51
|
Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochem 2009; 109:683-93. [DOI: 10.1111/j.1471-4159.2009.06013.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
52
|
Joe PA, Banerjee A, Ludueña RF. Roles of beta-tubulin residues Ala428 and Thr429 in microtubule formation in vivo. J Biol Chem 2008; 284:4283-91. [PMID: 19074767 DOI: 10.1074/jbc.m807491200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C termini of beta-tubulin isotypes are regions of high sequence variability that bind to microtubule-associated proteins and motors and undergo various post-translational modifications such as polyglutamylation and polyglycylation. Crystallographic analyses have been unsuccessful in resolving tubulin C termini. Here, we used a stepwise approach to study the role of this region in microtubule assembly. We generated a series of truncation mutants of human betaI and betaIII tubulin. Transient transfection of HeLa cells with the mutants shows that mutants with deletions of up to 22 residues from betaIII and 16 from betaI can assemble normally. Interestingly, removal of the next residue (Ala(428)) results in a complete loss of microtubule formation without affecting dimer formation. C-terminal tail switching of human betaI and betaIII tubulin suggests that C-terminal tails are functionally equivalent. In short, residues outside of 1-429 of human beta-tubulins make no contribution to microtubule assembly. Ala(428), in the C-terminal sequence motif N-QQYQDA(428), lies at the end of helix H12 of beta-tubulin. We hypothesize that this residue is important for maintaining helix H12 structure. Deletion of Ala(428) may lead to unwinding of helix H12, resulting in tubulin dimers incapable of assembly. Thr(429) plays a more complex role. In the betaI isotype of tubulin, Thr(429) is not at all necessary for assembly; however, in the betaIII isotype, its presence strongly favors assembly. This result is consistent with a likely more complex function of betaIII as well as with the observation that evolutionary conservation is total for Ala(428) and frequent for Thr(429).
Collapse
Affiliation(s)
- Patrick A Joe
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
53
|
Verdier-Pinard P, Pasquier E, Xiao H, Burd B, Villard C, Lafitte D, Miller LM, Angeletti RH, Horwitz SB, Braguer D. Tubulin proteomics: towards breaking the code. Anal Biochem 2008; 384:197-206. [PMID: 18840397 DOI: 10.1016/j.ab.2008.09.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 01/02/2023]
Affiliation(s)
- Pascal Verdier-Pinard
- INSERM UMR 911 CRO2, Aix-Marseille Université, Faculté de Pharmacie, 27 bd Jean Moulin, 13285 Marseille cedex 05, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Janke C, Rogowski K, van Dijk J. Polyglutamylation: a fine-regulator of protein function? 'Protein Modifications: beyond the usual suspects' review series. EMBO Rep 2008; 9:636-41. [PMID: 18566597 DOI: 10.1038/embor.2008.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/26/2008] [Indexed: 11/10/2022] Open
Abstract
Polyglutamylation is a post-translational modification in which glutamate side chains of variable lengths are formed on the modified protein. It is evolutionarily conserved from protists to mammals and its most prominent substrate is tubulin, the microtubule (MT) building block. Various polyglutamylation states of MTs can be distinguished within a single cell and they are also characteristic of specific cell types or organelles. Polyglutamylation has been proposed to be involved in the functional adaptation of MTs, as it occurs within the carboxy-terminal tubulin tails that participate directly in the binding of many structural and motor MT-associated proteins. The discovery of a new family of enzymes that catalyse this modification has brought new insight into the mechanism of polyglutamylation and now allows for direct functional studies of the role of tubulin polyglutamylation. Moreover, the recent identification of new substrates of polyglutamylation indicates that this post-translational modification could be a potential regulator of diverse cellular processes.
Collapse
Affiliation(s)
- Carsten Janke
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, University Montpellier 2 and 1, 1919 Route de Mende, 34293 Montpellier, France.
| | | | | |
Collapse
|
55
|
Abstract
Tubulin, the most abundant axonemal protein, is extensively modified by several highly conserved post-translational mechanisms including acetylation, detyrosination, glutamylation, and glycylation. We discuss the pathways that contribute to the assembly and maintenance of axonemal microtubules, with emphasis on the potential functions of post-translational modifications that affect tubulin. The recent identification of a number of tubulin modifying enzymes and mutational studies of modification sites on tubulin have allowed for significant functional insights. Polymeric modifications of tubulin (glutamylation and glycylation) have emerged as important determinants of the 9 + 2 axoneme assembly and motility.
Collapse
Affiliation(s)
- Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
56
|
van den Heuvel MGL, de Graaff MP, Lemay SG, Dekker C. Electrophoresis of individual microtubules in microchannels. Proc Natl Acad Sci U S A 2007; 104:7770-5. [PMID: 17470799 PMCID: PMC1876522 DOI: 10.1073/pnas.0608316104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Indexed: 11/18/2022] Open
Abstract
We use micrometer-sized fluidic channels to confine and measure electrophoresis of freely suspended individual microtubules. We measure orientation-dependent velocities of microtubules and the electro-osmotic flow mobility in our channels to infer the anisotropic electrophoretic mobility of microtubules under physiological conditions. We discuss the difference between electrophoresis and purely hydrodynamic motion and its implications for interpreting mobility measurements. We show that the mobility anisotropy is a factor of 0.83, clearly different from the well known anisotropy factor of 0.5 in Stokes drag coefficients for cylindrical objects. We also show that the velocity is independent of microtubule length, which would be different for hydrodynamic motion. We demonstrate that the electric force on the counterions has important consequences for the interpretation of electrophoresis experiments and that ignoring this can lead to an underestimation of the effective charge by orders of magnitude. From the electrophoresis measurements, we calculate an effective surface-charge density of -36.7 +/- 0.4 mC/m2 for microtubules. Electrophoretic measurements of subtilisin-digested microtubules, which have the negatively charged C termini on the outer surface removed, show a 24% decrease in mobility and, correspondingly, in surface charge, but no change in anisotropy.
Collapse
Affiliation(s)
- M. G. L. van den Heuvel
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - M. P. de Graaff
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - S. G. Lemay
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - C. Dekker
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| |
Collapse
|
57
|
Lakämper S, Meyhöfer E. The E-hook of tubulin interacts with kinesin's head to increase processivity and speed. Biophys J 2005; 89:3223-34. [PMID: 16100283 PMCID: PMC1366818 DOI: 10.1529/biophysj.104.057505] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesins are dimeric motor proteins that move processively along microtubules. It has been proposed that the processivity of conventional kinesins is increased by electrostatic interactions between the positively charged neck of the motor and the negatively charged C-terminus of tubulin (E-hook). In this report we challenge this anchoring hypothesis by studying the motility of a fast fungal kinesin from Neurospora crassa (NcKin). NcKin is highly processive despite lacking the positive charges in the neck. We present a detailed analysis of how proteolytic removal of the E-hook affects truncated monomeric and dimeric constructs of NcKin. Upon digestion we observe a strong reduction of the processivity and speed of dimeric motor constructs. Monomeric motors with truncated or no neck display the same reduction of microtubule gliding speed as dimeric constructs, suggesting that the E-hook interacts with the head only. The E-hook has no effect on the strongly bound states of NcKin as microtubule digestion does not alter the stall forces produced by single dimeric motors, suggesting that the E-hook affects the interaction site of the kinesin.ADP-head and the microtubule. In fact, kinetic and binding experiments indicate that removal of the E-hook shifts the binding equilibrium of the weakly attached kinesin.ADP-head toward a more strongly bound state, which may explain reduced processivity and speed on digested microtubules.
Collapse
MESH Headings
- Adenosine Diphosphate/chemistry
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphate/chemistry
- Animals
- Binding Sites
- Biophysics/methods
- Biotinylation
- Blotting, Western
- Brain/metabolism
- Cattle
- Chromatography, Ion Exchange
- Cloning, Molecular
- Dimerization
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Guanosine Triphosphate/chemistry
- Image Processing, Computer-Assisted
- Ions
- Kinesins/chemistry
- Kinetics
- Lasers
- Microscopy, Fluorescence
- Microtubules/chemistry
- Models, Biological
- Movement
- Neurospora crassa/metabolism
- Potassium/chemistry
- Protein Binding
- Protein Structure, Tertiary
- Proteins/chemistry
- Spectrometry, Fluorescence
- Static Electricity
- Tubulin/chemistry
Collapse
Affiliation(s)
- Stefan Lakämper
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
58
|
Nunes M, Kaplan J, Wooters J, Hari M, Minnick AA, May MK, Shi C, Musto S, Beyer C, Krishnamurthy G, Qiu Y, Loganzo F, Ayral-Kaloustian S, Zask A, Greenberger LM. Two photoaffinity analogues of the tripeptide, hemiasterlin, exclusively label alpha-tubulin. Biochemistry 2005; 44:6844-57. [PMID: 15865430 DOI: 10.1021/bi0474766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic analogue of the tripeptide hemiasterlin, designated HTI-286, depolymerizes microtubules, is a poor substrate for P-glycoprotein, and inhibits the growth of paclitaxel-resistant tumors in xenograft models. Two radiolabeled photoaffinity analogues of HTI-286, designated 4-benzoyl-N,beta,beta-trimethyl-l-phenylalanyl-N(1)-[(1S,2E)-3-carboxy-1-isopropylbut-2-enyl]-N(1),3-dimethyl-l-valinamide (probe 1) and N,beta,beta-trimethyl-l-phenylalanyl-4-benzoyl-N-[(1S,2E)-3-carboxy-1-isopropyl-2-butenyl]-N,beta,beta-trimethyl-l-phenylalaninamide (probe 2), were made to help identify HTI-286 binding sites in tubulin. HTI-286, probe 1, and probe 2 had similar affinities for purified tubulin [apparent K(D(app)) = 0.2-1.1 microM], inhibited polymerization of purified tubulin approximately 80%, and were potent inhibitors of cell growth (IC(50) = 1.0-22 nM). Both radiolabeled probes labeled exclusively alpha-tubulin. Labeling by [(3)H]probe 1 was inhibited by probe 1, HTI-286, vinblastine, or dolastatin 10 (another peptide antimitotic agent that depolymerizes microtubules) but was either unaffected or enhanced (at certain temperatures) by colchicine or paclitaxel. [(3)H]Probe 1 also labeled exclusively tubulin in cytosolic extracts of whole cells. The major, if not exclusive, contact site for probe 1 was mapped to residues 314-339 of alpha-tubulin and corresponds to the sheet 8 and helix 10 region. This region is known to (1) have longitudinal interactions with beta-tubulin across the interdimer interface, (2) have lateral interactions with adjacent protofilaments, and (3) contact the N-terminal region of stathmin, a protein that induces depolymerization of tubulin. Binding of probe 1 to this region may alter the conformation of tubulin outside the labeling domain, since enzymatic removal of the C-terminus of only alpha-tubulin by subtilisin after, but not before, photolabeling is blocked by probe 1. These results suggest that hemiasterlin is in close contact with alpha-tubulin and may span the interdimer interface so that it contacts the vinblastine- and dolastatin 10-binding sites believed to be in beta-tubulin. In addition, we speculate that antimitotic peptides mimic the interaction of stathmin with tubulin.
