heart retains a robust capacity for regeneration into adulthood. These distinct responses are consequences of a differential utilization of evolutionary-conserved gene regulatory networks in the damaged heart. To systematically identify miRNA-dependent networks controlling cardiac repair following injury, we performed comparative gene and miRNA profiling of the cardiac transcriptome in adult mice and zebrafish. Methods and results Using an integrated approach, we show that 45 miRNA-dependent networks, involved in critical biological pathways, are differentially modulated in the injured zebrafish vs. mouse hearts. We study, more particularly, the miR-26a-dependent response. Therefore, miR-26a is down-regulated in the fish heart after injury, whereas its expression remains constant in the mouse heart. Targets of miR-26a involve activators of the cell cycle and Ezh2, a component of the polycomb repressive complex 2 (PRC2). Importantly, PRC2 exerts repressive functions on negative regulators of the cell cycle. In cultured neonatal cardiomyocytes, inhibition of miR-26a stimulates, therefore, cardiomyocyte proliferation. Accordingly, miR-26a knockdown prolongs the proliferative window of cardiomyocytes in the post-natal mouse heart. Conclusions This novel strategy identifies a series of miRNAs and associated pathways, in particular miR-26a, which represent attractive therapeutic targets for inducing repair in the injured heart.
Collapse
Affiliation(s)
- Stefania Crippa
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| | - Mohamed Nemir
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| | - Mark Ibberson
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Corinne Berthonneche
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Gaëlle Boisset
- Institute for Research in Ophthalmology, Sion, Switzerland
| | - Damien Maison
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| | - Keith Harshman
- Lausanne Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | | | - Dario Diviani
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| |
Collapse
|
80
|
MicroRNA Biogenesis and Hedgehog-Patched Signaling Cooperate to Regulate an Important Developmental Transition in Granule Cell Development. Genetics 2016; 202:1105-18. [PMID: 26773048 DOI: 10.1534/genetics.115.184176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/10/2016] [Indexed: 12/20/2022] Open
Abstract
The Dicer1, Dcr-1 homolog (Drosophila) gene encodes a type III ribonuclease required for the canonical maturation and functioning of microRNAs (miRNAs). Subsets of miRNAs are known to regulate normal cerebellar granule cell development, in addition to the growth and progression of medulloblastoma, a neoplasm that often originates from granule cell precursors. Multiple independent studies have also demonstrated that deregulation of Sonic Hedgehog (Shh)-Patched (Ptch) signaling, through miRNAs, is causative of granule cell pathologies. In the present study, we investigated the genetic interplay between miRNA biogenesis and Shh-Ptch signaling in granule cells of the cerebellum by way of the Cre/lox recombination system in genetically engineered models of Mus musculus (mouse). We demonstrate that, although the miRNA biogenesis and Shh-Ptch-signaling pathways, respectively, regulate the opposing growth processes of cerebellar hypoplasia and hyperplasia leading to medulloblastoma, their concurrent deregulation was nonadditive and did not bring the growth phenotypes toward an expected equilibrium. Instead, mice developed either hypoplasia or medulloblastoma, but of a greater severity. Furthermore, some genotypes were bistable, whereby subsets of mice developed hypoplasia or medulloblastoma. This implies that miRNAs and Shh-Ptch signaling regulate an important developmental transition in granule cells of the cerebellum. We also conclusively show that the Dicer1 gene encodes a haploinsufficient tumor suppressor gene for Ptch1-induced medulloblastoma, with the monoallielic loss of Dicer1 more severe than biallelic loss. These findings exemplify how genetic interplay between pathways may produce nonadditive effects with a substantial and unpredictable impact on biology. Furthermore, these findings suggest that the functional dosage of Dicer1 may nonadditively influence a wide range of Shh-Ptch-dependent pathologies.
Collapse
|
81
|
Wang F, Remke M, Bhat K, Wong ET, Zhou S, Ramaswamy V, Dubuc A, Fonkem E, Salem S, Zhang H, Hsieh TC, O'Rourke ST, Wu L, Li DW, Hawkins C, Kohane IS, Wu JM, Wu M, Taylor MD, Wu E. A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma. Oncotarget 2015; 6:2709-24. [PMID: 25576913 PMCID: PMC4413612 DOI: 10.18632/oncotarget.2779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/19/2014] [Indexed: 01/23/2023] Open
Abstract
Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target.
