51
|
Cholesterol defect is marked across multiple rodent models of Huntington's disease and is manifest in astrocytes. J Neurosci 2010; 30:10844-50. [PMID: 20702713 DOI: 10.1523/jneurosci.0917-10.2010] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Brain cholesterol, which is synthesized locally, is a major component of myelin and cell membranes and participates in neuronal functions, such as membrane trafficking, signal transduction, neurotransmitter release, and synaptogenesis. Here we show that brain cholesterol biosynthesis is reduced in multiple transgenic and knock-in Huntington's disease (HD) rodent models, arguably dependent on deficits in mutant astrocytes. Mice carrying a progressively increased number of CAG repeats show a more evident reduction in cholesterol biosynthesis. In postnatal life, the cholesterol-dependent activities of neurons mainly rely on the transport of cholesterol from astrocytes on ApoE-containing particles. Our data show that mRNA levels of cholesterol biosynthesis and efflux genes are severely reduced in primary HD astrocytes, along with impaired cellular production and secretion of ApoE. Consistently, in CSF of HD mice, ApoE is mostly associated with smaller lipoproteins, indicating reduced cholesterol transport on ApoE-containing lipoproteins circulating in the HD brain. These findings indicate that cholesterol defect is robustly marked in HD animals, implying that strategies aimed at selectively modulating brain cholesterol metabolism might be of therapeutic significance.
Collapse
|
52
|
Papahatjis DP, Nahmias VR, Nikas SP, Schimpgen M, Makriyannis A. Design and synthesis of (13S)-methyl-substituted arachidonic acid analogues: templates for novel endocannabinoids. Chemistry 2010; 16:4091-9. [PMID: 20187040 DOI: 10.1002/chem.200902880] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two novel methyl-substituted arachidonic acid derivatives were prepared in an enantioselective manner from commercially available chiral building blocks, and were found to be excellent templates for the development of (13S)-methyl-substituted anandamide analogues. One of the compounds synthesized, namely, (13S,5Z,8Z,11Z,14Z)-13-methyl-eicosa-5,8,11,14-tetraenoic acid N-(2-hydroxyethyl)amide, is an endocannabinoid analogue with remarkably high affinity for the CB1 cannabinoid receptor.
Collapse
Affiliation(s)
- Demetris P Papahatjis
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vass. Constantinou, Athens 116-35, Greece.
| | | | | | | | | |
Collapse
|
53
|
Caillaud A, de la Iglesia P, Darius HT, Pauillac S, Aligizaki K, Fraga S, Chinain M, Diogène J. Update on methodologies available for ciguatoxin determination: perspectives to confront the onset of ciguatera fish poisoning in Europe. Mar Drugs 2010; 8:1838-907. [PMID: 20631873 PMCID: PMC2901828 DOI: 10.3390/md8061838] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/18/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022] Open
Abstract
Ciguatera fish poisoning (CFP) occurs mainly when humans ingest finfish contaminated with ciguatoxins (CTXs). The complexity and variability of such toxins have made it difficult to develop reliable methods to routinely monitor CFP with specificity and sensitivity. This review aims to describe the methodologies available for CTX detection, including those based on the toxicological, biochemical, chemical, and pharmaceutical properties of CTXs. Selecting any of these methodological approaches for routine monitoring of ciguatera may be dependent upon the applicability of the method. However, identifying a reference validation method for CTXs is a critical and urgent issue, and is dependent upon the availability of certified CTX standards and the coordinated action of laboratories. Reports of CFP cases in European hospitals have been described in several countries, and are mostly due to travel to CFP endemic areas. Additionally, the recent detection of the CTX-producing tropical genus Gambierdiscus in the eastern Atlantic Ocean of the northern hemisphere and in the Mediterranean Sea, as well as the confirmation of CFP in the Canary Islands and possibly in Madeira, constitute other reasons to study the onset of CFP in Europe [1]. The question of the possible contribution of climate change to the distribution of toxin-producing microalgae and ciguateric fish is raised. The impact of ciguatera onset on European Union (EU) policies will be discussed with respect to EU regulations on marine toxins in seafood. Critical analysis and availability of methodologies for CTX determination is required for a rapid response to suspected CFP cases and to conduct sound CFP risk analysis.
Collapse
Affiliation(s)
- Amandine Caillaud
- IRTA, Ctra. Poble Nou, Km 5,5. 43540 Sant Carles de la Ràpita, Spain; E-Mails: (A.C.); (P.I.)
| | - Pablo de la Iglesia
- IRTA, Ctra. Poble Nou, Km 5,5. 43540 Sant Carles de la Ràpita, Spain; E-Mails: (A.C.); (P.I.)
| | - H. Taiana Darius
- Laboratoire des micro-algues toxiques, Institut Louis Malardé, BP30, 98713 Papeete Tahiti, French Polynesia; E-Mails: (H.T.D.); (M.C.)
| | - Serge Pauillac
- Institut Pasteur, 25-28 rue du docteur Roux, 75 015 Paris, France; E-Mail: (S.P.)
| | - Katerina Aligizaki
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University, 54 124 Thessaloniki, Greece; E-Mail: (K.A.)
| | - Santiago Fraga
- Instituto Español de Oceanografía, Subida a Radio Faro, 50, 36390 Vigo, Spain; E-Mail: (S.F.)
| | - Mireille Chinain
- Laboratoire des micro-algues toxiques, Institut Louis Malardé, BP30, 98713 Papeete Tahiti, French Polynesia; E-Mails: (H.T.D.); (M.C.)
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou, Km 5,5. 43540 Sant Carles de la Ràpita, Spain; E-Mails: (A.C.); (P.I.)
| |
Collapse
|
54
|
Faust MR, Höfner G, Pabel J, Wanner KT. Azetidine derivatives as novel γ-aminobutyric acid uptake inhibitors: Synthesis, biological evaluation, and structure–activity relationship. Eur J Med Chem 2010; 45:2453-66. [DOI: 10.1016/j.ejmech.2010.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/29/2022]
|
55
|
Truxal LT, Bourdelais AJ, Jacocks H, Abraham WM, Baden DG. Characterization of tamulamides A and B, polyethers isolated from the marine dinoflagellate Karenia brevis. JOURNAL OF NATURAL PRODUCTS 2010; 73:536-40. [PMID: 20218657 PMCID: PMC2881462 DOI: 10.1021/np900541w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Florida red tides occur as the result of blooms of the marine dinoflagellate Karenia brevis. K. brevis is known to produce several families of fused polyether ladder compounds. The most notable compounds are the brevetoxins, potent neurotoxins that activate mammalian sodium channels. Additional fused polyether ladder compounds produced by K. brevis include brevenal, brevisin, and hemibrevetoxin B, all with varying affinities for the same binding site on voltage-sensitive sodium channels. The structure elucidation and biological activity of two additional fused polyether ladder compounds containing seven fused ether rings will be described in this paper. Tamulamide A (MW = 638.30) and tamulamide B (MW = 624.29) were isolated from K. brevis cultures, and their structures elucidated using a combination of NMR spectroscopy and high-resolution mass spectrometry. Tamulamides A and B were both found to compete with tritiated brevetoxin-3 ([(3)H]-PbTx-3) for its binding site on rat brain synaptosomes. However, unlike the brevetoxins, tamulamides A and B showed no toxicity to fish at doses up to 200 nM and did not cause significant bronchoconstriction in sheep pulmonary assays.
Collapse
Affiliation(s)
| | - Andrea J. Bourdelais
- Author to whom correspondence should be addressed. Tel: 910-962-2365, Fax: 910-962-2410,
| | | | | | | |
Collapse
|
56
|
Westphalen RI, Yu J, Krivitski M, Jih TY, Hemmings HC. Regional differences in nerve terminal Na+ channel subtype expression and Na+ channel-dependent glutamate and GABA release in rat CNS. J Neurochem 2010; 113:1611-20. [PMID: 20374421 DOI: 10.1111/j.1471-4159.2010.06722.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We tested the hypothesis that expression of pre-synaptic voltage-gated sodium channel (Na(v)) subtypes coupled to neurotransmitter release differs between transmitter types and CNS regions in a nerve terminal-specific manner. Na(v) coupling to transmitter release was determined by measuring the sensitivity of 4-aminopyridine (4AP)-evoked [(3)H]glutamate and [(14)C]GABA release to the specific Na(v) blocker tetrodotoxin (TTX) for nerve terminals isolated from rat cerebral cortex, hippocampus, striatum and spinal cord. Expression of various Na(v) subtypes was measured by immunoblotting using subtype-specific antibodies. Potencies of TTX for inhibition of glutamate and GABA release varied between CNS regions. However, the efficacies of TTX for inhibition of 4AP-evoked glutamate release were greater than for inhibition of GABA release in all regions except spinal cord. The relative nerve terminal expression of total Na(v) subtypes as well as of specific subtypes varied considerably between CNS regions. The region-specific potencies of TTX for inhibition of 4AP-evoked glutamate release correlated with greater relative expression of total nerve terminal Na(v) and Na(v)1.2. Nerve terminal-specific differences in the expression of specific Na(v) subtypes contribute to transmitter-specific and regional differences in pharmacological sensitivities of transmitter release.
