51
|
|
52
|
Santoro F, Dasgupta S, Schnitker J, Auth T, Neumann E, Panaitov G, Gompper G, Offenhäusser A. Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. ACS NANO 2014; 8:6713-23. [PMID: 24963873 DOI: 10.1021/nn500393p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An in-depth understanding of the interface between cells and nanostructures is one of the key challenges for coupling electrically excitable cells and electronic devices. Recently, various 3D nanostructures have been introduced to stimulate and record electrical signals emanating from inside of the cell. Even though such approaches are highly sensitive and scalable, it remains an open question how cells couple to 3D structures, in particular how the engulfment-like processes of nanostructures work. Here, we present a profound study of the cell interface with two widely used nanostructure types, cylindrical pillars with and without a cap. While basic functionality was shown for these approaches before, a systematic investigation linking experimental data with membrane properties was not presented so far. The combination of electron microscopy investigations with a theoretical membrane deformation model allows us to predict the optimal shape and dimensions of 3D nanostructures for cell-chip coupling.
Collapse
Affiliation(s)
- Francesca Santoro
- Institute of Bioelectronics (ICS-8/PGI-8) and ‡Institute of Theoretical Soft Matter and Biophysics (ICS-2/IAS-2), Forschungszentrum Jülich , 52428 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Reuther C, Tucker R, Ionov L, Diez S. Programmable patterning of protein bioactivity by visible light. NANO LETTERS 2014; 14:4050-7. [PMID: 24911347 DOI: 10.1021/nl501521q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The simple and quick patterning of functional proteins on engineered surfaces affords an opportunity to fabricate protein microarrays in lab-on-chip systems. We report on the programmable patterning of proteins as well as the local activation of enzymes by visible light. We successfully generated functional protein patterns with different geometries in situ and demonstrated the specific patterning of multiple kinds of proteins side-by-side without the need for specific linker molecules or elaborate surface preparation.
Collapse
Affiliation(s)
- Cordula Reuther
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | | | | | | |
Collapse
|
54
|
Özçelik H, Padeste C, Hasirci V. Systematically organized nanopillar arrays reveal differences in adhesion and alignment properties of BMSC and Saos-2 cells. Colloids Surf B Biointerfaces 2014; 119:71-81. [DOI: 10.1016/j.colsurfb.2014.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
55
|
Nanobiotechnology and bone regeneration: a mini-review. INTERNATIONAL ORTHOPAEDICS 2014; 38:1877-84. [PMID: 24962293 DOI: 10.1007/s00264-014-2412-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 12/27/2022]
Abstract
The purpose of this paper is to review current developments in bone tissue engineering, with special focus on the promising role of nanobiotechnology. This unique fusion between nanotechnology and biotechnology offers unprecedented possibilities in studying and modulating biological processes on a molecular and atomic scale. First we discuss the multiscale hierarchical structure of bone and its implication on the design of new scaffolds and delivery systems. Then we briefly present different types of nanostructured scaffolds, and finally we conclude with nanoparticle delivery systems and their potential use in promoting bone regeneration. This review is not meant to be exhaustive and comprehensive, but aims to highlight concepts and key advances in the field of nanobiotechnology and bone regeneration.
Collapse
|
56
|
Zhuang XM, Zhou B, Ouyang JL, Sun HP, Wu YL, Liu Q, Deng FL. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces. Biomed Mater 2014; 9:045001. [PMID: 24945708 DOI: 10.1088/1748-6041/9/4/045001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Micro/nanotopographical modifications on titanium surfaces constitute a new process to increase osteoblast response to enhance bone formation. In this study, we utilized alkali heat treatment at high (SB-AH1) and low temperatures (SB-AH2) to nano-modify sandblasted titanium with microtopographical surfaces. Then, we evaluated the surface properties, biocompatibility and osteogenic capability of SB-AH1 and SB-AH2 in vitro and in vivo, and compared these with conventional sandblast-acid etching (SLA) and Ti control surfaces. SB-AH1 and SB-AH2 surfaces exhibited micro/nanotopographical modifications of nano-needle structures and nano-porous network layers, respectively, compared with the sole microtopographical surface of macro and micro pits on the SLA surface and the relatively smooth surface on the Ti control. SB-AH1 and SB-AH2 showed different roughness and elemental components, but similar wettability. MC3T3-E1 preosteoblasts anchored closely on the nanostructures of SB-AH1 and SB-AH2 surfaces, and these two surfaces more significantly enhanced cell proliferation and alkaline phosphatase (ALP) activity than others, while the SB-AH2 surface exhibited better cell proliferation and higher ALP activity than SB-AH1. All four groups of titanium domes with self-tapping screws were implanted in rabbit calvarial bone models, and these indicated that SB-AH1 and SB-AH2 surfaces achieved better peri-implant bone formation and implant stability, while the SB-AH2 surface achieved the best percentage of bone-implant contact (BIC%). Our study demonstrated that the micro/nanotopographical surface generated by sandblasting and alkali heat treatment significantly enhanced preosteoblast proliferation, ALP activity and bone formation in vitro and in vivo, and nano-porous network topography may further induce better preosteoblast proliferation, ALP activity and BIC%.
Collapse
Affiliation(s)
- X-M Zhuang
- Department of Oral Implantology, Guangdong Provincal Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, People's Republic of China. Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
57
|
de Peppo GM, Agheli H, Karlsson C, Ekström K, Brisby H, Lennerås M, Gustafsson S, Sjövall P, Johansson A, Olsson E, Lausmaa J, Thomsen P, Petronis S. Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro. Int J Nanomedicine 2014; 9:2499-515. [PMID: 24904210 PMCID: PMC4039423 DOI: 10.2147/ijn.s58805] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patterning medical devices at the nanoscale level enables the manipulation of cell behavior and tissue regeneration, with topographic features recognized as playing a significant role in the osseointegration of implantable devices. METHODS In this study, we assessed the ability of titanium-coated hemisphere-like topographic nanostructures of different sizes (approximately 50, 100, and 200 nm) to influence the morphology, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). RESULTS We found that the proliferation and osteogenic differentiation of hMSCs was influenced by the size of the underlying structures, suggesting that size variations in topographic features at the nanoscale level, independently of chemistry, can be exploited to control hMSC behavior in a size-dependent fashion. CONCLUSION Our studies demonstrate that colloidal lithography, in combination with coating technologies, can be exploited to investigate the cell response to well defined nanoscale topography and to develop next-generation surfaces that guide tissue regeneration and promote implant integration.
Collapse
Affiliation(s)
- Giuseppe Maria de Peppo
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Hossein Agheli
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Camilla Karlsson
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Karin Ekström
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Helena Brisby
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Department of Orthopaedics, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Maria Lennerås
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Stefan Gustafsson
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Peter Sjövall
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Applied Physics, Chalmers University of Technology, Göteborg, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| | - Anna Johansson
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Eva Olsson
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Jukka Lausmaa
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
| | - Sarunas Petronis
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Göteborg, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| |
Collapse
|
58
|
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1846-85. [PMID: 24677434 PMCID: PMC4373558 DOI: 10.1002/adma.201304496] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.