Collapse
Affiliation(s)
- Maria Nunes
- Oncology Research, Chemical and Screening Sciences, Radiosynthesis Group, and Bioorganic Enzymology, Wyeth Research, 401 North Middletown Road, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub JM, Temurak N, van Dijk J, Boucher D, van Dorsselaer A, Suryavanshi S, Gaertig J, Eddé B. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 2005; 308:1758-62. [PMID: 15890843 DOI: 10.1126/science.1113010] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyglutamylation of tubulin has been implicated in several functions of microtubules, but the identification of the responsible enzyme(s) has been challenging. We found that the neuronal tubulin polyglutamylase is a protein complex containing a tubulin tyrosine ligase-like (TTLL) protein, TTLL1. TTLL1 is a member of a large family of proteins with a TTL homology domain, whose members could catalyze ligations of diverse amino acids to tubulins or other substrates. In the model protist Tetrahymena thermophila, two conserved types of polyglutamylases were characterized that differ in substrate preference and subcellular localization.
Collapse
Affiliation(s)
- Carsten Janke
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, 34293 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Redeker V, Frankfurter A, Parker SK, Rossier J, Detrich HW. Posttranslational Modification of Brain Tubulins from the Antarctic Fish Notothenia coriiceps: Reduced C-Terminal Glutamylation Correlates with Efficient Microtubule Assembly at Low Temperature. Biochemistry 2004; 43:12265-74. [PMID: 15379565 DOI: 10.1021/bi049070z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have shown previously that the tubulins of Antarctic fish assemble into microtubules efficiently at low temperatures (-2 to +2 degrees C) due to adaptations intrinsic to the tubulin subunits. To determine whether changes in posttranslational glutamylation of the fish tubulins may contribute to cold adaptation of microtubule assembly, we have characterized C-terminal peptides from alpha- and beta-tubulin chains from brains of adult specimens of the Antarctic rockcod Notothenia coriiceps by MALDI-TOF mass spectrometry and by Edman degradation amino acid sequencing. Of the four fish beta-tubulin isotypes, nonglutamylated isoforms were more abundant than glutamylated isoforms. In addition, maximal glutamyl side-chain length was shorter than that observed for mammalian brain beta tubulins. For the nine fish alpha-tubulin isotypes, nonglutamylated isoforms were also generally more abundant than glutamylated isoforms. When glutamylated, however, the maximal side-chain lengths of the fish alpha tubulins were generally longer than those of adult rat brain alpha chains. Thus, Antarctic fish adult brain tubulins are glutamylated differently than mammalian brain tubulins, resulting in a more heterogeneous population of alpha isoforms and a reduction in the number of beta isoforms. By contrast, neonatal rat brain tubulin possesses low levels of glutamylation that are similar to that of the adult fish brain tubulins. We suggest that unique residue substitutions in the primary structures of Antarctic fish tubulin isotypes and quantitative changes in isoform glutamylation act synergistically to adapt microtubule assembly to low temperatures.
Collapse
Affiliation(s)
- Virginie Redeker
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Laboratoire de Neurobiologie, CNRS UMR 7637, 10 rue Vauquelin, 75 005 Paris, France
| | | | | | | | | |
Collapse
|
61
|
Eichenmüller B, Kedersha N, Solovyeva E, Everley P, Lang J, Himes RH, Suprenant KA. Vaults bind directly to microtubules via their caps and not their barrels. ACTA ACUST UNITED AC 2004; 56:225-36. [PMID: 14584025 DOI: 10.1002/cm.10147] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vaults are large (13 Mda) ribonucleoprotein particles that are especially abundant in multidrug resistant cancer cells and have been implicated in nucleocytoplasmic drug transport. To understand how these large barrel-shaped complexes are transported through the cytosol, we examined the association of vaults with microtubules both in vitro and in vivo. Within cells, a subpopulation of vaults clearly associates with microtubules, and these vaults remain associated with tubulin dimers/oligomers when microtubules are disassembled by nocodazole treatment. In vitro, a microtubule-pull down assay using highly purified rat vaults and reassembled microtubules reveals that vaults exhibit concentration-dependent binding to microtubules that does not require the carboxyl terminal end of tubulin. Remarkably, negative staining for electron microscopy reveals that vault binding to microtubules is mediated by the vault caps; more than 82% of bound vaults attach to the microtubule lattice with their long axes perpendicular to the long axis of the microtubule. Five to six vault particles were bound per micron of microtubule, with no crosslinking of microtubules observed, suggesting that only one end of the vault can bind microtubules. Taken together, the data support the model of vaults as barrel-shaped containers that transiently interact with microtubules.
Collapse
Affiliation(s)
- Bernd Eichenmüller
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Skiniotis G, Cochran JC, Müller J, Mandelkow E, Gilbert SP, Hoenger A. Modulation of kinesin binding by the C-termini of tubulin. EMBO J 2004; 23:989-99. [PMID: 14976555 PMCID: PMC380974 DOI: 10.1038/sj.emboj.7600118] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 01/14/2004] [Indexed: 11/09/2022] Open
Abstract
The flexible tubulin C-terminal tails (CTTs) have recently been implicated in the walking mechanism of dynein and kinesin. To address their role in the case of conventional kinesin, we examined the structure of kinesin-microtubule (MT) complexes before and after CTT cleavage by subtilisin. Our results show that the CTTs directly modulate the motor-tubulin interface and the binding properties of motors. CTT cleavage increases motor binding stability, and kinesin appears to adopt a binding conformation close to the nucleotide-free configuration under most nucleotide conditions. Moreover, C-terminal cleavage results in trapping a transient motor-ADP-MT intermediate. Using SH3-tagged dimeric and monomeric constructs, we could also show that the position of the kinesin neck is not affected by the C-terminal segments of tubulin. Overall, our study reveals that the tubulin C-termini define the stability of the MT-kinesin complex in a nucleotide-dependent manner, and highlights the involvement of tubulin in the regulation of weak and strong kinesin binding states.
Collapse
Affiliation(s)
- Georgios Skiniotis
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Jared C Cochran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jens Müller
- Max Planck Unit for Structural Molecular Biology, DESY-Hamburg, Hamburg, Germany
| | - Eckhard Mandelkow
- Max Planck Unit for Structural Molecular Biology, DESY-Hamburg, Hamburg, Germany
| | - Susan P Gilbert
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreas Hoenger
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany. Tel.: +49 6221 387453; Fax: +49 6221 387519; E-mail:
| |
Collapse
|
63
|
Karabay A, Walker RA. Identification of Ncd tail domain-binding sites on the tubulin dimer. Biochem Biophys Res Commun 2003; 305:523-8. [PMID: 12763024 DOI: 10.1016/s0006-291x(03)00827-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Drosophila non-claret disjunctional (Ncd) kinesin-like protein is required for spindle assembly in oocytes and spindle maintenance in early embryos. Through the action of ATP-dependent microtubule (MT)-binding sites in the head and ATP-independent MT-binding sites in the tail, Ncd may bundle and, perhaps, slide MTs relative to each other. Our previous work on the MT-binding site of the Ncd tail domain demonstrated that this site, like the MT-binding sites of tau, contains basic residues flanked by proline residues and can promote MT assembly and stability. Here, we characterize the interactions of a monomeric Ncd tail protein with subtilisin-digested MTs in order to identify sites on the tubulin dimer that interact with the Ncd tail. The results provide evidence for four such binding sites per tubulin dimer and support the hypothesis that each binding site consists of a cluster of acidic residues in the C-terminal regions of alpha- and beta-tubulin.