Collapse
Affiliation(s)
- Robert I Westphalen
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
57
|
Chronic Stress Impairs Learning and Memory and Changes Frontal and Hippocampal Synaptosomal Membrane Fluidity in Rats. ACTA PSYCHOLOGICA SINICA 2010. [DOI: 10.3724/sp.j.1041.2010.00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
Capasso A, Gallo C. Molecules Acting on CB1 Receptor and their Effects on Morphine Withdrawal In Vitro. Open Biochem J 2009; 3:78-84. [PMID: 20111725 PMCID: PMC2811858 DOI: 10.2174/1874091x00903010078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 10/23/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022] Open
Abstract
Several pharmacological studies indicate that CB1 cannabinoid receptors (CB1Rs) are present in guinea pig ileum (GPI) and their activation reduce the acetylcholine (Ach) release. Dependence can be induced and measured in vitro by using GPI and the contraction due to opioid withdrawal is caused by acetylcholine release. Design of molecules acting on the CB1Rs are widely studied and the large availaibility of CB1Rs agonists and antagonists provides powerful tools to determine the role of these receptors in mediating some of physiological and pharmacological effects in the myenteric neurones. Given the relationship between CB1Rs/Opioid Withdrawal/Ach system, in the present paper we have designed six new CB1Rs agonists named A-F and evaluated their role in mediating morphine withdrawal in GPI. Also, a comparative study was performed by using the CB1Rs synthetic cannabinoid WIN 55,212-2 and CP 55,940. The results of our experiments indicate that both WIN 55,212-2 and CP 55,940 (1x10-8-5x10-8-1x10-7 M) were able to reduce morphine withdrawal in a concentration-dependent manner. Very similar results were obtained with the new CB1Rs agonists (A-F) used at same concentrations. The results of our experiments indicate that CB1Rs are involved in the control of morphine withdrawal in vitro thus confirming an important functional interaction between the cannabinoid and opioid system.
Collapse
Affiliation(s)
- Anna Capasso
- Department of Pharmaceutical Sciences, University of Salerno, Via Ponte Don Melillo (84084) Fisciano, Salerno, Italy
| | | |
Collapse
|
59
|
Chen PC, Qin LN, Li XM, Walters BJ, Wilson JA, Mei L, Wilson SM. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J Neurosci 2009; 29:10909-10919. [PMID: 19726649 PMCID: PMC2766780 DOI: 10.1523/jneurosci.2635-09.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/07/2023] Open
Abstract
Dysfunction of the ubiquitin proteasome system (UPS) has been implicated in the pathogenesis of many neurological diseases, including Alzheimer's, spinocerebellar ataxia, and several motor neuron diseases. Recent research indicates that changes in synaptic transmission may play a critical role in the progression of neurological disease; however, the mechanisms by which the UPS regulates synaptic structure and function have not been well characterized. In this report, we show that Usp14 is indispensable for synaptic development and function at neuromuscular junctions (NMJs). Usp14-deficient axJ mice display a resting tremor, a reduction in muscle mass, and notable hindlimb rigidity without any detectable loss of motor neurons. Instead, loss of Usp14 causes developmental defects at motor neuron endplates. Presynaptic defects include phosphorylated neurofilament accumulations, nerve terminal sprouting, and poor arborization of the motor nerve terminals, whereas postsynaptic acetylcholine receptors display immature plaque-like morphology. These structural changes in the NMJ correlated with ubiquitin loss in the spinal cord and sciatic nerve. Further studies demonstrated that the greatest loss of ubiquitin was found in synaptosomal fractions, suggesting that the endplate swellings may be caused by decreased protein turnover at the synapse. Transgenic restoration of Usp14 in the nervous system corrected the levels of monomeric ubiquitin in the motor neuron circuit and the defects that were observed in the motor endplates and muscles of the axJ mice. These data define a critical role for Usp14 at mammalian synapses and suggest a requirement for local ubiquitin recycling by the proteasome to control the development and function of NMJs.
Collapse
Affiliation(s)
- Ping-Chung Chen
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | - Lu-Ning Qin
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Xiao-Ming Li
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Brandon J. Walters
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | - Julie A. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | - Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Scott M. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| |
Collapse
|
60
|
Gelman BB, Nguyen TP. Synaptic proteins linked to HIV-1 infection and immunoproteasome induction: proteomic analysis of human synaptosomes. J Neuroimmune Pharmacol 2009; 5:92-102. [PMID: 19693676 PMCID: PMC2824116 DOI: 10.1007/s11481-009-9168-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/05/2009] [Indexed: 10/25/2022]
Abstract
Infection of the central nervous system with human immunodeficiency virus type 1 (HIV-1) can produce morphological changes in the neocortical synaptodendritic arbor that are correlated with neurocognitive impairment. To determine whether HIV-1 infection influences the protein composition of human synapses, a proteomic study of isolated nerve endings was undertaken. Synaptosomes from frontal neocortex were isolated using isopyknic centrifugation from 19 human brain specimens. Purity and enrichment were assessed by measuring pre- and postsynaptic protein markers. Two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to screen for proteins differentially expressed in HIV/AIDS. The concentrations of 31 candidate protein spots were potentially abnormal in HIV-infected decedents with HIV encephalitis and/or increased expression of immunoproteasome subunits. Immunoblots showed that the concentration of some of them was related to HIV-1 infection of the brain and immunoproteasome (IPS) induction. Synapsin 1b and stathmin were inversely related to brain HIV-1 load; 14-3-3zeta and 14-4-4epsilon proteins were higher in subjects with HIV-1 loads. Perturbed synaptosome proteins were linked with IPS subunit composition, and 14-3-3zeta was histologically colocalized with IPS subunits in stained neocortical neurons. Proteomics illustrates that certain human proteins within the synaptic compartment are involved with changes in the synaptodendritic arbor and neurocognitive impairment in HIV-1-infected people.
Collapse
Affiliation(s)
- Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | | |
Collapse
|
61
|
Winden KD, Oldham MC, Mirnics K, Ebert PJ, Swan CH, Levitt P, Rubenstein JL, Horvath S, Geschwind DH. The organization of the transcriptional network in specific neuronal classes. Mol Syst Biol 2009; 5:291. [PMID: 19638972 PMCID: PMC2724976 DOI: 10.1038/msb.2009.46] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 06/09/2009] [Indexed: 01/10/2023] Open
Abstract
Genome-wide expression profiling has aided the understanding of the molecular basis of neuronal diversity, but achieving broad functional insight remains a considerable challenge. Here, we perform the first systems-level analysis of microarray data from single neuronal populations using weighted gene co-expression network analysis to examine how neuronal transcriptome organization relates to neuronal function and diversity. We systematically validate network predictions using published proteomic and genomic data. Several network modules of co-expressed genes correspond to interneuron development programs, in which the hub genes are known to be critical for interneuron specification. Other co-expression modules relate to fundamental cellular functions, such as energy production, firing rate, trafficking, and synapses, suggesting that fundamental aspects of neuronal diversity are produced by quantitative variation in basic metabolic processes. We identify two transcriptionally distinct mitochondrial modules and demonstrate that one corresponds to mitochondria enriched in neuronal processes and synapses, whereas the other represents a population restricted to the soma. Finally, we show that galectin-1 is a new interneuron marker, and we validate network predictions in vivo using Rgs4 and Dlx1/2 knockout mice. These analyses provide a basis for understanding how specific aspects of neuronal phenotypic diversity are organized at the transcriptional level.
Collapse
Affiliation(s)
- Kellen D Winden
- Interdepartmental Program for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Etheridge N, Lewohl JM, Mayfield RD, Harris RA, Dodd PR. Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain. Proteomics Clin Appl 2009; 3:730-742. [PMID: 19924264 DOI: 10.1002/prca.200800202] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes which alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post-mortem human brain of six chronic alcoholics and six non-alcoholic controls were compared using 2D-DIGE. Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the specific pathological response that alcoholism has on the brain. Forty-nine proteins were differentially regulated between the SFG of alcoholics and the SFG of controls and 94 proteins were regulated in the OC with an overlap of 23 proteins. Additionally, the SFG was compared to the OC within each group (alcoholics or controls) to identify region specific differences. A selection were identified by MALDI-TOF mass spectrometry revealing proteins involved in vesicle transport, metabolism, folding and trafficking, and signal transduction, all of which have the potential to influence synaptic activity. A number of proteins identified in this study have been previously related to alcoholism; however, the focus on synaptic proteins has also uncovered novel alcoholism-affected proteins. Further exploration of these proteins will illuminate the mechanisms altering synaptic plasticity, and thus neuronal signaling and response, in the alcoholic brain.
Collapse
Affiliation(s)
- Naomi Etheridge
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
63
|
Abstract
Homogenization of fresh brain tissue in isotonic medium shears plasma membranes causing nerve terminals to become separated from their axons and postsynaptic connections. The nerve terminal membranes then reseal to form synaptosomes. The discontinuous Percoll gradient procedure described here is designed to isolate synaptosomes from brain homogenates in the minimum time to allow functional experiments to be performed. Synaptosomes are isolated using a medium-speed centrifuge, while maintaining isotonic conditions and minimizing mechanically damaging resuspension steps. This protocol has advantages over other procedures in terms of speed and by producing relatively homogeneous synaptosomes, minimizing the presence of synaptic and glial plasma membranes and extrasynaptosomal mitochondria. The purified synaptosomes are viable and take up and release neurotransmitters very efficiently. A typical yield of synaptosomes is between 2.5 and 4 mg of synaptosomal protein per gram rat brain. The procedure takes approximately 1 h from homogenization of the brain until collection of the synaptosomal suspension from the Percoll gradient.
Collapse
|
64
|
Lu D, Guo J, Duclos RI, Bowman AL, Makriyannis A. Bornyl- and isobornyl-Delta8-tetrahydrocannabinols: a novel class of cannabinergic ligands. J Med Chem 2008; 51:6393-9. [PMID: 18826296 DOI: 10.1021/jm8005299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-activity relationship studies of classical cannabinoid analogues have established that the C3 aliphatic side chain plays a pivotal role in determining cannabinergic potency. In earlier work, we provided evidence for the presence of subsites within the CB1 and CB2 cannabinoid receptor binding domains that can accommodate bulky conformationally defined substituents at the C3 alkyl side chain pharmacophore of classical cannabinoids. We have now extended this work with the synthesis of a series of Delta (8)-THC analogues in which bornyl substituents are introduced at the C3 position. Our results indicate that, for optimal interactions with both CB1 and CB2 receptors, the bornyl substituents need to be within close proximity of the tricyclic core of Delta (8)-THC and that the conformational space occupied by the C3 substituents influences CB1/CB2 receptor subtype selectivity.