Collapse
Affiliation(s)
- Pouria Fattahi
- Biomedical Engineering Department and Chemical Engineering Departments, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guang Yang
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gloria Kim
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Reza Abidian
- Biomedical Engineering Department, Materials Science & Engineering Department, Chemical Engineering Department, Materials Research Institute, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
59
|
Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci Rep 2014; 4:4034. [PMID: 24503534 PMCID: PMC3916899 DOI: 10.1038/srep04034] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/23/2014] [Indexed: 12/28/2022] Open
Abstract
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm−2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.
Collapse
|
60
|
Krishnaswamy VR, Lakra R, Korrapati PS. Keloid collagen–cell interactions: structural and functional perspective. RSC Adv 2014. [DOI: 10.1039/c4ra01995d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Keloids are a benign dermal proliferative disorder characterised by dense fibrotic tissue developing due to abnormal wound healing.
Collapse
Affiliation(s)
| | - Rachita Lakra
- Biomaterials Department
- CSIR – Central Leather Research Institute
- Chennai, India
| | - Purna Sai Korrapati
- Biomaterials Department
- CSIR – Central Leather Research Institute
- Chennai, India
| |
Collapse
|
61
|
Fabrication of Multifaceted, Micropatterned Surfaces and Image-Guided Patterning Using Laser Scanning Lithography. Methods Cell Biol 2014; 119:193-217. [DOI: 10.1016/b978-0-12-416742-1.00011-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
62
|
Ajeti V, Lien CH, Chen SJ, Su PJ, Squirrell JM, Molinarolo KH, Lyons GE, Eliceiri KW, Ogle BM, Campagnola PJ. Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning. OPTICS EXPRESS 2013; 21:25346-55. [PMID: 24150376 DOI: 10.1364/oe.21.025346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Multiphoton excited photochemistry is a powerful 3D fabrication tool that produces sub-micron feature sizes. Here we exploit the freeform nature of the process to create models of the extracellular matrix (ECM) of several tissues, where the design blueprint is derived directly from high resolution optical microscopy images (e.g. fluorescence and Second Harmonic Generation). To achieve this goal, we implemented a new form of instrument control, termed modulated raster scanning, where rapid laser shuttering (10 MHz) is used to directly map the greyscale image data to the resulting protein concentration in the fabricated scaffold. Fidelity in terms of area coverage and relative concentration relative to the image data is ~95%. We compare the results to an STL approach, and find the new scheme provides significantly improved performance. We suggest the method will enable a variety of cell-matrix studies in cancer biology and also provide insight into generating scaffolds for tissue engineering.
Collapse
|
63
|
Santoro F, Schnitker J, Panaitov G, Offenhäusser A. On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. NANO LETTERS 2013; 13:5379-5384. [PMID: 24088026 DOI: 10.1021/nl402901y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The quality of the recording and stimulation capabilities of multielectrode arrays (MEAs) substantially depends on the interface properties and the coupling of the cell with the underlying electrode area. The purpose of this work was the investigation of a three-dimensional nanointerface, enabling simultaneous guidance and recording of electrogenic cells (HL-1) by utilizing nanostructures with a mushroom shape on MEAs.
Collapse
Affiliation(s)
- Francesca Santoro
- Institute of Bioelectronics ICS-8/PGI-8, Forschungszentrum Jülich D-52425 Jülich, Germany
| | | | | | | |
Collapse
|
64
|
Miron-Mendoza M, Koppaka V, Zhou C, Petroll WM. Techniques for assessing 3-D cell-matrix mechanical interactions in vitro and in vivo. Exp Cell Res 2013; 319:2470-80. [PMID: 23819988 PMCID: PMC3826791 DOI: 10.1016/j.yexcr.2013.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022]
Abstract
Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vindhya Koppaka
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Chengxin Zhou
- Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
- Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
65
|
Kwon KW, Park H, Doh J. Migration of T cells on surfaces containing complex nanotopography. PLoS One 2013; 8:e73960. [PMID: 24069255 PMCID: PMC3771970 DOI: 10.1371/journal.pone.0073960] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
T cells navigate complex microenvironments to initiate and modulate antigen-specific immune responses. While recent intravital microscopy study revealed that migration of T cells were guided by various tissue microstructures containing unique nanoscale topographical structures, the effects of complex nanotopographical structures on the migration of T cells have not been systematically studied. In this study, we fabricated surfaces containing nanoscale zigzag structures with various side lengths and turning angles using UV-assisted capillary force lithography and motility of T cells on zigzag patterned surfaces was studied. Motility of T cells was mostly affected by the turning angle, not by the side length, of the zigzag structures. In particular, motility behaviors of T cells near interfaces formed by turning points of zigzag patterns were significantly affected by turning angles. For obtuse turning angles, most of the T cells smoothly crossed the interfaces, but as the turning angle decreased, a substantial fraction of the T cells migrated along the interfaces. When the formation of lamellipodia, thin sheet-like structures typically generated at the leading edges of migrating cells by actin polymerization-driven membrane protrusion, was inhibited by an Arp2/3 inhibitor CK-636, a substantial fraction of T cells on those surfaces containing zigzag patterns with an acute turning angle were trapped at the interfaces formed by the turning points of the zigzag patterns. This result suggests that thin, wide lamellipodia at the leading edges of T cells play critical roles in motility of T cells in complex topographical microenvironments.
Collapse
Affiliation(s)
- Keon Woo Kwon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hyoungjun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Junsang Doh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- * E-mail:
| |
Collapse
|
66
|
Cohen-Karni T, Dvir T. Advanced Technologies for Engineering Tissue Mimetics. Isr J Chem 2013. [DOI: 10.1002/ijch.201300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
67
|
Bressan E, Carraro A, Ferroni L, Gardin C, Sbricoli L, Guazzo R, Stellini E, Roman M, Pinton P, Sivolella S, Zavan B. Nanotechnology to drive stem cell commitment. Nanomedicine (Lond) 2013; 8:469-86. [PMID: 23477337 DOI: 10.2217/nnm.13.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Stem cells (SCs) are undifferentiated cells responsible for the growth, homeostasis and repair of many tissues. The maintenance and survival of SCs is strongly influenced by several stimuli from the local microenvironment. The majority of signaling molecules interact with SCs at the nanoscale level. Therefore, scaffolds with surface nanostructures have potential applications for SCs and in the field of regenerative medicine. Although some strategies have already reached the field of cell biology, strategies based on modification at nanoscale level are new players in the fields of SCs and tissue regeneration. The introduction of the possibility to perform such modifications to these fields is probably due to increasing improvements in nanomaterials for biomedical applications, as well as new insights into SC biology. The aim of the present review is to exhibit the most recent applications of nanostructured materials that drive the commitment of adult SCs for potential clinical applications.