Collapse
Affiliation(s)
- A Karabay
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
| | | |
Collapse
|
64
|
Zambito AM, Knipling L, Wolff J. Charge variants of tubulin, tubulin S, membrane-bound and palmitoylated tubulin from brain and pheochromocytoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1601:200-7. [PMID: 12445483 DOI: 10.1016/s1570-9639(02)00472-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isoelectric focusing (IEF) of only approximately 1 microg of rat brain tubulin yields 27-30 distinct charge variants in the pH range of 4.5-5.4 with band separations of 0.01-0.02 pH units as detected by silver staining. Variants can be efficiently transferred from the immobilized gradient strip to polyvinylidene difluoride (PVDF) membranes for reaction with monoclonal antibodies. C-terminal-directed antibodies to alpha- and beta-tubulin yield patterns similar to N-terminal-directed antibodies. Removal of the acidic C-termini with subtilisin to form tubulin S increases the pI values by approximately 1 pH unit, leads to a loss in the isoelectric distinction between the alpha- and beta-tubulin variants seen by N-terminal-directed antibodies, and abolishes reactions with all beta-variants and all but three alpha variants by C-terminal-directed antibodies (TU-04 and TU-14). Many, but not all, of the variants are substrates for autopalmitoylation of rat brain tubulin. The distribution of isoelectric variants differs between cytoplasm and membrane fractions from PC12 pheochromocytoma cells. A potential role for different variants is suggested.
Collapse
Affiliation(s)
- Anna Maria Zambito
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Building 8, Room 2A23, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
65
|
Bonnet C, Denarier E, Bosc C, Lazereg S, Denoulet P, Larcher JC. Interaction of STOP with neuronal tubulin is independent of polyglutamylation. Biochem Biophys Res Commun 2002; 297:787-93. [PMID: 12359221 DOI: 10.1016/s0006-291x(02)02294-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotes, the coordinated progress of the various cellular tasks along with the assembly of adapted cytoskeletal networks requires a tight regulation of the interactions between microtubules and their associated proteins. Polyglutamylation is the major post-translational modification of neuronal tubulin. Due to its oligomeric structure, polyglutamylation can serve as a potentiometer to modulate binding of diverse MAPs. In addition, it can exert a differential mode of regulation towards distinct microtubule protein partners. To find out to what extent polyglutamylation is a general regulator, we have analyzed its ability to affect the binding of STOPs, the major factors that confer cold- and nocodazole-resistance to microtubules. We have shown by blot overlay experiments that binding of STOP does not depend on the length of the polyglutamyl chains carried by tubulins. And contrary to the other microtubule-associated proteins tested so far, STOP can bind quantitatively to any tubulin isoform whatever its degree of polyglutamylation.
Collapse
Affiliation(s)
- Crystel Bonnet
- Laboratoire de Biochimie Cellulaire-CNRS UMR 7098, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
66
|
Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K, Denoulet P, Larcher JC. Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J Biol Chem 2001; 276:12839-48. [PMID: 11278895 DOI: 10.1074/jbc.m011380200] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by approximately 3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties.
Collapse
Affiliation(s)
- C Bonnet
- Biochimie Cellulaire, CNRS FRE 2219, Université Pierre et Marie Curie, 9 quai Saint-Bernard, Case 265, 75252 Paris, Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
67
|
Rao S, Aberg F, Nieves E, Band Horwitz S, Orr GA. Identification by mass spectrometry of a new alpha-tubulin isotype expressed in human breast and lung carcinoma cell lines. Biochemistry 2001; 40:2096-103. [PMID: 11329278 DOI: 10.1021/bi002323d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extensive C-terminal molecular heterogeneity of alpha- and beta-tubulin is a consequence of multiple isotypes, the products of distinct genes, that undergo several posttranslational modifications. These include polyglutamylation and polyglycylation of both subunits, reversible tyrosination and removal of the penultimate glutamate from alpha-tubulin, and phosphorylation of the beta III isotype. A mass spectrometry-based method has been developed for the analysis of the C-terminal diversity of tubulin from human cell lines. Total cell extracts are resolved by SDS--PAGE and transferred to nitrocellulose, and the region of the blot corresponding to tubulin (approximately 50 kDa) was excised and digested with CNBr to release the highly divergent C-terminal tubulin fragments. The masses of the human alpha- and beta-tubulin CNBr-derived C-terminal peptides are all in the 1500--4000 Da mass range and can be analyzed directly by MALDI-TOF mass spectrometry in the negative ion mode without significant interference from other released peptides. In this study, the tubulin isotype diversity in MDA-MB-231, a human breast carcinoma cell line, and A549, a human non-small lung cancer cell line, is reported. The major tubulin isotypes present in both cell lines are k-alpha 1 and beta 1. Importantly, we report a previously unknown alpha isotype present at significant levels in both cell lines. Moreover, the degree of posttranslational modifications to all isotypes was limited. Glu-tubulin, in which the C-terminal tyrosine of alpha-tubulin is removed, was not detected. In contrast to mammalian neuronal tubulin which exhibits extensive polyglutamylation, only low-level monoglutamylation of the k-alpha 1 and beta 1 isotypes was observed in these two human cell lines.
Collapse
Affiliation(s)
- S Rao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
68
|
Abstract
Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the neck coiled-coil, a structure adjacent to the motor domain, plays an important role in governing the run length. By adding positive charge to the neck coiled-coil, we have created ultra-processive kinesin mutants that have fourfold longer run lengths than the wild-type motor, but that have normal ATPase activity and motor velocity. Conversely, adding negative charge on the neck coiled-coil decreases the run length. The gain in processivity can be suppressed by either proteolytic cleavage of tubulin's negatively charged COOH terminus or by high salt concentrations. Therefore, modulation of processivity by the neck coiled-coil appears to involve an electrostatic tethering interaction with the COOH terminus of tubulin. The ability to readily increase kinesin processivity by mutation, taken together with the strong sequence conservation of the neck coiled-coil, suggests that evolutionary pressures may limit kinesin's run length to optimize its in vivo function.
Collapse
Affiliation(s)
- K S Thorn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
69
|
Mencarelli C, Bré MH, Levilliers N, Dallai R. Accessory tubules and axonemal microtubules of Apis mellifera sperm flagellum differ in their tubulin isoform content. CELL MOTILITY AND THE CYTOSKELETON 2000; 47:1-12. [PMID: 11002306 DOI: 10.1002/1097-0169(200009)47:1<1::aid-cm1>3.0.co;2-u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the insect sperm flagellum, an extra set of nine additional microtubules, named accessory tubules, is present surrounding the axoneme. Using a sarcosyl/urea extraction, we were able to fractionate the microtubular cytoskeleton of the sperm flagellum of the insect Apis mellifera resulting in the dissociation of the axonemal microtubule protein components and the accessory tubules. This has allowed us to compare the tubulin isoform content of axonemal microtubules and accessory tubules by immunoelectron microscopy and immunoblotting using a panel of monoclonal antibodies directed against different tubulin post-translational modifications (PTMs). All the PTMs occurring in axonemal tubulin are also present in accessory tubules, which indicates the close relativeness of accessory tubules to axonemal rather than to cytoplasmic microtubules. However, our results demonstrate the presence of significant differences in the tubulin isoform content of axonemal microtubules and accessory tubules. First, the tubulin tyrosination extent of accessory tubules is far lower than that of axonemal microtubules, thus confirming at the molecular level their morphogenetic origin as outgrowths from the B-subtubule of each microtubular doublet. Second, although polyglycylation seems to occurr at the same extent in both microtubular systems, alpha-tubulin exhibits a larger amount of monoglycylated sites in axonemal microtubules than in accessory tubules. Third, a greater amount of beta-tubulin molecules is glutamylated in axonemal microtubules than in accessory tubules. Moreover, highly acidic isoforms, likely molecules with longer polyglutamate side chains, are present only in axonemal microtubules. Taken together, our data are indicative of a higher level of tubulin heterogeneity in axonemal microtubules than in accessory tubules. They also show a segregation of post-translationally modified isoforms between accessory tubules and axonemal microtubules and suggest the implication of PTMs in the functional specialization of the two microtubular systems.
Collapse
Affiliation(s)
- C Mencarelli
- Department of Evolutionary Biology, University of Siena, Siena, Italy
| | | | | | | |
Collapse
|
70
|
Iomini C, Bré MH, Levilliers N, Justine JL. Tubulin polyglycylation in Platyhelminthes: diversity among stable microtubule networks and very late occurrence during spermiogenesis. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:318-30. [PMID: 9556331 DOI: 10.1002/(sici)1097-0169(1998)39:4<318::aid-cm6>3.0.co;2-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The distribution of glycylated tubulin has been analyzed in different populations of stable microtubules in a digenean flatworm, Echinostoma caproni (Platyhelminthes). Two cellular types, spermatozoa and ciliated excretory cells, have been analyzed by means of immunofluorescence, immunogold, and immunoblotting techniques using two monoclonal antibodies (mAbs), AXO 49, and TAP 952, specifically directed against differently glycylated isoforms of tubulin. The presence of glycylated tubulin in the two cell types was shown. However, the differential reactivities of TAP 952 and AXO 49 mAbs with the two axoneme types suggest a difference in their glycylation level. In addition, within a single cell, the spermatozoon, cortical microtubules underlying the flagellar membrane, and axonemal microtubules were shown to comprise different tubulin isoforms, the latter ones only being labelled with one of the antiglycylated tubulin mAbs, TAP 952. Similarly, the antiacetylated (6-11B-1) and polyglutamylated (GT335) tubulin mAbs decorated the two types of axonemal microtubules, but not the cortical ones. From these data, a subcellular sorting of posttranslationally modified tubulin isoforms within spermatozoa, on the one hand, and a cellular sorting of glycylated isoforms inside the whole organism, on the other hand, is demonstrated in the flatworm E. caproni. Last, a sequential occurrence of tubulin posttranslational modifications was observed in the course of spermiogenesis. Acetylation appears first, followed shortly by glutamylation; glycylation takes place at the extreme end of spermiogenesis and, specifically, in a proximo-distal process. Thus in agreement with, and extending other studies [Bré et al., 1996], glycylation appears to close the sequence of posttranslational events occurring in axonemal microtubules during spermiogenesis.