Collapse
Affiliation(s)
- Dai Lu
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
65
|
Pérez-De La Cruz V, Konigsberg M, Pedraza-Chaverri J, Herrera-Mundo N, Díaz-Muñoz M, Morán J, Fortoul-van der Goes T, Rondán-Zárate A, Maldonado PD, Ali SF, Santamaría A. Cytoplasmic calcium mediates oxidative damage in an excitotoxic /energetic deficit synergic model in rats. Eur J Neurosci 2008; 27:1075-85. [PMID: 18364032 DOI: 10.1111/j.1460-9568.2008.06088.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Excessive calcium is responsible for triggering different potentially fatal metabolic pathways during neurodegeneration. In this study, we evaluated the role of calcium on the oxidative damage produced in an in vitro combined model of excitotoxicity/energy deficit produced by the co-administration of quinolinate and 3-nitropropionate to brain synaptosomal membranes. Synaptosomal fractions were incubated in the presence of subtoxic concentrations of these agents (21 and 166 microm, respectively). In order further to characterize possible toxic mechanisms involved in oxidative damage in this experimental paradigm, agents with different properties - dizocilpine, acetyl L-carnitine, iron porphyrinate and S-allylcysteine - were tested at increasing concentrations (10-1000 microm). Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. For confirmatory purposes, additional fractions were incubated in parallel in the presence of the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Under physiological conditions of extracellular calcium availability, synaptomes exposed to both toxins displayed an increased lipoperoxidation (76% above controls), and this effect was partially attenuated by the tested agents as follows: dizocilpine = iron porphyrinate > acetyl L-carnitine > S-allylcysteine. When the incubation medium was deprived of calcium, the lipoperoxidative effect achieved in this experimental paradigm was still high (49% above the control), and the order of attenuation was: iron porphyrinate > S-allylcysteine > acetyl L-carnitine > dizocilpine. BAPTA-AM was effective in preventing the pro-oxidant action of both toxins, promoting even lower peroxidative levels than those quantified under basal conditions. Our results suggest that the lipid peroxidation induced in synaptosomal fractions by quinolinate plus 3-nitropropionate is largely dependent on the cytoplasmic concentrations of calcium.
Collapse
Affiliation(s)
- Verónica Pérez-De La Cruz
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., México DF 14269, México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Eravci M, Fuxius S, Broedel O, Weist S, Krause E, Stephanowitz H, Schluter H, Eravci S, Baumgartner A. The whereabouts of transmembrane proteins from rat brain synaptosomes during two-dimensional gel electrophoresis. Proteomics 2008; 8:1762-70. [DOI: 10.1002/pmic.200700193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
67
|
Michelliza S, Abraham WM, Jacocks HM, Schuster T, Baden DG. Synthesis, modeling, and biological evaluation of analogues of the semisynthetic brevetoxin antagonist beta-naphthoyl-brevetoxin. Chembiochem 2008; 8:2233-9. [PMID: 18000915 DOI: 10.1002/cbic.200700317] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brevetoxins are neurotoxic compounds produced by the dinoflagellate Karenia brevis. Extensive blooms induce neurotoxic shellfish poisoning (NSP) and asthma-like symptoms in humans. beta-naphthoyl-brevetoxin, the first semisynthetic brevetoxin antagonist, has been defined as the lead compound in the investigation of the mechanisms of bronchoconstriction induced by inhaled brevetoxins and relaxation or reversal of those effects by selected derivatives. In pursuit of more potent and effective brevetoxin antagonists, a series of beta-naphthoyl-brevetoxin analogues have been synthesized. Activities were determined by competitive displacement of tritiated brevetoxin-3 from rat brain synaptosomes and by lung resistance measurements in sheep. Additionally, preliminary computational structural studies have been performed. All analogues bound to rat brain synaptosomes with affinities similar to beta-naphthoyl-brevetoxin but exhibited very different responses in sheep. The biological evaluations along with computational studies suggest that the brevetoxin binding site in rat brain synaptosome might be different from the ones in lung tissue and both steric and electrostatic factors contribute to the efficacy of brevetoxin antagonism.
Collapse
Affiliation(s)
- Sophie Michelliza
- Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin. K. Moss Lane, Wilmington, NC 28409, USA.
| | | | | | | | | |
Collapse
|
68
|
Khanolkar AD, Lu D, Ibrahim M, Duclos RI, Thakur GA, Malan TP, Porreca F, Veerappan V, Tian X, George C, Parrish DA, Papahatjis DP, Makriyannis A. Cannabilactones: a novel class of CB2 selective agonists with peripheral analgesic activity. J Med Chem 2007; 50:6493-500. [PMID: 18038967 DOI: 10.1021/jm070441u] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The identification of the CB2 cannabinoid receptor has provided a novel target for the development of therapeutically useful cannabinergic molecules. We have synthesized benzo[ c]chromen-6-one analogs possessing high affinity and selectivity for this receptor. These novel compounds are structurally related to cannabinol (6,6,9-trimethyl-3-pentyl-6 H-benzo[ c]chromen-1-ol), a natural constituent of cannabis with modest CB2 selectivity. Key pharmacophoric features of the new selective agonists include a 3-(1',1'-dimethylheptyl) side chain and a 6-oxo group on the cannabinoid tricyclic structure that characterizes this class of compounds as "cannabilactones." Our results suggest that the six-membered lactone pharmacophore is critical for CB2 receptor selectivity. Optimal receptor subtype selectivity of 490-fold and subnanomolar affinity for the CB2 receptor is exhibited by a 9-hydroxyl analog 5 (AM1714), while the 9-methoxy analog 4b (AM1710) had a 54-fold CB2 selectivity. X-ray crystallography and molecular modeling show the cannabilactones to have a planar ring conformation. In vitro testing revealed that the novel compounds are CB2 agonists, while in vivo testing of cannabilactones 4b and 5 found them to possess potent peripheral analgesic activity.
Collapse
Affiliation(s)
- Atmaram D Khanolkar
- Center for Drug Discovery, Northeastern University, 116 Mugar Hall, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
LePage KT, Rainier JD, Johnson HWB, Baden DG, Murray TF. Gambierol acts as a functional antagonist of neurotoxin site 5 on voltage-gated sodium channels in cerebellar granule neurons. J Pharmacol Exp Ther 2007; 323:174-9. [PMID: 17609421 DOI: 10.1124/jpet.107.124271] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The marine toxin gambierol, a polyether ladder toxin derived from the marine dinoflagellate Gambierdiscus toxicus, was evaluated for interaction with voltage-gated sodium channels (VGSCs) in cerebellar granule neuron (CGN) cultures. At concentrations ranging from 10 nM to 10 microM, gambierol alone had no effect on the intracellular Ca2+ concentration [Ca2+]i of exposed CGN cultures. Furthermore, there was no evidence of neurotoxicity in CGN cultures exposed for 2 h to gambierol (1 nM-10 microM). However, gambierol was a potent inhibitor (IC50 = 189 nM) of the elevation of [Ca2+]i that accompanies exposure of CGN cultures to the VGSC activator brevetoxin-2 (PbTx-2). To further explore the potential interaction of gambierol with VGSCs, the influence of gambierol on PbTx-2-induced neurotoxicity was assessed. Gambierol reduced the PbTx-2-induced efflux of lactate dehydrogenase in exposed CGN cultures in a concentration-dependent manner (IC50 = 471 nM). It is noteworthy that the potencies of gambierol as an inhibitor of both PbTx-2-induced Ca2+ influx and cytotoxicity were coincident. Finally, the inhibitory effects of gambierol on PbTx-2-induced elevation of [Ca2+]i were compared with those of brevenal, a natural inhibitor of the toxic effects of brevetoxin isolated from cultures of Karina brevis. Like gambierol, brevenal inhibited PbTx-2-induced elevation of [Ca2+]i in a concentration-dependent manner (IC50 = 108.6 nM). These results provide evidence for gambierol acting as a functional antagonist of neurotoxin site 5 on neuronal VGSCs.
Collapse
Affiliation(s)
- K T LePage
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
70
|
Coburn CG, Currás-Collazo MC, Kodavanti PRS. In vitro effects of environmentally relevant polybrominated diphenyl ether (PBDE) congeners on calcium buffering mechanisms in rat brain. Neurochem Res 2007; 33:355-64. [PMID: 17846885 DOI: 10.1007/s11064-007-9430-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 06/29/2007] [Indexed: 11/26/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as additive flame-retardants and have been detected in human blood, adipose tissue, and breast milk. Developmental and long-term exposures to these chemicals may pose a human health risk, especially to children. We have previously demonstrated that polychlorinated biphenyls (PCBs), which are structurally similar to PBDEs and cause neurotoxicity, perturb intracellular signaling events including calcium homeostasis and protein kinase C translocation, which are critical for neuronal function and development of the nervous system. The objective of the present study was to test whether environmentally relevant PBDE congeners 47 and 99 are also capable of disrupting Ca(2+) homeostasis. Calcium buffering was determined by measuring (45)Ca(2+)-uptake by microsomes and mitochondria, isolated from adult male rat brain (frontal cortex, cerebellum, hippocampus, and hypothalamus). Results show that PBDEs 47 and 99 inhibit both microsomal and mitochondrial (45)Ca(2+)-uptake in a concentration-dependent manner. The effect of these congeners on (45)Ca(2+)-uptake is similar in all four brain regions though the hypothalamus seems to be slightly more sensitive. Among the two preparations, the congeners inhibited (45)Ca(2+)-uptake in mitochondria to a greater extent than in microsomes. These results indicate that PBDE 47 and PBDE 99 congeners perturb calcium signaling in rat brain in a manner similar to PCB congeners, suggesting a common mode of action of these persistent organic pollutants.