Collapse
Affiliation(s)
- Fengfei Wang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Marc Remke
- Arthur and Sonia Labatt Brain Tumor Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Kruttika Bhat
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Eric T Wong
- Brain Tumor Center & Neuro-Oncology Unit, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shuang Zhou
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Vijay Ramaswamy
- Arthur and Sonia Labatt Brain Tumor Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Adrian Dubuc
- Arthur and Sonia Labatt Brain Tumor Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Ekokobe Fonkem
- Scott & White Neuroscience Institute, Texas A & M Health Science Center, Temple, TX 76508, USA
| | - Saeed Salem
- Department of Computer Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Hongbing Zhang
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100073, China
| | - Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - David W Li
- Department of Ophthalmology & Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cynthia Hawkins
- Division of Pathology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Isaac S Kohane
- Informatics Program, Children's Hospital Boston, Harvard Medical School, Boston 02115, MA, USA
| | - Joseph M Wu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Min Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumor Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
82
|
Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho-Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics 2015; 16:944. [PMID: 26572553 PMCID: PMC4647640 DOI: 10.1186/s12864-015-2036-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an important process in embryonic development, especially during gastrulation and organ formation. Furthermore EMT is widely observed in pathological conditions, e.g., fibrosis, tumor progression and metastasis. Madin-Darby Canine Kidney (MDCK) cells are widely used for studies of EMT and epithelial plasticity. MDCK cells show an epithelial phenotype, while oncogenic Ras-transformed MDCK (MDCK-Ras) cells undergo EMT and show a mesenchymal phenotype. METHODS RNA-Seq and miRNA-Seq analyses were performed on MDCK and MDCK-Ras cells. Data were validated by qRT-PCR. Gene signature analyses were carried out to identify pathways and gene ontology terms. For selected miRNAs target prediction was performed. RESULTS With RNA-Seq, mRNAs of approximately half of the genes known for dog were detected. These were screened for differential regulation during Ras-induced EMT. We went further and performed gene signature analyses and found Gene Ontology (GO) terms and pathways important for epithelial polarity and implicated in EMT. Among the identified pathways, TGFβ1 emerged as a central signaling factor in many EMT related pathways and biological processes. With miRNA-Seq, approximately half of the known canine miRNAs were found expressed in MDCK and MDCK-Ras cells. Furthermore, among differentially expressed miRNAs, miRNAs that are known to be important regulators of EMT were detected and new candidates were predicted. New dog miRNAs were discovered after aligning our reads to that of other species in miRBase. Importantly, we could identify 25 completely novel miRNAs with a stable hairpin structure. Two of these novel miRNAs were differentially expressed. We validated the two novel miRNAs with the highest read counts by RT-qPCR. Target prediction of a particular novel miRNA highly expressed in mesenchymal MDCK-Ras cells revealed that it targets components of epithelial cell junctional complexes. Combining target prediction for the most upregulated miRNAs and validation of the targets in MDCK-Ras cells with pathway analysis allowed us to identify two novel pathways, e.g., JAK/STAT signaling and pancreatic cancer pathways. These pathways could not be detected solely by gene set enrichment analyses of RNA-Seq data. CONCLUSION With deep sequencing data of mRNAs and miRNAs of MDCK cells and of Ras-induced EMT in MDCK cells, differentially regulated mRNAs and miRNAs are identified. Many of the identified genes are within pathways known to be involved in EMT. Novel differentially upregulated genes in MDCK cells are interferon stimulated genes and genes involved in Slit and Netrin signaling. New pathways not yet linked to these processes were identified. A central pathway in Ras induced EMT is TGFβ signaling, which leads to differential regulation of many target genes, including miRNAs. With miRNA-Seq we identified miRNAs involved in either epithelial cell biology or EMT. Finally, we describe completely novel miRNAs and their target genes.