Collapse
Affiliation(s)
- Eriberto Bressan
- Department of Neurosciences, University of Padova, Via Venezia 90, 35100 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Douglass KM, Sparrow NA, Bott M, Fernandez-Valle C, Dogariu A. Measuring anisotropic cell motility on curved substrates. JOURNAL OF BIOPHOTONICS 2013; 6:387-392. [PMID: 22887747 DOI: 10.1002/jbio.201200089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
Schwann cell motility was observed on laminin-coated quartz cylinders with different curvatures over an 18 hour period. A new analysis based on difference images helped to determine the minimal radius of curvature, 46 μm, which restricted motility along the cylinder axis. The migration speed, measured by calculating differences between successive images in the time series, ranged between 0.3 to 0.8 μm per minute and is similar to previously reported rates for Schwann cells. Difference images provide a rapid and simple method for the analysis of cell motility on large populations of cells.
Collapse
Affiliation(s)
- Kyle M Douglass
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | |
Collapse
|
69
|
Nanowire nanoelectronics: Building interfaces with tissue and cells at the natural scale of biology. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-10-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interface between nanoscale electronic devices and biological systems enables interactions at length scales natural to biology, and thus should maximize communication between these two diverse yet complementary systems. Moreover, nanostructures and nanostructured substrates show enhanced coupling to artificial membranes, cells, and tissue. Such nano–bio interfaces offer better sensitivity and spatial resolution as compared to conventional planar structures. In this work, we will report the electrical properties of silicon nanowires (SiNWs) interfaced with embryonic chicken hearts and cultured cardiomyocytes. We developed a scheme that allowed us to manipulate the nanoelectronic to tissue/cell interfaces while monitoring their electrical activity. In addition, by utilizing the bottom-up approach, we extended our work to the subcellular regime, and interfaced cells with the smallest reported device ever and thus exceeded the spatial and temporal resolution limits of other electrical recording techniques. The exceptional synthetic control and flexible assembly of nanowires (NWs) provides powerful tools for fundamental studies and applications in life science, and opens up the potential of merging active transistors with cells such that the distinction between nonliving and living systems is blurred.
Collapse
|
70
|
Singh AV, Patil R, Thombre DK, Gade WN. Micro-nanopatterning as tool to study the role of physicochemical properties on cell-surface interactions. J Biomed Mater Res A 2013; 101:3019-32. [PMID: 23559501 DOI: 10.1002/jbm.a.34586] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 11/09/2022]
Abstract
The current nano-biotechnologies interfacing synthetic materials and cell biology requires a better understanding of cell-surface interactions on the micro-to-nanometer scale. Cell-substrate interactions are mediated by the presence of proteins adsorbed from biological fluids to the substrate. The effect of nanotopography and surface chemistry on protein adsorption as well as the mediation effect on subsequent cellular communication with substratum is not well documented. This review discusses the role of physicochemical properties of cell-surface interactions and state-of-the-art methods currently available for micro-nanoscale surface fabrication and patterning. We also briefly discuss the current surface patterning techniques that allow the combination of a fine and independent control on nanotopography and chemistry to understand the effect of surface nanoscale substrate morphology on cell-surface interactions which has never been realized in previous reports. In addition, we discuss the influence of various chemical patterning and modulation of the nano-topography of surfaces on cell functionality and phenotype.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590; Center for Biotechnology and Interdisciplinary Studies, Room 2145, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180
| | | | | | | |
Collapse
|
71
|
Chung BG, Kang L, Khademhosseini A. Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin Drug Discov 2013; 2:1653-68. [PMID: 23488907 DOI: 10.1517/17460441.2.12.1653] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Micro- and nanoscale technologies are emerging as powerful enabling tools for tissue engineering and drug discovery. In tissue engineering, micro- and nanotechnologies can be used to fabricate biomimetic scaffolds with increased complexity and vascularization. Furthermore, these technologies can be used to control the cellular microenvironment (i.e., cell-cell, cell-matrix and cell-soluble factor interactions) in a reproducible manner and with high temporal and spatial resolution. In drug discovery, miniaturized platforms based on micro- and nanotechnology can be used to precisely control the fluid flow, enable high-throughput screening, and minimize sample or reagent volumes. In addition, these systems enhance reproducibility and significantly reduce reaction times. This paper reviews the recent developments in the field of micro- and nanoscale technology and gives examples of their tissue engineering and drug discovery applications.
Collapse
Affiliation(s)
- Bong Geun Chung
- Massachusetts Institute of Technology, Harvard-MIT Division of Health Sciences and Technology, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA +1 617 768 8395 ; +1 617 768 8477 ;
| | | | | |
Collapse
|
72
|
Le X, Poinern GEJ, Ali N, Berry CM, Fawcett D. Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response. Int J Biomater 2013; 2013:782549. [PMID: 23533416 PMCID: PMC3600176 DOI: 10.1155/2013/782549] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/02/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022] Open
Abstract
Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales.
Collapse
Affiliation(s)
- Xuan Le
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia
| | - Gérrard Eddy Jai Poinern
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia
| | - Nurshahidah Ali
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia
| | - Cassandra M. Berry
- Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Derek Fawcett
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
73
|
Abdolahad M, Mohajerzadeh S, Janmaleki M, Taghinejad H, Taghinejad M. Evaluation of the shear force of single cancer cells by vertically aligned carbon nanotubes suitable for metastasis diagnosis. Integr Biol (Camb) 2013; 5:535-42. [DOI: 10.1039/c2ib20215h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- M. Abdolahad
- Nano-Electronic Center of Excellence, Nano-Electronics and Thin Film Lab., School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran Iran
- Science and Technology Park, University of Tehran, Tehran, Iran
| | - S. Mohajerzadeh
- Nano-Electronic Center of Excellence, Nano-Electronics and Thin Film Lab., School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran Iran
- Science and Technology Park, University of Tehran, Tehran, Iran
| | - M. Janmaleki
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid-Beheshti University of Medical Science, P.O. Box 1985717443, Tehran, Iran
| | - H. Taghinejad
- Nano-Electronic Center of Excellence, Nano-Electronics and Thin Film Lab., School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran Iran
| | - M. Taghinejad
- Nano-Electronic Center of Excellence, Nano-Electronics and Thin Film Lab., School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran Iran
| |
Collapse
|
74
|
Bressan E, Sbricoli L, Guazzo R, Tocco I, Roman M, Vindigni V, Stellini E, Gardin C, Ferroni L, Sivolella S, Zavan B. Nanostructured surfaces of dental implants. Int J Mol Sci 2013; 14:1918-31. [PMID: 23344062 PMCID: PMC3565355 DOI: 10.3390/ijms14011918] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 12/27/2022] Open
Abstract
The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years.