Collapse
Affiliation(s)
- Cary G Coburn
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
71
|
Chen D, Huang X, Liu L, Shi N. Deltamethrin induces mitochondrial membrane permeability and altered expression of cytochrome C in rat brain. J Appl Toxicol 2007; 27:368-72. [PMID: 17304643 DOI: 10.1002/jat.1215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deltamethrin is a type II synthetic pyrethroid insecticide and is used extensively. Numerous studies have demonstrated that deltamethrin can cause severe central nervous system symptoms. The mechanism of neuro-toxicity caused by deltamethrin is still poorly understood. This study investigated the effect of deltamethrin on the mitochondria-mediated apoptosis pathway in rat brain. The cortex and hippocampus mitochondrial membrane potential, permeability transition, expression of cytochrome c and activity of cytochrome c oxidase was assayed at 5, 24, 48 and 72 h following deltamethrin treatment. The study observed that the membrane potential, change of absorbance at 540 nm (A(540)), intensities of cytochrome c in mitochondria and activity of cytochrome c oxidase in the cortex and hippocampus of treated groups were significantly lower than those of the control group. The results of the study demonstrated that deltamethrin induced a decreased mitochondrial membrane potential and increased permeability, and reduced the expression of cytochrome c, thus depressing the activity of cytochrome c oxidase significantly. It indicates that deltamethrin may have an effect on mitochondria-mediated apoptosis of nerve cells in the rat brain.
Collapse
Affiliation(s)
- Dan Chen
- Department of Toxicology, MOE Key Laboratory of Environmental and Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | | | | | | |
Collapse
|
72
|
Mills K, Ansah T, Ali S, Mukherjee S, Shockley D. Augmented behavioral response and enhanced synaptosomal calcium transport induced by repeated cocaine administration are decreased by calcium channel blockers. Life Sci 2007; 81:600-8. [PMID: 17689567 PMCID: PMC2765982 DOI: 10.1016/j.lfs.2007.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 06/19/2007] [Accepted: 06/29/2007] [Indexed: 11/26/2022]
Abstract
Recent studies suggest that calcium influx via L-type calcium channels is necessary for psychostimulant-induced behavioral sensitization. In addition, chronic amphetamine upregulates subtype Cav1.2-containing L-type calcium channels. In the present studies, we assessed the effect of calcium channel blockers (CCBs) on cocaine-induced behavioral sensitization and determined whether the functional activity of L-type calcium channels is altered after repeated cocaine administration. Rats were administered daily intraperitoneal injections of either flunarizine (40 mg/kg), diltiazem (40 mg/kg) or cocaine (20 mg/kg) and the combination of the CCBs and cocaine for 30 days. Motor activities were monitored on Day 1, and every 6th day during the 30-day treatment period. Daily cocaine administration produced increased locomotor activity. Maximal augmentation of behavioral response to repeated cocaine administration was observed on Day 18. Flunarizine pretreatment abolished the augmented behavioral response to repeated cocaine administration while diltiazem was less effective. Measurement of tissue monoamine levels on Day 18 revealed cocaine-induced increases in DA and 5-HT in the nucleus accumbens. By contrast to behavioral response, diltiazem was more effective in attenuating increases in monoamine levels than flunarizine. Cocaine administration for 18 days produced increases in calcium uptake in synaptosomes prepared from the nucleus accumbens and frontal cortex. Increases in calcium uptake were abolished by flunarizine and diltiazem pretreatment. Taken together, the augmented cocaine-induced behavioral response on Day 18 may be due to increased calcium uptake in the nucleus accumbens leading to increased dopamine (DA) and serotonin (5-HT) release. Flunarizine and diltiazem attenuated the behavioral response by decreasing calcium uptake and decreasing neurochemical release.
Collapse
Affiliation(s)
- K. Mills
- Department of Pharmacology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, Tennessee 37208, USA
| | - T.A. Ansah
- Department of Pharmacology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, Tennessee 37208, USA
- Corresponding author: Department of Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, Tel: 615 327 6295, Fax: 615 327 6632, (T.A. Ansah)
| | - S.F. Ali
- Department of Pharmacology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, Tennessee 37208, USA
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research/FDA, 3900 NCTR Drive, Jefferson, Arkansas 72079-9502, USA
| | - S. Mukherjee
- Department of Pharmacology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, Tennessee 37208, USA
| | - D.C. Shockley
- Department of Pharmacology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, Tennessee 37208, USA
| |
Collapse
|
73
|
. PSC, . BR, . PR, . PSL, . PMM, . WR. Tramadol Effects on the Activity Levels of ATPases in Mitochondrial Fractions of Rat Brain Areas During Non-Induction of Pain. INT J PHARMACOL 2007. [DOI: 10.3923/ijp.2007.341.346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
74
|
Li Y, Wang JJ, Cai JX. Aniracetam restores the effects of amyloid-beta protein or ageing on membrane fluidity and intracellular calcium concentration in mice synaptosomes. J Neural Transm (Vienna) 2007; 114:1407-11. [PMID: 17557127 DOI: 10.1007/s00702-007-0760-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
In the present study, we observed the in vitro effect of aniracetam on membrane fluidity and free calcium concentrations ([Ca(2+)]i) of frontal cortical (FC) and hippocampal (HP) synaptosomes of aged mice and young mice treated with amyloid-beta protein (Abeta) Membrane fluidity was measured by using fluorescence anisotropy of the lipophilic probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). [Ca(2+)]i was measured by using Fura 2-AM fluorescent spectrophotometry. We found that membrane fluidity of the FC and HP synaptosomes was decreased in 14 months old mice compared with that in 3 months old mice. Similarly, Abeta25-35 (1 microM) decreased the membrane fluidity in 3 months old mice. These effects of ageing and Abeta25-35 on membrane fluidity were restored by aniracetam in a concentration-dependent manner. Furthermore, Abeta25-35 (1 microM) largely increased [Ca(2+)]i in FC and HP synaptosomes in 3 months old mice, but this effect on HP synaptosomes was effectively reversed by aniracetam (1-4 mM). The present findings suggest that aniracetam restores age- and Abeta-induced alterations in membrane fluidity or Abeta-induced increase in [Ca(2+)]i, demonstrating a possible beneficial role of aniracetam in the clinic treatment for senile dementia or Alzheimer's disease.
Collapse
Affiliation(s)
- Y Li
- College of Life Sciences, Qufu Normal University, Qufu, PR China
| | | | | |
Collapse
|
75
|
Xu J, Zhu J, Shi C, Guo K, Yew DT. Effects of genistein on hippocampal neurodegeneration of ovariectomized rats. J Mol Neurosci 2007. [DOI: 10.1385/jmn/31:02:101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
76
|
Xu J, Zhu J, Shi C, Guo K, Yew DT. Effects of genistein on hippocampal neurodegeneration of ovariectomized rats. J Mol Neurosci 2007; 31:101-12. [PMID: 17478884 DOI: 10.1007/s12031-007-0010-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 11/30/1999] [Accepted: 11/01/2006] [Indexed: 10/23/2022]
Abstract
To investigate the mechanism underlying the neurodegeneration of postmenopausal women, the effect of genistein on hippocampal neurodegeneration was investigated in ovariectomized (OVX) Sprague-Dawley rats. Three-month-old female Sprague-Dawley rats were randomly divided into four groups: sham operated; OVX only; genistein-treated OVX (OVX-genistein); and estradiol benzoate-treated OVX (OVX-EB). Genistein and EB were subcutaneously injected into rats of the OVX-genistein and OVX-EB groups, respectively, once a day from the second day after surgery. Behavioral testing began on day 31 after surgery and lasted 5 d. The activities of superoxide dismutase and content of malondialdehyde in serum, the concentration of intrasynaptosome-free calcium, membrane relative viscosity of cerebral synaptosomes, and mean optical density (MOD) of the hippocampal synaptophysin immunoreactivity product were measured, respectively, in the eighth week after surgery. It was found that the escape latency in the OVX-EB and the OVX-genistein groups was significantly lower than that in the OVX control group (p < 0.05), whereas in the behavioral test, the platform-passing number was higher than in the OVX control group (p < 0.05). [Ca2+]i in the cerebral cortical and hippocampal synaptosome of the OVX-only group was remarkably higher than that in the other three groups ( p < 0.01). The hippocampal synaptosome membrane viscosity of the OVX-only group was significantly higher than that in the sham-operated, OVX-EB (p < 0.05) and the OVX-genistein (p < 0.01) groups. The MOD of synaptophysin immunoreactive product in the radiation layers of CA1, CA2, CA3 and the molecular layer of the dentate gyrus of the OVX-only group was significantly lower than in the sham-operated, OVX-genistein, and OVX-EB groups (p < 0.01). These results suggested that genistein, which has antioxidant properties similar to estradiol, could be used as a substitute for estradiol to prevent or treat central neurodegeneration in postmenopausal women.
Collapse
Affiliation(s)
- Jie Xu
- Department of Anatomy, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | | | | | | | | |
Collapse
|
77
|
Lillo C, Kitamoto J, Williams DS. Roles and interactions of usher 1 proteins in the outer retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:341-8. [PMID: 17249594 DOI: 10.1007/0-387-32442-9_48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Our studies demonstrate that harmonin and myosin VIIa are not localized in the same compartments in the mouse and human retinas, indicating that they do not interact in this organ, contrary to what has been shown in the inner ear. The enrichment of harmonin in the photoreceptor synapses indicates that this protein may form multiple complexes with others to maintain the synaptic structure or to mediate in the release of synaptic vesicles.
Collapse
Affiliation(s)
- Concepción Lillo
- Department of Pharmacology, UCSD School of Medicine, La Jolla, CA 92092-0983, USA
| | | | | |
Collapse
|
78
|
Babusikova E, Hatok J, Dobrota D, Kaplan P. Age-related oxidative modifications of proteins and lipids in rat brain. Neurochem Res 2007; 32:1351-6. [PMID: 17401649 DOI: 10.1007/s11064-007-9314-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 02/14/2007] [Indexed: 12/27/2022]
Abstract
Oxidants have been shown to play a major role in ageing and ageing-related neurodegenerative diseases. In the present study, we investigated the effect of ageing on oxidative damage to lipids and proteins in brain homogenate, mitochondria and synaptosomes of adult (6-month-old), old (15-month-old), and senescent (26-month-old) Wistar rats. There was a significant increase in thiobarbituric acid-reactive substances and conjugated dienes in homogenates, which indicate increased lipid peroxidation (LPO). Oxidative modifications of homogenate proteins were demonstrated by a loss of sulfhydryl content, accumulation of dityrosines and formation of protein conjugates with LPO-end products. Increase in protein conjugates with LPO-end products and a decrease in SH groups were observed also in mitochondria and synaptosomes, but dityrosine content was elevated only in synaptosomes. Protein surface hydrophobicity, measured by fluorescent probe 1-anilino-8-naphthalenesulfonate (ANS), was increased only in homogenate. These results suggest that besides mitochondria and synaptosomes other cellular compartments are oxidatively modified during brain ageing.
