51
|
Awadasseid A, Wu Y, Zhang W. Extracellular Vesicles (Exosomes) as Immunosuppressive Mediating Variables in Tumor and Chronic Inflammatory Microenvironments. Cells 2021; 10:cells10102533. [PMID: 34685513 PMCID: PMC8533882 DOI: 10.3390/cells10102533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular vesicles released by most of the eukaryotic cells. Exosomes’ components include proteins, lipids, microRNA, circular RNA, long noncoding RNA, DNA, etc. Exosomes may carry both pro and anti-inflammatory cargos; however, exosomes are predominantly filled with immunosuppressive cargos such as enzymes and microRNAs in chronic inflammation. Exosomes have surfaced as essential participants in physiological and pathological intercellular communication. Exosomes may prevent or promote the formation of an aggressive tumor and chronic inflammatory microenvironments, thus influencing tumor and chronic inflammatory progression as well as clinical prognosis. Exosomes, which transmit many signals that may either enhance or constrain immunosuppression of lymphoid and myeloid cell populations in tumors, are increasingly becoming recognized as significant mediators of immune regulation in cancer. In this review, we outline the function of exosomes as mediators of immunosuppression in tumor and chronic inflammatory microenvironments, with the aim to improve cancer therapy.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China;
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Correspondence: (Y.W.); (W.Z.); Tel.: +86-571-8711-5282 (Y.W.); +86-571-8887-1507 (W.Z.)
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China;
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (Y.W.); (W.Z.); Tel.: +86-571-8711-5282 (Y.W.); +86-571-8887-1507 (W.Z.)
| |
Collapse
|
52
|
Luong N, Lenz JA, Modiano JF, Olson JK. Extracellular Vesicles Secreted by Tumor Cells Promote the Generation of Suppressive Monocytes. Immunohorizons 2021; 5:647-658. [PMID: 34404719 DOI: 10.4049/immunohorizons.2000017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Monocytes are among the first cells to infiltrate the tumor microenvironment. The conversion of monocytes to suppressor cells in the tumor microenvironment is crucial in evasion of the immune response and tumor maintenance. Tumor cells may secrete products that promote the conversion of monocytes to suppressor cells. Cells secrete extracellular vesicles (EVs) containing cargos of genetic materials and proteins as a way to communicate with neighboring cells. During pathologic conditions like cancers, tumor cells increase their EVs production containing microRNA, RNA, and proteins that may affect the immune cell response, contributing to the immunosuppressive microenvironment. Our studies show that EVs secreted by a wide range of murine tumor cells, including osteosarcoma, glioma, colon carcinoma, sarcoma, and melanoma, can be taken up by bone marrow-derived monocytes. The monocytes that took up the EVs secreted by tumor cells matured toward an immune-suppressive phenotype by upregulating the expression of suppressive cytokines and effector molecules. The monocytes also downregulated MHC class II and costimulatory molecules while increasing the expression of PD-L1 on their surface after taking up EVs from tumor cells. Most importantly, monocytes exposed to EVs secreted by tumor cells suppressed activated Ag-specific CD4+ T cells. These results show that tumor cells from several different tumor types secrete EVs which promote the conversion of monocytes into suppressor cells, thus promoting immune evasion. These studies suggest that EVs secreted by tumors are potentially a new target for future cancer therapy.
Collapse
Affiliation(s)
- Nhungoc Luong
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Jennifer A Lenz
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN; and
| | - Julie K Olson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN;
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| |
Collapse
|
53
|
Tumor Necrosis with Adjunction of Preoperative Monocyte-to-Lymphocyte Ratio as a New Risk Stratification Marker Can Independently Predict Poor Outcomes in Upper Tract Urothelial Carcinoma. J Clin Med 2021; 10:jcm10132983. [PMID: 34279467 PMCID: PMC8267944 DOI: 10.3390/jcm10132983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study aimed at investigating the prognostic impact of tumor necrosis and preoperative monocyte-to-lymphocyte ratio (MLR) in patients treated with radical nephroureterectomy (RNU) for upper tract urothelial carcinoma (UTUC). METHODS A total of 521 patients with UTUC treated with RNU from January 2008 to June 2019 at our institution were enrolled. Histological tumor necrosis was defined as the presence of microscopic coagulative necrosis. The optimal value of MLR was determined as 0.4 by receiver operating characteristic (ROC) analysis based on cancer-specific mortality. The Kaplan-Meier method with log-rank test and Cox proportional hazards regression models were performed to evaluate the impact of tumor necrosis and MLR on overall (OS), cancer-specific (CSS), and recurrence-free survival (RFS). Furthermore, ROC analysis was used to estimate the predictive ability of potential prognostic factors for oncological outcomes. RESULTS Tumor necrosis was present in 106 patients (20%), which was significantly associated with tumor location, high pathological tumor stage, lymph node metastasis, high tumor grade, lymphovascular invasion, tumor size, and increased monocyte counts. On multivariate analysis, the combination of tumor necrosis and preoperative MLR was an independent prognosticator of OS, CSS, and RFS (all p < 0.05). Moreover, ROC analyses revealed the predictive accuracy of a combination of tumor necrosis and preoperative MLR for OS, CSS, and RFS with the area under the ROC curve of 0.745, 0.810, and 0.782, respectively (all p < 0.001). CONCLUSIONS The combination of tumor necrosis and preoperative MLR can be used as an independent prognosticator in patients with UTUC after RNU. The identification of this combination could help physicians to recognize high-risk patients with unfavorable outcomes and devise more appropriate postoperative treatment plans.
Collapse
|
54
|
Kolypetri P, Liu S, Cox LM, Fujiwara M, Raheja R, Ghitza D, Song A, Daatselaar D, Willocq V, Weiner HL. Regulation of splenic monocyte homeostasis and function by gut microbial products. iScience 2021; 24:102356. [PMID: 33898947 PMCID: PMC8059056 DOI: 10.1016/j.isci.2021.102356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Splenic Ly6Chigh monocytes are innate immune cells involved in the regulation of central nervous system-related diseases. Recent studies have reported the shaping of peripheral immune responses by the gut microbiome via mostly unexplored pathways. In this study, we report that a 4-day antibiotic treatment eliminates certain families of the Bacteroidetes, Firmicutes, Tenericutes, and Actinobacteria phyla in the gut and reduces the levels of multiple pattern recognition receptor (PRR) ligands in the serum. Reduction of PRR ligands was associated with reduced numbers and perturbed function of splenic Ly6Chigh monocytes, which acquired an immature phenotype producing decreased levels of inflammatory cytokines and exhibiting increased phagocytic and anti-microbial abilities. Addition of PRR ligands in antibiotic-treated mice restored the number and functions of splenic Ly6Chigh monocytes. Our data identify circulating PRR ligands as critical regulators of the splenic Ly6Chigh monocyte behavior and suggest possible intervention pathways to manipulate this crucial immune cell subset.
Collapse
Affiliation(s)
- Panayota Kolypetri
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shirong Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura M. Cox
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mai Fujiwara
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Radhika Raheja
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dvora Ghitza
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anya Song
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dominique Daatselaar
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Willocq
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L. Weiner
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
55
|
Qiu Q, Zhou Q, Luo A, Li X, Li K, Li W, Yu M, Amanullah M, Lu B, Lu W, Liu P, Lu Y. Integrated analysis of virus and host transcriptomes in cervical cancer in Asian and Western populations. Genomics 2021; 113:1554-1564. [PMID: 33785400 DOI: 10.1016/j.ygeno.2021.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022]
Abstract
Race may influence vulnerability to HPV variants in viral infection and perisistence. Integrated analysis of the virus and host transcriptomes from different populations provides an unprecedented opportunity to understand these racial disparities in the prevalence of HPV and cervical cancers. We performed RNA-Seq analysis of 90 tumors and 39 adjacent normal tissues from cervical cancer patients at Zhejiang University (ZJU) in China, and conducted a comparative analysis with RNA-Seq data of 286 cervical cancers from TCGA. We found a modestly higher rate of HPV positives and HPV integrations in TCGA than in ZJU. In addition to LINC00393 and HSPB3 as new common integration hotspots in both cohorts, we found new hotspots such as SH2D3C and CASC8 in TCGA, and SCGB1A1 and ABCA1 in ZJU. We described the first, to our knowledge, virus-transcriptome-based classification of cervical cancer associated with clinical outcome. Particularly, patients with expressed E5 performed better than those without E5 expression. However, the constituents of these virus-transcriptome-based tumor subtypes differ dramatically between the two cohorts. We further characterized the immune infiltration landscapes between different HPV statuses and revealed significantly elevated levels of regulatory T cells and M0 macrophages in HPV positive tumors, which were associated with poor prognosis. These findings increase our understanding of the racial disparities in the prevalence of HPV and its associated cervical cancers between the two cohorts, and also have important implications in the classification of tumor subtypes, prognosis, and anti-cancer immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Qiongzi Qiu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Qing Zhou
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Aoran Luo
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Xufan Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenfeng Li
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengqian Yu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Md Amanullah
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Bingjian Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Weiguo Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China; Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Yan Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
56
|
Thiagarajan S, Tan JWS, Zhou S, Tan QX, Hendrikson J, Ng WH, Ng G, Liu Y, Tan GHC, Soo KC, Teo MCC, Chia CS, Ong CAJ. Postoperative Inflammatory Marker Surveillance in Colorectal Peritoneal Carcinomatosis. Ann Surg Oncol 2021; 28:6625-6635. [PMID: 33655363 PMCID: PMC8460570 DOI: 10.1245/s10434-020-09544-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/17/2020] [Indexed: 01/06/2023]
Abstract
Background The prognostic significance of inflammatory markers in solid cancers is well-established, albeit with considerable heterogeneity. This study sought to investigate the postoperative inflammatory marker trend in peritoneal carcinomatosis (PC), with a focus on colorectal PC (CPC), and to propose optimal surveillance periods and cutoffs. Methods Data were collected from a prospectively maintained database of PC patients treated at the authors’ institution from April 2001 to March 2019. The platelet–lymphocyte ratio (PLR), the neutrophil–lymphocyte ratio (NLR), and the lymphocyte–monocyte ratio (LMR) were collected preoperatively and on postoperative days 0, 1 to 3, 4 to 7, 8 to 21, 22 to 56, and 57 to 90 as averages. Optimal surveillance periods and cutoffs for each marker were determined by maximally selected rank statistics. The Kaplan–Meier method and Cox proportional hazard regression models were used to investigate the association of inflammatory markers with 1-year overall survival (OS) and recurrence-free survival (RFS) using clinicopathologic parameters. Results The postoperative inflammatory marker trend and levels did not differ between the patients with and those without hyperthermic intraperitoneal chemotherapy (HIPEC). Low postoperative LMR (days 4–7), high postoperative NLR (days 8–21), and high postoperative PLR (days 22–56) were optimal for prognosticating poor 1-year OS, whereas high postoperative PLR and NLR (days 57–90) and low postoperative LMR (days 8–21) were associated with poor 1-year RFS. A composite score of these three markers was prognostic for OS in CPC. Conclusions The reported cutoffs should be validated in a larger population of CPC patients. Future studies should account for the inflammatory response profile when selecting appropriate surveillance periods. Supplementary Information The online version of this article (10.1245/s10434-020-09544-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sasinthiran Thiagarajan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Joey Wee-Shan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Siqin Zhou
- Department of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Qiu Xuan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Josephine Hendrikson
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Wai Har Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Gillian Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Ying Liu
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Grace Hwei Ching Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Khee Chee Soo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Melissa Ching Ching Teo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Claramae Shulyn Chia
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore. .,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore. .,Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore. .,SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
57
|
Bjørnetrø T, Steffensen LA, Vestad B, Brusletto BS, Olstad OK, Trøseid AM, Aass HCD, Haug KBF, Llorente A, Bøe SO, Lång A, Samiappan R, Redalen KR, Øvstebø R, Ree AH. Uptake of circulating extracellular vesicles from rectal cancer patients and differential responses by human monocyte cultures. FEBS Open Bio 2021; 11:724-740. [PMID: 33512765 PMCID: PMC7931235 DOI: 10.1002/2211-5463.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) released by tumor cells can directly or indirectly modulate the phenotype and function of the immune cells of the microenvironment locally or at distant sites. The uptake of circulating EVs and the responses by human monocytes in vitro may provide new insights into the underlying biology of the invasive and metastatic processes in cancer. Although a mixed population of vesicles is obtained with most isolation techniques, we predominantly isolated exosomes (small EVs) and microvesicles (medium EVs) from the SW480 colorectal cancer cell line (established from a primary adenocarcinoma of the colon) by sequential centrifugation and ultrafiltration, and plasma EVs were prepared from 22 patients with rectal adenoma polyps or invasive adenocarcinoma by size‐exclusion chromatography. The EVs were thoroughly characterized. The uptake of SW480 EVs was analyzed, and small SW480 EVs were observed to be more potent than medium SW480 EVs in inducing monocyte secretion of cytokines. The plasma EVs were also internalized by monocytes; however, their cytokine‐releasing potency was lower than that of the cell line‐derived vesicles. The transcriptional changes in the monocytes highlighted differences between adenoma and adenocarcinoma patient EVs in their ability to regulate biological functions, whereas the most intriguing changes were found in monocytes receiving EVs from patients with metastatic compared with localized cancer.