Collapse
Affiliation(s)
- C Iomini
- Laboratoire de Biologie Parasitaire, Protistologie, Helminthologie, ERS 156 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | |
Collapse
|
71
|
Lobert S, Frankfurter A, Correia JJ. Energetics of vinca alkaloid interactions with tubulin isotypes: implications for drug efficacy and toxicity. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:107-21. [PMID: 9484953 DOI: 10.1002/(sici)1097-0169(1998)39:2<107::aid-cm2>3.0.co;2-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of vinca alkaloids, including vincristine, vinblastine, and vinorelbine, are currently used in cancer chemotherapy. These three vinca alkaloids interact differently with a range of solid and hematologic tumors. To test the possibility that the tubulin isotype composition is an important determinant in antineoplastic efficacy, we determined thermodynamic parameters for vinca alkaloid interactions with purified beta-tubulin isotypes, alphabetaII or alphabetaIII, as well as mixtures of alphabetaII and alphabetaIII, alphabetaII and alphabetaI&IV, or alphabetaIII and alphabetaI&IV (referred to as isotype-depleted tubulin) by quantitative sedimentation velocity. Vincristine-, vinblastine-, or vinorelbine-induced isotype self-association was studied at 25 degrees C in 10 mM Pipes, pH 6.9, 1 mM MgSO4, and 2 mM EGTA in the presence of 50 microM GTP or GDP. For all three drugs, we observed no significant differences in overall affinities, K1K2, or in GDP enhancement of purified isotypes compared to unfractionated tubulin, suggesting that differential antitumor efficacy observed clinically for these vinca alkaloids is not determined by tissue isotype composition. Small, but significant differences in the individual binding parameters, K1 and K2, are found in the vincristine data. In the presence of vincristine and GTP, K1, the affinity of drug for tubulin heterodimers, tends to be larger for purified alphabetaII- or alphabetaIII-tubulin compared to unfractionated tubulin. Furthermore, the apparent dimerization constant, K2app, at physiologically significant drug concentrations is larger for these purified isotypes. When alphabetaII- and alphabetaIII-tubulin are combined, the cooperativity between drug binding and spiral formation approaches that of unfractionated PC-tubulin. These differences are not observed in the presence of vinblastine or vinorelbine. The differences found with vincristine may be implicated in the dose-limiting neurotoxicity found with this drug, but not found with vinblastine or vinorelbine.
Collapse
Affiliation(s)
- S Lobert
- School of Nursing, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
72
|
Kann ML, Prigent Y, Levilliers N, Bré MH, Fouquet JP. Expression of glycylated tubulin during the differentiation of spermatozoa in mammals. CELL MOTILITY AND THE CYTOSKELETON 2000; 41:341-52. [PMID: 9858158 DOI: 10.1002/(sici)1097-0169(1998)41:4<341::aid-cm6>3.0.co;2-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using quantitative immunogold analyses of tubulin isoforms we previously demonstrated a unique differential expression of glutamylated tubulin in the flagellum of mouse and man spermatozoa [Fouquet et al., 1997: Tissue Cell 29:573-583]. We have performed similar analyses for glycylated tubulin using two monoclonal antibodies, TAP 952 and AXO 49, directed to mono- and polyglycylated tubulin respectively. Glycylated tubulin was not found in centrioles and cytoplasmic microtubules (manchette) of germ cells. In mouse and man, axonemal tubulin was first monoglycylated and uniformly distributed in all doublets at all levels of the flagellum in elongating spermatids. In human mature spermatozoa axonemal microtubules were enriched in monoglycylated tubulin from the base to the tip of the flagellum. In mouse sperm flagellum a similar gradient of monoglycylated tubulin was also observed in addition to an opposite gradient of polyglycylated tubulin. In both species, monoglycylated tubulin labeling predominated in doublets 3-8 whereas glutamylated tubulin labeling [Fouquet et al., 1997] predominated in doublets 1-5-6. These differential labelings were suppressed after motility inhibition of mouse spermatozoa by sodium azide treatment and in non-motile human spermatozoa lacking dynein arms. The unique distribution of these tubulin isoforms and the known inhibition of motility induced by their specific antibodies are consistent with a complementary role of tubulin glycylation and glutamylation in the regulation of flagellar beating in mammalian spermatozoa.
Collapse
Affiliation(s)
- M L Kann
- Laboratoire de Biologie Cellulaire, Spermatogenèse et maturation du spermatozoïde, Université Paris V, UFR Biomédicale, France
| | | | | | | | | |
Collapse
|
73
|
Pucciarelli S, Ballarini P, Miceli C. Cold-adapted microtubules: characterization of tubulin posttranslational modifications in the Antarctic ciliate Euplotes focardii. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:329-40. [PMID: 9415375 DOI: 10.1002/(sici)1097-0169(1997)38:4<329::aid-cm3>3.0.co;2-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In cold poikilotherm organisms, microtubule assembly is promoted at temperatures below 4 degrees C and cold-induced depolymerization is prevented. On the basis of the results of investigations on cold-adapted fishes, the property of cold adaptation is ascribed to intrinsic characteristics of the tubulins. To fully understand cold adaptation, we studied the tubulins of Euplotes focardii, an Antarctic ciliated protozoan adapted to temperatures ranging from -2 to +4 degrees C. In this organism, we had previously sequenced one beta-tubulin gene and, then identified three other genes (denoted as beta-T1, beta-T2, beta-T3 and beta-T4). Here we report that the amino acid sequence of the carboxy-terminal domain predicted from the beta-T3 gene (apparently the most expressed of the gene family) contains six modifications (five substitutions and one insertion) of conserved residues, unique with respect to all the other known beta-tubulin sequences. These modifications can change the structural conformation of the carboxy-terminal domain. Furthermore, in the variable terminal end of that domain, a consensus sequence for a phosphorylation site is present, and the residue Glu-438, the most frequent site for polyglutamylation in beta-tubulin, is substituted by Asp. Starting from these observations, we showed that in E. focardii only alpha-tubulin is polyglutamylated, while beta-tubulin undergoes phosphorylation. Polyglutamylated microtubules appear to colocalize with cilia and microtubular bundles, all structures in which microtubules undergo a sliding process. This finding supports the idea that alpha-tubulin polyglutamylation is involved in the interaction between tubulin and motor microtubule-associated proteins. Phosphorylation, usually a rare posttranslational modification of beta-tubulin, which is found extensively distributed in the beta-tubulin of this cold-adapted organism, may play a determinant role in the dynamic of polymerization and depolymerization at low temperatures.
Collapse
Affiliation(s)
- S Pucciarelli
- Dipartimento di Biologia Molecolare Cellulare e Animale, Università di Camerino, Italy
| | | | | |
Collapse
|
74
|
Abstract
Limited proteolysis of the tubulin dimer (alphabeta) by subtilisin occurs more rapidly with beta than with alpha tubulin. This leads to the formation of an intermediate hybrid dimer, alphabeta(s), before both C termini are cleaved to form tubulin S(alpha(s)beta(s)). The three forms of tubulin usually coexist in subtilisin-treated preparations and such cross-contamination can be reliably detected only by running SDS-polyacrylamide gels well beyond expulsion of the dye front. Previously published preparations have not ruled out such contamination or have formed poorly reversible polymers. Because ion exchange separation incurred substantial protein losses, we have developed a new protocol for rapid preparation of tubulin S (alpha(s)beta(s), free of alphabeta or alphabeta(s)) that is based on proteolysis at low ionic strength. This increases the relative rate of C terminal cleavage of beta tubulin. The product forms sheets, bundles, or rings that are depolymerized by cold, salt, and podophyllotoxin, partially depolymerized by Ca2+, and has a decreased critical concentration for polymerization that can be further decreased by taxol. We have also found a method for forming nearly pure alphabeta(s) dimers by using methods that retard proteolysis of the C terminus of alpha tubulin.
Collapse
Affiliation(s)
- L Knipling
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
75
|
Xia L, Hai B, Gao Y, Burnette D, Thazhath R, Duan J, Bré MH, Levilliers N, Gorovsky MA, Gaertig J. Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. J Cell Biol 2000; 149:1097-106. [PMID: 10831613 PMCID: PMC2174830 DOI: 10.1083/jcb.149.5.1097] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2000] [Accepted: 05/01/2000] [Indexed: 12/02/2022] Open
Abstract
We analyzed the role of tubulin polyglycylation in Tetrahymena thermophila using in vivo mutagenesis and immunochemical analysis with modification-specific antibodies. Three and five polyglycylation sites were identified at glutamic acids near the COOH termini of alpha- and beta-tubulin, respectively. Mutants lacking all polyglycylation sites on alpha-tubulin have normal phenotype, whereas similar sites on beta-tubulin are essential. A viable mutant with three mutated sites in beta-tubulin showed reduced tubulin glycylation, slow growth and motility, and defects in cytokinesis. Cells in which all five polyglycylation sites on beta-tubulin were mutated were viable if they were cotransformed with an alpha-tubulin gene whose COOH terminus was replaced by the wild-type COOH terminus of beta-tubulin. In this double mutant, beta-tubulin lacked detectable polyglycylation, while the alpha-beta tubulin chimera was hyperglycylated compared with alpha-tubulin in wild-type cells. Thus, the essential function of polyglycylation of the COOH terminus of beta-tubulin can be transferred to alpha-tubulin, indicating it is the total amount of polyglycylation on both alpha- and beta-tubulin that is essential for survival.