Collapse
Affiliation(s)
- Priyank Shukla
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine Macho-Maschler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
83
|
MiR-183 Regulates ITGB1P Expression and Promotes Invasion of Endometrial Stromal Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:340218. [PMID: 26357653 PMCID: PMC4556833 DOI: 10.1155/2015/340218] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
We applied in the previous study miRNA microarray screening analysis to identify several differentially expressed miRNAs, including miR-183 in normal, eutopic, and ectopic endometrium. Knockdown of miR-183 expression induced the invasiveness and inhibition of apoptosis in endometrial stromal cells. The current study aims to identify the miR-183 targets with relevance to cell functions in endometrial stromal cells, to verify the interaction of miR-183 with its target genes, and to confirm the role of miR-183 in the process of endometriosis. Using microarray analysis, we identified 27 differentially expressed genes (19 were upregulated and 8 downregulated), from which we selected 4 downregulated genes (ITGB1, AMIGO2, VAV3, and PSEN2) based on GO databases for functional analysis and significant pathway analysis. Western blotting analyses showed that integrin β1 (ITGB1), but not AMIGO2, was affected by miR-183 overexpression, whereas no protein expression of VAV3 and PSEN2 was detected. Luciferase reporter assay verified that ITGB1 is a target gene of miR-183. Moreover, we found that ITGB1 is overexpressed in the endometrium of endometriosis patients. Furthermore, overexpression of ITGB1 rescued the repressive effects of miR-183 on the invasiveness of endometrial stromal cells. These findings, together with the fact that ITGB1 is a critical factor for cell adhesion and invasiveness, suggest that miR-183 may be involved in the development of endometriosis by regulating ITGB1 in endometrial stromal cells.
Collapse
|
84
|
Dambal S, Shah M, Mihelich B, Nonn L. The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res 2015; 43:7173-88. [PMID: 26170234 PMCID: PMC4551935 DOI: 10.1093/nar/gkv703] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/25/2015] [Indexed: 12/28/2022] Open
Abstract
The microRNA (miR)183 cluster, which is comprised of miRs-183, -96 and -182, is also a miR family with sequence homology. Despite the strong similarity in the sequences of these miRs, minute differences in their seed sequences result in both overlapping and distinct messenger RNA targets, which are often within the same pathway. These miRs have tightly synchronized expression during development and are required for maturation of sensory organs. In comparison to their defined role in normal development, the miR-183 family is frequently highly expressed in a variety of non-sensory diseases, including cancer, neurological and auto-immune disorders. Here, we discuss the conservation of the miR-183 cluster and the functional role of this miR family in normal development and diseases. We also describe the regulation of vital cellular pathways by coordinated expression of these miR siblings. This comprehensive review sheds light on the likely reasons why the genomic organization and seeming redundancy of the miR-183 family cluster was conserved through 600 million years of evolution.
Collapse
Affiliation(s)
- Shweta Dambal
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Room 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Mit Shah
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Room 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Brittany Mihelich
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Room 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Room 130 CSN, MC 847, Chicago, IL 60612, USA University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
85
|
Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene 2015; 35:1080-9. [DOI: 10.1038/onc.2015.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
|
86
|
Li M, Zeringer E, Barta T, Schageman J, Cheng A, Vlassov AV. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0502. [PMID: 25135963 DOI: 10.1098/rstb.2013.0502] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exosomes are tiny vesicles (30-150 nm) constantly secreted by all healthy and abnormal cells, and found in abundance in all body fluids. These vesicles, loaded with unique RNA and protein cargo, have a wide range of biological functions, including cell-to-cell communication and signalling. As such, exosomes hold tremendous potential as biomarkers and could lead to the development of minimally invasive diagnostics and next generation therapies within the next few years. Here, we describe the strategies for isolation of exosomes from human blood serum and urine, characterization of their RNA cargo by sequencing, and present the initial data on exosome labelling and uptake tracing in a cell culture model. The value of exosomes for clinical applications is discussed with an emphasis on their potential for diagnosing and treating neurodegenerative diseases and brain cancer.