Collapse
Affiliation(s)
- Tonje Bjørnetrø
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Norway
| | - Lilly Alice Steffensen
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - Beate Vestad
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - Berit Sletbakk Brusletto
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - Ole Kristoffer Olstad
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - Anne-Marie Trøseid
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Norway
| | | | - Kari Bente Foss Haug
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute of Cancer Research, Oslo University Hospital, Norway
| | - Stig Ove Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - Anna Lång
- Department of Medical Biochemistry, Oslo University Hospital, Norway
| | | | - Kathrine Røe Redalen
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Reidun Øvstebø
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
58
|
Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun 2020; 11:5618. [PMID: 33154372 PMCID: PMC7645678 DOI: 10.1038/s41467-020-19322-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic chemotherapy remains the backbone of many cancer treatments. Due to its untargeted nature and the severe side effects it can cause, numerous nanomedicine approaches have been developed to overcome these issues. However, targeted delivery of therapeutics remains challenging. Engineering microrobots is increasingly receiving attention in this regard. Their functionalities, particularly their motility, allow microrobots to penetrate tissues and reach cancers more efficiently. Here, we highlight how different microrobots, ranging from tailor-made motile bacteria and tiny bubble-propelled microengines to hybrid spermbots, can be engineered to integrate sophisticated features optimised for precision-targeting of a wide range of cancers. Towards this, we highlight the importance of integrating clinicians, the public and cancer patients early on in the development of these novel technologies.
Collapse
Affiliation(s)
- Christine K Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany.
| | - Richard J Edmondson
- Gynaecological Oncology, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- St. Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research Floor, Oxford Road, Manchester, M13 9WL, UK
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany.
| |
Collapse
|
59
|
Zakiryanova GK, Kustova E, Urazalieva NT, Baimukhametov ET, Makarov VA, Turaly GM, Shurin GV, Biyasheva ZM, Nakisbekov NN, Shurin MR. Notch signaling defects in NK cells in patients with cancer. Cancer Immunol Immunother 2020; 70:981-988. [PMID: 33083905 DOI: 10.1007/s00262-020-02763-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Altered expressions of proto-oncogenes have been reported during normal lymphocytes mitogenesis and in T and B lymphocytes in patients with autoimmune diseases. We have recently demonstrated a significantly decreased expression of c-kit and c-Myc in NK cells isolated from patients with cancer, which might be related to the functional deficiency of NK cells in the tumor environment. Here, focusing on the regulatory mechanisms of this new clinical phenomenon, we determined expression of c-Myc, Notch1, Notch2, p-53, Cdk6, Rb and phosphorylated Rb in NK cells isolated from the healthy donors and cancer patients. The results of our study revealed a significant down-regulation of expression of Notch receptors and up-regulation of Cdk6 expression in NK cells in cancer, while no significant changes in the expression of p53 and Rb proteins were seen. These data revealed novel signaling pathways altered in NK cells in the tumor environment and support further investigation of the origin of deregulated expression of proto-oncogenes in NK cells patients with different types of cancer.
Collapse
Affiliation(s)
| | - Elena Kustova
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Nataliya T Urazalieva
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Emile T Baimukhametov
- Department of Oncology, Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | - Valeriy A Makarov
- Department of Oncosurgery, Almaty Oncology Center, Almaty, Kazakhstan
| | - Gulmariya M Turaly
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Galina V Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Narymzhan N Nakisbekov
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Michael R Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
60
|
Anisiewicz A, Pawlik A, Filip-Psurska B, Wietrzyk J. Differential Impact of Calcitriol and Its Analogs on Tumor Stroma in Young and Aged Ovariectomized Mice Bearing 4T1 Mammary Gland Cancer. Int J Mol Sci 2020; 21:E6359. [PMID: 32887237 PMCID: PMC7503326 DOI: 10.3390/ijms21176359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Vitamin D compounds (VDC) are extensively studied in the field of anticancer properties, including breast cancer. Previously, we showed that calcitriol and its analogs (PRI-2191 and PRI-2205) stimulate metastasis in 4T1 murine mammary gland cancer models in young mice, whereas the reverse effect was observed in aged ovariectomized (OVX) mice; (2) Methods: We determined the phenotype of monocytes/macrophages using FACS and examined the expression of selected genes and proteins by Real-Time PCR and ELISA; (3) Results: Activities of VDC are accompanied by an increase in the percentage of Ly6Clow anti-inflammatory monocytes in the spleen of young and a decrease in aged OVX mice. Treatment of young mice with VDC resulted in an increase of CCL2 plasma and tumor concentration and Arg1 in tumor. In later stage of tumor progression the expression of genes related to metastasis in lung tissue was decreased or increased, in old OVX or young mice, respectively; (4) Conclusions: Pro- or anti-metastatic effects of calcitriol and its analogs in young or aged OVX mice, respectively, can be attributed to the differences in the effects of VDC on the tumor microenvironment, as a consequence of differences in the immunity status of young and aged mice.
Collapse
Affiliation(s)
- Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.P.); (B.F.-P.); (J.W.)
| | | | | | | |
Collapse
|
61
|
Ai D, Liu G, Li X, Wang Y, Guo M. Calculation of immune cell proportion from batch tumor gene expression profile based on support vector regression. J Bioinform Comput Biol 2020; 18:2050030. [PMID: 32825808 DOI: 10.1142/s0219720020500304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In addition to tumor cells, a large number of immune cells are found in the tumor microenvironment (TME) of cancer patients. Tumor-infiltrating immune cells play an important role in tumor progression and patient outcome. We improved the relative proportion estimation algorithm of immune cells based on RNA-seq gene expression profiling and solved the multiple linear regression model by support vector regression ([Formula: see text]-SVR). These steps resulted in increased robustness of the algorithm and more accurate calculation of the relative proportion of different immune cells in cancer tissues. This method was applied to the analysis of infiltrating immune cells based on 41 pairs of colorectal cancer tissues and normal solid tissues. Specifically, we compared the relative fractions of six types of immune cells in colorectal cancer tissues to those found in normal solid tissue samples. We found that tumor tissues contained a higher proportion of CD8 T cells and neutrophils, while B cells and monocytes were relatively low. Our pipeline for calculating immune cell proportion using gene expression profile data can be freely accessed from GitHub at https://github.com/gutmicrobes/EICS.git.
Collapse
Affiliation(s)
- Dongmei Ai
- Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, P. R. China.,School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, Beijing, P. R. China
| | - Gang Liu
- Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, P. R. China.,School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, Beijing, P. R. China
| | - Xiaoxin Li
- Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, P. R. China.,School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, Beijing, P. R. China
| | - Yuduo Wang
- Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, P. R. China.,School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, Beijing, P. R. China
| | - Man Guo
- Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, P. R. China.,School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, Beijing, P. R. China
| |
Collapse
|
62
|
Krijgsman D, De Vries NL, Andersen MN, Skovbo A, Tollenaar RA, Møller HJ, Hokland M, Kuppen PJ. CD163 as a Biomarker in Colorectal Cancer: The Expression on Circulating Monocytes and Tumor-Associated Macrophages, and the Soluble Form in the Blood. Int J Mol Sci 2020; 21:E5925. [PMID: 32824692 PMCID: PMC7460610 DOI: 10.3390/ijms21165925] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
The macrophage-associated molecule CD163 has been reported as a prognostic biomarker in different cancer types, but its role in colorectal cancer (CRC) is unclear. We studied CD163 in the tumor microenvironment and circulation of patients with CRC in relation to clinicopathological parameters. An enzyme-linked immunosorbent assay (ELISA) was used to measure the serum sCD163 levels and multiparameter flow cytometry was used to study the peripheral blood monocytes and their CD163 expression in CRC patients (N = 78) and healthy donors (N = 50). The distribution of tumor-associated macrophages (TAMs) was studied in primary colorectal tumors with multiplex immunofluorescence. We showed that CRC patients with above-median sCD163 level had a shorter overall survival (OS, p = 0.035) as well as disease-free survival (DFS, p = 0.005). The above-median sCD163 remained significantly associated with a shorter DFS in the multivariate analysis (p = 0.049). Moreover, a shorter OS was observed in CRC patients with an above-median total monocyte percentage (p = 0.007). The number and phenotype of the stromal and intraepithelial TAMs in colorectal tumors were not associated with clinical outcome. In conclusion, sCD163 and monocytes in the circulation may be potential prognostic biomarkers in CRC patients, whereas TAMs in the tumor showed no association with clinical outcome. Thus, our results emphasize the importance of the innate systemic immune response in CRC disease progression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/blood
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Colorectal Neoplasms/blood
- Colorectal Neoplasms/pathology
- Disease-Free Survival
- Female
- Humans
- Male
- Middle Aged
- Monocytes/metabolism
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Tumor-Associated Macrophages/metabolism
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (N.L.D.V.); (R.A.E.M.T.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
| | - Natasja L. De Vries
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (N.L.D.V.); (R.A.E.M.T.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
| | - Morten N. Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Anni Skovbo
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
- FACS Core Facility, Aarhus University, 8200 Aarhus, Denmark
| | - Rob A.E.M. Tollenaar
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (N.L.D.V.); (R.A.E.M.T.)
| | - Holger J. Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Marianne Hokland
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.N.A.); (A.S.); (M.H.)
| | - Peter J.K. Kuppen
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (D.K.); (N.L.D.V.); (R.A.E.M.T.)
| |
Collapse
|
63
|
Asai A, Yasuoka H, Matsui M, Tsuchimoto Y, Fukunishi S, Higuchi K. Programmed Death 1 Ligand Expression in the Monocytes of Patients with Hepatocellular Carcinoma Depends on Tumor Progression. Cancers (Basel) 2020; 12:E2286. [PMID: 32824016 PMCID: PMC7465257 DOI: 10.3390/cancers12082286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Monocytes (CD14+ cells) from advanced-stage hepatocellular carcinoma (HCC) patients express programmed death 1 ligand (PD-L)/PD-1 and suppress the host antitumor immune response. However, it is unclear whether cancer progression is associated with CD14+ cells. We compared CD14+ cell properties before and after cancer progression in the same HCC patients and examined their role in antitumor immunity. CD14+ cells were isolated from 15 naïve early-stage HCC patients before treatment initiation and after cancer progression to advanced stages. Although CD14+ cells from patients at early HCC stages exhibited antitumor activity in humanized murine chimera, CD14+ cells from the same patients after progression to advanced stages lacked this activity. Moreover, CD14+ cells from early HCC stages scantly expressed PD-L1 and PD-L2 and produced few cytokines, while CD14+ cells from advanced stages showed increased PD-L expression and produced IL-10 and CCL1. CD14+ cells were also isolated from five naïve advanced-stage HCC patients before treatment as well as after treatment-induced tumor regression. The CD14+ cells from patients with advanced-stage HCC expressed PD-L expressions, produced IL-10 and CCL1, and exhibited minimal tumoricidal activity. After treatment-induced tumor regression, CD14+ cells from the same patients did not express PD-Ls, failed to produce cytokines, and recovered tumoricidal activity. These results indicate that PD-L expression as well as CD14+ cell phenotype depend on the tumor stage in HCC patients. PD-L expressions of monocytes may be used as a new marker in the classification of cancer progression in HCC.
