51
|
Ali A, Nayak DP. Assembly of Sendai virus: M protein interacts with F and HN proteins and with the cytoplasmic tail and transmembrane domain of F protein. Virology 2000; 276:289-303. [PMID: 11040121 DOI: 10.1006/viro.2000.0556] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sendai virus matrix protein (M protein) is critically important for virus assembly and budding and is presumed to interact with viral glycoproteins on the outer side and viral nucleocapsid on the inner side. However, since M protein alone binds to lipid membranes, it has been difficult to demonstrate the specific interaction of M protein with HN or F protein, the Sendai viral glycoproteins. Using Triton X-100 (TX-100) detergent treatment of membrane fractions and flotation in sucrose gradients, we report that the membrane-bound M protein expressed alone or coexpressed with heterologous glycoprotein (influenza virus HA) was totally TX-100 soluble but the membrane-bound M protein coexpressed with HN or F protein either individually or together was predominantly detergent-resistant and floated to the top of the density gradient. Furthermore, both the cytoplasmic tail and the transmembrane domain of F protein facilitated binding of M protein to detergent-resistant membranes. Analysis of the membrane association of M protein in the early and late phases of the Sendai virus infectious cycle revealed that the interaction of M protein with mature glycoproteins that associated with the detergent-resistant lipid rafts was responsible for the detergent resistance of the membrane-bound M protein. Immunofluorescence analysis by confocal microscopy also demonstrated that in Sendai virus-infected cells, a fraction of M protein colocalized with F and HN proteins and that some M protein also became associated with the F and HN proteins while they were in transit to the plasma membrane via the exocytic pathway. These studies indicate that F and HN interact with M protein in the absence of any other viral proteins and that F associates with M protein via its cytoplasmic tail and transmembrane domain.
Collapse
Affiliation(s)
- A Ali
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, Los Angeles, California, 90095-1747, USA
| | | |
Collapse
|
52
|
Takimoto T, Bousse T, Portner A. Molecular cloning and expression of human parainfluenza virus type 1 L gene. Virus Res 2000; 70:45-53. [PMID: 11074124 DOI: 10.1016/s0168-1702(00)00207-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The large (L) protein, a subunit of paramyxovirus RNA polymerase complex is responsible for the majority of enzymic activities involved in viral replication and transcription. To gain insight of the functions of the L protein, we cloned the L gene of human parainfluenza virus type 1 (hPIV1) and sequenced the entire gene. The L gene, which was 6800 nucleotides, encoded a protein of 2223 residues with a calculated molecular weight of 253657. The predicted amino acid sequence was highly homologous with that of Sendai virus (SV) L (86% identity). The hPIV1 L protein expressed from the cloned L gene bound hPIV1 P expressed in the same cells. When cells were transfected with hPIV1 L, P and NP genes together with SV minigenome RNA containing a chloramphenicol acetyltransferase (CAT) gene (Send-CAT), RNA was transcribed, and CAT proteins were detected. These results indicate that the protein encoded by the cloned hPIV1 L gene was biologically functional and that the hPIV1 polymerase complex recognized SV transcription initiation and termination sequences to produce viral transcripts.
Collapse
Affiliation(s)
- T Takimoto
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA.
| | | | | |
Collapse
|
53
|
Locke DP, Sellers HS, Crawford JM, Schultz-Cherry S, King DJ, Meinersmann RJ, Seal BS. Newcastle disease virus phosphoprotein gene analysis and transcriptional editing in avian cells. Virus Res 2000; 69:55-68. [PMID: 10989186 DOI: 10.1016/s0168-1702(00)00175-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nucleotide sequence was determined for the phosphoprotein (P) gene from 23 Newcastle disease virus (NDV) isolates representing all defined pathotypes with different chronological and geographic origins. Sequence variation, with synonymous substitutions dominating, occurred throughout the P gene. An exception was a conserved central region containing the transcriptional editing site. Four G nucleotide additions were detected in NDV P gene mRNA potentially creating alternative open reading frames. However, only one in-frame stop codon exists with a single G addition among all isolates that would allow for a potential V protein. A second potential stop codon does not exist in the P gene consensus sequence among all isolates with more than one G nucleotide addition at the editing site. This precludes a possible W protein in these isolates. A second potential alternative in-frame start site exists among all isolates that could encode a predicted X protein for NDV. Comparison of the P gene editing sites among the Paramyxovirinae and predicted P gene usage demonstrates that NDV more closely resembles the respiroviruses and morbilliviruses. Phylogenetic analysis of P gene sequences among NDV isolates demonstrates there are two clades of these viruses. One group includes viruses isolated in the US prior to 1970, while a second cluster includes virulent viruses circulating worldwide.