Collapse
Affiliation(s)
- Mu Li
- Thermo Fisher Scientific, Austin, TX 78744, USA
| | | | | | | | - Angie Cheng
- Thermo Fisher Scientific, Austin, TX 78744, USA
| | | |
Collapse
|
87
|
Li H, Gong Y, Qian H, Chen T, Liu Z, Jiang Z, Wei S. Brain-derived neurotrophic factor is a novel target gene of the has-miR-183/96/182 cluster in retinal pigment epithelial cells following visible light exposure. Mol Med Rep 2015; 12:2793-9. [PMID: 25955435 DOI: 10.3892/mmr.2015.3736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 12/09/2014] [Indexed: 11/06/2022] Open
Abstract
Light-induced retinal injury is clinically and experimentally well-documented. It may be categorized into three types: Photothermal, photomechanical and photochemical injuries. To date, the variation in the hsa-miR-183/96/182 cluster and its potential target genes in human primary retinal pigment epithelial (RPE) cells, following visible light exposure, has not been reported. In the present study, RPE cells were exposed to 4 h of constant visible light. The expression of the hsa-miR-183/96/182 cluster was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and its potential target genes were investigated. Additionally, hsa-miR-183, hsa-miR-96, hsa-miR-182 and has-miR-183/96/182 mimics were designed and synthesized in vitro, and transfected into the RPE cells. Subsequently, the expression of brain-derived neurotrophic factor (BDNF) mRNA and protein was measured, using RT-qPCR and western blotting, respectively. The regulation of miRNAs to the BDNF gene were then validated using a dual luciferase reporter gene assay system. The expression of hsa-miR-183, hsa-miR-96 and hsa-miR-182 significantly increased in RPE cells following 4 h of visible light exposure, compared with RPE cells that had been exposed to dark conditions (P<0.01). Following RPE cell transfection with mimics, BDNF mRNA and protein expression in the RPE cells was significantly downregulated compared with control RPE cells (P<0.05, P<0.01, respectively). Similarly, the ratio of Renilla luciferase/firefly luciferase significantly decreased in the RPE cells of the mimic + wild type (WT) group compared with cells of the psiCHECK(TM)-2 (a vector lacking the sequence of the BDNF gene), wild type and mimic + mutation groups (P<0.05, P<0.01). The present study suggests that BDNF is a target gene of the has-miR-183-96-182 cluster in RPE cells. The present study suggests an underlying protective mechanism against retinal light injury and may provide a novel target for the prevention and treatment of light-induced retinal injury.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Opthalmology, The Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| | - Yan Gong
- Department of Opthalmology, The Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| | - Haiyan Qian
- Department of Opthalmology, The Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| | - Tingjun Chen
- Department of Opthalmology, The Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| | - Zihao Liu
- Department of Opthalmology, The Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| | - Zhaocai Jiang
- Department of Opthalmology, The Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| | - Shihui Wei
- Department of Opthalmology, The Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| |
Collapse
|
88
|
Gulino R, Forte S, Parenti R, Memeo L, Gulisano M. MicroRNA and pediatric tumors: Future perspectives. Acta Histochem 2015; 117:339-54. [PMID: 25765112 DOI: 10.1016/j.acthis.2015.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Abstract
A better understanding of pediatric tumor biology is needed to allow the development of less toxic and more efficient therapies, as well as to provide novel reliable biomarkers for diagnosis and risk stratification. The emerging role of microRNAs in controlling key pathways implicated in tumorigenesis makes their use in diagnostics a powerful novel tool for the early detection, risk assessment and prognosis, as well as for the development of innovative anticancer therapies. This perspective would be more urgent for the clinical management of pediatric cancer. In this review, we focus on the involvement of microRNAs in the biology of the main childhood tumors, describe their clinical significance and discuss their potential use as novel therapeutic tools and targets.
Collapse
Affiliation(s)
- Rosario Gulino
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy.