Collapse
Affiliation(s)
- Akira Asai
- The Second Department of Internal Medicine, Osaka Medical College, Takatsuki 5698686, Japan; (H.Y.); (M.M.); (Y.T.); (S.F.); (K.H.)
| | | | | | | | | | | |
Collapse
|
64
|
Wang HF, Liu Y, Wang T, Yang G, Zeng B, Zhao CX. Tumor-Microenvironment-on-a-Chip for Evaluating Nanoparticle-Loaded Macrophages for Drug Delivery. ACS Biomater Sci Eng 2020; 6:5040-5050. [DOI: 10.1021/acsbiomaterials.0c00650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hao-Fei Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Tong Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bijun Zeng
- Diamantina Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
65
|
Abstract
Tumor immunology is undergoing a renaissance due to the recent profound clinical successes of tumor immunotherapy. These advances have coincided with an exponential growth in the development of -omics technologies. Armed with these technologies and their associated computational and modeling toolsets, systems biologists have turned their attention to tumor immunology in an effort to understand the precise nature and consequences of interactions between tumors and the immune system. Such interactions are inherently multivariate, spanning multiple time and size scales, cell types, and organ systems, rendering systems biology approaches particularly amenable to their interrogation. While in its infancy, the field of 'Cancer Systems Immunology' has already influenced our understanding of tumor immunology and immunotherapy. As the field matures, studies will move beyond descriptive characterizations toward functional investigations of the emergent behavior that govern tumor-immune responses. Thus, Cancer Systems Immunology holds incredible promise to advance our ability to fight this disease.
Collapse
Affiliation(s)
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
66
|
Padgett LE, Araujo DJ, Hedrick CC, Olingy CE. Functional crosstalk between T cells and monocytes in cancer and atherosclerosis. J Leukoc Biol 2020; 108:297-308. [PMID: 32531833 DOI: 10.1002/jlb.1mir0420-076r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Monocytes and monocyte-derived cells, including Mϕs and dendritic cells, exhibit a diverse array of phenotypic states that are dictated by their surrounding microenvironment. These cells direct T cell activation and function via cues that range from being immunosuppressive to immunostimulatory. Solid tumors and atherosclerotic plaques represent two pathological niches with distinct immune microenvironments. While monocytes and their progeny possess a phenotypic spectrum found within both disease contexts, most within tumors are pro-tumoral and support evasion of host immune responses by tumor cells. In contrast, monocyte-derived cells within atherosclerotic plaques are usually pro-atherogenic, pro-inflammatory, and predominantly directed against self-antigens. Consequently, cancer immunotherapies strive to enhance the immune response against tumor antigens, whereas atherosclerosis treatments seek to dampen the immune response against lipid antigens. Insights into monocyte-T cell interactions within these niches could thus inform therapeutic strategies for two immunologically distinct diseases. Here, we review monocyte diversity, interactions between monocytes and T cells within tumor and plaque microenvironments, how certain therapies have leveraged these interactions, and novel strategies to assay such associations.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniel J Araujo
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Claire E Olingy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
67
|
Robinson AV, Keeble C, Lo MCI, Thornton O, Peach H, Moncrieff MDS, Dewar DJ, Wade RG. The neutrophil-lymphocyte ratio and locoregional melanoma: a multicentre cohort study. Cancer Immunol Immunother 2020; 69:559-568. [PMID: 31974724 PMCID: PMC7113207 DOI: 10.1007/s00262-019-02478-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/31/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The neutrophil-lymphocyte ratio (NLR) is an inflammatory biomarker which is useful in cancer prognostication. We aimed to investigate the differences in baseline NLR between patients with localised and metastatic cutaneous melanoma and how this biomarker changed over time with the recurrence of disease. METHODS This multicentre cohort study describes patients treated for Stage I-III cutaneous melanoma over 10 years. The baseline NLR was measured immediately prior to surgery and again at the time of discharge or disease recurrence. The odds ratios (OR) for sentinel node involvement are estimated using mixed-effects logistic regression. The risk of recurrence is estimated using multivariable Cox regression. RESULTS Overall 1489 individuals were included. The mean baseline NLR was higher in patients with palpable nodal disease compared to those with microscopic nodal or localised disease (2.8 versus 2.4 and 2.3, respectively; p < 0.001). A baseline NLR ≥ 2.3 was associated with 30% higher odds of microscopic metastatic melanoma in the sentinel lymph node [adjusted OR 1.3 (95% CI 1.3, 1.3)]. Following surgery, 253 patients (18.7%) developed recurrent melanoma during surveillance although there was no statistically significant association between the baseline NLR and the risk of recurrence [adjusted HR 0.9 (0.7, 1.1)]. CONCLUSION The NLR is associated with the volume of melanoma at presentation and may predict occult sentinel lymph metastases. Further prospective work is required to investigate how NLR may be modelled against other clinicopathological variables to predict outcomes and to understand the temporal changes in NLR following surgery for melanoma.
Collapse
Affiliation(s)
- Alyss V Robinson
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Claire Keeble
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Michelle C I Lo
- Plastic and Reconstructive Surgery Department, Norfolk and Norwich University Hospital NHS Trust, Norwich, UK
| | - Owen Thornton
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Howard Peach
- Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds, UK
| | - Marc D S Moncrieff
- Plastic and Reconstructive Surgery Department, Norfolk and Norwich University Hospital NHS Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Donald J Dewar
- Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds, UK
| | - Ryckie G Wade
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK.
- Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds, UK.
| |
Collapse
|
68
|
Castro NFC, Falleiros‐Júnior LR, Zucão MI, Perez APS, Taboga SR, Santos FCA, Vilamaior PSL. Ethinylestradiol and its effects on the macrophages in the prostate of adult and senile gerbils. Cell Biol Int 2020; 44:1467-1480. [DOI: 10.1002/cbin.11342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Nayara F. C. Castro
- Department of Biology, Institute of Biosciences, Letters and Exact SciencesSão Paulo State University Rua Cristóvão Colombo, 2265 São José do Rio Preto São Paulo Brazil
| | - Luiz R. Falleiros‐Júnior
- Department of Biology, Institute of Biosciences, Letters and Exact SciencesSão Paulo State University Rua Cristóvão Colombo, 2265 São José do Rio Preto São Paulo Brazil
| | - Mariele I. Zucão
- Department of Biology, Institute of Biosciences, Letters and Exact SciencesSão Paulo State University Rua Cristóvão Colombo, 2265 São José do Rio Preto São Paulo Brazil
| | - Ana P. S. Perez
- Special Academic Unit of Health Sciences, Medicine CourseFederal University of Goiás Rodovia BR‐364 Km 195, 3800 Jataí Goiás Brazil
| | - Sebastião R. Taboga
- Department of Biology, Institute of Biosciences, Letters and Exact SciencesSão Paulo State University Rua Cristóvão Colombo, 2265 São José do Rio Preto São Paulo Brazil
| | - Fernanda C. A. Santos
- Department of MorphologyFederal University of Goiás Campus II, Samambaia Goiânia Goiás Brazil
| | - Patrícia S. L. Vilamaior
- Department of Biology, Institute of Biosciences, Letters and Exact SciencesSão Paulo State University Rua Cristóvão Colombo, 2265 São José do Rio Preto São Paulo Brazil
| |
Collapse
|
69
|
Liu L, Jin R, Hao J, Zeng J, Yin D, Yi Y, Zhu M, Mandal A, Hua Y, Ng CK, Egilmez NK, Sauter ER, Li B. Consumption of the Fish Oil High-Fat Diet Uncouples Obesity and Mammary Tumor Growth through Induction of Reactive Oxygen Species in Protumor Macrophages. Cancer Res 2020; 80:2564-2574. [PMID: 32213543 DOI: 10.1158/0008-5472.can-19-3184] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/22/2020] [Accepted: 03/19/2020] [Indexed: 01/22/2023]
Abstract
Obesity is associated with increased risk of many types of cancer and can be induced by various high-fat diets (HFD) from different fat sources. It remains unknown whether fatty acid composition in different HFD influences obesity-associated tumor development. Here we report that consumption of either a cocoa butter or fish oil HFD induced similar obesity in mouse models. While obesity induced by the cocoa butter HFD was associated with accelerated mammary tumor growth, consumption of the fish oil HFD uncoupled obesity from increased mammary tumor growth and exhibited a decrease in protumor macrophages. Compared with fatty acid (FA) components in both HFDs, n-3 FA rich in the fish oil HFD induced significant production of reactive oxygen species (ROS) and macrophage death. Moreover, A-FABP expression in the protumor macrophages facilitated intracellular transportation of n-3 FA and oxidation of mitochondrial FA. A-FABP deficiency diminished n-3 FA-mediated ROS production and macrophage death in vitro and in vivo. Together, our results demonstrate a novel mechanism by which n-3 FA induce ROS-mediated protumor macrophage death in an A-FABP-dependent manner. SIGNIFICANCE: This study provides mechanistic insight into dietary supplementation with fish oil for breast cancer prevention and advances a new concept that not all HFDs leading to obesity are tumorigenic. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/12/2564/F1.large.jpg.