Collapse
Affiliation(s)
- D P Locke
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Hasan MK, Kato A, Muranaka M, Yamaguchi R, Sakai Y, Hatano I, Tashiro M, Nagai Y. Versatility of the accessory C proteins of Sendai virus: contribution to virus assembly as an additional role. J Virol 2000; 74:5619-28. [PMID: 10823869 PMCID: PMC112049 DOI: 10.1128/jvi.74.12.5619-5628.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The P/C mRNA of Sendai virus (SeV) encodes a nested set of accessory proteins, C', C, Y1, and Y2, referred to collectively as C proteins, using the +1 frame relative to the open reading frame of phospho (P) protein and initiation codons at different positions. The C proteins appear to be basically nonstructural proteins as they are found abundantly in infected cells but greatly underrepresented in the virions. We previously created a 4C(-) SeV, which expresses none of the four C proteins, and concluded that the C proteins are categorically nonessential gene products but greatly contribute to viral full replication and infectivity (A. Kurotani et al., Genes Cells 3:111-124, 1998). Here, we further characterized the 4C(-) virus multiplication in cultured cells. The viral protein and mRNA synthesis was enhanced with the mutant virus relative to the parental wild-type (WT) SeV. However, the viral yields were greatly reduced. In addition, the 4C(-) virions appeared to be highly anomalous in size, shape, and sedimentation profile in a sucrose gradient and exhibited the ratios of infectivity to hemagglutination units significantly lower than those of the WT. In the WT infected cells, C proteins appeared to colocalize almost perfectly with the matrix (M) proteins, pretty well with an external envelope glycoprotein (hemagglutinin-neuraminidase [HN]), and very poorly with the internal P protein. In the absence of C proteins, there was a significant delay of the incorporation of M protein and both of the envelope proteins, HN and fusion (F) proteins, into progeny virions. These results strongly suggest that the accessory and basically nonstructural C proteins are critically required in the SeV assembly process. This role of C proteins was further found to be independent of their recently discovered function to counteract the antiviral action of interferon-alpha/beta. SeV C proteins thus appear to be quite versatile.
Collapse
Affiliation(s)
- M K Hasan
- Department of Viral Diseases and Vaccine Control, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Tarbouriech N, Curran J, Ebel C, Ruigrok RW, Burmeister WP. On the domain structure and the polymerization state of the sendai virus P protein. Virology 2000; 266:99-109. [PMID: 10612664 DOI: 10.1006/viro.1999.0066] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphoproteins (P) of paramyxoviruses and rhabdoviruses are cofactors of the viral polymerase (L) and chaperones of soluble nucleoprotein preventing its polymerization and nonspecific binding to cellular RNA. The primary sequences of six paramyxovirus P proteins were compared, and although there was virtually no sequence similarity, there were two regions with similar secondary structure predictions in the C-terminal part of P: the predicted multimerization domain and the X-protein, the sequence that binds to N in the N:RNA template. The C-terminal part of the Sendai virus P protein, the multimerization domain including the binding site for the polymerase, and the X-protein were expressed in Escherichia coli. All three polypeptides folded with secondary structures similar to those predicted. The C-terminal part of P is a very elongated molecule with most of its length encompassing the multimerization domain. Both the multimerization domain and the C-terminal part of P were found to form tetramers, whereas the X-protein was monomeric.