| | - Stefano Forte
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| | - Lorenzo Memeo
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Massimo Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| |
Collapse
|
89
|
Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 2015; 29:732-45. [PMID: 25838542 PMCID: PMC4387715 DOI: 10.1101/gad.257394.114] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/26/2015] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Fotini M Kouri
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Lisa A Hurley
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | - Emily S Day
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Youjia Hua
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Liangliang Hao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Chian-Yu Peng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Timothy J Merkel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Markus A Queisser
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Carissa Ritner
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Hailei Zhang
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Lynda Chin
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - John A Kessler
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Marcus E Peter
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA; Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA;
| |
Collapse
|
90
|
Ramaswamy V, Samuel N, Remke M. Can miRNA-based real-time PCR be used to classify medulloblastomas? CNS Oncol 2015; 3:173-5. [PMID: 25055122 DOI: 10.2217/cns.14.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Vijay Ramaswamy
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
91
|
Abstract
Medulloblastoma is the most common malignant brain tumor of childhood. Although there is now long-term survival or cure for the majority of children, the survivors bear a significant burden of complications due, at least in part, to the intense therapies given to ensure eradication of the tumor. Significant efforts have been made over the years to be able to distinguish between patients who do and do not need intensive therapies. This review summarizes the history and current state of clinical risk stratification, pathologic diagnosis and genetics. Recent developments in correlation between genetics and pathology, genome-wide association studies and the biology of medulloblastoma metastasis are discussed in detail. The current state of clinical treatment trials are reviewed and placed into the perspective of potential novel therapies in the near term.
Collapse
Affiliation(s)
- Donya Aref
- University Health Network Pathology, Arthur & Sonia Labatt Brain Tumour Research Centre, Department of Laboratory Medicine & Pathobiology, Toronto, ON, Canada
| | | |
Collapse
|
92
|
The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 2015; 35:173-86. [PMID: 25798833 PMCID: PMC4580489 DOI: 10.1038/onc.2015.71] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/25/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022]
Abstract
Metastatic lung cancer is one of the most lethal forms of cancer and molecular pathways driving metastasis are still not clearly elucidated. Metastatic cancer cells undergo an epithelial-mesenchymal transition (EMT) where they lose their epithelial properties and acquire a migratory and invasive phenotype. Here we identify that expression of microRNAs from the miR-200 family and the miR-183~96~182 cluster are significantly co-repressed in non-small cell lung cancer (NSCLC) cell lines and primary tumors from multiple TCGA data sets with high EMT scores. Ectopic expression of the miR-183~96~182 cluster inhibited cancer cell migration and invasion, while its expression was tightly modulated by miR-200. We identified Foxf2 as a common, novel and direct target of both these microRNA families. Foxf2 expression tightly correlates with the transcription factor Zeb1 and is elevated in mesenchymal-like metastatic lung cancer cells. Foxf2 expression induced robust EMT, migration, invasion and metastasis in lung cancer cells, whereas Foxf2 inhibition significantly repressed these phenotypes. We also demonstrated that Foxf2 transcriptionally represses E-Cadherin and miR-200, independent of Zeb1, to form a double negative feedback loop. We therefore identified a novel mechanism whereby the miR-200 family and the miR-183~96~182 cluster inhibit lung cancer invasion and metastasis by targeting Foxf2.
Collapse
|
93
|
Zhang Q, Ren W, Huang B, Yi L, Zhu H. MicroRNA-183/182/96 cooperatively regulates the proliferation of colon cancer cells. Mol Med Rep 2015; 12:668-74. [PMID: 25695717 DOI: 10.3892/mmr.2015.3376] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 10/24/2014] [Indexed: 11/05/2022] Open
Abstract
The microRNA (miR/miRNA)-182/183/96 cluster comprises miR-96, -182 and -183. The present study examined five previous microarray-based human colon cancer miR expression profiling studies and the expression of these three miRs was found to be upregulated in colon cancer tissues. Subsequently, in vitro assays were performed to determine the role of the miR-183/182/96 cluster in colon cancer cells. The results demonstrated that inhibiting miR-183, miR-182 or miR-96 with antisense oligonucleotide (ASO)-mimics inhibited the proliferation of colon cancer cells. Notably, further investigation revealed that inhibiting their expression simultaneously led to a more efficient reduction in cancer cell proliferation. These results suggested that miR-182/183/96, which resides in clusters in the genome, functioned synergistically in colon cancer and implied that co-expression of the miR cluster ASOs was efficient in reducing tumorigenesis, offering novel insight into the use of miRNAs in tumor therapy.