Collapse
Affiliation(s)
- Eriberto Bressan
- Department of Neurosciences, University of Padua, Padua 35133, Italy; E-Mails: (E.B.); (L.S.); (R.G.); (I.T.); (V.V.); (E.S.); (S.S.)
| | - Luca Sbricoli
- Department of Neurosciences, University of Padua, Padua 35133, Italy; E-Mails: (E.B.); (L.S.); (R.G.); (I.T.); (V.V.); (E.S.); (S.S.)
| | - Riccardo Guazzo
- Department of Neurosciences, University of Padua, Padua 35133, Italy; E-Mails: (E.B.); (L.S.); (R.G.); (I.T.); (V.V.); (E.S.); (S.S.)
| | - Ilaria Tocco
- Department of Neurosciences, University of Padua, Padua 35133, Italy; E-Mails: (E.B.); (L.S.); (R.G.); (I.T.); (V.V.); (E.S.); (S.S.)
| | - Marco Roman
- IDPA-CNR, Institute for the Dinamics of Environmental Systems Calle Larga S. Marta 2137, Venice 30123 (VE), Italy; E-Mail:
| | - Vincenzo Vindigni
- Department of Neurosciences, University of Padua, Padua 35133, Italy; E-Mails: (E.B.); (L.S.); (R.G.); (I.T.); (V.V.); (E.S.); (S.S.)
| | - Edoardo Stellini
- Department of Neurosciences, University of Padua, Padua 35133, Italy; E-Mails: (E.B.); (L.S.); (R.G.); (I.T.); (V.V.); (E.S.); (S.S.)
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padua, Padua 35133, Italy; E-Mails: (C.G.); (L.F.)
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padua, Padua 35133, Italy; E-Mails: (C.G.); (L.F.)
| | - Stefano Sivolella
- Department of Neurosciences, University of Padua, Padua 35133, Italy; E-Mails: (E.B.); (L.S.); (R.G.); (I.T.); (V.V.); (E.S.); (S.S.)
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padua, Padua 35133, Italy; E-Mails: (C.G.); (L.F.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-049-8276096; Fax +39-049-8276079
| |
Collapse
|
75
|
Chen W, Sun Y, Fu J. Microfabricated nanotopological surfaces for study of adhesion-dependent cell mechanosensitivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:81-89. [PMID: 22887768 PMCID: PMC4113413 DOI: 10.1002/smll.201201098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Indexed: 05/28/2023]
Abstract
Cells exhibit high sensitivity and diverse responses to the intrinsic nanotopography of the extracellular matrix through their nanoscale cellular sensing machinery. A simple microfabrication method for precise control and spatial patterning of the local nanoroughness on glass surfaces by using photolithography and reactive ion etching is reported. It is demonstrated that local nanoroughness as a biophysical cue could regulate a diverse array of NIH/3T3 fibroblast behaviors, including cell morphology, adhesion, proliferation, migration, and cytoskeleton contractility. The capability to control and further predict cellular responses to nanoroughness might suggest novel methods for developing biomaterials mimicking nanotopographic structures in vivo for functional tissue engineering.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105 (USA)
| | - Yubing Sun
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105 (USA)
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105 (USA); Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 (USA)
| |
Collapse
|
76
|
|
77
|
Smith BS, Capellato P, Kelley S, Gonzalez-Juarrero M, Popat KC. Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomater Sci 2013; 1:322-332. [DOI: 10.1039/c2bm00079b] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
78
|
Khlusov IA, Shevtsova NM, Khlusova MY. Detection in vitro and quantitative estimation of artificial microterritories which promote osteogenic differentiation and maturation of stromal stem cells. Methods Mol Biol 2013; 1035:103-19. [PMID: 23959985 DOI: 10.1007/978-1-62703-508-8_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular matrix can regulate multipotent mesenchymal stromal cells (MMSC) differentiation, with potential applications for tissue engineering. A relief of mineralized bone takes essential effect on MMSC fate. Nevertheless, delicate structure and a hierarchy of niches for stromal stem cells and its quantitative parameters are not practically known. Here, we describe the protocol to define the basic approach providing a guiding for in vitro identification of quantitative features of artificial calcium phosphate niches which promotes osteogenic differentiation and maturation of stromal stem cell.
Collapse
Affiliation(s)
- Igor A Khlusov
- Scientific Educational Center, Biocompatible Materials and Bioengineering, Siberian State Medical University, Tomsk, Russia
| | | | | |
Collapse
|
79
|
Liu X, Ma L, Liang J, Zhang B, Teng J, Gao C. RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring. Biomaterials 2012; 34:2038-48. [PMID: 23261213 DOI: 10.1016/j.biomaterials.2012.11.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/29/2012] [Indexed: 12/24/2022]
Abstract
Scar inhibition of dermal equivalent is one of the key issues for treatment of full thickness skin defects. To yield a bioactive RNAi functionalized matrix for skin regeneration with inhibited scarring, collagen-chitosan/silicone membrane bilayer dermal equivalent (BDE) was combined with trimetylchitosan (TMC)/siRNA complexes which could induce suppression of transforming growth factor-β1 (TGF-β1) pathway. The RNAi-BDE functioned as a reservoir for the incorporated TMC/siRNA complexes, enabling a prolonged siRNA release. The seeded fibroblasts in the RNAi-BDE showed good viability, internalized the TMC/siRNA complexes effectively and suppressed TGF-β1 expression constantly until 14 d. Application of the RNAi-BDE on the full-thickness skin defects of pig backs confirmed the in vivo inhibition of TGF-β1 expression by immunohistochemistry, real-time quantitative PCR and western blotting during 30 d post surgery. The levels of other scar-related factors such as collagen type I, collagen type III and α-smooth muscle actin (α-SMA) were also down-regulated. In combination with the ultra-thin skin graft transplantation for 73 d, the regenerated skin by RNAi-BDE had an extremely similar structure to that of the normal one. Our study reflects the latest paradigm of tissue engineering by incorporating the emerging biomolecule siRNA. The 3-D scaffolding materials for siRNA delivery may have general implications in generation of bioactive matrix as well.
Collapse
Affiliation(s)
- Xing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|
80
|
Peng H, Yin Z, Liu H, Chen X, Feng B, Yuan H, Su B, Ouyang H, Zhang Y. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. NANOTECHNOLOGY 2012; 23:485102. [PMID: 23128604 DOI: 10.1088/0957-4484/23/48/485102] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Engaging functional biomaterial scaffolds to regulate stem cell differentiation has drawn a great deal of attention in the tissue engineering and regenerative medicine community. In this study, biomimetic composite nanofibrous scaffolds of hydroxyapatite/chitosan (HAp/CTS) were prepared to investigate their capacity for inducing murine mesenchymal stem cells (mMSCs) to differentiate into the osteogenic lineage, in the absence and presence of an osteogenic supplementation (i.e., ascorbic acid, β-glycerol phosphate, and dexamethasone), respectively. Using electrospun chitosan (CTS) nanofibrous scaffolds as the control, cell morphology, growth, specific osteogenic genes expression, and quantified proteins secretion on the HAp/CTS scaffolds were sequentially examined and assessed. It appeared that the HAp/CTS scaffolds supported better attachment and proliferation of the mMSCs. Most noteworthy was that in the absence of the osteogenic supplementation, expression of osteogenic genes including collagen I (Col I), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were significantly upregulated in mMSCs cultured on the HAp/CTS nanofibrous scaffolds. Also increased secretion of the osteogenesis protein markers of alkaline phosphatase and collagen confirmed that the HAp/CTS nanofibrous scaffold markedly promoted the osteogenic commitment in the mMSCs. Moreover, the presence of osteogenic supplementation proved an enhanced efficacy of mMSC osteogenesis on the HAp/CTS nanofibrous scaffolds. Collectively, this study demonstrated that the biomimetic nanofibrous HAp/CTS scaffolds could support and enhance the adhesion, proliferation, and particularly osteogenic differentiation of the mMSCs. It also substantiated the potential of using biomimetic nanofibrous scaffolds of HAp/CTS for functional bone repair and regeneration applications.