Collapse
Affiliation(s)
- Lu Xia
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| | - Bing Hai
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Yan Gao
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| | - Dylan Burnette
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| | - Rupal Thazhath
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| | - Jianming Duan
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Marie-Helene Bré
- Laboratoire de Biologie Cellulaire 4, CNRS UPRES-A 8080, Université Paris XI, 91405, Orsay Cedex, France
| | - Nicolette Levilliers
- Laboratoire de Biologie Cellulaire 4, CNRS UPRES-A 8080, Université Paris XI, 91405, Orsay Cedex, France
| | - Martin A. Gorovsky
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| |
Collapse
|
76
|
Regnard C, Desbruyères E, Huet JC, Beauvallet C, Pernollet JC, Eddé B. Polyglutamylation of nucleosome assembly proteins. J Biol Chem 2000; 275:15969-76. [PMID: 10747868 DOI: 10.1074/jbc.m000045200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyglutamylation is an original posttranslational modification, discovered on tubulin, consisting in side chains composed of several glutamyl units and leading to a very unusual protein structure. A monoclonal antibody directed against glutamylated tubulin (GT335) was found to react with other proteins present in HeLa cells. After immunopurification on a GT335 affinity column, two prominent proteins of approximately 50 kDa were observed. They were identified by microsequencing and mass spectrometry as NAP-1 and NAP-2, two members of the nucleosome assembly protein family that are implicated in the deposition of core histone complexes onto chromatin. Strikingly, NAP-1 and NAP-2 were found to be substrates of an ATP-dependent glutamylation enzyme co-purifying on the same column. We took advantage of this property to specifically label and purify the polyglutamylated peptides. NAP-1 and NAP-2 are modified in their C-terminal domain by the addition of up to 9 and 10 glutamyl units, respectively. Two putative glutamylation sites were localized for NAP-1 at Glu-356 and Glu-357 and, for NAP-2, at Glu-347 and Glu-348. These results demonstrate for the first time that proteins other than tubulin are polyglutamylated and open new perspectives for studying NAP function.
Collapse
Affiliation(s)
- C Regnard
- Biochimie Cellulaire, Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
77
|
Million K, Larcher J, Laoukili J, Bourguignon D, Marano F, Tournier F. Polyglutamylation and polyglycylation of alpha- and beta-tubulins during in vitro ciliated cell differentiation of human respiratory epithelial cells. J Cell Sci 1999; 112 ( Pt 23):4357-66. [PMID: 10564653 DOI: 10.1242/jcs.112.23.4357] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tubulins are the major proteins within centriolar and axonemal structures. In all cell types studied so far, numerous alpha- and beta-tubulin isoforms are generated both by expression of a multigenic family and various post-translational modifications. We have developed a primary culture of human nasal epithelial cells where the ciliated cell differentiation process has been observed and quantified. We have used this system to study several properties concerning polyglutamylation and polyglycylation of tubulin. GT335, a monoclonal antibody directed against glutamylated tubulins, stained the centriole/basal bodies and the axonemes of ciliated cells, and the centrioles of non-ciliated cells. By contrast, axonemal but not centriolar tubulins were polyglycylated. Several polyglutamylated and polyglycylated tubulin isotypes were detected by two-dimensional electrophoresis, using GT335 and a specific monoclonal antibody (TAP952) directed against short polyglycyl chains. Immunoelectron microscopy experiments revealed that polyglycylation only affected axonemal tubulin. Using the same technical approach, polyglutamylation was shown to be an early event in the centriole assembly process, as gold particles were detected in fibrogranular material corresponding to the first cytoplasmic structures involved in centriologenesis. In a functional assay, GT335 and TAP952 had a dose-dependent inhibitory effect on ciliary beat frequency. TAP952 had only a weak effect while GT335 treatment led to a total arrest of beating. These results strongly suggest that in human ciliated epithelial cells, tubulin polyglycylation has only a structural role in cilia axonemes, while polyglutamylation may have a function both in centriole assembly and in cilia activity.
Collapse
Affiliation(s)
- K Million
- Laboratoire Cytophysiologie et Toxicologie Cellulaire, Université Paris 7, 75251 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
78
|
Klotz A, Rutberg M, Denoulet P, Wallin M. Polyglutamylation of atlantic cod tubulin: immunochemical localization and possible role in pigment granule transport. CELL MOTILITY AND THE CYTOSKELETON 1999; 44:263-73. [PMID: 10602255 DOI: 10.1002/(sici)1097-0169(199912)44:4<263::aid-cm4>3.0.co;2-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In higher organisms, there is a large variety of tubulin isoforms, due to multiple tubulin genes and extensive post-translational modification. The properties of microtubules may be modulated by their tubulin isoform composition. Polyglutamylation is a post-translational modification that is thought to influence binding of both structural microtubule associated proteins (MAPs) and mechano-chemical motors to tubulin. The present study investigates the role of tubulin polyglutamylation in a vesicle transporting system, cod (Gadus morhua) melanophores. We did this by microinjecting an antibody against polyglutamylated tubulin into these cells. To put our results into perspective, and to be able to judge their universal application, we characterized cod tubulin polyglutamylation by Western blotting technique, and compared it to what is known from mammals. We found high levels of polyglutamylation in tissues and cell types whose functions are highly dependent on interactions between microtubules and motor proteins. Microinjection of the anti-polyglutamylation antibody GT335 into cultured melanophores interfered with pigment granule dispersion, while dynein-dependent aggregation was unaffected. Additional experiments showed that GT335-injected cells were able to aggregate pigment even when actin filaments were depolymerized, indicating that the maintained ability of pigment aggregation in these cells was indeed microtubule-based and did not depend upon actin filaments. The results indicate that dynein and the kinesin-like dispersing motor protein in cod melanophores bind to tubulin on slightly different sites, and perhaps depend differentially on polyglutamylation for their interaction with microtubules. The binding site of the dispersing motor may bind directly to the polyglutamate chain, or more closely than dynein.
Collapse
Affiliation(s)
- A Klotz
- Department of Zoophysiology, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
79
|
Regnard C, Desbruyères E, Denoulet P, Eddé B. Tubulin polyglutamylase: isozymic variants and regulation during the cell cycle in HeLa cells. J Cell Sci 1999; 112 ( Pt 23):4281-9. [PMID: 10564646 DOI: 10.1242/jcs.112.23.4281] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyglutamylation is a posttranslational modification of tubulin that is very common in neurons and ciliated or flagellated cells. It was proposed to regulate the binding of microtubule associated proteins (MAPs) and molecular motors as a function of the length of the polyglutamyl side-chain. Though much less common, this modification of tubulin also occurs in proliferating cells like HeLa cells where it is associated with centrioles and with the mitotic spindle. Recently, we partially purified tubulin polyglutamylase from mouse brain and described its enzymatic properties. In this work, we focused on tubulin polyglutamylase activity from HeLa cells. Our results support the existence of a tubulin polyglutamylase family composed of several isozymic variants specific for alpha- or beta-tubulin subunits. In the latter case, the specificity probably also concerns the different beta-tubulin isotypes. Interestingly, we found that tubulin polyglutamylase activity is regulated in a cell cycle dependent manner and peaks in G(2)-phase while the level of glutamylated tubulin peaks in mitosis. Consistent results were obtained by treating the cells with hydroxyurea, nocodazole or taxotere. In particular, in mitotic cells, tubulin polyglutamylase activity was always low while glutamylation level was high. Finally, tubulin polyglutamylase activity and the level of glutamylated tubulin appeared to be inversely related. This paradox suggests a complex regulation of both tubulin polyglutamylase and the reverse deglutamylase activity.
Collapse
Affiliation(s)
- C Regnard
- Laboratoire de Biochimie Cellulaire, CNRS UPR 9065 and Université Paris VI, Collège de France, 75005 Paris.
| | | | | | | |
Collapse
|
80
|
Westermann S, Plessmann U, Weber K. Synthetic peptides identify the minimal substrate requirements of tubulin polyglutamylase in side chain elongation. FEBS Lett 1999; 459:90-4. [PMID: 10508923 DOI: 10.1016/s0014-5793(99)01227-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The minimal sequence requirement of Crithidia tubulin polyglutamylase is already fulfilled by tubulin-related peptides carrying a free alpha-carboxylate on a glutamic acid residue. Since the product of each glutamylation step fulfills the substrate requirements necessary for the next cycle, very long side chains are generated with brain tubulin as a substrate. Up to 70 mol of glutamic acid was incorporated per alphabeta-heterodimer. We speculate that the strict choice of a particular glutamate residue for the formation of the isopeptide bond initiating a novel side chain is made by a tubulin monoglutamylase which requires the entire tubulin as substrate.