Collapse
Affiliation(s)
- Qingquan Zhang
- Department of General Surgery, The 15th Hospital of People's Liberation Army, Wusu, Xinjiang 833000, P.R. China
| | - Wei Ren
- Department of General Surgery, The 15th Hospital of People's Liberation Army, Wusu, Xinjiang 833000, P.R. China
| | - Bin Huang
- Department of General Surgery, Aoyoung Hospital, Zhangjagang, Jiangsu 215600, P.R. China
| | - Liang Yi
- Department of General Surgery, The 15th Hospital of People's Liberation Army, Wusu, Xinjiang 833000, P.R. China
| | - Hongtao Zhu
- Department of General Surgery, The 15th Hospital of People's Liberation Army, Wusu, Xinjiang 833000, P.R. China
| |
Collapse
|
94
|
Wang TH, Yeh CT, Ho JY, Ng KF, Chen TC. OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma. Mol Carcinog 2015; 55:366-75. [PMID: 25663355 DOI: 10.1002/mc.22286] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
EphrinA5, a member of the ephrinA subclass, is downregulated in hepatocellular carcinoma (HCC) and acts as a tumor suppressor. However, the upstream regulation mechanism of ephrinA5 remains unclear. In this study, we tried to identify and characterize the roles of miR-96 and miR-182 in the regulation of ephrinA5 expression in HCC. The expression levels of miR-96 and miR-182 were examined in 47 paired HCC and para-tumoral liver tissues using quantitative real-time RT-PCR. The luciferase reporter assay and western blotting were employed to dissect the association between miR-96/182 and ephrinA5 expression. Moreover, cells were treated with synthetic miR-96/182 precursors and inhibitors to assess their effects on HCC cell growth and migration. It was found that both miR-96 and miR-182 were upregulated in HCC compared to para-tumoral normal tissues. The expression of miR-96 and miR-182 was inversely associated with ephrinA5 protein levels. Furthermore, both miR-96 and miR-182 directly targeted the 3'UTR of the ephrinA5 mRNA and suppressed protein translation. The suppression of miR-96 and miR-182 led to reduced HCC cell proliferation and migration by negatively regulating ephrinA5 expression. In conclusion, miR-96 and miR-182 may act as oncomiRs in HCC by suppressing the expression of ephrinA5 and may play important roles in hepatocarcinogenesis. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Jar-Yi Ho
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Tse-Ching Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| |
Collapse
|
95
|
Braoudaki M, Lambrou GI. MicroRNAs in pediatric central nervous system embryonal neoplasms: the known unknown. J Hematol Oncol 2015; 8:6. [PMID: 25652781 PMCID: PMC4333163 DOI: 10.1186/s13045-014-0101-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/27/2014] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that repress post-transcriptional regulation of gene expression, while embryonal central nervous system tumors are the foremost cause of mortality in children suffering from a neoplasm. MiRNAs and their regulatory mechanisms are new to understand, while pediatric CNS tumors are difficult to comprehend. Therefore, identification of the link between them composes a major scientific challenge. The present study, reviewed the current knowledge on the role of miRNA in pediatric CNS embryonal tumors, attempting to collect the existing information in one piece of work that could ideally be used as a guide for future reference and research.
Collapse
Affiliation(s)
- Maria Braoudaki
- First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, Athens, Greece. .,University Research Institute for the Study and Treatment of Childhood Genetic and Malignant Diseases, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece.
| | - George I Lambrou
- First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, Athens, Greece.
| |
Collapse
|
96
|
Xu J, Margol A, Asgharzadeh S, Erdreich-Epstein A. Pediatric brain tumor cell lines. J Cell Biochem 2015; 116:218-24. [PMID: 25211508 PMCID: PMC10656279 DOI: 10.1002/jcb.24976] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 12/30/2022]
Abstract
Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.