Collapse
MESH Headings
- Animals
- Carcinogenesis/immunology
- Carcinogenesis/metabolism
- Cell Line, Tumor/transplantation
- Diet, High-Fat/adverse effects
- Diet, High-Fat/methods
- Dietary Fats/adverse effects
- Fatty Acid-Binding Proteins/genetics
- Fatty Acid-Binding Proteins/metabolism
- Female
- Fish Oils/administration & dosage
- Humans
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Knockout
- Mitochondria/metabolism
- Obesity/complications
- Obesity/immunology
- Obesity/metabolism
- Primary Cell Culture
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Lianliang Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Rong Jin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Jun Zeng
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Di Yin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanmei Yi
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
- Department of Histology and Embryology, Guangdong Medical University, Guangdong, China
| | - Mingming Zhu
- Department of Radiology, University of Louisville, Louisville, Kentucky
| | - Anita Mandal
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Yuan Hua
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Chin K Ng
- Department of Radiology, University of Louisville, Louisville, Kentucky
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Edward R Sauter
- Division of Cancer Prevention, NCI, NIH, Rockville, Maryland
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
70
|
Devalaraja S, To TKJ, Folkert IW, Natesan R, Alam MZ, Li M, Tada Y, Budagyan K, Dang MT, Zhai L, Lobel GP, Ciotti GE, Eisinger-Mathason TSK, Asangani IA, Weber K, Simon MC, Haldar M. Tumor-Derived Retinoic Acid Regulates Intratumoral Monocyte Differentiation to Promote Immune Suppression. Cell 2020; 180:1098-1114.e16. [PMID: 32169218 PMCID: PMC7194250 DOI: 10.1016/j.cell.2020.02.042] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/13/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
The immunosuppressive tumor microenvironment (TME) is a major barrier to immunotherapy. Within solid tumors, why monocytes preferentially differentiate into immunosuppressive tumor-associated macrophages (TAMs) rather than immunostimulatory dendritic cells (DCs) remains unclear. Using multiple murine sarcoma models, we find that the TME induces tumor cells to produce retinoic acid (RA), which polarizes intratumoral monocyte differentiation toward TAMs and away from DCs via suppression of DC-promoting transcription factor Irf4. Genetic inhibition of RA production in tumor cells or pharmacologic inhibition of RA signaling within TME increases stimulatory monocyte-derived cells, enhances T cell-dependent anti-tumor immunity, and synergizes with immune checkpoint blockade. Furthermore, an RA-responsive gene signature in human monocytes correlates with an immunosuppressive TME in multiple human tumors. RA has been considered as an anti-cancer agent, whereas our work demonstrates its tumorigenic capability via myeloid-mediated immune suppression and provides proof of concept for targeting this pathway for tumor immunotherapy.
Collapse
Affiliation(s)
- Samir Devalaraja
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tsun Ki Jerrick To
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian W Folkert
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramakrishnan Natesan
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Minghong Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Yuma Tada
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Konstantin Budagyan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Mai T Dang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Li Zhai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Graham P Lobel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabrielle E Ciotti
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T S Karin Eisinger-Mathason
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irfan A Asangani
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristy Weber
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
71
|
Ma M, Lin B, Wang M, Liang X, Su L, Okose O, Lv W, Li J. Immunotherapy in anaplastic thyroid cancer. Am J Transl Res 2020; 12:974-988. [PMID: 32269728 PMCID: PMC7137046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
Anaplastic thyroid cancer (ATC) is one of the worst human malignancies, with an associated median survival of only 5 months. It is resistant to conventional thyroid cancer therapies, including radioiodine and thyroid-stimulating hormone suppression. Cancer immunotherapy has emerged over the past few decades as a transformative approach to treating a wide variety of cancers. However, immunotherapy for ATC is still in the experimental stage. This review will cover several strategies of immunotherapy and discuss the possible application of these strategies in the treatment of ATC (such as targeted therapy for tumor-associated macrophages, cancer vaccines, adoptive immunotherapy, monoclonal antibodies and immune checkpoint blockade) with the hope of improving the prognosis of ATC in the future.
Collapse
Affiliation(s)
- Maoguang Ma
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Bo Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Mingdian Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer CenterGuangzhou, China
| | - Xiaoli Liang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Lei Su
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Okenwa Okose
- Texas A & M College of MedicineCollege Station, TX 77843, USA
- Division of Thyroid and Parathyroid Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical SchoolBoston, MA, USA
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
- Division of Thyroid and Parathyroid Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
72
|
Martini DJ, Liu Y, Shabto JM, Carthon BC, Hitron EE, Russler GA, Caulfield S, Kissick HT, Harris WB, Kucuk O, Master VA, Bilen MA. Novel Risk Scoring System for Patients with Metastatic Renal Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Oncologist 2020; 25:e484-e491. [PMID: 32162798 PMCID: PMC7066702 DOI: 10.1634/theoncologist.2019-0578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) criteria are the gold standard for risk-stratifying patients with metastatic renal cell cancer (mRCC). We developed a novel risk scoring system for patients with mRCC treated with immune checkpoint inhibitors (ICIs). METHODS We performed a retrospective analysis of 100 ICI-treated patients with mRCC at Winship Cancer Institute from 2015 to 2018. Several baseline variables were collected, including markers of inflammation, body mass index (BMI), and sites of metastatic disease, and all were considered for inclusion in our risk scoring system. Upon variable selection in multivariable model, monocyte-to-lymphocyte ratio (MLR), BMI, and number and sites of metastases at baseline were used for risk score calculation. Patients were categorized using four-level risk groups as good (risk score = 0), intermediate (risk score = 1), poor (risk score = 2), or very poor (risk score = 3-4). Cox's proportional hazard model and the Kaplan-Meier method were implemented for survival outcomes. RESULTS Most patients were male (66%) with clear cell renal cell carcinoma (72%). The majority (71%) received anti-programmed cell death protein-1 monotherapy. Our risk scoring criteria had higher Uno's concordance statistics than IMDC in predicting overall survival (OS; 0.71 vs. 0.57) and progression-free survival (0.61 vs. 0.58). Setting good risk (MLR <0.93, BMI ≥24, and D_Met = 0) as the reference, the OS hazard ratios were 29.5 (95% confidence interval [CI], 3.64-238.9), 6.58 (95% CI, 0.84-51.68), and 3.75 (95% CI, 0.49-28.57) for very poor, poor, and intermediate risk groups, respectively. CONCLUSION Risk scoring using MLR, BMI, and number and sites of metastases may be an effective way to predict survival in patients with mRCC receiving ICI. These results should be validated in a larger, prospective study. IMPLICATIONS FOR PRACTICE A risk scoring system was created for patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors. The results of this study have significant implications for practicing oncologists in the community and academic setting. Importantly, these results identify readily available risk factors that can be used clinically to risk-stratify patients with metastatic renal cell carcinoma who are treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Dylan J. Martini
- Department of Hematology and Medical Oncology, Emory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Yuan Liu
- Departments of Biostatistics and Bioinformatics, Emory UniversityAtlantaGeorgiaUSA
| | - Julie M. Shabto
- Department of Hematology and Medical Oncology, Emory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Bradley C. Carthon
- Department of Hematology and Medical Oncology, Emory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Emilie Elise Hitron
- Department of Hematology and Medical Oncology, Emory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Greta Anne Russler
- Department of Hematology and Medical Oncology, Emory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Sarah Caulfield
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
- Department of Pharmaceutical Services, Emory University School of MedicineAtlantaGeorgiaUSA
| | - Haydn T. Kissick
- Department of Urology, Emory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Wayne B. Harris
- Department of Hematology and Medical Oncology, Emory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Viraj A. Master
- Department of Urology, Emory University School of MedicineAtlantaGeorgiaUSA
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Emory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
73
|
Singh L, Singh MK, Rizvi MA, Bakhshi S, Meel R, Lomi N, Sen S, Kashyap S. Clinical relevance of the comparative expression of immune checkpoint markers with the clinicopathological findings in patients with primary and chemoreduced retinoblastoma. Cancer Immunol Immunother 2020; 69:1087-1099. [PMID: 32100078 DOI: 10.1007/s00262-020-02529-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The goal of this study is to identify the pathological findings and expression of immune checkpoint marker (PD-1, PD-L1, and CTLA-4) in the tumor microenvironment of both primary and chemoreduced retinoblastoma and correlate them with clinicopathological parameters and patient outcome. METHODS Total of 262 prospective cases was included prospectively in which 144 cases underwent primary enucleation and 118 cases received chemotherapy/radiotherapy before enucleation (chemoreduced retinoblastoma). Immunohistochemistry, qRT-PCR and western blotting were performed to evaluate the expression pattern of immune checkpoint markers in primary and chemoreduced retinoblastoma. RESULTS Tumor microenvironment were different for both primary and chemoreduced retinoblastoma. Expression of PD-1 was found in 29/144 (20.13%) and 48/118 (40.67%) in primary and chemoreduced retinoblastoma, respectively, whereas PD-L1 was expressed in 46/144 (31.94%) and 22/118 (18.64%) in cases of primary and chemoreduced retinoblastoma, respectively. Expression pattern of CTLA-4 protein was similar in both groups of retinoblastoma. On multivariate analysis, massive choroidal invasion, bilaterality and PD-L1 expression (p = 0.034) were found to be statistically significant factors in primary retinoblastoma, whereas PD-1 expression (p = 0.015) and foamy macrophages were significant factors in chemoreduced retinoblastoma. Overall survival was reduced in cases of PD-L1 (80.76%) expressed primary retinoblastoma, and PD-1 (63.28%) expressed chemoreduced retinoblastoma. CONCLUSIONS This is the first of its kind study predicting a relevant role of the immune checkpoint markers in both groups of primary and chemoreduced retinoblastoma with prognostic significance. Differential expression of these markers in both group of retinoblastoma is a novel finding and might be an interesting and beneficial target for chemoresistant tumors.
Collapse
Affiliation(s)
- Lata Singh
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India.,Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mithalesh Kumar Singh
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Sameer Bakhshi
- Department of Medical Oncology, IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Rachna Meel
- Department of Ophthalmology, Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Neiwete Lomi
- Department of Ophthalmology, Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sen
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Seema Kashyap
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
74
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
75
|
Cui WQ, Wang ST, Pan D, Chang B, Sang LX. Caffeine and its main targets of colorectal cancer. World J Gastrointest Oncol 2020; 12:149-172. [PMID: 32104547 PMCID: PMC7031145 DOI: 10.4251/wjgo.v12.i2.149] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Caffeine is a purine alkaloid and is widely consumed in coffee, soda, tea, chocolate and energy drinks. To date, a growing number of studies have indicated that caffeine is associated with many diseases including colorectal cancer. Caffeine exerts its biological activity through binding to adenosine receptors, inhibiting phosphodiesterases, sensitizing calcium channels, antagonizing gamma-aminobutyric acid receptors and stimulating adrenal hormones. Some studies have indicated that caffeine can interact with signaling pathways such as transforming growth factor β, phosphoinositide-3-kinase/AKT/mammalian target of rapamycin and mitogen-activated protein kinase pathways through which caffeine can play an important role in colorectal cancer pathogenesis, metastasis and prognosis. Moreover, caffeine can act as a general antioxidant that protects cells from oxidative stress and also as a regulatory factor of the cell cycle that modulates the DNA repair system. Additionally, as for intestinal homeostasis, through the interaction with receptors and cytokines, caffeine can modulate the immune system mediating its effects on T lymphocytes, B lymphocytes, natural killer cells and macrophages. Furthermore, caffeine can not only directly inhibit species in the gut microbiome, such as Escherichia coli and Candida albicans but also can indirectly exert inhibition by increasing the effects of other antimicrobial drugs. This review summarizes the association between colorectal cancer and caffeine that is being currently studied.