Collapse
Affiliation(s)
- Hongju Peng
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Shi Y, Dong Y, Duan Y, Jiang X, Chen C, Deng L. Substrate stiffness influences TGF-β1-induced differentiation of bronchial fibroblasts into myofibroblasts in airway remodeling. Mol Med Rep 2012; 7:419-24. [PMID: 23229284 DOI: 10.3892/mmr.2012.1213] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/13/2012] [Indexed: 11/06/2022] Open
Abstract
Chronic inflammation and remodeling of the bronchial wall are basic hallmarks of asthma. During the process of bronchial wall remodeling, inflammatory factors, such as transforming growth factor-β1 (TGF-β1), are known to induce the differentiation of fibroblasts into myofibroblasts, which leads to excessive synthesis and secretion of extracellular matrix (ECM) proteins, thus thickening and stiffening the basement membrane. However, it has not been thoroughly studied whether or not substrate stiffening affects the TGF-β1‑induced myofibroblast differentiation. In the present study, the influence of substrate stiffness on the process of bronchial fibroblast differentiation into myofibroblasts in the presence of TGF-β1 was investigated. To address this question, we synthesized polydimethylsiloxane (PDMS) substrates with varying degrees of stiffness (Young's modulus of 1, 10 and 50 kPa, respectively). We cultured bronchial fibroblasts on the substrates of varying stiffness in media containing TGF-β1 (10 ng/ml) to stimulate the differentiation of fibroblasts into myofibroblasts. Myofibroblast differentiation was examined using semi-quantitative RT-PCR for the expression of α-smooth muscle actin (α-SMA) mRNA and collagen I mRNA, the enzyme-linked immunosorbent assay method was used to assess the expression of collagen I protein and western blotting to assess the expression of α-SMA protein. The optical magnetic twisting cytometry (OMTC) method was used for the changing of cell mechanical properties. Our findings suggest that when fibroblasts were incubated with TGF-β1 (10 ng/ml) on substrate of varying stiffness, the differentiation of fibroblasts into myofibroblasts was enhanced by increasing substrate stiffness. Compared with those cultured on substrate with Young's modulus of 1 kPa, the mRNA and protein expression of collagen I and α-SMA of fibroblasts cultured on substrates with Young's modulus of 10 and 50 kPa were increased. Furthermore, with the increase of substrate stiffness, the cell stiffness and contractility were also increased, which also indicated further aggravation of asthma. This finding may help better understand the underlying mechanisms of hyperplasia of myofibroblasts in asthma, which has a marked significance in the therapy of asthma.
Collapse
Affiliation(s)
- Yanling Shi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P.R. China
| | | | | | | | | | | |
Collapse
|
82
|
Panneerselvan A, Nguyen LTH, Su Y, Teo WE, Liao S, Ramakrishna S, Chan CW. Cell viability and angiogenic potential of a bioartificial adipose substitute. J Tissue Eng Regen Med 2012; 9:702-13. [PMID: 23166045 DOI: 10.1002/term.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 06/29/2012] [Accepted: 09/16/2012] [Indexed: 11/08/2022]
Abstract
An implantable scaffold pre-seeded with cells needs to remain viable and encourage rapid angiogenesis in order to replace injured tissues, especially for tissue defect repairs. We created a bioartificial adipose graft composed of an electrospun 3D nanofibrous scaffold and fat tissue excised from New Zealand white rabbits. Cell viability and angiogenesis potential of the bioartificial substitute were examined during four weeks of culture in Dulbecco's Modified Eagle Medium by immunohistochemical staining with LIVE/DEAD® cell kit and PECAM-1 antibody, respectively. In addition, a Matrigel® assay was performed to examine the possibility of blood vessels sprouting from the bioartificial graft. Our results showed that cells within the graft were viable and vascular tubes were present at week 4, while cells in a fat tissue block were dead in vitro. In addition, capillaries were observed sprouting from the graft into the Matrigel, demonstrating its angiogenic potential. We expect that improved cell viability and angiogenesis in the bioartificial substitute, compared to intact autologous graft, could potentially contribute to its survival following implantation.
Collapse
Affiliation(s)
| | - Luong T H Nguyen
- NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Yan Su
- College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | | | - Susan Liao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore.,King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ching Wan Chan
- Department of General Surgery, National University Healthcare System, Singapore
| |
Collapse
|
83
|
Cohen-Karni T, Jeong KJ, Tsui JH, Reznor G, Mustata M, Wanunu M, Graham A, Marks C, Bell DC, Langer RS, Kohane DS. Nanocomposite gold-silk nanofibers. NANO LETTERS 2012; 12:5403-6. [PMID: 22928701 PMCID: PMC3468663 DOI: 10.1021/nl302810c] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cell-biomaterial interactions can be controlled by modifying the surface chemistry or nanotopography of the material, to induce cell proliferation and differentiation if desired. Here we combine both approaches in forming silk nanofibers (SNFs) containing gold nanoparticles (AuNPs) and subsequently chemically modifying the fibers. Silk fibroin mixed with gold seed nanoparticles was electrospun to form SNFs doped with gold seed nanoparticles (SNF(seed)). Following gold reduction, there was a 2-fold increase in particle diameter confirmed by the appearance of a strong absorption peak at 525 nm. AuNPs were dispersed throughout the AuNP-doped silk nanofibers (SNFs(Au)). The Young's modulus of the SNFs(Au) was almost 70% higher than that of SNFs. SNFs(Au) were modified with the arginine-glycine-aspartic acid (RGD) peptide. Human mesenchymal stem cells that were cultured on RGD-modified SNF(Au) had a more than 2-fold larger cell area compared to the cells cultured on bare SNFs; SNF(Au) also increased cell size. This approach may be used to alter the cell-material interface in tissue engineering and other applications.
Collapse
Affiliation(s)
- Tzahi Cohen-Karni
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Kyung Jae Jeong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Jonathan H. Tsui
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Gally Reznor
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Mirela Mustata
- Department of Physics, Dana Research Center, Northeastern University, Boston, Massachusetts 02115, USA
| | - Meni Wanunu
- Department of Physics, Dana Research Center, Northeastern University, Boston, Massachusetts 02115, USA
| | - Adam Graham
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138
| | - Carolyn Marks
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138
| | - David C. Bell
- School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138
| | - Robert S. Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Corresponding authors
| |
Collapse
|
84
|
Park KS, Cha KJ, Han IB, Shin DA, Cho DW, Lee SH, Kim DS. Mass-producible nano-featured polystyrene surfaces for regulating the differentiation of human adipose-derived stem cells. Macromol Biosci 2012; 12:1480-9. [PMID: 23042782 DOI: 10.1002/mabi.201200225] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Indexed: 12/18/2022]
Abstract
In this study, we report an efficient and cost-effective method of fabricating polystyrene (PS) nano-featured substrates containing nanopore (NPo) and nanopillar (NPi) arrays based on hot embossing using nickel nano-stamps. We investigate the behavior of adipose-derived stem cells (ASCs), including adhesion, morphology, proliferation and differentiation, on the replicated PS surfaces. Compared to a flat substrate, NPo- and NPi-featured substrates do not alter the morphology of stem cells. However, both NPo- and NPi-featured substrates induce different integrin expression and lower formation of focal adhesion complexes. In addition, ASCs on the NPo-featured substrate exhibit greater adipogenic differentiation, while the NPi-featured substrate induces higher osteogenic differentiation.