Collapse
Affiliation(s)
- E Babusikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | |
Collapse
|
79
|
Lacor PN, Buniel MC, Furlow PW, Sanz Clemente A, Velasco PT, Wood M, Viola KL, Klein WL. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 2007; 27:796-807. [PMID: 17251419 PMCID: PMC6672917 DOI: 10.1523/jneurosci.3501-06.2007] [Citation(s) in RCA: 941] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The basis for memory loss in early Alzheimer's disease (AD) seems likely to involve synaptic damage caused by soluble Abeta-derived oligomers (ADDLs). ADDLs have been shown to build up in the brain and CSF of AD patients and are known to interfere with mechanisms of synaptic plasticity, acting as gain-of-function ligands that attach to synapses. Because of the correlation between AD dementia and synaptic degeneration, we investigated here the ability of ADDLs to affect synapse composition, structure, and abundance. Using highly differentiated cultures of hippocampal neurons, a preferred model for studies of synapse cell biology, we found that ADDLs bound to neurons with specificity, attaching to presumed excitatory pyramidal neurons but not GABAergic neurons. Fractionation of ADDLs bound to forebrain synaptosomes showed association with postsynaptic density complexes containing NMDA receptors, consistent with observed attachment of ADDLs to dendritic spines. During binding to hippocampal neurons, ADDLs promoted a rapid decrease in membrane expression of memory-related receptors (NMDA and EphB2). Continued exposure resulted in abnormal spine morphology, with induction of long thin spines reminiscent of the morphology found in mental retardation, deafferentation, and prionoses. Ultimately, ADDLs caused a significant decrease in spine density. Synaptic deterioration, which was accompanied by decreased levels of the spine cytoskeletal protein drebrin, was blocked by the Alzheimer's therapeutic drug Namenda. The observed disruption of dendritic spines links ADDLs to a major facet of AD pathology, providing strong evidence that ADDLs in AD brain cause neuropil damage believed to underlie dementia.
Collapse
Affiliation(s)
- Pascale N. Lacor
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Maria C. Buniel
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Paul W. Furlow
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Antonio Sanz Clemente
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Pauline T. Velasco
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Margaret Wood
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Kirsten L. Viola
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - William L. Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
80
|
De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 2007; 282:11590-601. [PMID: 17308309 DOI: 10.1074/jbc.m607483200] [Citation(s) in RCA: 687] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is a major aspect of Alzheimer disease (AD) pathology. We have investigated the relationship between oxidative stress and neuronal binding of Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in brain tissue of AD patients and are considered centrally related to pathogenesis. Using hippocampal neuronal cultures, we found that ADDLs stimulated excessive formation of reactive oxygen species (ROS) through a mechanism requiring N-methyl-d-aspartate receptor (NMDA-R) activation. ADDL binding to neurons was reduced and ROS formation was completely blocked by an antibody to the extracellular domain of the NR1 subunit of NMDA-Rs. In harmony with a steric inhibition of ADDL binding by NR1 antibodies, ADDLs that were bound to detergent-extracted synaptosomal membranes co-immunoprecipitated with NMDA-R subunits. The NR1 antibody did not affect ROS formation induced by NMDA, showing that NMDA-Rs themselves remained functional. Memantine, an open channel NMDA-R antagonist prescribed as a memory-preserving drug for AD patients, completely protected against ADDL-induced ROS formation, as did other NMDA-R antagonists. Memantine and the anti-NR1 antibody also attenuated a rapid ADDL-induced increase in intraneuronal calcium, which was essential for stimulated ROS formation. These results show that ADDLs bind to or in close proximity to NMDA-Rs, triggering neuronal damage through NMDA-R-dependent calcium flux. This response provides a pathologically specific mechanism for the therapeutic action of memantine, indicates a role for ROS dysregulation in ADDL-induced cognitive impairment, and supports the unifying hypothesis that ADDLs play a central role in AD pathogenesis.
Collapse
Affiliation(s)
- Fernanda G De Felice
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Omoi NO, Arai M, Saito M, Takatsu H, Shibata A, Fukuzawa K, Sato K, Abe K, Fukui K, Urano S. Influence of oxidative stress on fusion of pre-synaptic plasma membranes of the rat brain with phosphatidyl choline liposomes, and protective effect of vitamin E. J Nutr Sci Vitaminol (Tokyo) 2007; 52:248-55. [PMID: 17087050 DOI: 10.3177/jnsv.52.248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Influence of oxidative stress on fusion of pre-synaptic plasma membranes with phosphatidylcholine (PC) liposomes as a model of synaptic vesicle was investigated. The inhibitory effect of vitamin E on the decline in the fusion caused by oxidative stress was also assessed. Rats subjected to hyperoxia as oxidative stress showed significant increases in the levels of lipid hydroperoxides and protein carbonyl moieties in pre-synaptic plasma membranes in the brain. The zeta potential of pre-synaptic membrane surface was decreased markedly. When synaptosomes were incubated with PC liposomes labeled by either rhodamine B or calcein as a fluorescence probe, or 12-doxyl stearic acid as an ESR spin trapping agent, translocation of each probe into oxidatively damaged pre-synaptic membranes was decreased significantly. Fatty acid composition analysis in pre-synaptic membranes obtained from normal rats revealed a marked increase in linoleic acid and a moderate decrease in docosahexaenoic content after the incubation with liposomes. However, rats subjected to hyperoxia did not show marked changes in these fatty acid contents in their pre-synaptic membranes after the incubation. Such changes caused by hyperoxia were inhibited by vitamin E treatment of rats. These results suggest that oxidative damage of pre-synaptic membranes caused by oxidative stress lowers the lipid-mixing for the membrane fusion. The results of this study imply that vitamin E prevents the deficit in neurotransmission at nerve terminals due to the decline in fusion between pre-synaptic membrane and synaptic vesicles caused by oxidative membrane damage.
Collapse
Affiliation(s)
- Nao-omi Omoi
- Division of Biological Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohtoh-ku, Tokyo 135-8548, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Chai ZF, Zhu MM, Bai ZT, Liu T, Tan M, Pang XY, Ji YH. Chinese-scorpion (Buthus martensi Karsch) toxin BmK alphaIV, a novel modulator of sodium channels: from genomic organization to functional analysis. Biochem J 2006; 399:445-53. [PMID: 16800812 PMCID: PMC1615898 DOI: 10.1042/bj20060035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, BmK alphaIV, a novel modulator of sodium channels, was cloned from venomous glands of the Chinese scorpion (Buthus martensi Karsch) and expressed successfully in Escherichia coli. The BmK alphaIV gene is composed of two exons separated by a 503 bp intron. The mature polypeptide contains 66 amino acids. BmK alphaIV has potent toxicity in mice and cockroaches. Surface-plasmon-resonance analysis found that BmK alphaIV could bind to both rat cerebrocortical synaptosomes and cockroach neuronal membranes, and shared similar binding sites on sodium channels with classical AaH II (alpha-mammal neurotoxin from the scorpion Androctonus australis Hector), BmK AS (beta-like neurotoxin), BmK IT2 (the depressant insect-selective neurotoxin) and BmK abT (transitional neurotoxin), but not with BmK I (alpha-like neurotoxin). Two-electrode voltage clamp recordings on rNav1.2 channels expressed in Xenopus laevis oocytes revealed that BmK alphaIV increased the peak amplitude and prolonged the inactivation phase of Na+ currents. The structural and pharmacological properties compared with those of other scorpion alpha-toxins suggests that BmK alphaIV represents a novel subgroup or functional hybrid of alpha-toxins and might be an evolutionary intermediate neurotoxin for alpha-toxins.
Collapse
Affiliation(s)
- Zhi-Fang Chai
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Mang-Mang Zhu
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Zhan-Tao Bai
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Tong Liu
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Miao Tan
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Xue-Yan Pang
- †School of Life Sciences of Shanghai University, Shanghai 200444, People's Republic of China
| | - Yong-Hua Ji
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- †School of Life Sciences of Shanghai University, Shanghai 200444, People's Republic of China
- To whom correspondence should be addressed (email or )
| |
Collapse
|
83
|
Wang C, Zhang D, Li G, Liu J, Tian J, Fu F, Liu K. Neuroprotective effects of safflor yellow B on brain ischemic injury. Exp Brain Res 2006; 177:533-9. [PMID: 17006684 DOI: 10.1007/s00221-006-0705-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
The present study was conducted to investigate whether safflor yellow B (SYB) had a protective effect on cerebral ischemic injury and to determine the possible mechanisms in vivo and in vitro. In vivo, Male Wistar-Kyoto (WKY) rats were used to make the model of middle cerebral artery occlusion (MCAO). The behavioral test was used to measure neurological deficit scores for evaluation of the ischemic damage of brain. The infarction area of brain was assessed in brain slices stained with 2% solution of 2,3,5-triphenyl tetrazolium chloride (TTC). Spectrophotometric assay was used to determine the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), contents of malondialdehyde (MDA) and adenosine triphosphate (ATP) of the brain. Furthermore, the respiratory control ratio (RCR = state 3/state 4) was assessed in the brain mitochondria. In vitro, the effect of SYB was tested in cultured fetal cortical cells exposed to glutamate to identify its neuroprotection against neurons damage. The results in vivo showed that SYB at doses of 3.0 and 6.0 mg kg(-1) markedly decreased the neurological deficit scores and the infarction area in MCAO rats. At the same time, SYB significantly improved mitochondrial energy metabolism, decreased MDA content, and increased SOD and GPx activities in ischemic brain. The results in vitro showed that SYB remarkably inhibited neuron damage induced by glutamate in cultured fetal cortical cells. These suggest that SYB might act as a potential neuroprotective agent against the cerebral ischemia-induced injury in rat brain through reducing lipid peroxides, scavenging free radicals, and improving the energy metabolism.