Collapse
Affiliation(s)
- Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
76
|
Menicali E, Guzzetti M, Morelli S, Moretti S, Puxeddu E. Immune Landscape of Thyroid Cancers: New Insights. Front Endocrinol (Lausanne) 2020; 11:637826. [PMID: 33986723 PMCID: PMC8112200 DOI: 10.3389/fendo.2020.637826] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 01/23/2023] Open
Abstract
Immune system plays a key role in cancer prevention as well as in its initiation and progression. During multistep development of tumors, cells must acquire the capability to evade immune destruction. Both in vitro and in vivo studies showed that thyroid tumor cells can avoid immune response by promoting an immunosuppressive microenvironment. The recruitment of immunosuppressive cells such as TAMs (tumor-associated macrophages), TAMCs (tumor-associated mast cells), MDSC (myeloid-derived suppressor cells), TANs (tumor-associated neutrophils) and Tregs (regulatory T cells) and/or the expression of negative immune checkpoints, like PD-L1 (programmed death-ligand 1), CTLA-4 (cytotoxic T-lymphocyte associated protein 4), and/or immunosuppressive enzymes, as IDO1 (indoleamine 2,3-dioxygenase 1), are just some of the mechanisms that thyroid cancer cells exploit to escape immune destruction. Some authors systematically characterized immune cell populations and soluble mediators (chemokines, cytokines, and angiogenic factors) that constitute thyroid cancer microenvironment. Their purpose was to verify immune system involvement in cancer growth and progression, highlighting the differences in immune infiltrate among tumor histotypes. More recently, some authors have provided a more comprehensive view of the relationships between tumor and immune system involved in thyroid carcinogenesis. The Cancer Genome Atlas (TCGA) delivered a large amount of data that allowed to combine information on the inflammatory microenvironment with gene expression data, genetic and clinical-pathological characteristics, and differentiation degree of papillary thyroid carcinoma (PTC). Moreover, using a new sensitive and highly multiplex analysis, the NanoString Technology, it was possible to divide thyroid tumors in two main clusters based on expression of immune-related genes. Starting from these results, the authors performed an immune phenotype analysis that allowed to classify thyroid cancers in hot, cold, or intermediate depending on immune infiltration patterns of the tumor microenvironment. The aim of this review is to provide a comprehensive and updated view of the knowledge on immune landscape of thyroid tumors. Understanding interactions between tumor and microenvironment is crucial to effectively direct immunotherapeutic approaches in the treatment of thyroid cancer, particularly for those not responsive to conventional therapies.
Collapse
|
77
|
Jayaraman Rukmini S, Bi H, Sen P, Everhart B, Jin S, Ye K. Inducing Tumor Suppressive Microenvironments through Genome Edited CD47 -/- Syngeneic Cell Vaccination. Sci Rep 2019; 9:20057. [PMID: 31882679 PMCID: PMC6934648 DOI: 10.1038/s41598-019-56370-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Tumors can escape from the immune system by overexpressing CD47 and other checkpoint blockades. CD47 is expressed ubiquitously by all cells in the body, posing an obstacle for CD47 blocking treatments due to their systemic toxicity. We performed a study to determine how the tumor microenvironment changes after vaccination with genome edited CD47-/- syngeneic tumor cells. We discovered that inactivated CD47-depleted mouse melanoma cells can protect mice from melanoma. Our animal study indicated that 33% of vaccinated mice remained tumor-free, and 100% of mice had 5-fold reduced growth rates. The characterization of immunomodulatory effects of the vaccine revealed a highly anti-tumorigenic and homogenous microenvironment after vaccination. We observed consistently that in the tumors that failed to respond to vaccines, there were reduced natural killer cells, elevated regulatory T cells, M2-type macrophages, and high PD-L1 expression in these cells. These observations suggested that the tumor microenvironments became more suppressive to tumor growth after vaccination, suggesting a potential new immunotherapy for solid tumors.
Collapse
Affiliation(s)
- Subhadra Jayaraman Rukmini
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Huanjing Bi
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Puloma Sen
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Benjamin Everhart
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Sha Jin
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
78
|
Chiu YJ, Hsieh YH, Huang YH. Improved cell composition deconvolution method of bulk gene expression profiles to quantify subsets of immune cells. BMC Med Genomics 2019; 12:169. [PMID: 31856824 PMCID: PMC6923925 DOI: 10.1186/s12920-019-0613-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 01/07/2023] Open
Abstract
Background To facilitate the investigation of the pathogenic roles played by various immune cells in complex tissues such as tumors, a few computational methods for deconvoluting bulk gene expression profiles to predict cell composition have been created. However, available methods were usually developed along with a set of reference gene expression profiles consisting of imbalanced replicates across different cell types. Therefore, the objective of this study was to create a new deconvolution method equipped with a new set of reference gene expression profiles that incorporate more microarray replicates of the immune cells that have been frequently implicated in the poor prognosis of cancers, such as T helper cells, regulatory T cells and macrophage M1/M2 cells. Methods Our deconvolution method was developed by choosing ε-support vector regression (ε-SVR) as the core algorithm assigned with a loss function subject to the L1-norm penalty. To construct the reference gene expression signature matrix for regression, a subset of differentially expressed genes were chosen from 148 microarray-based gene expression profiles for 9 types of immune cells by using ANOVA and minimizing condition number. Agreement analyses including mean absolute percentage errors and Bland-Altman plots were carried out to compare the performances of our method and CIBERSORT. Results In silico cell mixtures, simulated bulk tissues, and real human samples with known immune-cell fractions were used as the test datasets for benchmarking. Our method outperformed CIBERSORT in the benchmarks using in silico breast tissue-immune cell mixtures in the proportions of 30:70 and 50:50, and in the benchmark using 164 human PBMC samples. Our results suggest that the performance of our method was at least comparable to that of a state-of-the-art tool, CIBERSORT. Conclusions We developed a new cell composition deconvolution method and the implementation was entirely based on the publicly available R and Python packages. In addition, we compiled a new set of reference gene expression profiles, which might allow for a more robust prediction of the immune cell fractions from the expression profiles of cell mixtures. The source code of our method could be downloaded from https://github.com/holiday01/deconvolution-to-estimate-immune-cell-subsets.
Collapse
Affiliation(s)
- Yen-Jung Chiu
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec. 2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Yi-Hsuan Hsieh
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec. 2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Yen-Hua Huang
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec. 2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan. .,Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
79
|
Okoro EE, Osoniyi OR, Jabeen A, Shams S, Choudhary MI, Onajobi FD. Anti-proliferative and immunomodulatory activities of fractions from methanol root extract of Abrus precatorius L. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0143-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Abrus precatorius possesses various therapeutic properties including anticancer potentials. This study evaluated the anti-proliferative activities of fractions of methanol root extract of A. precatorius on breast and cervical cancer cells and their immunomodulatory effect. Phytochemical screening was done by FTIR and GCMS. In vitro anti-proliferative effect was evaluated on human breast cancer (AU565) and cervical cancer (HeLa) cells and on murine fibroblast (NIH 3 T3) cells. Antioxidant activity was performed via DPPH radical scavenging assay. The immunomodulatory potential of fractions was evaluated by inhibition of phagocytes oxidative burst (ROS), Nitric oxide (NO) and proinflammatory cytokine TNF-α.
Results
A. precatorius fractions showed different chemical groups and were somewhat selective in antiproliferative activity against studied cancer cells. Ethyl acetate fraction showed the most significant antiproliferative activity with IC50 values of 18.10 μg/mL and 11.89 μg/mL against AU565 and HeLa cells respectively. Hexane fraction significantly (p < 0.05) inhibited HeLa cells (IC50 18.24 ± 0.16 μg/mL), whereas aqueous fraction showed mild inhibition (IC50 46.46 ± 0.14 μg/mL) on AU565 cell proliferation. All fractions showed no cytotoxicity against NIH-3 T3 murine fibroblast normal cells. All fractions showed potent and significant (p < 0.001) DPPH radical scavenging activity as well as suppressed phagocytic oxidative burst. Hexane (< 1 μg/mL), ethyl acetate (< 1 μg/mL), and butanol (5.74 μg/mL) fractions potently inhibited the cytokine TNF- α, hexane (< 1 μg/mL) and ethyl acetate (< 1 μg/mL) fractions also potently inhibited NO.
Conclusions
The antiproliferative activities and suppressive effect on the phagocytic oxidative burst, NO and proinflammatory cytokine might be due to the synergistic actions of bioactive compounds especially flavonoids present in the assayed fractions and therefore, suggest chemotherapeutic use of A. precatorius in cancer treatment.
Collapse
|
80
|
Nielsen MC, Andersen MN, Møller HJ. Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro. Immunology 2019; 159:63-74. [PMID: 31573680 DOI: 10.1111/imm.13125] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023] Open
Abstract
Monocyte-derived macrophages (MDMs) generated from peripheral blood monocytes are widely used to model human macrophages for in vitro studies. However, the possible impact of different isolation methods on the resulting MDM phenotype is poorly described. We aimed to investigate the effects of three commonly used monocyte isolation techniques on the resulting MDM phenotype. Plastic adhesion, negative selection, and CD14pos selection were compared. Monocyte-derived macrophages were generated by 5-day culture with macrophage and granulocyte-macrophage colony-stimulating factors. We investigated monocyte and MDM yields, purity, viability, and cell phenotype. CD14pos selection resulted in highest monocyte yield (19·8 × 106 cells, equivalent to 70% of total) and purity (98·7%), compared with negative selection (17·7 × 106 cells, 61% of total, 85·0% purity), and plastic adhesion (6·1 × 106 cells, 12·9% of total, 44·2% purity). Negatively selected monocytes were highly contaminated with platelets. Expression of CD163 and CD14 were significantly lower on CD14pos selection and plastic adhesion monocytes, compared with untouched peripheral blood mononuclear cells. After maturation, CD14pos selection also resulted in the highest MDM purity (98·2%) compared with negative selection (94·5%) and plastic adhesion (66·1%). Furthermore, MDMs from plastic adhesion were M1-skewed (CD80high HLA-DRhigh CD163low ), whereas negative selection MDMs were M2-skewed (CD80low HLA-DRlow CD163high ). Choice of monocyte isolation method not only significantly affects yield and purity, but also impacts resulting phenotype of cultured MDMs. These differences may partly be explained by the presence of contaminating cells when using plastic adherence or negative selection. Careful considerations of monocyte isolation methods are important for designing in vitro assays on MDMs.
Collapse
Affiliation(s)
- Marlene C Nielsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Morten N Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
81
|
Wang Q, Huang T, Ji J, Wang H, Guo C, Sun X, Zheng K, Dong Z, Cao Y. Prognostic utility of the combination of pretreatment monocyte-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio in patients with NMIBC after transurethral resection. Biomark Med 2019; 13:1543-1555. [PMID: 31621380 DOI: 10.2217/bmm-2019-0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To investigate and validate predictive value of combination of pretreatment monocyte-to-lymphocyte ratio (MLR) and neutrophil-to-lymphocyte ratio (NLR) for disease free survival (DFS) and overall survival (OS) in nonmuscle invasive bladder cancer after transurethral resection. Materials & methods: Total 358 patients enrolled were assigned into three (MLR-NLR 0, 1 and 2) groups per the cut-off values of MLR and NLR. Results: Kaplan-Meier curves showed MLR, NLR and their combination were statistically associated with DFS (p < 0.001) and OS (p < 0.001). Univariate and multivariate COX regression analyses revealed that combination of MLR with NLR was an independent prognostic predictor for both DFS (HR: 3.080; 95% CI: 1.870-5.074; p < 0.001 for MLR-NLR 2 vs MLR-NLR 0) and OS (HR: 2.815; 95% CI: 1.778-4.456; p < 0.001 for MLR-NLR 2 vs MLR-NLR 0). Calibration plots and decision curve analysis exhibited combination of MLR and NLR had good calibration accuracy with potential clinical usefulness. Conclusion: Combined MLR and NLR is a prognostic predictive biomarker in nonmuscle invasive bladder cancer after transurethral resection.