Collapse
Affiliation(s)
- Kwang-Sook Park
- Department of Biomedical Science, CHA University, 502 Yatop-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-840, Korea
| | | | | | | | | | | | | |
Collapse
|
85
|
Quist AP, Oscarsson S. Micropatterned surfaces: techniques and applications in cell biology. Expert Opin Drug Discov 2012; 5:569-81. [PMID: 22823168 DOI: 10.1517/17460441.2010.489606] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE OF THE FIELD Engineering of cell culture substrates provides a unique opportunity for precise control of the cellular microenvironment with both spatial as well as temporal resolutions. This greatly enhances studies of cell-cell, cell-matrix and cell-factor interaction studies in vitro. AREAS COVERED IN THIS REVIEW The technologies used for micropatterning in the biological field over the last decade and new applications in the last few years for dynamic control of surfaces, tissue engineering, drug discovery, cell-cell interactions and stem cell studies are presented. WHAT THE READER WILL GAIN The reader will gain knowledge on the state of the art in micropatterning and its wide ranging applications in cell patterning, with new pathways to control the cell environment. TAKE HOME MESSAGE Micropatterning of cells has been studied and developed enough to be widely applied ranging from single cell assays to tissue engineering. Techniques have evolved from many-step processes to direct writing of biologically selective patterns.
Collapse
Affiliation(s)
- Arjan P Quist
- Richmond Chemical Corp., 2210 Midwest Rd Ste 100, Oak Brook IL 60523, USA +1 630 5722500 ; +1 630 5722522 ;
| | | |
Collapse
|
86
|
|
87
|
Jeon H, Kim G. Effects of a cell-imprinted poly(dimethylsiloxane) surface on the cellular activities of MG63 osteoblast-like cells: preparation of a patterned surface, surface characterization, and bone mineralization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13423-13430. [PMID: 22931348 DOI: 10.1021/la302937k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To understand the relationship between surface patterns and cellular activities, various types of pattern models have been investigated. In this study, we suggest a new surface pattern model, which replicates proliferated cells. We used osteoblast-like cells (MG63) as a target cell pattern and constructed various cell-imprinted surfaces using an electric field assisted casting method for different culturing times (4 h and 7 and 14 days). On the basis of scanning electron microscopy images and three-dimensional topographical optical images, we acquired the cells' unique patterns and used them for replicating patterned substrates. We then cultured MG63 cells in the patterned surfaces for 7 and 14 days to observe various cellular activities, cell viability, alkaline phosphatase (ALP) activity, and mineralization. Higher cellular activities were observed on the roughened surface as compared with the smooth surface. In particular, we obtained the most appropriate roughness value (R(a) = 702 ± 87 nm) from proliferated cells cultured over 14 days. On the basis of these findings, we demonstrate a new biomimical surface model that enhances cellular activities at the cell-substrate interface.
Collapse
Affiliation(s)
- HoJun Jeon
- Bio/Nanofluidics Lab, Department of Mechanical Engineering, Chosun University, Gwangju 501-759, South Korea
| | | |
Collapse
|
88
|
Cohen-Karni T, Langer R, Kohane DS. The smartest materials: the future of nanoelectronics in medicine. ACS NANO 2012; 6:6541-6545. [PMID: 22850578 DOI: 10.1021/nn302915s] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electronics have become central to many aspects of biomedicine, ranging from fundamental biophysical studies of excitable tissues to medical monitoring and electronic implants to restore limb movement. The development of new materials and approaches is needed to enable enhanced tissue integration, interrogation, and stimulation and other functionalities. Nanoscale materials offer many avenues for progress in this respect. New classes of molecular-scale bioelectronic interfaces can be constructed using either one-dimensional nanostructures, such as nanowires and nanotubes, or two-dimensional nanostructures, such as graphene. Nanodevices can create ultrasensitive sensors and can be designed with spatial resolution as fine as the subcellular regime. Structures on the nanoscale can enable the development of engineered tissues within which sensing elements are integrated as closely as the nervous system within native tissues. In addition, the close integration of nanomaterials with cells and tissues will also allow the development of in vitro platforms for basic research or diagnostics. Such lab-on-a-chip systems could, for example, enable testing of the effects of candidate therapeutic molecules on intercellular, single-cell, and even intracellular physiology. Finally, advances in nanoelectronics can lead to extremely sophisticated smart materials with multifunctional capabilities, enabling the spectrum of biomedical possibilities from diagnostic studies to the creation of cyborgs.
Collapse
Affiliation(s)
- Tzahi Cohen-Karni
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
89
|
Su PJ, Tran QA, Fong JJ, Eliceiri KW, Ogle BM, Campagnola PJ. Mesenchymal stem cell interactions with 3D ECM modules fabricated via multiphoton excited photochemistry. Biomacromolecules 2012; 13:2917-25. [PMID: 22876971 DOI: 10.1021/bm300949k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To understand complex micro/nanoscale ECM stem cell interactions, reproducible in vitro models are needed that can strictly recapitulate the relative content and spatial arrangement of native tissue. Additionally, whole ECM proteins are required to most accurately reflect native binding dynamics. To address this need, we use multiphoton excited photochemistry to create 3D whole protein constructs or "modules" to study how the ECM governs stem cell migration. The constructs were created from mixtures of BSA/laminin (LN) and BSA alone, whose comparison afforded studying how the migration dynamics are governed from the combination of morphological and ECM cues. We found that mesenchymal stem cells interacted for significantly longer durations with the BSA/LN constructs than pure BSA, pointing to the importance of binding cues of the LN. Critical to this work was the development of an automated system with feedback based on fluorescence imaging to provide quality control when synthesizing multiple identical constructs.
Collapse
Affiliation(s)
- Ping-Jung Su
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
90
|
Coyer SR, Singh A, Dumbauld DW, Calderwood DA, Craig SW, Delamarche E, García AJ. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J Cell Sci 2012; 125:5110-23. [PMID: 22899715 DOI: 10.1242/jcs.108035] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Integrin-based focal adhesions (FA) transmit anchorage and traction forces between the cell and the extracellular matrix (ECM). To gain further insight into the physical parameters of the ECM that control FA assembly and force transduction in non-migrating cells, we used fibronectin (FN) nanopatterning within a cell adhesion-resistant background to establish the threshold area of ECM ligand required for stable FA assembly and force transduction. Integrin-FN clustering and adhesive force were strongly modulated by the geometry of the nanoscale adhesive area. Individual nanoisland area, not the number of nanoislands or total adhesive area, controlled integrin-FN clustering and adhesion strength. Importantly, below an area threshold (0.11 µm(2)), very few integrin-FN clusters and negligible adhesive forces were generated. We then asked whether this adhesive area threshold could be modulated by intracellular pathways known to influence either adhesive force, cytoskeletal tension, or the structural link between the two. Expression of talin- or vinculin-head domains that increase integrin activation or clustering overcame this nanolimit for stable integrin-FN clustering and increased adhesive force. Inhibition of myosin contractility in cells expressing a vinculin mutant that enhances cytoskeleton-integrin coupling also restored integrin-FN clustering below the nanolimit. We conclude that the minimum area of integrin-FN clusters required for stable assembly of nanoscale FA and adhesive force transduction is not a constant; rather it has a dynamic threshold that results from an equilibrium between pathways controlling adhesive force, cytoskeletal tension, and the structural linkage that transmits these forces, allowing the balance to be tipped by factors that regulate these mechanical parameters.