Collapse
Affiliation(s)
- Chaoyun Wang
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
84
|
Papahatjis DP, Nahmias VR, Andreou T, Fan P, Makriyannis A. Structural modifications of the cannabinoid side chain towards C3-aryl and 1',1'-cycloalkyl-1'-cyano cannabinoids. Bioorg Med Chem Lett 2006; 16:1616-20. [PMID: 16387492 DOI: 10.1016/j.bmcl.2005.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/29/2005] [Accepted: 12/07/2005] [Indexed: 11/29/2022]
Abstract
The compounds reported in this study are Delta(8)-THC analogues in which the C3 five-carbon linear side chain of Delta(8)-THC was replaced with aryl and 1',1'-cycloalkyl substituents. Of the compounds described here analogues 2d (CB(1), K(i)=11.7 nM. CB(2), K(i)=9.39 nM) and 2f (CB(1), K(i)=8.26 nM. CB(2), K(i)=3.86 nM) exhibited enhanced binding affinities for CB(1) and CB(2), exceeding that of Delta(8)-THC. Efficient procedures for the synthesis of these novel cannabinoid analogues are described.
Collapse
Affiliation(s)
- Demetris P Papahatjis
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vass. Constantinou, Athens 116-35, Greece.
| | | | | | | | | |
Collapse
|
85
|
Pérez-De La Cruz V, González-Cortés C, Pedraza-Chaverrí J, Maldonado PD, Andrés-Martínez L, Santamaría A. Protective effect of S-allylcysteine on 3-nitropropionic acid-induced lipid peroxidation and mitochondrial dysfunction in rat brain synaptosomes. Brain Res Bull 2005; 68:379-83. [PMID: 16377446 DOI: 10.1016/j.brainresbull.2005.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/23/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
3-Nitropropionic acid is a neurotoxin that irreversibly inhibits succinate dehydrogenase, a relevant enzyme constituting the complex II of the respiratory chain during mitochondrial electron transport. 3-Nitropropionic acid is known to produce oxidative/nitrosative stress and evokes an experimental model of Huntington's disease. In this work we evaluated the effects of the antioxidant compound and major organosulfur garlic derivative, S-allylcysteine, on lipid peroxidation and mitochondrial dysfunction induced by 3-nitropropionic acid in synaptosomal fractions from rat brain. 3-Nitropropionic acid, at concentrations ranging 0.75-2.5 mM, produced enhanced levels of lipid peroxidation, while increasing concentrations of S-allylcysteine (0.1-2 mM) decreased the peroxidative action of 3-nitropropionic acid (1 mM) in synaptosomal fractions in a concentration-dependent manner. S-Allylcysteine (0.75 mM) also prevented the 3-nitropropionic acid (1mM)-induced mitochondrial dysfunction. These findings suggest that the protective actions that S-allylcysteine exert on the in vitro neurotoxicity induced by 3-nitropropionic acid are mediated by its antioxidant properties.
Collapse
Affiliation(s)
- Verónica Pérez-De La Cruz
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., México 14269, D.F., Mexico
| | | | | | | | | | | |
Collapse
|
86
|
Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D. Effects of alpha-synuclein immunization in a mouse model of Parkinson's disease. Neuron 2005; 46:857-68. [PMID: 15953415 DOI: 10.1016/j.neuron.2005.05.010] [Citation(s) in RCA: 435] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 02/03/2005] [Accepted: 05/03/2005] [Indexed: 12/21/2022]
Abstract
Abnormal folding of alpha-synuclein (alpha-syn) is thought to lead to neurodegeneration and the characteristic symptoms of Lewy body disease (LBD). Since previous studies suggest that immunization might be a potential therapy for Alzheimer's disease, we hypothesized that immunization with human (h)alpha-syn might have therapeutic effects in LBD. For this purpose, halpha-syn transgenic (tg) mice were vaccinated with halpha-syn. In mice that produced high relative affinity antibodies, there was decreased accumulation of aggregated halpha-syn in neuronal cell bodies and synapses that was associated with reduced neurodegeneration. Furthermore, antibodies produced by immunized mice recognized abnormal halpha-syn associated with the neuronal membrane and promoted the degradation of halpha-syn aggregates, probably via lysosomal pathways. Similar effects were observed with an exogenously applied FITC-tagged halpha-syn antibody. These results suggest that vaccination is effective in reducing neuronal accumulation of halpha-syn aggregates and that further development of this approach might have a potential role in the treatment of LBD.
Collapse
Affiliation(s)
- Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, Wang C, Liu K. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 2005; 374:92-7. [PMID: 15644271 DOI: 10.1016/j.neulet.2004.10.030] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 10/12/2004] [Accepted: 10/13/2004] [Indexed: 11/18/2022]
Abstract
This study was conducted to investigate the neuroprotective effects of 20(S)-ginsenoside Rg3 on focal cerebral ischemia in rats. Middle cerebral artery occlusion (MCAO) model in male Wistar-Kyoto (WKY) rats was employed. The behavioral tests were used to evaluate the damage to central nervous system. The infarct area of brain was assessed in the brain slices stained with 2,3,5-triphenyltetrazolium chloride (TTC). Hydrogen clearance techniques were used to monitor regional cerebral blood flow (rCBF), spectrophotometric assay methods were used to determine the activities of superoxide dismutase (SOD) and glutathione-peroxidase (GSH-Px), contents of malondialdehyde (MDA) and adenosine triphosphate (ATP) of the brain. Furthermore, the respiratory control ratio (RCR=State 3/State 4) was assessed in the brain mitochondria. The results showed that sublingual vein injection of 20(S)-ginsenoside Rg3 at doses of 10 and 5 mg kg(-1), but not 2.5 mg kg(-1) exhibited significant neuroprotective effects on rats against focal cerebral ischemic injury by markedly decreasing neurological deficit scores, reducing the infarct area and enhancing the rCBF compared with the control group. At the same time, 20(S)-ginsenoside Rg3 significantly improved mitochondrial energy metabolism, antagonized decreases in SOD and GSH-Px activities and increase in MDA level induced by cerebral ischemia. All these findings suggest that 20(S)-ginsenoside Rg3 might provide neuroprotection against the cerebral ischemia-induced injury in rat brain through reducing lipid peroxides, scavenging free radicals and improving the energy metabolism.
Collapse
Affiliation(s)
- Jingwei Tian
- School of Pharmacy, Yantai University, Yantai, No. 32, Qingquan Road, Laishan District, Shangdong 264003, PR China
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Kodavanti PRS, Ward TR. Differential Effects of Commercial Polybrominated Diphenyl Ether and Polychlorinated Biphenyl Mixtures on Intracellular Signaling in Rat Brain in Vitro. Toxicol Sci 2005; 85:952-62. [PMID: 15772365 DOI: 10.1093/toxsci/kfi147] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants and have been detected in human blood, adipose tissue, and breast milk. Developmental and long-term exposures to these contaminants may pose a human health risk, especially to children. Previously, we demonstrated that polychlorinated biphenyls (PCBs), which are neurotoxic and structurally similar to PBDEs, perturbed intracellular signaling events, including calcium homeostasis and subsequent events such as protein kinase C (PKC), which are critical for the normal function and development of the nervous system. The objective of the present study was to test whether commercial PBDE mixtures (DE-71, a pentabrominated dipheyl ether mixture, and DE-79, a mostly octabromodiphenyl ether mixture) affected intracellular signaling mechanisms in a similar way to that of PCBs and other organohalogens, as an attempt to understand the common mode of action for these persistent chemicals. PKC translocation was studied by determining (3)H-phorbol ester ((3)H-PDBu) binding in rat cerebellar granule cells, and calcium buffering was determined by measuring (45)Ca(2+) uptake by microsomes and mitochondria isolated from adult male rat brain (frontal cortex, cerebellum, and hippocampus). As seen with PCBs, DE-71 increased PKC translocation and inhibited (45)Ca(2+) uptake by both microsomes and mitochondria in a concentration-dependent manner. The effect of DE-71 on (45)Ca(2+) uptake seems to be similar in all three brain regions. Between the two organelles, DE-71 inhibited mitochondrial (45)Ca(2+) uptake to a greater extent than microsomal (45)Ca(2+) uptake. DE-79 had no effects on either neurochemical event even at 30 mug/ml. Aroclor 1254 altered both events to a greater extent compared to DE-71 on a weight basis. When the results were compared on a molar basis, Aroclor 1254 altered PKC translocation and microsomal (45)CaP(2+) uptake to a greater extent than DE-71, however, Aroclor 1254 and DE-71 equally affected mitochondrial (45)Ca(2+) uptake. These results indicate that PBDEs perturbed intracellular signaling mechanisms in rat brain as do other organohalogen compounds and the efficacy between the commercial PCB and PBDE mixtures seem to vary with different endpoints.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Cellular and Molecular Toxicology Branch, Neurotoxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | |
Collapse
|
89
|
Zhao X, Hoesl CE, Hoefner GC, Wanner KT. Synthesis and biological evaluation of new GABA-uptake inhibitors derived from proline and from pyrrolidine-2-acetic acid. Eur J Med Chem 2005; 40:231-47. [PMID: 15725493 DOI: 10.1016/j.ejmech.2004.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 11/09/2004] [Indexed: 11/16/2022]
Abstract
Several synthetic approaches to N-alkylated derivatives of 4-hydroxypyrrolidine-2-carboxylic acid and 4-hydroxypyrrolidine-2-acetic acid are described. The final compounds have been evaluated as potential inhibitors of the GABA transport proteins GAT-1 and GAT-3. The biological assays used were based on bovine material or porcine brain. As compared to the corresponding 4-unsubstituted compounds, the 4-hydroxypyrrolidine-2-carboxylic acid and 4-hydroxypyrrolidine-2-acetic acid derivatives showed a significant decrease in the inhibitory potency at both GAT-1 and GAT-3 with only four compounds having reasonable affinity to GAT-1 (IC(50): 5.1, 6.6 and 9.4 microM) or GAT-3 (IC(50): 19.9 microM), respectively. The biological data of the 4-hydroxypyrrolidine-2-acetic acid derivatives indicates that (2S)-configuration at the C-2 position for potent inhibition of GAT-1 and (4R)-configuration at the C-4 position for potent inhibition of GAT-3 may be crucial.