Collapse
Affiliation(s)
- Qinghai Wang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Tao Huang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Jianlei Ji
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Hongyang Wang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Chen Guo
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Xiaoxia Sun
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Kewen Zheng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, The First Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Zhen Dong
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Yanwei Cao
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| |
Collapse
|
82
|
Kondoh N, Mizuno-Kamiya M, Umemura N, Takayama E, Kawaki H, Mitsudo K, Muramatsu Y, Sumitomo S. Immunomodulatory aspects in the progression and treatment of oral malignancy. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:113-120. [PMID: 31660091 PMCID: PMC6806653 DOI: 10.1016/j.jdsr.2019.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation substantially affects the risk of oral malignancy. Pro-inflammatory cytokine, interferon (IFN)-γ, confers anti-tumor activity using several different mechanisms. Conversely, higher expression of interleukin (IL)-17 is associated with worse prognosis. Monocyte chemotactic protein (MCP)-1 correlates positively with poor long-term survival of head and neck squamous cell carcinoma (HNSCC) patients. IL-1α affects cancer associated fibroblasts and macrophages, and promote several malignant phenotypes including immune suppression. Some anti-inflammatory cytokines, including IL-10 and transforming growth factor (TGF)-β, relate to pro-tumoral activities. Among immune checkpoint modulators, programmed death (PD-)1 and PD-ligand (L)1 facilitate oral squamous cell carcinoma (OSCC) cell evasion from immune surveillance, and the expression status of these has a prognostic value. OSCCs contain tumor associated macrophages (TAMs) as major stromal cells of their tumor microenvironment. Among the two distinctive states, M2 macrophages support tumor invasion, metastasis and immune suppression. Crosstalk between TAMs and OSCC or cancer-associated fibroblasts (CAF) plays an important role in the progression of OSCC. Clinical trials with blocking antibodies against IL-1α or melanoma-associated antigens have been reported as therapeutic approaches against OSCCs. The most promising approach activating antitumor immunity is the blockade of PD-1/PD-L1 axis. Manipulating the polarization of pro-tumorigenic macrophages has been reported as a novel therapeutic approach.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yasunori Muramatsu
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
83
|
Neubert NJ, Schmittnaegel M, Bordry N, Nassiri S, Wald N, Martignier C, Tillé L, Homicsko K, Damsky W, Maby-El Hajjami H, Klaman I, Danenberg E, Ioannidou K, Kandalaft L, Coukos G, Hoves S, Ries CH, Fuertes Marraco SA, Foukas PG, De Palma M, Speiser DE. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med 2019; 10:10/436/eaan3311. [PMID: 29643229 DOI: 10.1126/scitranslmed.aan3311] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 12/15/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022]
Abstract
Colony-stimulating factor 1 (CSF1) is a key regulator of monocyte/macrophage differentiation that sustains the protumorigenic functions of tumor-associated macrophages (TAMs). We show that CSF1 is expressed in human melanoma, and patients with metastatic melanoma have increased CSF1 in blood compared to healthy subjects. In tumors, CSF1 expression correlated with the abundance of CD8+ T cells and CD163+ TAMs. Human melanoma cell lines consistently produced CSF1 after exposure to melanoma-specific CD8+ T cells or T cell-derived cytokines in vitro, reflecting a broadly conserved mechanism of CSF1 induction by activated CD8+ T cells. Mining of publicly available transcriptomic data sets suggested co-enrichment of CD8+ T cells with CSF1 or various TAM-specific markers in human melanoma, which was associated with nonresponsiveness to programmed cell death protein 1 (PD1) checkpoint blockade in a smaller patient cohort. Combination of anti-PD1 and anti-CSF1 receptor (CSF1R) antibodies induced the regression of BRAFV600E -driven, transplant mouse melanomas, a result that was dependent on the effective elimination of TAMs. Collectively, these data implicate CSF1 induction as a CD8+ T cell-dependent adaptive resistance mechanism and show that simultaneous CSF1R targeting may be beneficial in melanomas refractory to immune checkpoint blockade and, possibly, other T cell-based therapies.
Collapse
Affiliation(s)
- Natalie J Neubert
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Martina Schmittnaegel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Natacha Bordry
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Sina Nassiri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Noémie Wald
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Christophe Martignier
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Laure Tillé
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Krisztian Homicsko
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - William Damsky
- Departments of Dermatology and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hélène Maby-El Hajjami
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Irina Klaman
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Esther Danenberg
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), CH-1005 Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Lana Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), CH-1005 Lausanne, Switzerland
| | - George Coukos
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), CH-1005 Lausanne, Switzerland
| | - Sabine Hoves
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Carola H Ries
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Silvia A Fuertes Marraco
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Periklis G Foukas
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), CH-1005 Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Daniel E Speiser
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland.
| |
Collapse
|
84
|
Othman N, Jamal R, Abu N. Cancer-Derived Exosomes as Effectors of Key Inflammation-Related Players. Front Immunol 2019; 10:2103. [PMID: 31555295 PMCID: PMC6737008 DOI: 10.3389/fimmu.2019.02103] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes, a category of small lipid bilayer extracellular vesicles that are naturally secreted by many cells (both healthy and diseased), carry cargo made up of proteins, lipids, DNAs, and RNAs; all of which are functional when transferred to their recipient cells. Numerous studies have demonstrated the powerful role that exosomes play in the mediation of cell-to-cell communication to induce a pro-tumoral environment to encourage tumor progression and survival. Recently, considerable interest has developed in regard to the role that exosomes play in immunity; with studies demonstrating the ability of exosomes to either metabolically alter immune players such as dendritic cells, T cells, macrophages, and natural killer cells. In this review, we summarize the recent literature on the function of exosomes in regulating a key process that has long been associated with the progression of cancer-inflammation and immunity.
Collapse
Affiliation(s)
- Norahayu Othman
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| |
Collapse
|
85
|
Melanoma-conditioned medium promotes cytotoxic immune responses by murine bone marrow-derived monocytes despite their expression of 'M2' markers. Cancer Immunol Immunother 2019; 68:1455-1465. [PMID: 31444606 DOI: 10.1007/s00262-019-02381-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
Abstract
Macrophages have been shown to infiltrate a wide range of malignancies and are often considered to promote tumour survival, growth and spread. However, the source and behaviour of discrete tumour-associated macrophage populations are still poorly understood. Here we show a novel method for the rational development of bone marrow-derived monocytes appropriate for the study of processes which involve the contribution of circulating inflammatory monocytes. We have shown that in response to tumour-conditioned medium, these cells upregulate CD206 and CD115, markers traditionally associated with M2-type macrophages. Treated cells show reduced capacity for cytokine secretion but significantly impact CD4+ and CD8+ T-cell proliferation and polarization. Coculture with conditioned bone marrow-derived monocytes significantly reduced CD4+ T-cell proliferation but increased CD8+ T-cell proliferation and granzyme B expression with significant induction of IFNγ secretion by both CD4+ and CD8+ T cells, indicating that these cells may have a role in promoting anti-cancer immunity.
Collapse
|
86
|
Pinto ML, Rios E, Durães C, Ribeiro R, Machado JC, Mantovani A, Barbosa MA, Carneiro F, Oliveira MJ. The Two Faces of Tumor-Associated Macrophages and Their Clinical Significance in Colorectal Cancer. Front Immunol 2019; 10:1875. [PMID: 31481956 PMCID: PMC6710360 DOI: 10.3389/fimmu.2019.01875] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are one of the immune populations frequently found in colorectal tumors and high macrophage infiltration has been associated with both better and worst prognosis. Importantly, according to microenvironment stimuli, macrophages may adopt different polarization profiles, specifically the pro-inflammatory or M1 and the anti-inflammatory or M2, which display distinct functions. Therefore, concomitantly with the number of tumor-associated macrophages (TAMs), their characterization is fundamental to unravel their relevance in cancer. Here, we profiled macrophages in a series of 150 colorectal cancer (CRC) cases by immunohistochemistry, using CD68 as a macrophage lineage marker, CD80 as a marker of pro-inflammatory macrophages, and CD163 as a marker of anti-inflammatory macrophages. Quantifications were performed by computer-assisted analysis in the intratumoral region, tumor invasive front, and matched tumor adjacent normal mucosa (ANM). Macrophages, specifically the CD163+ ones, were predominantly found at the tumor invasive front, whereas CD80+ macrophages were almost exclusively located in the ANM, which suggests a predominant anti-inflammatory polarization of TAMs. Stratification according to tumor stage revealed that macrophages, specifically the CD163+ ones, are more prevalent in stage II tumors, whereas CD80+ macrophages are predominant in less invasive T1 tumors. Specifically in stage III tumors, higher CD68, and lower CD80/CD163 ratio associated with decreased overall survival. Importantly, despite the low infiltration of CD80+ cells in colorectal tumors, multivariate logistic regression revealed a protective role of these cells regarding the risk for relapse. Overall, this work supports the involvement of distinct microenvironments, present at the intra-tumor, invasive front and ANM regions, on macrophage modulation, and uncovers their prognostic value, further supporting the relevance of including macrophage profiling in clinical settings.
Collapse
Affiliation(s)
- Marta L. Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Elisabete Rios
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Cecília Durães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ricardo Ribeiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - José C. Machado
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Milan, Italy
- Humanitas University, Milan, Italy
| | - Mário A. Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Fatima Carneiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Maria J. Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
87
|
Zarif JC, Baena-Del Valle JA, Hicks JL, Heaphy CM, Vidal I, Luo J, Lotan TL, Hooper JE, Isaacs WB, Pienta KJ, De Marzo AM. Mannose Receptor-positive Macrophage Infiltration Correlates with Prostate Cancer Onset and Metastatic Castration-resistant Disease. Eur Urol Oncol 2019; 2:429-436. [PMID: 31277779 PMCID: PMC7039332 DOI: 10.1016/j.euo.2018.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/28/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND M2 tumor-associated macrophages (M2-TAMs) can suppress inflammation in the tumor microenvironment and have been reported to modulate cancer progression. We and others have previously reported M2-TAM infiltration in metastatic castration-resistant prostate cancer (mCRPC). OBJECTIVE To determine whether the extent of M2-TAM infiltration correlates with PC aggressiveness. DESIGN, SETTING, AND PARTICIPANTS Normal prostate tissue, localized PC, and mCRPC samples from 192 patients were retrospectively analyzed. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We analytically validated an immunohistochemistry assay for detection of the human mannose receptor (CD206) to assess M2 macrophage involvement. RESULTS AND LIMITATIONS Multiplex immunofluorescent staining showed that a small fraction of CD206 staining co-localized with the endothelial cells of lymphatic vessels, while the vast majority of staining occurred in CD68-positive macrophages. The area fraction of staining for CD206-positive macrophages increased in a stepwise fashion from normal (ie, no inflammation) prostate tissue, to primary untreated carcinomas, to hormone-naïve regional lymph node metastases, to mCRPC. Complementary studies using flow cytometry confirmed CD206-positive M2-TAM infiltration. Limitations include the small number of rapid autopsy samples and the lack of neuroendocrine PC samples. CONCLUSIONS Our results revealed a progressive increase in CD206-positive macrophages from normal prostate to mCRPC. Given the immunosuppressive nature of macrophages and the lack of clinical success of immunotherapy for PC patients, our results provide a rationale for therapeutic targeting of macrophages in the PC microenvironment as a potential method to augment immunotherapeutic responses. PATIENT SUMMARY In this report we used 192 prostate cancer samples to determine if M2 macrophage infiltration is correlated with castration resistance in prostate cancer.