Collapse
Affiliation(s)
- Jingying Xu
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California 90027
| | - Ashley Margol
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California 90027
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California 90027
- Department of Pathology, Saban Research Institute at Children’s Hospital Los Angeles and the Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Anat Erdreich-Epstein
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California 90027
- Department of Pathology, Saban Research Institute at Children’s Hospital Los Angeles and the Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| |
Collapse
|
97
|
Castro-Vega LJ, Letouzé E, Burnichon N, Buffet A, Disderot PH, Khalifa E, Loriot C, Elarouci N, Morin A, Menara M, Lepoutre-Lussey C, Badoual C, Sibony M, Dousset B, Libé R, Zinzindohoue F, Plouin PF, Bertherat J, Amar L, de Reyniès A, Favier J, Gimenez-Roqueplo AP. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun 2015; 6:6044. [PMID: 25625332 DOI: 10.1038/ncomms7044] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/05/2014] [Indexed: 01/07/2023] Open
Abstract
Pheochromocytomas and paragangliomas (PCCs/PGLs) are neural crest-derived tumours with a very strong genetic component. Here we report the first integrated genomic examination of a large collection of PCC/PGL. SNP array analysis reveals distinct copy-number patterns associated with genetic background. Whole-exome sequencing shows a low mutation rate of 0.3 mutations per megabase, with few recurrent somatic mutations in genes not previously associated with PCC/PGL. DNA methylation arrays and miRNA sequencing identify DNA methylation changes and miRNA expression clusters strongly associated with messenger RNA expression profiling. Overexpression of the miRNA cluster 182/96/183 is specific in SDHB-mutated tumours and induces malignant traits, whereas silencing of the imprinted DLK1-MEG3 miRNA cluster appears as a potential driver in a subgroup of sporadic tumours. Altogether, the complete genomic landscape of PCC/PGL is mainly driven by distinct germline and/or somatic mutations in susceptibility genes and reveals different molecular entities, characterized by a set of unique genomic alterations.
Collapse
Affiliation(s)
- Luis Jaime Castro-Vega
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Eric Letouzé
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, 75013 Paris, France
| | - Nelly Burnichon
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [3] Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Alexandre Buffet
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [3] Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Pierre-Hélie Disderot
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Emmanuel Khalifa
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [3] Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Céline Loriot
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Nabila Elarouci
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, 75013 Paris, France
| | - Aurélie Morin
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Mélanie Menara
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Charlotte Lepoutre-Lussey
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [3] Hypertension Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Cécile Badoual
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [3] Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Mathilde Sibony
- 1] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [2] Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, F-75006 Paris, France
| | - Bertrand Dousset
- 1] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [2] Department of Digestive and Endocrine Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, F-75006 Paris, France [3] INSERM, U1016, Institut Cochin, F-75006 Paris, France [4] CNRS UMR8104, F-75006 Paris, France
| | - Rossella Libé
- 1] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [2] INSERM, U1016, Institut Cochin, F-75006 Paris, France [3] CNRS UMR8104, F-75006 Paris, France [4] Department of Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, F-75006 Paris, France [5] Rare Adrenal Cancer Network COMETE, F-75006 Paris, France
| | - Franck Zinzindohoue
- 1] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [2] Department of Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Pierre François Plouin
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [3] Hypertension Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France [4] Rare Adrenal Cancer Network COMETE, F-75006 Paris, France
| | - Jérôme Bertherat
- 1] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [2] INSERM, U1016, Institut Cochin, F-75006 Paris, France [3] CNRS UMR8104, F-75006 Paris, France [4] Department of Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, F-75006 Paris, France [5] Rare Adrenal Cancer Network COMETE, F-75006 Paris, France
| | - Laurence Amar
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [3] Hypertension Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, 75013 Paris, France
| | - Judith Favier
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- 1] INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France [3] Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France [4] Rare Adrenal Cancer Network COMETE, F-75006 Paris, France
| |
Collapse
|
98
|
Lu YY, Zheng JY, Liu J, Huang CL, Zhang W, Zeng Y. miR-183 induces cell proliferation, migration, and invasion by regulating PDCD4 expression in the SW1990 pancreatic cancer cell line. Biomed Pharmacother 2015; 70:151-7. [PMID: 25776494 DOI: 10.1016/j.biopha.2015.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/04/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the function of miR-183 in the SW1990 cancer cell line, and the mechanisms regulating these processes. miRNAs are known to play important roles in cancer cell development. However, the pattern and biological role of miR-183 in pancreatic cancer remain largely unknown. Here, we have reported the reduction in pancreatic cancer cell growth in vitro by miR-183 intervention, by inducing apoptosis and decreasing the Bcl-2 expression. Moreover, miR-183 was observed to enhance pancreatic cancer cell migration and invasion, whereas inhibition of miR-183 caused an opposite effect. miR-183 inhibition was shown to increase E-cadherin expression and decrease N-cadherin expression. These regulatory actions play an important role in the cancer epithelial-mesenchymal transition (EMT). Mechanistically, we demonstrated that the overexpression of miR-183 decreased the expression of PDCD4 (programmed cell death 4) mRNA and protein, and vice versa. This helped to identify PDCD4 as the target genes in pancreatic cancer. In conclusion, our analyses indicated miR-183 to be an important contributor to cell migration. This could also be used as a potential therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Ying-Ying Lu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 200080 Shanghai, PR China
| | - Jun-Yuan Zheng
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 200080 Shanghai, PR China
| | - Jie Liu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 200080 Shanghai, PR China
| | - Chun-Lan Huang
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 200080 Shanghai, PR China
| | - Wei Zhang
- Department of Gastroenterology, Huadong Hospital, Shanghai Fudan University School of Medicine, 200040 Shanghai, PR China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 200080 Shanghai, PR China.