Collapse
Affiliation(s)
- S Westermann
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, 37077, Goettingen, Germany
| | | | | |
Collapse
|
81
|
Jimenez MA, Evangelio JA, Aranda C, Lopez-Brauet A, Andreu D, Rico M, Lagos R, Andreu JM, Monasterio O. Helicity of alpha(404-451) and beta(394-445) tubulin C-terminal recombinant peptides. Protein Sci 1999; 8:788-99. [PMID: 10211825 PMCID: PMC2144297 DOI: 10.1110/ps.8.4.788] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of conserved residues Ala,Met(+4),Leu(+7),Tyr(+11). The helical segment of alpha(404-451) is the same as that described in the electron crystallographic model structure of alphabeta-tubulin, while in beta(394-451) it extends for nine residues more, supporting the possibility of a functional coil --> helix transition at the C-terminus of beta-tubulin. These peptides may be employed to construct model complexes with microtubule associated protein binding sites.
Collapse
Affiliation(s)
- M A Jimenez
- Instituto de Estructura de la Materia, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Roobol A, Sahyoun ZP, Carden MJ. Selected subunits of the cytosolic chaperonin associate with microtubules assembled in vitro. J Biol Chem 1999; 274:2408-15. [PMID: 9891010 DOI: 10.1074/jbc.274.4.2408] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone activities of the only known chaperonin in the eukaryotic cytosol (cytosolic chaperonin containing T-complex polypeptide 1 (CCT)) appear to be relatively specialized; the main folding substrates in vivo and in vitro are identified as tubulins and actins. CCT is unique among chaperonins in the complexity of its hetero-oligomeric structure, containing eight different, although related, gene products. In addition to their known ability to bind to and promote correct folding of newly synthesized and denatured tubulins, we show here that CCT subunits alpha, gamma, zeta, and theta also associated with in vitro assembled microtubules, i.e. behaved as microtubule-associated proteins. This nucleotide-dependent association between microtubules and CCT polypeptides (Kd approximately 0.1 microM CCT subunit) did not appear to involve whole oligomeric chaperonin particles, but rather free CCT subunits. Removal of the tubulin COOH termini by subtilisin digestion caused all eight CCT subunits to associate with the microtubule polymer, thus highlighting the non-chaperonin nature of the selective CCT subunit association with normal microtubules.
Collapse
Affiliation(s)
- A Roobol
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| | | | | |
Collapse
|
83
|
Rüdiger AH, Rüdiger M, Wehland J, Weber K. Monoclonal antibody ID5: epitope characterization and minimal requirements for the recognition of polyglutamylated alpha- and beta-tubulin. Eur J Cell Biol 1999; 78:15-20. [PMID: 10082420 DOI: 10.1016/s0171-9335(99)80003-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A monoclonal antibody (ID5) raised against the synthetic tetradecapeptide corresponding to the C-terminal region of detyrosinated alpha-tubulin showed an unexpected cross-reactivity with beta-tubulin from pig brain tissue. The specificity and the minimal epitope requirements of ID5 were characterized by competitive enzyme-linked immunosorbent assay (ELISA) and spot blots using a series of synthetic peptides and the natural peptides of beta-tubulin and detyrosinated alpha-tubulin from brain. The epitope of ID5 is comprised of the carboxyterminal sequence -XEE carrying the terminal alpha-carboxylate group with X being a variable residue. All linkages in the epitope involve alpha-peptide bonds. This epitope is provided by the detyrosinated alpha-tubulin main chain and the polyglutamyl side chains of both brain alpha- and beta-tubulins. Affinity purification of beta-tubulin peptides and mass spectrometric characterization reveal that peptides carrying three to nine glutamyl residues in the side chain are recognized by ID5. These results show that except for the first gamma-peptide linkage the alpha-peptide bond is the preferred linkage type in the tubulin polyglutamyl side chains.
Collapse
Affiliation(s)
- A H Rüdiger
- Gesellschaft für Biotechnologische Forschung, Department of Cell Biology, Braunschweig, Germany
| | | | | | | |
Collapse
|
84
|
Lu Q, Moore GD, Walss C, Ludueña RF. Structural and functional properties of tubulin isotypes. ADVANCES IN STRUCTURAL BIOLOGY 1999. [DOI: 10.1016/s1064-6000(98)80012-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
85
|
Chau MF, Radeke MJ, de Inés C, Barasoain I, Kohlstaedt LA, Feinstein SC. The microtubule-associated protein tau cross-links to two distinct sites on each alpha and beta tubulin monomer via separate domains. Biochemistry 1998; 37:17692-703. [PMID: 9922135 DOI: 10.1021/bi9812118] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction between tubulin subunits and microtubule-associated proteins (MAPs) such as tau is fundamental for microtubule structure and function. Previous work has suggested that the "microtubule binding domain" of tau (composed of three or four imperfect 18-amino acid repeats, separated by 13- or 14-amino acid inter-repeat regions) can bind to the C-terminal ends of both alpha and beta tubulin monomers. Here, using covalent cross-linking strategies, we demonstrate that there are two distinct tau cross-linking sites (designated as "C-terminal" and "internal") on each alpha and beta tubulin monomer. The C-terminal tau cross-linking site is located within the 12 C-terminal amino acids of both alpha and beta tubulin, while the internal tau cross-linking site is located within the C-terminal one-third of alpha and beta tubulin but not within the last 12 amino acids. In addition, we show that tau cross-links to the C-terminal site via its repeat 1 and/or the R1-R2 inter-repeat. The cross-linking of tau to the internal site is mediated by some subset of its other repeat units. Integrating these and earlier data with the 3.7 A resolution model of the alphabeta tubulin dimer recently presented by E. Nogales et al. [(1998), Nature 391, 199-203], we propose a new model for the tau-microtubule interaction.
Collapse
Affiliation(s)
- M F Chau
- Neuroscience Research Institute, University of California, Santa Barbara 93106, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Redeker V, Rossier J, Frankfurter A. Posttranslational modifications of the C-terminus of alpha-tubulin in adult rat brain: alpha 4 is glutamylated at two residues. Biochemistry 1998; 37:14838-44. [PMID: 9778358 DOI: 10.1021/bi981335k] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In adult mammalian brain, the C-terminus of alpha-tubulin exhibits a high degree of polymorphism due to a combination of four covalent posttranslational modifications: glutamylation, tyrosination, detyrosination, and removal of the penultimate glutamate residue (C-terminal deglutamylation). Glutamylation is the most abundant. To characterize the glutamylation of alpha-tubulin and its relationship with the other modifications, we developed a chromatographic procedure for purifying alpha-tubulin C-terminal peptides. The purified peptides were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) and amino acid sequencing. In this report, we provide a complete description of the glutamylation of tyrosinated, detyrosinated, and C-terminal deglutamylated isoforms of both alpha-tubulin isotypes (alpha1/2 and alpha4) expressed in adult rat brain. In particular, we describe for the first time the glutamylation of alpha4. More than 90% of the alpha-tubulin is glutamylated, and more than 75% of it is nontyrosinated. alpha4 is more extensively glutamylated than alpha1/2, containing as many as 11 posttranslationally added glutamate residues. The most abundant alpha4 isoform is nontyrosinated, containing five posttranslationally added glutamates, whereas the most abundant alpha1/2 isoforms are nontyrosinated, with only one or two posttranslationally added glutamates. In contrast to alpha1/2, alpha4 is glutamylated at two separate residues (Glu-443 and Glu-445) in the sequence 431DYEEVGIDSYEDEDEGEE448. This is the first evidence that glutamylation can occur on two different residues in the same mammalian tubulin isotype.
Collapse
Affiliation(s)
- V Redeker
- Eide Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Laboratoire de Neurobiologie, CNRS UMR 7637, Paris, France
| | | | | |
Collapse
|
87
|
Bré MH, Redeker V, Vinh J, Rossier J, Levilliers N. Tubulin polyglycylation: differential posttranslational modification of dynamic cytoplasmic and stable axonemal microtubules in paramecium. Mol Biol Cell 1998; 9:2655-65. [PMID: 9725918 PMCID: PMC25538 DOI: 10.1091/mbc.9.9.2655] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Polyglycylation, a posttranslational modification of tubulin, was discovered in the highly stable axonemal microtubules of Paramecium cilia where it involves the lateral linkage of up to 34 glycine units per tubulin subunit. The observation of this type of posttranslational modification mainly in axonemes raises the question as to its relationship with axonemal organization and with microtubule stability. This led us to investigate the glycylation status of cytoplasmic microtubules that correspond to the dynamic microtubules in Paramecium. Two anti-glycylated tubulin monoclonal antibodies (mAbs), TAP 952 and AXO 49, are shown here to exhibit different affinities toward mono- and polyglycylated synthetic tubulin peptides. Using immunoblotting and mass spectrometry, we show that cytoplasmic tubulin is glycylated. In contrast to the highly glycylated axonemal tubulin, which is recognized by the two mAbs, cytoplasmic tubulin reacts exclusively with TAP 952, and the alpha- and beta- tubulin subunits are modified by only 1-5 and 2-9 glycine units, respectively. Our analyses suggest that most of the cytoplasmic tubulin contains side chain lengths of 1 or 2 glycine units distributed on several glycylation sites. The subcellular partition of distinct polyglycylated tubulin isoforms between cytoplasmic and axonemal compartments implies the existence of regulatory mechanisms for glycylation. By following axonemal tubulin immunoreactivity with anti-glycylated tubulin mAbs upon incubation with a Paramecium cellular extract, the presence of a deglycylation enzyme is revealed in the cytoplasm of this organism. These observations establish that polyglycylation is reversible and indicate that, in vivo, an equilibrium between glycylating and deglycylating enzymes might be responsible for the length of the oligoglycine side chains of tubulin.