Collapse
|
56
|
Kato A, Kiyotani K, Hasan MK, Shioda T, Sakai Y, Yoshida T, Nagai Y. Sendai virus gene start signals are not equivalent in reinitiation capacity: moderation at the fusion protein gene. J Virol 1999; 73:9237-46. [PMID: 10516032 PMCID: PMC112958 DOI: 10.1128/jvi.73.11.9237-9246.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In paramyxovirus transcription, viral RNA polymerase synthesizes each monocistronic mRNA by recognizing the gene start (S) and end (E) signals flanking each gene. These signal sequences are well conserved in the virus family; nevertheless, they do exhibit some variations even within a virus species. In Sendai virus (SeV) Z strain, the E signals are identical for all six genes but there are four (N, P/M/HN, F, and L) different S signals with one or two nucleotide variations. The significance of these variations for in vitro and in vivo replication has been unknown. We addressed this issue by SeV reverse genetics. The luciferase gene was placed between the N and P gene so that recombinant SeVs expressed luciferase under the control of each of the four different S signals. The S signal for the F gene was found to drive a lower level of transcription than that of the other three, which exhibited comparable reinitiation capacities. The polar attenuation of SeV transcription thus appeared to be not linear but biphasic. Then, a mutant SeV whose F gene S signal was replaced with that used for the P, M, and HN genes was created, and its replication capability was examined. The mutant produced a larger amount of F protein and downstream gene-encoded proteins and replicated faster than wild-type SeV in cultured cells and in embryonated eggs. Compared with the wild type, the mutant virus also replicated faster in mice and was more virulent, requiring a dose 20 times lower to kill 50% of mice. On the other hand, the unique F start sequence as well as the other start sequences are perfectly conserved in all SeV isolates sequenced to date, including highly virulent fresh isolates as well as egg-adapted strains, with a virulence several magnitudes lower than that of the fresh isolates. This moderation of transcription at the F gene may therefore be relevant to viral fitness in nature.
Collapse
Affiliation(s)
- A Kato
- Department of Viral Infection, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Affiliation(s)
- Y Nagai
- Department of Viral Infection, Institute of Medical Science, The University of Tokyo, Japan
| | | |
Collapse
|
58
|
Sakai Y, Kiyotani K, Fukumura M, Asakawa M, Kato A, Shioda T, Yoshida T, Tanaka A, Hasegawa M, Nagai Y. Accommodation of foreign genes into the Sendai virus genome: sizes of inserted genes and viral replication. FEBS Lett 1999; 456:221-6. [PMID: 10456313 DOI: 10.1016/s0014-5793(99)00960-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sendai virus (SeV) is an enveloped virus with a negative sense genome RNA of about 15.3 kb. We previously established a system to recover an infectious virus entirely from SeV cDNA and illustrated the feasibility of using SeV as a novel expression vector. Here, we have attempted to insert a series of foreign genes into SeV of different lengths to learn how far SeV can accommodate extra genes and how the length of inserted genes affects viral replication in cells cultured in vitro and in the natural host, mice. We show that a gene up to 3.2 kb can be inserted and efficiently expressed and that the replication speed as well as the final virus titers in cell culture are proportionally reduced as the inserted gene length increases. In vivo, such a size-dependent effect was not very clear but a remarkably attenuated replication and pathogenicity were generally seen. Our data further confirmed reinforcement of foreign gene expression in vitro from the V(-) version of SeV in which the accessory V gene had been knocked out. Based on these results, we discuss the utility of SeV vector in terms of both efficiency and safety.
Collapse
Affiliation(s)
- Y Sakai
- Department of Viral Infection, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
A recent breakthrough in the field of nonsegmented negative strand RNA viruses (Mononegavirales), including paramyxoviruses, is the establishment of a system to recover an infectious virus entirely from complementary DNA and hence allow reverse genetics. Mutations can now be introduced into viral genomes at will and the resulting phenotypes studied as long as the introduced mutations are not lethal. This technology is being successfully applied to answer outstanding questions regarding the roles of viral components in replication and their contribution to pathogenicity, which are difficult to address using conventional virology. For instance, how the paramyxovirus accessory proteins V and C contribute to actual viral replication and pathogenesis has remained unanswered since their first description more than 20 years ago. Using Sendai virus, which causes fatal pneumonia in mice, it has been shown that the V protein is completely dispensable for viral replication in cell cultures but encodes a luxury function required for pathogenesis in vivo. The Sendai virus C proteins were also defined to be nonessential gene products which greatly contributed to replication both in vitro and in vivo. It is also now possible to design live vaccines by introducing predetermined or plausible attenuating mutations. In addition, the use of paramyxoviruses to express foreign genes has also become feasible. Paramyxovirus reverse genetics is thus renovating our understanding of viral replication and pathogenesis and will further mark an era in recombinant technology for disease prevention and gene therapy.