| |
Collapse
|
99
|
Papadopoulos EI, Yousef GM, Scorilas A. Cytotoxic activity of sunitinib and everolimus in Caki-1 renal cancer cells is accompanied by modulations in the expression of apoptosis-related microRNA clusters and BCL2 family genes. Biomed Pharmacother 2015; 70:33-40. [PMID: 25776476 DOI: 10.1016/j.biopha.2014.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/30/2014] [Indexed: 01/02/2023] Open
Abstract
Sunitinib and everolimus are two of the antineoplastic agents indicated for the management of metastatic renal cancer. Although both of the above compounds were primarily designed as antiangiogenic factors, preclinical studies claim that these drugs can also trigger apoptosis. Herein, we sought to evaluate the cytotoxic activity of sunitinib and everolimus against renal cancer cells Caki-1 and moreover to assess their impact on the expression levels of three BCL2 family members and three apoptosis-related microRNA clusters upon incubation with the drugs or following recovery from treatment. The cytotoxic effect of sunitinib and everolimus on Caki-1 cells' viability was estimated by the MTT assay, while cleaved PARP, assayed via Western Blotting, served as a marker of programmed cell death. As for the expression levels of the BCL2 family members BCL2, BAX and BCL2L12 and those of the mature microRNAs of the miR-183/96/182, miR-143/145, and miR-15a/16 clusters, they were quantified via real-time PCR. Our results showed that both agents induced a time- and dose-dependent decrease in cell viability and promoted cleavage of PARP. In parallel, significant modulations were observed in the expression levels of miR-145, miR-15a, and miR-16 in case of sunitinib, whereas BCL2, BAX, miR-145 and miR-15a expression was strongly affected by everolimus. Overall, our data support the notion that sunitinib and everolimus are able to directly induce cell death in renal cancer cells and simultaneously affect the expression levels of their apoptosis-related microRNAs and BCL2 family members upon this process.
Collapse
Affiliation(s)
- Emmanuel I Papadopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15701, Greece.
| |
Collapse
|
100
|
Thor T, Künkele A, Pajtler KW, Wefers AK, Stephan H, Mestdagh P, Heukamp L, Hartmann W, Vandesompele J, Sadowski N, Becker L, Garrett L, Hölter SM, Horsch M, Calzada-Wack J, Klein-Rodewald T, Racz I, Zimmer A, Beckers J, Neff F, Klopstock T, De Antonellis P, Zollo M, Wurst W, Fuchs H, Gailus-Durner V, Schüller U, de Angelis MH, Eggert A, Schramm A, Schulte JH. MiR-34a deficiency accelerates medulloblastoma formation in vivo. Int J Cancer 2014; 136:2293-303. [PMID: 25348795 DOI: 10.1002/ijc.29294] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
Abstract
Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR-34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR-34a in vivo. We generated mice with a constitutive deletion of the miR-34a gene. These mice were devoid of mir-34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR-34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re-expression of miR-34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR-34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR-34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR-34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR-34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR-34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re-express miR-34a in tumors could, therefore, represent an efficient therapeutic option.
Collapse
Affiliation(s)
- Theresa Thor
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstr. 55 45147, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|