Collapse
Affiliation(s)
- Jelani C Zarif
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Javier A Baena-Del Valle
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology and Laboratory Medicine, Fundacion Santa Fe de Bogota University Hospital, Bogota, Colombia
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Igor Vidal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob Luo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jody E Hooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Isaacs
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology, Johns Hopkins School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
88
|
Thura M, Al-Aidaroos AQ, Gupta A, Chee CE, Lee SC, Hui KM, Li J, Guan YK, Yong WP, So J, Chng WJ, Ng CH, Zhou J, Wang LZ, Yuen JSP, Ho HSS, Yi SM, Chiong E, Choo SP, Ngeow J, Ng MCH, Chua C, Yeo ESA, Tan IBH, Sng JXE, Tan NYZ, Thiery JP, Goh BC, Zeng Q. PRL3-zumab as an immunotherapy to inhibit tumors expressing PRL3 oncoprotein. Nat Commun 2019; 10:2484. [PMID: 31171773 PMCID: PMC6554295 DOI: 10.1038/s41467-019-10127-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-specific antibody drugs can serve as cancer therapy with minimal side effects. A humanized antibody, PRL3-zumab, specifically binds to an intracellular oncogenic phosphatase PRL3, which is frequently expressed in several cancers. Here we show that PRL3-zumab specifically inhibits PRL3+ cancer cells in vivo, but not in vitro. PRL3 antigens are detected on the cell surface and outer exosomal membranes, implying an 'inside-out' externalization of PRL3. PRL3-zumab binds to surface PRL3 in a manner consistent with that in classical antibody-dependent cell-mediated cytotoxicity or antibody-dependent cellular phagocytosis tumor elimination pathways, as PRL3-zumab requires an intact Fc region and host FcγII/III receptor engagement to recruit B cells, NK cells and macrophages to PRL3+ tumor microenvironments. PRL3 is overexpressed in 80.6% of 151 fresh-frozen tumor samples across 11 common cancers examined, but not in patient-matched normal tissues, thereby implicating PRL3 as a tumor-associated antigen. Targeting externalized PRL3 antigens with PRL3-zumab may represent a feasible approach for anti-tumor immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized
- Antibodies, Monoclonal, Murine-Derived
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- B-Lymphocytes
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cytophagocytosis/drug effects
- Hep G2 Cells
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Immunotherapy
- Killer Cells, Natural
- Liver Neoplasms/metabolism
- Macrophages
- Mice
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- Neoplasms/metabolism
- Oncogene Proteins/metabolism
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/metabolism
- Receptors, IgG
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Min Thura
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Abdul Qader Al-Aidaroos
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Abhishek Gupta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Cheng Ean Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Kam Man Hui
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Jie Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Yeoh Khay Guan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Jimmy So
- Division of Surgical Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Chin Hin Ng
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Jianbiao Zhou
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Ling Zhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - John Shyi Peng Yuen
- Department of Urology, Singapore General Hospital, Singapore, 169608, Singapore
| | - Henry Sun Sien Ho
- Department of Urology, Singapore General Hospital, Singapore, 169608, Singapore
| | - Sim Mei Yi
- Department of Urology, Singapore General Hospital, Singapore, 169608, Singapore
| | - Edmund Chiong
- Division of Surgical Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Joanne Ngeow
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Matthew Chau Hsien Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Clarinda Chua
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Eugene Shen Ann Yeo
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, 169608, Singapore
| | - Iain Bee Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Joel Xuan En Sng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Nicholas Yan Zhi Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
89
|
Hanna BS, Öztürk S, Seiffert M. Beyond bystanders: Myeloid cells in chronic lymphocytic leukemia. Mol Immunol 2019; 110:77-87. [DOI: 10.1016/j.molimm.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
|
90
|
Bian X, Xiao YT, Wu T, Yao M, Du L, Ren S, Wang J. Microvesicles and chemokines in tumor microenvironment: mediators of intercellular communications in tumor progression. Mol Cancer 2019; 18:50. [PMID: 30925930 PMCID: PMC6441155 DOI: 10.1186/s12943-019-0973-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence indicates that the ability of cancer cells to convey biological information to recipient cells within the tumor microenvironment (TME) is crucial for tumor progression. Microvesicles (MVs) are heterogenous vesicles formed by budding of the cellular membrane, which are secreted in larger amounts by cancer cells than normal cells. Recently, several reports have also disclosed that MVs function as important mediators of intercellular communication between cancerous and stromal cells within the TME, orchestrating complex pathophysiological processes. Chemokines are a family of small inflammatory cytokines that are able to induce chemotaxis in responsive cells. MVs which selective incorporate chemokines as their molecular cargos may play important regulatory roles in oncogenic processes including tumor proliferation, apoptosis, angiogenesis, metastasis, chemoresistance and immunomodulation, et al. Therefore, it is important to explore the association of MVs and chemokines in TME, identify the potential prognostic marker of tumor, and develop more effective treatment strategies. Here we review the relevant literature regarding the role of MVs and chemokines in TME.
Collapse
Affiliation(s)
- Xiaojie Bian
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tianqi Wu
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Mengfei Yao
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Leilei Du
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Jianhua Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China. .,School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, China.
| |
Collapse
|
91
|
CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp Cell Res 2019; 378:131-138. [PMID: 30857971 DOI: 10.1016/j.yexcr.2019.03.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/17/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophage (TAM), a crucial component of immune cell infiltrated in tumor microenvironment, is associated with progression of oral squamous cell carcinoma (OSCC). However, it is still unclear how TAM is induced/accumulated and activated around/in OSCC. In the study herein, we tried to understand how TAM accumulates and activates in the OSCC and how TAM promotes OSCC to convert cancer stem cell (CSC). In this study, first important finding was that the M2 macrophages significantly increased in all twenty human OSCC samples in vivo. Cancer-associated fibroblast (CAF)-derived CXCL12 effectively attracted monocytes, which displayed M2 macrophage phenotype. Blocking CXCL12 receptor (CXCR4) significantly reduced chemotaxis of M2 macrophage. Polarized M2 macrophage promoted CSC-like transition in OSCC cell line, Cal27 cells. These CSC-like cells significantly expressed higher Sox2, Oct4, and Nanog genes, were stronger positive for CD44 and CD105, increased cell proliferation with less apoptosis, enhanced cell migration, and were resistant to chemotherapy drug, vineristine. These results indicate that CAF effectively attracts monocytes via the CXCL12/CXCR4 pathway and induces their differentiation to M2 macrophages. Interestingly, these polarized M2 macrophages promote formation of CSC-like cells from the OSCC lead to enhance OSCC proliferation with less apoptosis. Therefore, our findings have potential to lead to novel therapy for the OSCC to target CXCL12-mediated TAM recruitment.
Collapse
|
92
|
Tumour-Associated Macrophages (TAMs) in Colon Cancer and How to Reeducate Them. J Immunol Res 2019; 2019:2368249. [PMID: 30931335 PMCID: PMC6410439 DOI: 10.1155/2019/2368249] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022] Open
Abstract
Tumour-associated macrophage (TAM) serves as the site in which most inflammatory cells coreside. It plays an important role in determining the progression and metastasis of a tumour. The characteristic of TAM is largely dependent on the stimuli present in its tumour microenvironment (TME). Under this environment, however, M2 macrophages are found to be in abundance compared to M1 macrophages which later promote tumour progression. Numerous studies have elucidated the relationship between TAM and the progression of tumour; hence, TAM has now been the subject of interest among researchers for anticancer therapy. This review discusses the role of TAM in colorectal cancer (CRC) and some of the potential candidates that could reeducate TAM to fight against CRC. It is with hope that this review will serve as the foundation in understanding TAM in CRC and helping other researchers to select the most suitable candidate to reeducate TAM that could assist in enhancing the tumouricidal activity of M1 macrophage and eventually repress the development of CRC.
Collapse
|
93
|
Zhu S, Yang J, Cui X, Zhao Y, Tao Z, Xia F, Chen L, Huang J, Ma X. Preoperative platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio as predictors of clinical outcome in patients with gallbladder cancer. Sci Rep 2019; 9:1823. [PMID: 30755649 PMCID: PMC6372648 DOI: 10.1038/s41598-018-38396-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
Some inflammatory biomarkers are associated with the post-surgical prognosis in cancer patients. However, their clinical importance in gallbladder cancer has rarely been explored. The aim of this study is to assess the efficacy of surgical intervention and the effectiveness of preoperative test on neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and monocyte-to-lymphocyte ratio (MLR) for predicting the prognosis in gallbladder cancer patients. In this study, a total of 255 gallbladder cancer patients were retrospectively selected. For each patient, we recorded his/her treatment algorithm (with or without surgery) and their preoperative inflammatory biomarkers, as well as their detailed survival information for 5 years. A total of 216 patients received surgical intervention and the other 39 chose conservative treatment. The median survival time was 4.6 months for non-surgical group (P < 0.001), and 12.2 months for surgical intervention group. Among the surgical group, ROC analysis showed the AUC of NLR, PLR and MLR were 0.675 (95% CI: 0.600 to 0.751, P < 0.001), 0.599 (95% CI: 0.520 to 0.677, P = 0.017) and 0.607 (95% CI: 0.529 to 0.686, P = 0.009), respectively. In conclusion, surgical intervention did improve the overall survival, and elevated NLR and MLR before surgery are associated with shorter OS of GBC patients.
Collapse
Affiliation(s)
- Sha Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jing Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiwei Cui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yunuo Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhihang Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Fan Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Linyan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610031, Sichuan, China.
| | - Xuelei Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
94
|
Yuan T, Gao D, Li S, Jiang Y. Co-culture of tumor spheroids and monocytes in a collagen matrix-embedded microfluidic device to study the migration of breast cancer cells. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
95
|
The Potential of Combining Tubulin-Targeting Anticancer Therapeutics and Immune Therapy. Int J Mol Sci 2019; 20:ijms20030586. [PMID: 30704031 PMCID: PMC6387102 DOI: 10.3390/ijms20030586] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer immune therapy has recently shown tremendous promise to combat many different cancers. The microtubule is a well-defined and very effective cancer therapeutic target. Interestingly, several lines of evidence now suggest that microtubules are intimately connected to the body’s immune responses. This raises the possibility that the combination of microtubule inhibitors and immune therapy can be a highly effective option for cancer treatments. However, our understanding on this potentially important aspect is still very limited, due in part to the multifaceted nature of microtubule functions. Microtubules are not only involved in maintaining cell morphology, but also a variety of cellular processes, including the movement of secretory vesicles and organelles, intracellular macromolecular assembly, signaling pathways, and cell division. Microtubule inhibitors may be subdivided into two classes: Anti-depolymerization agents such as the taxane family, and anti-polymerization agents such as colchicine and vinka alkaloids. These two different classes may have different effects on immune cell subtypes. Anti-depolymerization agents can not only induce NK cells, but also appear to inhibit T regulatory (Treg) cells. However, different inhibitors may have different functions even among the same class. For example, the doxetaxel anti-depolymerization agent up-regulates cytotoxic T cells, while paclitaxel down-regulates them. Certain anti-polymerization agents such as colchicine appear to down-regulate most immune cell types, while inducing dendritic cell maturation and increasing M1 macrophage population. In contrast, the vinblastine anti-polymerization agent activates many of these cell types, albeit down-regulating Treg cells. In this review, we focus on the various effects of tubulin inhibitors on the activities of the body’s immune system, in the hope of paving the way to develop an effective cancer therapy by combining tubulin-targeting anticancer agents and immune therapy.