Collapse
Affiliation(s)
- Xueqing Zhao
- Department für Pharmazie-Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | |
Collapse
|
90
|
Lehmler HJ, Robertson LW, Garrison AW, Kodavanti PRS. Effects of PCB 84 enantiomers on [3H]-phorbol ester binding in rat cerebellar granule cells and 45Ca2+-uptake in rat cerebellum. Toxicol Lett 2005; 156:391-400. [PMID: 15763638 DOI: 10.1016/j.toxlet.2004.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/30/2004] [Accepted: 12/30/2004] [Indexed: 10/25/2022]
Abstract
There is evidence that polychlorinated biphenyl (PCB) congeners with ortho chlorine substituents have potential to cause neurotoxicity. Many PCB congeners implicated in these neurotoxic effects are chiral. It is currently unknown if the enantiomers of chiral PCB congeners have different neurotoxic effects. We herein report the effect of racemic 2,2',3,3',6-pentachlorobiphenyl (PCB 84) and its enantiomers on two neurochemical measures, protein kinase C (PKC) translocation as determined by [3H]-phorobol ester binding in cerebellar granule cells and Ca2+-sequestration as determined by 45Ca2+-uptake by microsomes isolated from adult rat cerebellum. Both (+)- and (-)-PCB 84 increased [3H]-phorobol ester binding in a concentration-dependent manner with (-)-PCB 84 being slightly more potent. Racemic PCB 84 was significantly more potent and efficacious than the pure enantiomers alone. (-)- and (+)-PCB 84 each inhibited microsomal 45Ca2+-uptake to a similar extent, whereas racemic PCB 84 was more potent and efficacious. These results indicate that PCB 84 enantiomers alone can have different potencies, and these may differ from that of the racemic mixture, observations that may have important implications for understanding the mechanisms of neurotoxicity of chiral PCB congeners.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, #124 IREH, Iowa City, IA 52242-5000, USA.
| | | | | | | |
Collapse
|
91
|
Pérez-De La Cruz V, González-Cortés C, Galván-Arzate S, Medina-Campos ON, Pérez-Severiano F, Ali SF, Pedraza-Chaverrí J, Santamaría A. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington’s disease in rats: Protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 2005; 135:463-74. [PMID: 16111817 DOI: 10.1016/j.neuroscience.2005.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/27/2005] [Accepted: 06/14/2005] [Indexed: 01/06/2023]
Abstract
Oxidative/nitrosative stress is involved in NMDA receptor-mediated excitotoxic brain damage produced by the glutamate analog quinolinic acid. The purpose of this work was to study a possible role of peroxynitrite, a reactive oxygen/nitrogen species, in the course of excitotoxic events evoked by quinolinic acid in the brain. The effects of Fe(TPPS) (5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III)), an iron porphyrinate and putative peroxynitrite decomposition catalyst, were tested on lipid peroxidation and mitochondrial function in brain synaptic vesicles exposed to quinolinic acid, as well as on peroxynitrite formation, nitric oxide synthase and superoxide dismutase activities, lipid peroxidation, caspase-3-like activation, DNA fragmentation, and GABA levels in striatal tissue from rats lesioned by quinolinic acid. Circling behavior was also evaluated. Increasing concentrations of Fe(TPPS) reduced lipid peroxidation and mitochondrial dysfunction induced by quinolinic acid (100 microM) in synaptic vesicles in a concentration-dependent manner (10-800 microM). In addition, Fe(TPPS) (10 mg/kg, i.p.) administered 2 h before the striatal lesions, prevented the formation of peroxynitrite, the increased nitric oxide synthase activity, the decreased superoxide dismutase activity and the increased lipid peroxidation induced by quinolinic acid (240 nmol/microl) 120 min after the toxin infusion. Enhanced caspase-3-like activity and DNA fragmentation were also reduced by the porphyrinate 24 h after the injection of the excitotoxin. Circling behavior from quinolinic acid-treated rats was abolished by Fe(TPPS) six days after quinolinic acid injection, while the striatal levels of GABA, measured one day later, were partially recovered. The protective effects that Fe(TPPS) exerted on quinolinic acid-induced lipid peroxidation and mitochondrial dysfunction in synaptic vesicles suggest a primary action of the porphyrinate as an antioxidant molecule. In vivo findings suggest that the early production of peroxynitrite, altogether with the enhanced risk of superoxide anion (O2*-) and nitric oxide formation (its precursors) induced by quinolinic acid in the striatum, are attenuated by Fe(TPPS) through a recovery in the basal activities of nitric oxide synthase and superoxide dismutase. The porphyrinate-mediated reduction in DNA fragmentation simultaneous to the decrease in caspase-3-like activation from quinolinic acid-lesioned rats suggests a prevention in the risk of peroxynitrite-mediated apoptotic events during the course of excitotoxic damage in the striatum. In summary, the protective effects that Fe(TPPS) exhibited both under in vitro and in vivo conditions support an active role of peroxynitrite and its precursors in the pattern of brain damage elicited by excitotoxic events in the experimental model of Huntington's disease. The neuroprotective mechanisms of Fe(TPPS) are discussed.
Collapse
Affiliation(s)
- V Pérez-De La Cruz
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México D.F. 14269, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Gylys KH, Fein JA, Yang F, Wiley DJ, Miller CA, Cole GM. Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1809-17. [PMID: 15509549 PMCID: PMC1618663 DOI: 10.1016/s0002-9440(10)63436-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In an effort to examine changes that precede synapse loss, we have measured amyloid-beta and a series of damage markers in the synaptic compartment of Alzheimer's disease (AD) cases. Because localization of events to the terminal region in neurons is problematic with conventional methods, we prepared synaptosomes from samples of cryopreserved human association cortex, and immunolabeled terminals with a procedure for intracellular antigens. Fluorescence was quantified using flow cytometry. The viability dye calcein AM was unchanged in AD terminals compared to controls, and the fraction of large synaptosome particles did not change, although a striking loss of large terminals was observed in some AD cases. The percent positive fraction for a series of pre- and postsynaptic markers was not affected by AD in this cohort. However, the amyloid-beta-positive fraction increased from 16 to 27% (P < 0.02) in terminals from AD cortex. The expression level on a per-terminal basis is indicated in this assay by fluorescence (relative fluorescence units). The fluorescence of presynaptic markers did not change in AD terminals, but PSD-95 fluorescence was decreased by 19% (P < 0.03). Amyloid-beta fluorescence was increased by 132% (P < 0.01), and glial fibrillary acidic protein labeling by 31% (P < 0.01). These results suggest that synapse-associated amyloid-beta is prominent in regions relatively unaffected by AD lesions, and that amyloid accumulation in surviving terminals is accompanied by gliosis and alteration in the postsynaptic structure.
Collapse
Affiliation(s)
- Karen Hoppens Gylys
- UCLA School of Nursing and Brain Research Institute, Box 956919 Factor Bldg., Los Angeles, CA 90095-6919, USA.
| | | | | | | | | | | |
Collapse
|
93
|
Nikas SP, Grzybowska J, Papahatjis DP, Charalambous A, Banijamali AR, Chari R, Fan P, Kourouli T, Lin S, Nitowski AJ, Marciniak G, Guo Y, Li X, Wang CLJ, Makriyannis A. The role of halogen substitution in classical cannabinoids: a CB1 pharmacophore model. AAPS JOURNAL 2004; 6:e30. [PMID: 15760095 PMCID: PMC2751226 DOI: 10.1208/aapsj060430] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of halogens within the classical cannabinoid structure leads to large variations in the compounds' potencies and affinities for the CB1 receptors. To explore the structure activity relationships within this class of analogs we have used a series of halogen-substituted (-)-Delta8-tetrahydrocannabinol analogs and compared their affinities for the CB1 cannabinoid receptor. Our results indicate that halogen substitution at the end-carbon of the side chain leads to an enhancement in affinity with the bulkier halogens (Br, I) producing the largest effects. Conversely, 2-iodo substitution on the phenolic ring leads to a 2-fold reduction in affinity while iodo-substitution in the C1'-position of the side chain lowers the compound's affinity for CB1 by more than 8-fold. The pharmacophoric requirements resulting from halogen-substitution are explored using computer modeling methods.
Collapse
Affiliation(s)
- Spyros P. Nikas
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| | - Jolanta Grzybowska
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| | - Demetris P. Papahatjis
- />Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vass Constantinou, 116-35 Athens, Greece
| | - Avgui Charalambous
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| | - Ali R. Banijamali
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
- />Crompton Corp, 06749 Middlebury, CT
| | - Ravi Chari
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| | - Pusheng Fan
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| | - Therapia Kourouli
- />Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vass Constantinou, 116-35 Athens, Greece
| | - Sonyuan Lin
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| | | | - Gilbert Marciniak
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| | - Yan Guo
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| | - Xiuyan Li
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| | | | - Alexandros Makriyannis
- />Departments of Pharmaceutical Sciences and Molecular and Cell Biology and Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, 06269 Storrs, CT
| |
Collapse
|
94
|
Höfner G, Wanner KT. Evaluation of GABA uptake in subcellular fractions of bovine frontal cortex and brainstem. Neurosci Lett 2004; 364:53-7. [PMID: 15193755 DOI: 10.1016/j.neulet.2004.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/08/2004] [Accepted: 04/09/2004] [Indexed: 11/22/2022]
Abstract
GABA uptake as well as the distribution of GAT-1, GAT-2 and GAT-3 were investigated in bovine brain membrane fractions. GABA uptake was characterised by kinetic constants and IC50-values for a series of known inhibitors in subcellular fractions of frontal cortex and brainstem obtained by subsequent centrifugations on sucrose gradients. Additionally, the immunoreactivity for rGAT-1, rGAT-2 and rGAT-3 antibodies was studied in these fractions. The pharmacological profile for GABA uptake inhibition as well as results from immunoblotting indicated that GABA uptake in a selected subcellular fraction of frontal cortex (P2B) is almost exclusively due to GAT-1 whereas GABA uptake performed with a selected subcellular fraction of brainstem (P2A) in the presence of NNC 711 is mainly attributable to GAT-3.