Collapse
Affiliation(s)
- Sean R Coyer
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30330, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Ciofani G, Ricotti L, Canale C, D'Alessandro D, Berrettini S, Mazzolai B, Mattoli V. Effects of barium titanate nanoparticles on proliferation and differentiation of rat mesenchymal stem cells. Colloids Surf B Biointerfaces 2012; 102:312-20. [PMID: 23006571 DOI: 10.1016/j.colsurfb.2012.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/29/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
Abstract
Nanomaterials hold great promise in the manipulation and treatments of mesenchymal stem cells, since they allow the modulation of their properties and differentiation. However, systematic studies have to be carried out in order to assess their potential toxicological effects. The present study reports on biocompatibility evaluation of glycol-chitosan coated barium titanate nanoparticles (BTNPs) on rat mesenchymal stem cells (MSCs). BTNPs are a class of ceramic systems which possess interesting features for biological applications thanks to their peculiar dielectric and piezoelectric properties. Viability was evaluated up to 5 days of incubation (concentrations in the range 0-100 μg/ml) both quantitatively and qualitatively with specific assays. Interactions cells/nanoparticles were further investigated with analysis of the cytoskeleton conformation, with SEM and TEM imaging, and with AFM analysis. Finally, differentiation in adipocytes and osteocytes was achieved in the presence of high doses of BTNPs, thus highlighting the safety of these nanostructures towards mesenchymal stem cells.
Collapse
Affiliation(s)
- Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy.
| | | | | | | | | | | | | |
Collapse
|
92
|
Kueh JLL, Li D, Raisman G, Jenkins D, Li Y, Stevens R. Directionality and bipolarity of olfactory ensheathing cells on electrospun nanofibers. Nanomedicine (Lond) 2012; 7:1211-24. [DOI: 10.2217/nnm.11.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: As a preliminary to the construction of olfactory ensheathing cells (OECs) bearing scaffold for bridging larger lesions in the spinal cord, we have investigated the response of purified cultured OECs to nanoscale fibers of varying diameter using US FDA-approved, biodegradable poly(lactic-co-glycolic-acid). Materials & methods: Conventional electrospinning produced fibers of approximately 700 nm diameter (nano-700) while nanocomposite electrospinning with quantum dots produced significantly more uniform fibers of a reduced diameter to approximately 237 nm (nano-250). OECs from adult rat were FACS purified, cultured at low density on either a flat surface or a meshwork of randomly orientated nano-700 and nano-250 fibers, and assessed using cytomorphometric analysis of immunofluorescent confocal images and by scanning electron microscopy. Results & conclusion: Compared with a flat surface, culture on a nano-700 mesh increases cell attachment. Cells change from rounded to stellate forms in random orientation. Further size reduction to the nano-250 favors bipolarity in cells with unidirectional orientation as observed in the case when transplanted OECs were used to bridge areas of damage in rat spinal cords. Original submitted 26 August 2011; Revised submitted 28 October 2011; Published online 25 May 2012
Collapse
Affiliation(s)
- Jacqueline Li-Ling Kueh
- Spinal Repair Unit, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Daqing Li
- Spinal Repair Unit, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Geoffrey Raisman
- Spinal Repair Unit, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Derek Jenkins
- Micro & Nanotechnology Centre, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Ying Li
- Spinal Repair Unit, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Robert Stevens
- Micro & Nanotechnology Centre, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
93
|
Zhou X, Hu J, Li J, Shi J, Chen Y. Patterning of two-level topographic cues for observation of competitive guidance of cell alignment. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3888-3892. [PMID: 22839362 DOI: 10.1021/am301237j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cells display contact guidance when cultured on topographical cues. By combining standard photolithography, nanoimprint lithography, and soft lithography, we produced sophisticated patterns on two levels, including crossing microgrooves with different depth/spacing and microgrooves with superimposed submicrometer features. The results show that for narrowly spaced microgrooves, the contact guidance is more significant to the change of groove depth than to other geometry parameters. For crossing microgrooves, the shallow grooves take over the influence on cell alignment when the deeper grooves are well separated. Finally, the superimposed submicrometer features on the groove ridges decrease the efficiency of the contact guidance of microgrooves, due to increased adhesion of cells on patterned surfaces.
Collapse
Affiliation(s)
- Xiongtu Zhou
- Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 rue Lhomond, 75231 Paris, France
| | | | | | | | | |
Collapse
|
94
|
Kwon KW, Park H, Song KH, Choi JC, Ahn H, Park MJ, Suh KY, Doh J. Nanotopography-guided migration of T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:2266-73. [PMID: 22844118 DOI: 10.4049/jimmunol.1102273] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
T cells navigate a wide variety of tissues and organs for immune surveillance and effector functions. Although nanoscale topographical structures of extracellular matrices and stromal/endothelial cell surfaces in local tissues may guide the migration of T cells, there has been little opportunity to study how nanoscale topographical features affect T cell migration. In this study, we systematically investigated mechanisms of nanotopography-guided migration of T cells using nanoscale ridge/groove surfaces. The velocity and directionality of T cells on these nanostructured surfaces were quantitatively assessed with and without confinement, which is a key property of three-dimensional interstitial tissue spaces for leukocyte motility. Depending on the confinement, T cells exhibited different mechanisms for nanotopography-guided migration. Without confinement, actin polymerization-driven leading edge protrusion was guided toward the direction of nanogrooves via integrin-mediated adhesion. In contrast, T cells under confinement appeared to migrate along the direction of nanogrooves purely by mechanical effects, and integrin-mediated adhesion was dispensable. Therefore, surface nanotopography may play a prominent role in generating migratory patterns for T cells. Because the majority of cells in periphery migrate along the topography of extracellular matrices with much lower motility than T cells, nanotopography-guided migration of T cells would be an important strategy to efficiently perform cell-mediated immune responses by increasing chances of encountering other cells within a given amount of time.