Collapse
Affiliation(s)
- M H Bré
- Laboratoire de Biologie Cellulaire 4, CNRS URA 2227, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
88
|
Schneider A, Plessmann U, Felleisen R, Weber K. Posttranslational modifications of trichomonad tubulins; identification of multiple glutamylation sites. FEBS Lett 1998; 429:399-402. [PMID: 9662457 DOI: 10.1016/s0014-5793(98)00644-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The alpha- and beta-tubulins present in cytoskeletons of Tritrichomonas mobilensis are extensively glutamylated. Automated sequencing and mass spectrometry of the carboxyterminal peptides identifies 4 glutamylation sites in alpha- and 2 sites in beta-tubulin. They are marked by asterisks in the terminal sequences GDE*E*E*E*DDG (alpha) and EGE*E*DEEAEA (beta). This is the first report that tubulin glutamylation can occur at multiple sites. Although T. mobilensis has four flagellae the tubulins lack polyglycylation. Thus glycylation is not necessary for formation or function of axonemal microtubules. Alpha-tubulin is completely acetylated at lysine 40 and shows no tyrosine cycle. Peptide sequences establish two distinct beta-tubulins.
Collapse
Affiliation(s)
- A Schneider
- University of Fribourg, Institute of Zoology, Pérolles, Switzerland
| | | | | | | |
Collapse
|
89
|
Regnard C, Audebert S, Denoulet P, Eddé B. Tubulin polyglutamylase: partial purification and enzymatic properties. Biochemistry 1998; 37:8395-404. [PMID: 9622491 DOI: 10.1021/bi9804131] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we report on a novel enzyme, tubulin polyglutamylase, which catalyzes the posttranslational formation of polyglutamyl side chains onto alpha- and beta-tubulin. The length of the polyglutamyl side chain regulates the interaction between tubulin and various microtubule-associated proteins. We first developed an in vitro glutamylation assay. Activity measured in brain, a tissue particularly enriched with glutamylated tubulin, decreases during postnatal development. Thus, brains from 3-day-old mice were chosen as the starting material, and the enzyme was purified approximately 1000-fold. Its Mr was estimated to be 360K and its sedimentation coefficient 10 s. The enzyme catalyzes the MgATP-dependent addition of l-glutamate onto tubulin subunits. Microtubules are much better substrates than unpolymerized tubulin, and the reaction is very specific for glutamate, other amino acids or glutamate analogues not being substrates. Moreover, glutamyl units are added sequentially onto tubulin, leading to progressive elongation of the polyglutamyl side chains. Side chains of one to six or seven glutamyl units were obtained with microtubules, whereas much longer side chains (up to 15-20 units) were formed with unpolymerized tubulin. Interestingly, such very long polyglutamyl side chains were recently detected in some situations in vivo.
Collapse
Affiliation(s)
- C Regnard
- Laboratoire de Biochimie Cellulaire, CNRS UPR 9065, Paris, France.
| | | | | | | |
Collapse
|
90
|
Rai SS, Wolff J. The C terminus of beta-tubulin regulates vinblastine-induced tubulin polymerization. Proc Natl Acad Sci U S A 1998; 95:4253-7. [PMID: 9539723 PMCID: PMC22475 DOI: 10.1073/pnas.95.8.4253] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oligoanions such as sodium triphosphate or GTP prevent and/or reverse vinblastine-induced polymerization of tubulin. We now show that the anions of glutamate-rich extreme C termini of tubulin are similarly involved in the regulation of the vinblastine effect. Cleavage of the C termini by limited proteolysis with subtilisin enhances vinblastine-induced tubulin polymerization and abolishes the anion effect. Only the beta-tubulin C terminus needs to be removed to achieve these changes and the later cleavage of the alpha-tubulin C terminus has little additional effect. In fact, vinblastine concentrations >20 microM block cleavage of the alpha-tubulin C terminus in the polymer, whereas cleavage of the beta-tubulin C terminus proceeds unimpeded over the time used. The vinblastine effect on tubulin polymerization is also highly pH-dependent between pH 6.5 and 7.5; this is less marked, but not absent, after subtilisin treatment. A working model is proposed wherein an anionic domain proximal to the extreme C terminus must interact with a cationic domain to permit vinblastine to promote polymerization. Both exogenous and extreme C-terminal anions compete for the cationic domain with the proximal anionic domain to prevent vinblastine-induced polymerization. We conclude that the electrostatic regulation of tubulin polymerization induced by vinblastine resides primarily in the beta-tubulin C terminus but that additional regulation proximal in the tubulin molecule also plays a role.
Collapse
Affiliation(s)
- S S Rai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|
91
|
Ludueña RF. Multiple forms of tubulin: different gene products and covalent modifications. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 178:207-75. [PMID: 9348671 DOI: 10.1016/s0074-7696(08)62138-5] [Citation(s) in RCA: 428] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tubulin, the subunit protein of microtubules, is an alpha/beta heterodimer. In many organisms, both alpha and beta exist in numerous isotypic forms encoded by different genes. In addition, both alpha and beta undergo a variety of posttranslational covalent modifications, including acetylation, phosphorylation, detyrosylation, polyglutamylation, and polyglycylation. In this review the distribution and possible functional significance of the various forms of tubulin are discussed. In analyzing the differences among tubulin isotypes encoded by different genes, some appear to have no functional significance, some increase the overall adaptability of the organism to environmental challenges, and some appear to perform specific functions including formation of particular organelles and interactions with specific proteins. Purified isotypes also display different properties in vitro. Although the significance of all the covalent modification of tubulin is not fully understood, some of them may influence the stability of modified microtubules in vivo as well as interactions with certain proteins and may help to determine the functional role of microtubules in the cell. The review also discusses isotypes of gamma-tubulin and puts various forms of tubulin in an evolutionary context.
Collapse
Affiliation(s)
- R F Ludueña
- Department of Biochemistry, University of Texas Health Science Center at San Antonio 78284, USA
| |
Collapse
|
92
|
Fouquet JP, Kann ML, Péchart I, Prigent Y. Expression of tubulin isoforms during the differentiation of mammalian spermatozoa. Tissue Cell 1997; 29:573-83. [PMID: 9364805 DOI: 10.1016/s0040-8166(97)80057-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using the GT 335 mAb we have previously demonstrated a differential expression of glutamylated tubulin isoforms during spermatogenesis and in spermatooza of the mouse and human. Moreover, the proximodistal decrease of the immunolabeling and its predominance in doublets 1-5-6, corresponding to the plane of the flagellar wave, suggested that the glutamylated tubulin could be involved in a functional heterogeneity of microtubules in peripheral doublets of the sperm flagellum. In order to characterize further the importance of glutamylated tubulin in the sperm model, we analyzed tubulin isoforms by immunoblotting and quantitative immunogold, using antibodies to the C-terminal domain of both subunits including non-glutamylated and glutamylated epitopes. The unique differential immunolabeling of the glutamylated tubulin was confirmed with three mAbs 406-3, 392-2 and B3, in addition to GT 335. This differential labeling was interpreted as a differential accessibility of tubulin epitopes since it was greatly reduced in human spermatozoa lacking dynein arms and after motility inhibition of normal spermatozoa by azide pretreatment. We suggest that the glutamylated tubulin interacts with other axonemal and/or periaxonemal proteins which could be involved in flagellar beating and its regulation.
Collapse
Affiliation(s)
- J P Fouquet
- Laboratoire de Biologie Cellulaire, Spermatogenèse et Maturation du Spermatozoïde, Université Paris V, U.F.R. Biomédicale, France
| | | | | | | |
Collapse
|
93
|
Plessmann U, Weber K. Mammalian sperm tubulin: an exceptionally large number of variants based on several posttranslational modifications. JOURNAL OF PROTEIN CHEMISTRY 1997; 16:385-90. [PMID: 9246618 DOI: 10.1023/a:1026332621215] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extraction of demembranated bull sperm flagella by SDS was used to maximize tubulin solubilization. The alpha- and beta-tubulin separated by SDS-PAGE were treated with endoproteinases LysC and AspN, respectively. Carboxy-terminal fragments were isolated by Mono Q chromatography and reversed-phase HPLC. Automated sequencing and mass spectrometry revealed an astonishingly high number of tubulin variants. Many variants were due to polyglutamylation and in particular to polyglycylation. The number of side-chain glycyl residues ranged from 0 to 28 in alpha and 0 to 15 in beta. Corresponding values for side-chain glutamyl residues were 0-6 in alpha and 0-3 in beta. Additional alpha variability was based on carboxy-terminal detyrosination and partial loss of the penultimate glutamate. A major glycylation site in alpha- and beta-tubulin was mapped. Some variants seem to display both glycyl and glutamyl side chains.