Collapse
Affiliation(s)
- Y Nagai
- Department of Viral Infection, University of Tokyo, Japan
| |
Collapse
|
60
|
Mühlberger E, Weik M, Volchkov VE, Klenk HD, Becker S. Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 1999; 73:2333-42. [PMID: 9971816 PMCID: PMC104478 DOI: 10.1128/jvi.73.3.2333-2342.1999] [Citation(s) in RCA: 376] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/1998] [Accepted: 11/16/1998] [Indexed: 11/20/2022] Open
Abstract
The members of the family Filoviridae, Marburg virus (MBGV) and Ebola virus (EBOV), are very similar in terms of morphology, genome organization, and protein composition. To compare the replication and transcription strategies of both viruses, an artificial replication system based on the vaccinia virus T7 expression system was established for EBOV. Specific transcription and replication of an artificial monocistronic minireplicon was demonstrated by reporter gene expression and detection of the transcribed and replicated RNA species. As it was shown previously for MBGV, three of the four EBOV nucleocapsid proteins, NP, VP35, and L, were essential and sufficient for replication. In contrast to MBGV, EBOV-specific transcription was dependent on the presence of the fourth nucleocapsid protein, VP30. When EBOV VP30 was replaced by MBGV VP30, EBOV-specific transcription was observed but with lower efficiency. Exchange of NP, VP35, and L between the two replication systems did not lead to detectable reporter gene expression. It was further observed that neither MBGV nor EBOV were able to replicate the heterologous minigenomes. A chimeric minigenome, however, containing the EBOV leader and the MBGV trailer was encapsidated, replicated, transcribed, and packaged by both viruses.
Collapse
Affiliation(s)
- E Mühlberger
- Institut für Virologie der Philipps-Universität Marburg, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
61
|
Takeda M, Kato A, Kobune F, Sakata H, Li Y, Shioda T, Sakai Y, Asakawa M, Nagai Y. Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. J Virol 1998; 72:8690-6. [PMID: 9765410 PMCID: PMC110282 DOI: 10.1128/jvi.72.11.8690-8696.1998] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MV) isolated in B95a cells, a marmoset B-cell line, retains full pathogenicity for cynomolgus monkeys, while its derivative obtained by adaptation to the growth in Vero cells, a monkey kidney cell line, loses the pathogenic potential (F. Kobune, H. Sakata, and A. Sugiura, J. Virol. 64:700-705, 1990). Here, we show with a pair of strains, a fresh isolate (9301B) in B95a cells and its Vero cell-adapted form (9301V), that the in vivo attenuation parallels the decrease of replication and syncytium-inducing capabilities in the original B95a cells and that these in vitro phenotypes are attributable to impediment of transcription, which is already obvious at the level of primary transcription catalyzed by the virion-associated RNA polymerase. On the other hand, cell fusion assays detected no functional difference between the glycoproteins of the two viruses. Essentially the same transcriptional impediment with reduced syncytium induction following Vero cell adaptation was found with two other pairs of strains that had been similarly prepared. Nucleotide sequence comparison between the 9301B and 9301V viruses revealed that a few (at most five) amino acid changes, which sporadically took place in the polymerase (L and P proteins) and/or accessory V and C proteins, were responsible for the in vitro and in vivo attenuation through adaptation to growth in Vero cells.