Collapse
Affiliation(s)
- Keon Woo Kwon
- Department of Mechanical Engineering, Pohang University of Science and Technology, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, Korea
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Kwiat M, Elnathan R, Pevzner A, Peretz A, Barak B, Peretz H, Ducobni T, Stein D, Mittelman L, Ashery U, Patolsky F. Highly ordered large-scale neuronal networks of individual cells - toward single cell to 3D nanowire intracellular interfaces. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3542-9. [PMID: 22724437 DOI: 10.1021/am300602e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The use of artificial, prepatterned neuronal networks in vitro is a promising approach for studying the development and dynamics of small neural systems in order to understand the basic functionality of neurons and later on of the brain. The present work presents a high fidelity and robust procedure for controlling neuronal growth on substrates such as silicon wafers and glass, enabling us to obtain mature and durable neural networks of individual cells at designed geometries. It offers several advantages compared to other related techniques that have been reported in recent years mainly because of its high yield and reproducibility. The procedure is based on surface chemistry that allows the formation of functional, tailormade neural architectures with a micrometer high-resolution partition, that has the ability to promote or repel cells attachment. The main achievements of this work are deemed to be the creation of a large scale neuronal network at low density down to individual cells, that develop intact typical neurites and synapses without any glia-supportive cells straight from the plating stage and with a relatively long term survival rate, up to 4 weeks. An important application of this method is its use on 3D nanopillars and 3D nanowire-device arrays, enabling not only the cell bodies, but also their neurites to be positioned directly on electrical devices and grow with registration to the recording elements underneath.
Collapse
Affiliation(s)
- Moria Kwiat
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, ‡Department of Physiology, Sackler Medical School, and §Department of Neurobiology, The George S. Wise Faculty of Life Sciences, School of Neuroscience, Tel Aviv University , Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Bucaro MA, Vasquez Y, Hatton BD, Aizenberg J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS NANO 2012; 6:6222-30. [PMID: 22717194 DOI: 10.1021/nn301654e] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanobiomaterials are introducing new capabilities to coordinate cell selection, growth, morphology, and differentiation. Herein, we report that tuning the geometry of ordered arrays of nanopillars (NP) elicits specialized morphologies in adherent cells. Systematic analysis of the effects of the NP radius, height, and spacing reveals that stem cells assume either flattened, polarized, or stellate morphologies in direct response to interpillar spacing. Notably, on NPs of pitch near a critical spacing (d(crit) ≈ 2 μm for C3H10T1/2 cells), cells exhibit rounding of the cell body, pronounced polarization, and extension of narrow axon-like cell projections aligned with the square lattice of the NP array and extending hundreds of micrometers. Furthermore, increasing the NPs' aspect ratio from 12:1 to 50:1 to produce NPs with a corresponding reduction in the NP bending stiffness of 2 orders of magnitude amplified the cellular response and resulted in a previously unseen degree of cell polarization and alignment. The rapid morphological transformation is reproducible on surfaces that maintain key parameters of the NP geometry and spacing, is influenced by the cell seeding density, and persists for different stem cell lines and primary mesenchymal stem cells. The demonstrated ability to support various morphogenetic trends in stem cells by simply tuning the geometry of the NP substrates provides a stepping-stone for the future design of scaffolds where cellular morphology and alignment are crucial.
Collapse
Affiliation(s)
- Michael A Bucaro
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, and Kavli Institute for Bionano Science and Technology, Harvard, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | | | |
Collapse
|
97
|
Carey SP, Kraning-Rush CM, Reinhart-King CA. Single cell-mediated collagen reorganization in 3D matrices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:4333-5. [PMID: 22255298 DOI: 10.1109/iembs.2011.6091075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells use cytoskeletally-generated force to adhere, migrate and remodel their environment. While cellular forces generated by cells plated on 2D substrates is well-studied, much less is known about the forces generated by cells in 3D matrices, which more closely mimic the in vivo environment. Here, an approach to characterize cellular forces in 3D using confocal reflectance microscopy is presented. Remodeling of collagen fibrils due to the forces exerted by embedded cells was imaged in real-time as cells adhere to and contract the matrix. We implemented this approach in conjunction with 2D Traction Force Microscopy to compare cytoskeletally-mediated forces of cells in 3D collagen matrices to forces exerted by cells on 2D collagen-coated hydrogel substrates. Our results indicate that confocal reflectance microscopy of collagen fibrils can provide semi-quantitative information regarding cellular force in 3D matrices, and that the actin cytoskeleton plays a similar role in regulating cell contractility in both 2D and 3D microenvironments.
Collapse
Affiliation(s)
- Shawn P Carey
- Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
98
|
Jeon K, Oh HJ, Lim H, Kim JH, Lee DH, Lee ER, Park BH, Cho SG. Self-renewal of embryonic stem cells through culture on nanopattern polydimethylsiloxane substrate. Biomaterials 2012; 33:5206-20. [DOI: 10.1016/j.biomaterials.2012.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/01/2012] [Indexed: 10/28/2022]
|
99
|
Cohen-Karni T, Casanova D, Cahoon JF, Qing Q, Bell DC, Lieber CM. Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. NANO LETTERS 2012; 12:2639-44. [PMID: 22468846 PMCID: PMC3348975 DOI: 10.1021/nl3011337] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanostructures, which have sizes comparable to biological functional units involved in cellular communication, offer the potential for enhanced sensitivity and spatial resolution compared to planar metal and semiconductor structures. Silicon nanowire (SiNW) field-effect transistors (FETs) have been used as a platform for biomolecular sensors, which maintain excellent signal-to-noise ratios while operating on lengths scales that enable efficient extra- and intracellular integration with living cells. Although the NWs are tens of nanometers in diameter, the active region of the NW FET devices typically spans micrometers, limiting both the length and time scales of detection achievable with these nanodevices. Here, we report a new synthetic method that combines gold-nanocluster-catalyzed vapor-liquid-solid (VLS) and vapor-solid-solid (VSS) NW growth modes to produce synthetically encoded NW devices with ultrasharp (<5 nm) n-type highly doped (n(++)) to lightly doped (n) transitions along the NW growth direction, where n(++) regions serve as source/drain (S/D) electrodes and the n-region functions as an active FET channel. Using this method, we synthesized short-channel n(++)/n/n(++) SiNW FET devices with independently controllable diameters and channel lengths. SiNW devices with channel lengths of 50, 80, and 150 nm interfaced with spontaneously beating cardiomyocytes exhibited well-defined extracellular field potential signals with signal-to-noise values of ca. 4 independent of device size. Significantly, these "pointlike" devices yield peak widths of ∼500 μs, which is comparable to the reported time constant for individual sodium ion channels. Multiple FET devices with device separations smaller than 2 μm were also encoded on single SiNWs, thus enabling multiplexed recording from single cells and cell networks with device-to-device time resolution on the order of a few microseconds. These short-channel SiNW FET devices provide a new opportunity to create nanoscale biomolecular sensors that operate on the length and time scales previously inaccessible by other techniques but necessary to investigate fundamental, subcellular biological processes.
Collapse
Affiliation(s)
- Tzahi Cohen-Karni
- School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138
| | - Didier Casanova
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - James F. Cahoon
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Quan Qing
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - David C. Bell
- School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138
| | - Charles M. Lieber
- School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
- Corresponding authors:
| |
Collapse
|
100
|
Lobo A, Corat M, Antunes E, Ramos S, Pacheco-Soares C, Corat E. Cytocompatibility studies of vertically-aligned multi-walled carbon nanotubes: Raw material and functionalized by oxygen plasma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|