Collapse
Affiliation(s)
- G Höfner
- Department Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Butenandtstr. 7, D-81377 Munich, Germany.
| | | |
Collapse
|
95
|
Ranaei-Siadat SO, Riazi GH, Sadeghi M, Chang LS, Lin SR, Eghtesadi-Araghi P, Hakimelahi GH, Moosavi-Movahedi AA. Modification of Substrate Inhibition of Synaptosomal Acetylcholinesterase by Cardiotoxins. BMB Rep 2004; 37:330-8. [PMID: 15469715 DOI: 10.5483/bmbrep.2004.37.3.330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different types of cardiotoxin (I-V and n) were isolated and purified from the venom of the Taiwan cobra (Naja naja atra). The effects of these cardiotoxins were studied on membrane-bound acetylcholinesterase, which was isolated from a sheep's brain cortex. The results showed that cardiotoxins I-III, V, and n activated the enzyme by modification of substrate inhibition, but cardiotoxin IV's reaction was different. The inhibition and activation of acetylcholinesterase were linked to the functions of the hydrophobicity index, presence of a cationic cluster, and the accessible arginine residue. Our results indicate that Cardiotoxins have neither a cationic cluster nor an arginine residue in their surface area of loop I; therefore, in contrast to fasciculin, cardiotoxins are attached by loop II to the peripheral site of the enzyme. As a result, fasciculin seems to stabilize nonfunctional conformation, but cardiotoxins seem to stabilize the functional conformation of the enzyme. Based on our experimental and theoretical findings, similar secondary and tertiary structures of cardiotoxins and fasciculin seem to have an opposite function once they interact with acetylcholinesterase.
Collapse
|
96
|
Gaffaney JD, Vaughan RA. Uptake inhibitors but not substrates induce protease resistance in extracellular loop two of the dopamine transporter. Mol Pharmacol 2004; 65:692-701. [PMID: 14978248 DOI: 10.1124/mol.65.3.692] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in protease sensitivity of extracellular loop two (EL2) of the dopamine transporter (DAT) during inhibitor and substrate binding were examined using trypsin proteolysis and epitope-specific immunoblotting. In control rat striatal membranes, proteolysis of DAT in a restricted region of EL2 was produced by 0.001 to 10 microg/ml trypsin. However, in the presence of the dopamine uptake blockers [2-(diphenylmethoxyl) ethyl]-4-(3phenylpropyl) piperazine (GBR 12909), mazindol, 2beta-carbomethoxy-3beta-(4-flourophenyl)tropane (beta-CFT), nomifensine, benztropine, or (-)-cocaine, 100- to 1000-fold higher concentrations of trypsin were required to produce comparable levels of proteolysis. Protease resistance induced by ligands was correlated with their affinity for DAT binding, was not observed with Zn2+, (+)-cocaine, or inhibitors of norepinephrine or serotonin transporters, and was not caused by altered catalytic activity of trypsin. Together, these results support the hypothesis that the interaction of uptake inhibitors with DAT induces a protease-resistant conformation in EL2. In contrast, binding of substrates did not induce protease resistance in EL2, suggesting that substrates and inhibitors interact with DAT differently during binding. To assess the effects of EL2 proteolysis on DAT function, the binding and transport properties of trypsin-digested DAT were assayed with [3H]CFT and [3H]dopamine. Digestion decreased the Bmax for binding and the Vmax for uptake in amounts that were proportional to the extent of proteolysis, indicating that the structural integrity of EL2 is required for maintenance of both DAT binding and transport functions. Together this data provides novel information about inhibitor and substrate interactions at EL2, possibly relating the protease resistant DAT conformation to a mechanism of transport inhibition.
Collapse
Affiliation(s)
- Jon D Gaffaney
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | |
Collapse
|
97
|
Walker JB, Swartzwelder HS, Bondy SC. SUPPRESSION OF HIPPOCAMPAL EPILEPTIFORM ACTIVITY IN VITRO AFTER LASER EXPOSURE. Laser Ther 2004. [DOI: 10.5978/islsm.14.0_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
98
|
Gylys KH, Fein JA, Yang F, Cole GM. Enrichment of presynaptic and postsynaptic markers by size-based gating analysis of synaptosome preparations from rat and human cortex. ACTA ACUST UNITED AC 2004; 60:90-6. [PMID: 15229861 DOI: 10.1002/cyto.a.20031] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Synapse regions in the brain are difficult to isolate and study; resealed nerve terminals (synaptosomes) are a widely used in vitro system for the study of neurotransmission, but nonsynaptosomal elements in the homogenate complicate data interpretation. With the goal of quantitative analysis of pathways leading to synapse loss in neurodegenerative disease, we have developed a method that allows focus on the intact synaptosomes within a crude synaptosomal preparation by gating the largest particles based on forward angle light scatter (FSC). METHODS Crude synaptosomal fractions (P-2) were prepared and labeled with a viability dye (calcein AM), a presynaptic marker (SNAP-25), and a postsynaptic marker (PSD-95). Forward scatter gates based on size standards were drawn to identify the large population (1.4-4.5 microm), and the enrichment of each marker was quantified in preparations from fresh rat homogenates and from cryopreserved human cortex. RESULTS Gating on forward scatter resulted in an increase that was highly significant (P < 0.001) for all three markers examined. The calcein-AM-positive fraction in the large synaptosomes was 98% +/- 0.8, and 75% +/- 9.8 for rat and human, respectively. Of large particles, 90% +/- 2.7 in rat and 82% +/- 2.6 in human were positive for SNAP-25, indicating a relatively pure population of intact synaptosomes. A total of 76% +/- 2.9 of the large particles were positive for PSD-95 in rat. This compared to 36% +/- 3.0 in human tissue, and indicates that both presynaptic and postsynaptic elements may be analyzed with this methodology. CONCLUSIONS Most nonsynaptosomal elements can be excluded and the intact subpopulation of interest within the P-2 can be identified based on size. Size-based gating analysis provides a simple and cost-effective method to monitor fluorescence changes in synapse regions.
Collapse
Affiliation(s)
- Karen H Gylys
- UCLA School of Nursing and Brain Research Institute, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
99
|
Pinna G, Broedel O, Eravci M, Stoltenburg-Didinger G, Plueckhan H, Fuxius S, Meinhold H, Baumgartner A. Thyroid hormones in the rat amygdala as common targets for antidepressant drugs, mood stabilizers, and sleep deprivation. Biol Psychiatry 2003; 54:1049-59. [PMID: 14625147 DOI: 10.1016/s0006-3223(03)00414-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND There have been repeated reports of antidepressant effects of thyroid hormones. In this study, we investigated whether antidepressant treatments enhance the concentrations of thyroid hormones in rat brain. METHODS Each of the groups of rats was treated for 14 days with one of the following: an antidepressant drug (desipramine, paroxetine, venlafaxine, or tianeptine); a mood stabilizer (lithium or carbamazepine); or 8 hours' partial sleep deprivation. Thyroid hormone concentrations were quantified in homogenates, nuclei, mitochondria, synaptosomes, myelin, and microsomes in 11 rat brain areas. RESULTS No drug effects were seen on nuclear triiodothyronine (T(3)) concentrations in any brain area. In the amygdala, all antidepressant drugs enhanced the levels of T(3) in the myelin fraction. Triiodothyronine molecules were identified in the myelin by immunogold labeling. Quantification of the major lipid components showed a selective decrease in cholesterol in the myelin of the amygdala after desipramine treatment. Desipramine induced an increase in protein concentrations, 3,5-diiodothyronine levels, and the activity of the mitochondrial enzyme succinate dehydrogenase in the mitochondria of the amygdala. Lithium, carbamazepine, and partial sleep deprivation raised the levels of T(3) in synaptosomes of the amygdala. CONCLUSIONS These results demonstrate that thyroid hormones in the amygdala are a common target of different antidepressant and mood-stabilizing therapies.
Collapse
Affiliation(s)
- Graziano Pinna
- Department of Radiology and Nuclear Medicine, Universitätsklinikum Benjamin-Franklin, Free University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Broedel O, Eravci M, Fuxius S, Smolarz T, Jeitner A, Grau H, Stoltenburg-Didinger G, Plueckhan H, Meinhold H, Baumgartner A. Effects of hyper- and hypothyroidism on thyroid hormone concentrations in regions of the rat brain. Am J Physiol Endocrinol Metab 2003; 285:E470-80. [PMID: 12736158 DOI: 10.1152/ajpendo.00043.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the effects of hyper- and hypothyroidism on thyroid hormone concentrations and deiodinase activities in nine regions of the rat brain. Four weeks of treatment with 75 microg thyroxine (T4)/kg body wt induced a two- to threefold increase in T4 levels in all of these brain regions, whereas the 3,5,3'-triiodothyronine (T3) concentrations were reduced in five brain regions and remained unchanged in four. Even after 8 wk treatment with 300 microg T4/kg, the T3 concentrations remained normal in cortical areas, the hippocampus and amygdala, and were elevated only in areas in which inner-ring deiodinase activity was low or absent, and in the hypothalamus. At the subcellular level, nuclear concentrations of T3 were diminished in hypothyroidism but remained unaltered in hyperthyroidism in all areas except the hypothalamus, where they were enhanced. Cortical mitochondrial succinate dehydrogenase activity was reduced in both hypo- and hyperthyroidism in spite of normal T3 concentrations in hyperthyroid animals. The results show that nuclear T3 concentrations fall in hypothyroidism but do not change during severe hyperthyroidism in any brain region except the hypothalamus. Further research is thus needed to clarify the mechanisms mediating the numerous biochemical and psychological effects of hyperthyroidism.
Collapse
Affiliation(s)
- Oliver Broedel
- Department of Radiology and Nuclear Medicine, Universitätsklinikum Benjamin-Franklin, Free University of Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|