Collapse
Affiliation(s)
- U Plessmann
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany
| | | |
Collapse
|
94
|
Przyborski SA, Cambray-Deakin MA. Profile of glutamylated tubulin expression during cerebellar granule cell development in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 100:133-8. [PMID: 9174257 DOI: 10.1016/s0165-3806(97)00031-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The developmental regulation of tubulin and several of its posttranslational modifications was examined during the differentiation of rat cerebellar granule cells in vitro. In particular, we have noted that the glutamylation of alpha- and beta-tubulin subunits varies during development and becomes more prominent in differentiating neuronal processes. These results indicate that glutamylation of tubulin may be important in the stabilization of microtubules during the maturation of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- S A Przyborski
- Department of Biomedical Science, University of Sheffield, Western Bank, UK
| | | |
Collapse
|
95
|
Weizetfel JC, Smania AM, Barra HS, Argaraña CE. A brain protein (P30) that immunoreacts with a polyclonal anti-pancreatic carboxypeptidase A antibody shows properties that are shared with tubulin carboxypeptidase. Mol Cell Biochem 1997; 170:139-46. [PMID: 9144328 DOI: 10.1023/a:1006801402375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A preparation of tubulin carboxypeptidase partially purified from bovine brain was found to contain a protein of molecular mass 30 kDa (P30) as determined by SDS-PAGE, that is recognized by a polyclonal anti-bovine pancreatic carboxypeptidase A. However, this protein is different from pancreatic carboxypeptidase A as judged by the isoelectric point and the pattern of peptides produced by trypsin digestion. The isoelectric point of P30 was similar to that found for tubulin carboxypeptidase (9 +/- 0.2). When the tubulin carboxypeptidase preparation was subjected to gel filtration chromatography under low salt concentration, P30 behaved as a protein of molecular mass 38 kDa whereas tubulin carboxypeptidase eluted at a position of 75 kDa molecular mass. However, when the chromatography was performed at relatively high salt concentration they behaved as proteins of 49 and 56 kDa, respectively. We considered that P30 may be an inactive monomeric form of the dimeric tubulin carboxypeptidase. However we can not rule out the possibility that it represents another carboxypeptidase not yet described.
Collapse
Affiliation(s)
- J C Weizetfel
- Departmento Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | |
Collapse
|
96
|
Abstract
Kinesin is a mechanoenzyme that couples adenosine triphosphate hydrolysis to the generation of force and movement along microtubules. To gain insight into the interactions of kinesin and microtubules, cross-linking, mapping, and proteolysis experiments were executed. The motor domain of kinesin was consistently cross-linked to both alpha- and beta-tubulin subunits. Initial mapping of the cross-linked kinesin suggested that amino acids within the N- and C-terminal cyanogen bromide fragments of the motor domain formed cross-links to both alpha- and beta-tubulin subunits. Mapping of the cross-linked tubulin suggested that cross-linking to kinesin motors occurred within the negatively charged, C-terminal cyanogen bromide fragments of alpha- and beta-tubulin subunits. Treatment of microtubules with subtilisin, a protease that cleaves C-terminal fragments from alpha- and beta-tubulin, reduced their ability to be cross-linked to kinesin motors supporting the idea that C-terminal sequences of alpha- and beta-tubulin may interact with kinesin motors. Finally, of three synthetic peptides, a peptide consisting of the last 12 C-terminal amino acids of beta-tubulin competitively interfered with the microtubule-stimulated adenosine triphosphatase activity of the kinesin motor, further suggesting that C-terminal sequences of beta-tubulin may be involved in kinesin binding.
Collapse
Affiliation(s)
- C Tucker
- Division of Cellular and Molecular Medicine, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0683, USA
| | | |
Collapse
|
97
|
Laferriere NB, MacRae TH, Brown DL. Tubulin synthesis and assembly in differentiating neurons. Biochem Cell Biol 1997. [DOI: 10.1139/o97-032] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
98
|
MacRae TH. Tubulin post-translational modifications--enzymes and their mechanisms of action. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:265-78. [PMID: 9118990 DOI: 10.1111/j.1432-1033.1997.00265.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review describes the enzymes responsible for the post-translational modifications of tubulin, including detyrosination/tyrosination, acetylation/deacetylation, phosphorylation, polyglutamylation, polyglycylation and the generation of non-tyrosinatable alpha-tubulin. Tubulin tyrosine-ligase, which reattaches tyrosine to detyrosinated tubulin, has been extensively characterized and its gene sequenced. Enzymes such as tubulin-specific carboxypeptidase and alpha-tubulin acetyltransferase, required, respectively, for detyrosination and acetylation of tubulin, have yet to be purified to homogeneity and examined in defined systems. This has produced some conflicting results, especially for the carboxypeptidase. The phosphorylation of tubulin by several different types of kinases has been studied in detail but drawing conclusions is difficult because many of these enzymes modify proteins other than their actual substrates, an especially pertinent consideration for in vitro experiments. Tubulin phosphorylation in cultured neuronal cells has proven to be the best model for evaluation of kinase effects on tubulin/microtubule function. There is little information on the enzymes required for polyglutamylation, polyglycylation, and production of non-tyrosinatable tubulin, but the available data permit interesting speculation of a mechanistic nature. Clearly, to achieve a full appreciation of tubulin post-translational changes the responsible enzymes must be characterized. Knowing when the enzymes are active in cells, if soluble or polymerized tubulin is the preferred substrate and the amino acid residues modified by each enzyme are all important. Moreover, acquisition of purified enzymes will lead to cloning and sequencing of their genes. With this information, one can manipulate cell genomes in order to either modify key enzymes or change their relative amounts, and perhaps reveal the physiological significance of tubulin post-translational modifications.
Collapse
Affiliation(s)
- T H MacRae
- Department of Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
99
|
Schneider A, Plessmann U, Weber K. Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated. J Cell Sci 1997; 110 ( Pt 4):431-7. [PMID: 9067595 DOI: 10.1242/jcs.110.4.431] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine the spectrum of tubulin variants in cytoskeletons of Trypanosoma brucei carboxy-terminal fragments of alpha- and beta-tubulin were isolated and characterized by sequencing and mass spectrometry. All variants arise by posttranslational modifications. We confirm the presence of tyrosinated and detyrosinated alpha-tubulin. Unexpectedly, but in line with its sequence, beta-tubulin also occurs with and without its carboxy-terminal tyrosine. Both tyrosinated and detyrosinated alpha- and beta-tubulins are extensively glutamylated. Unglutamylated tubulins are only trace components of the cytoskeletal microtubules. The maximal numbers of glutamyl residues in the lateral chain are 15 and 6 for alpha- and beta-tubulin, respectively. The oligoglutamyl side chain is linked via an isopeptide bond to glutamic acid residues 445 of alpha- and 435 of beta-tubulin. The same sites are used in glutamylated tubulins of mammalian brain. No tubulin variants based on polyglycylation are detected in cytoskeletal preparations or in isolated flagella. Tubulin specific incorporation of radioactive glutamate but not of glycine is observed when protein biosynthesis is completely inhibited in Trypanosoma cells. Possible reasons for the absence of polyglycylated tubulins from the trypanosomal axoneme are discussed. Finally we show that lysine 40 of the flagellar alpha-tubulin is completely acetylated.
Collapse
Affiliation(s)
- A Schneider
- University of Fribourg, Institute of Zoology, Pérolles, Switzerland
| | | | | |
Collapse
|
100
|
Lessman CA, Wang T, Gard DL, Woods CW. Microinjection of anti-alpha-tubulin antibody (DM1A) inhibits progesterone-induced meiotic maturation and deranges the microtubule array in follicle-enclosed oocytes of the frog, Rana pipiens. ZYGOTE 1997; 5:83-95. [PMID: 9223249 DOI: 10.1017/s0967199400003592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microinjection of anti-alpha-tubulin (Dm1A) inhibited progesterone-induced meiotic maturation in large follicle-enclosed oocytes of the frog, Rana pipiens. DM1A (46 nl; 10 mg/ml) injection significantly increased the ED50 value for progesterone as determined by germinal vesicle dissolution (GVD) bioassay. By contrast, low doses of microinjected DM1A (46 nl; 2.5 mg/ml), anti-actin (clone KJ43A), anti-cytokeratin (C-11), anti-intermediate filament antibody (IFA), generic IgG (46 nl; 20 mg/ml) or sodium azide (46 nl; 1 mg/ml), an antibody preservative, were without inhibitory effect in this bioassay. Microinjected, affinity-purified DM1A (46 nl; 7.5 mg/ml) was also inhibitory, but preabsorption with pure tubulin prior to injection significantly reduced the inhibitory effect. DM1A injection had no effect on centrifugation-induced germinal vesicle migration (GVM). Previous work indicated that drugs (e.g. demecolcine and nocodazole), which destabilise microtubules, enhance both centrifugation-induced GVM and progesterone-induced GVD in Rana oocytes. Taking these results together, it is suggested that DM1A injection may have differential effects on microtubules in this cell. Thus, while the majority of microtubules were apparently depolymerised by DM1A (46 nl; 10 mg/ml) injection, a small subpopulation appeared to be stabilised as bundles. Confocal immunofluorescence microscopy of follicle-enclosed oocytes after DM1A injection revealed a major loss of microtubules throughout the cell; however, apparent sparse bundles of microtubules arranged in an approximately 600 microns shell were associated with the injectate region 24 h post-injection. By contrast, control follicle-enclosed oocytes topically labelled with DM1A post-fixation had extensive microtubule arrays similar to those previously reported in Xenopus oocytes. Intracellular recording after DM1A injection and progesterone treatment yielded an intermediate membrane potential (Vm = -31.8 mV) compared with control (immature) DM1A-injected cells (Vm = -44.7 mV) or potassium balanced salt solution (KBS)-injected cells matured with progesterone (Vm = -13.9 mV). These results suggest that DM1A injection does not completely inhibit electrophysiological changes initiated by progesterone. Working hypotheses are proposed that suggest a role for microtubules in the action of progesterone which normally lifts the prophase I block in the Rana follicle-enclosed oocyte.
Collapse
Affiliation(s)
- C A Lessman
- Department of Microbiology & Molecular Cell Sciences, University of Memphis, Tennessee 38152-6041, USA.
| | | | | | | |
Collapse
|