Collapse
|
96
|
Zhang T, Han Z, Chandoo A, Huang X, Sun X, Ye L, Hu C, Xue X, Huang Y, Shen X, Chang W, Lin X. Low periostin expression predicts poor survival in intestinal type gastric cancer patients. Cancer Manag Res 2018; 11:25-36. [PMID: 30588108 PMCID: PMC6302807 DOI: 10.2147/cmar.s175596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIM Periostin is a protein from the Fascilin family. It is commonly present in normal tissues and is responsible for cell adhesion. Evidence has emerged showing that changes in periostin expression play an important role in tumor initiation, development, and progression. This study aims to investigate the effect of periostin in gastric cancer (GC) patients who underwent gastrectomy. Seven hundred and forty-seven GC patients who underwent gastrectomy between December 2006 and July 2011 were included in this study. METHODS Seven hundred and forty-seven cancer tissues and 70 paired adjacent normal tissues were collected. Periostin expression was evaluated by immunohistochemistry. The Gene Expression Omnibus database was used to study the association between the mRNA level and patient's overall survival. The tumor microenvironment was also studied. RESULTS Periostin expression in stroma was downregulated in tumor tissues but it was upregulated in the epithelial cells. After dividing the tissues according to the Lauren Classification, we found that periostin expression in stroma and epithelial cells was higher in intestinal type than in diffuse type (P<0.001 and P=0.010, respectively). Periostin was an independent predictor of lymph node (LN) metastasis in GC patients. The study of CD163(+) tumor-associated macrophages (TAMs) revealed that in diffuse type GC, periostin expression was associated with CD163(+) TAMs. CONCLUSION We found that the periostin expression can predict LN metastasis in patients undergoing curative gastrectomy. Intestinal type GC patients with high periostin level had both a favorable survival and lesser LN metastasis.
Collapse
Affiliation(s)
- Teming Zhang
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Zheng Han
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Arvine Chandoo
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Xincheng Huang
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Xiangwei Sun
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Lele Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Changyuan Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yingpeng Huang
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Xian Shen
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Wenjun Chang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai People's Republic of China
| | - Xiaoming Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, People's Republic of China,
| |
Collapse
|
97
|
Boemo MA, Byrne HM. Mathematical modelling of a hypoxia-regulated oncolytic virus delivered by tumour-associated macrophages. J Theor Biol 2018; 461:102-116. [PMID: 30359572 PMCID: PMC6269600 DOI: 10.1016/j.jtbi.2018.10.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 01/16/2023]
Abstract
A continuum model of macrophages releasing an oncolytic virus within a tumour spheroid. Predictive modelling of this treatment given in combination with radiotherapy. Investigation into how radiotherapy and oncolytic virotherapy should be scheduled.
Tumour hypoxia has long presented a challenge for cancer therapy: Poor vascularisation in hypoxic regions hinders both the delivery of chemotherapeutic agents and the response to radiotherapy, and hypoxic cancer cells that survive treatment can trigger tumour regrowth after treatment has ended. Tumour-associated macrophages are attractive vehicles for drug delivery because they localise in hypoxic areas of the tumour. In this paper, we derive a mathematical model for the infiltration of an in vitro tumour spheroid by macrophages that have been engineered to release an oncolytic adenovirus under hypoxic conditions. We use this model to predict the efficacy of treatment schedules in which radiotherapy and the engineered macrophages are given in combination. Our work suggests that engineered macrophages should be introduced immediately after radiotherapy for maximum treatment efficacy. Our model provides a framework that may guide future experiments to determine how multiple rounds of radiotherapy and macrophage virotherapy should be coordinated to maximise therapeutic responses.
Collapse
Affiliation(s)
- Michael A Boemo
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom.
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, United Kingdom.
| |
Collapse
|
98
|
Hai Y, Chen N, Wu W, Wang Z, Lin F, Guo C, Liu C, Li W, Liu L. High postoperative monocyte indicates inferior Clinicopathological characteristics and worse prognosis in lung adenocarcinoma or squamous cell carcinoma after lobectomy. BMC Cancer 2018; 18:1011. [PMID: 30348119 PMCID: PMC6196434 DOI: 10.1186/s12885-018-4909-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Peripheral monocyte count is an assessable parameter. Recently, evidence suggested an elevated preoperative monocyte counts predicting poor prognosis in malignancies. The aim of this study was to determine the prognostic effect of early postoperative blood monocyte count in patients with lung adenocarcinoma or squamous cell carcinoma following lobectomy. METHODS We retrospectively reviewed patients with operated lung adenocarcinoma or squamous cell carcinoma from 2006 to 2011 in Western China Lung Cancer database. Univariate analysis on disease-free survival (DFS) and overall survival (OS) was performed using the Kaplan-Meier and log-rank tests, and multivariate analysis was conducted using the Cox proportional hazards regression model. RESULTS There were 433 patients enrolled in our analysis. High postoperative elevated monocyte was associated with male gender (P < 0.001), positive smoking history (P = 0.005), and higher N stage (P = 0.002) and higher tumor stage (P = 0.026). Two-tailed log-rank test indicated patients with an early postoperative elevated monocyte count predicted a poor DFS and OS overall (P < 0.001, P < 0.001, respectively) as well as in subgroup analysis, and further presented as a promising independent prognostic factor for both DFS and OS (HR = 2.991, 95%CI: 2.243-3.988, P < 0.001; HR = 2.705, 95%CI: 1.977-3.700, P < 0.001, respectively) on multivariate analysis. However, no significance was detected for preoperative monocyte in multivariate analysis. CONCLUSIONS Elevated early postoperative peripheral monocyte count was an independent prognostic factor of poor prognosis and inferior clinicopathological features for patients with operable lung adenocarcinoma or squamous cell carcinoma by lobectomy.
Collapse
Affiliation(s)
- Yang Hai
- 0000 0001 0807 1581grid.13291.38Department of Thoracic Surgery, West China Hospital, Sichuan University, Address: No. 37, Guoxue Alley, Chengdu, 610041 Sichuan China
- West China School of Medicine, Sichuan University, Chengdu, 610041 China
| | - Nan Chen
- 0000 0001 0807 1581grid.13291.38Department of Thoracic Surgery, West China Hospital, Sichuan University, Address: No. 37, Guoxue Alley, Chengdu, 610041 Sichuan China
- West China School of Medicine, Sichuan University, Chengdu, 610041 China
| | - Wenwen Wu
- West China School of Medicine, Sichuan University, Chengdu, 610041 China
| | - Zihuai Wang
- West China School of Medicine, Sichuan University, Chengdu, 610041 China
| | - Feng Lin
- 0000 0001 0807 1581grid.13291.38Department of Thoracic Surgery, West China Hospital, Sichuan University, Address: No. 37, Guoxue Alley, Chengdu, 610041 Sichuan China
| | - Chenglin Guo
- 0000 0001 0807 1581grid.13291.38Department of Thoracic Surgery, West China Hospital, Sichuan University, Address: No. 37, Guoxue Alley, Chengdu, 610041 Sichuan China
| | - Chengwu Liu
- 0000 0001 0807 1581grid.13291.38Department of Thoracic Surgery, West China Hospital, Sichuan University, Address: No. 37, Guoxue Alley, Chengdu, 610041 Sichuan China
| | - Weimin Li
- 0000 0001 0807 1581grid.13291.38Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- 0000 0001 0807 1581grid.13291.38Department of Thoracic Surgery, West China Hospital, Sichuan University, Address: No. 37, Guoxue Alley, Chengdu, 610041 Sichuan China
- West China School of Medicine, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
99
|
Deficiency in STAT1 Signaling Predisposes Gut Inflammation and Prompts Colorectal Cancer Development. Cancers (Basel) 2018; 10:cancers10090341. [PMID: 30235866 PMCID: PMC6162416 DOI: 10.3390/cancers10090341] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is part of the Janus kinase (JAK/STAT) signaling pathway that controls critical events in intestinal immune function related to innate and adaptive immunity. Recent studies have implicated STAT1 in tumor⁻stroma interactions, and its expression and activity are perturbed during colon cancer. However, the role of STAT1 during the initiation of inflammation-associated cancer is not clearly understood. To determine the role of STAT1 in colitis-associated colorectal cancer (CAC), we analyzed the tumor development and kinetics of cell recruitment in wild-type WT or STAT1-/- mice treated with azoxymethane (AOM) and dextran sodium sulfate (DSS). Following CAC induction, STAT1-/- mice displayed an accelerated appearance of inflammation and tumor formation, and increased damage and scores on the disease activity index (DAI) as early as 20 days after AOM-DSS exposure compared to their WT counterparts. STAT1-/- mice showed elevated colonic epithelial cell proliferation in early stages of injury-induced tumor formation and decreased apoptosis in advanced tumors with over-expression of the anti-apoptotic protein Bcl2 at the colon. STAT1-/- mice showed increased accumulation of Ly6G⁺Ly6C-CD11b⁺ cells in the spleen at 20 days of CAC development with concomitant increases in the production of IL-17A, IL-17F, and IL-22 cytokines compared to WT mice. Our findings suggest that STAT1 plays a role as a tumor suppressor molecule in inflammation-associated carcinogenesis, particularly during the very early stages of CAC initiation, modulating immune responses as well as controlling mechanisms such as apoptosis and cell proliferation.
Collapse
|
100
|
Wade RG, Robinson AV, Lo MCI, Keeble C, Marples M, Dewar DJ, Moncrieff MDS, Peach H. Baseline Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios as Biomarkers of Survival in Cutaneous Melanoma: A Multicenter Cohort Study. Ann Surg Oncol 2018; 25:3341-3349. [PMID: 30066226 PMCID: PMC6132419 DOI: 10.1245/s10434-018-6660-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Background In the peripheral blood, the neutrophil–lymphocyte ratio (NLR) and platelet–lymphocyte ratio (PLR) change in response to malignancy. These biomarkers are associated with adverse outcomes in numerous cancers, but the evidence is limited in relation to melanoma. This study sought to investigate the association between these biomarkers and survival in Stages I–III cutaneous melanoma. Methods This multicenter cohort study investigated a consecutive series of patients who underwent wide excision of biopsy-proven cutaneous melanoma and sentinel lymph node biopsy during a 10-year period. The baseline NLR and PLR were calculated immediately before sentinel lymph node biopsy. Adjusted hazard ratios (HRs) for overall and melanoma-specific survival were generated. Results Overall, 1351 patients were included in the study. During surveillance, 184 of these patients died (14%), with 141 of the deaths (77%) attributable to melanoma. Worse overall survival was associated with a baseline NLR lower than 2.5 [HR 2.2; 95% confidence interval (CI) 2.0 to 2.3; p < 0.001] and a baseline PLR lower than 100 (HR 1.8; 95% CI 1.7 to 1.8; p < 0.001). Melanoma-specific survival also was worse, with a baseline NLR lower than 2.5 (HR 1.9; 95% CI 1.6 to 2.2; p < 0.001) and a baseline PLR lower than 100 (HR 1.9; 95% CI 1.7 to 2.2; p < 0.001). The 5-year survival for patients with sentinel lymph node metastases and a low NLR and PLR was approximately 50%. Conclusion This study provides important new data on biomarkers in early-stage melanoma, which contrast with biomarker profiles in advanced disease. These biomarkers may represent the host inflammatory response to melanoma and therefore could help select patients for adjuvant therapy and enhanced surveillance. Electronic supplementary material The online version of this article (10.1245/s10434-018-6660-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryckie G Wade
- Faculty of Medicine and Health, Worsley Building, University of Leeds, Leeds, UK. .,Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds, UK.
| | - Alyss V Robinson
- Faculty of Medicine and Health, Worsley Building, University of Leeds, Leeds, UK
| | - Michelle C I Lo
- Department of Plastic and Reconstructive Surgery, Norfolk and Norwich University Hospital NHS Trust, Norwich, UK
| | - Claire Keeble
- Faculty of Medicine and Health, Worsley Building, University of Leeds, Leeds, UK
| | - Maria Marples
- Faculty of Medicine and Health, Worsley Building, University of Leeds, Leeds, UK.,Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| | - Donald J Dewar
- Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds, UK
| | - Marc D S Moncrieff
- Department of Plastic and Reconstructive Surgery, Norfolk and Norwich University Hospital NHS Trust, Norwich, UK.,Norwich Medical School, University of East Anglia, Norwich, UK
| | - Howard Peach
- Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds, UK
| |
Collapse
|