Collapse
Affiliation(s)
- M Takeda
- Department of Viral Infection, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Rassa JC, Parks GD. Molecular basis for naturally occurring elevated readthrough transcription across the M-F junction of the paramyxovirus SV5. Virology 1998; 247:274-86. [PMID: 9705920 DOI: 10.1006/viro.1998.9266] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of the paramyxovirus RNA genome is thought to involve a sequential stop-start mechanism whereby monocistronic mRNAs are produced by polyadenylation and termination of 3' upstream gene followed by reinitiation at the downstream start site. For a number of paramyxoviruses, transcription across the M-F gene junction results in the synthesis of high levels of a dicistronic M-F readthrough RNA. In cells infected with the paramyxovirus SV5, 15% or less of the transcripts from the viral P, M, SH, HN, and L genes were detected as readthrough products with the 3' proximal gene. By contrast, approximately 40% of the SV5 F mRNA was detected as a dicistronic M-F transcript. A comparison of the individual SV5 gene junctions showed that elevated M-F readthrough transcription correlate with the M gene end having the shortest U tract for directing polyadenylation and a gene end sequence that differs from the consensus sequence. We have tested the hypothesis that elevated M-F readthrough transcription results from an inefficient termination signal at the end of the M gene. A reverse genetics system was established whereby SV5 transcription was reconstituted in transfected cells using cDNA-derived polymerase components and dicistronic minigenomes that encoded either the SV5 M-F or the SH-HN gene junction. Chimeric SV5 minigenomes were constructed to contain exchanges of a 10 base gene end sequence and the U tract from the M-F (approximately 40% readthrough) and SH-HN (approximately 15% readthrough) junctions. Northern blot analysis of RNA synthesized from these altered templates showed that, in the context of the M-F intergenic region, increasing the length of the M gene end U tract from four residues to six or eight U residues did not decrease M-F readthrough transcription. In contrast, chimeric minigenomes that contained the 10 base region from the end of the SH gene directed very efficient gene termination and a corresponding decrease in readthrough transcription. Mutational analysis showed that a single G to A substitution located five bases 3' to the M gene U tract was sufficient to convert the M gene end region to an efficient signal for polyadenylation-termination. These results demonstrate a role for the gene end region located immediately 3' to the U tract as a major determinant of transcription termination in the paramyxovirus genome. The possible role of M-F readthrough transcription in the paramyxovirus growth cycle is discussed.
Collapse
Affiliation(s)
- J C Rassa
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
63
|
Abstract
The SeV P protein is found as a homotrimer (P3) when it is expressed in mammalian cells, and trimerization is mediated by a predicted coiled-coil motif which maps within amino acids (aa) 344 to 411 (the BoxA region). The bacterially expressed protein also appears to be trimeric, apparently precluding a role for phosphorylation in the association of the P monomers. I have examined the role of P trimerization both in the protein's interaction with the nucleocapsid (N:RNA) template and in the protein's function on the template during RNA synthesis. As with the results of earlier experiments (32), I found that both the BoxA and BoxC (aa 479 to 568) regions were required for stable binding of P to the N:RNA. Binding was also observed with P proteins containing less than three BoxC regions, suggesting that trimerization may be required to permit contacts between multiple BoxC regions and the N:RNA. However, these heterologous trimers failed to function in viral RNA synthesis, indicating that the third C-terminal leg of the trimer plays an essential role in P function on the template. We speculate that this function may involve the movement of P (and possibly the polymerase complex) on the template and the maintenance of processivity.
Collapse
Affiliation(s)
- J Curran
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland.
| |
Collapse
|
64
|
Affiliation(s)
- R Sedlmeier
- Abteilung Virusforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
65
|
Moriya C, Shioda T, Tashiro K, Nagasawa T, Ikegawa M, Ohnishi Y, Kato A, Hu H, Xin X, Hasan MK, Maekawa M, Takebe Y, Sakai Y, Honjo T, Nagai Y. Large quantity production with extreme convenience of human SDF-1alpha and SDF-1beta by a Sendai virus vector. FEBS Lett 1998; 425:105-11. [PMID: 9541016 DOI: 10.1016/s0014-5793(98)00207-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a robust expression of human stromal cell-derived factor-1alpha (SDF-1alpha) and SDF-1beta, the members of CXC-chemokine family, with a novel vector system based upon Sendai virus, a non-segmented negative strand RNA virus. Recombinant SDF-1alpha and SDF-1beta were detected as a major protein species in culture supernatants, reached as high as 10 microg/ ml. This remarkable enrichment of the products allowed us to use even the crude supernatants as the source for biological and antiviral assays without further concentration nor purification and will thus greatly facilitate to screen their genetically engineered derivatives.
Collapse
Affiliation(s)
- C Moriya
- Department of Viral Infection, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Nickolaus P, Rammensee HG, Zawatzky R. Interferon-induced expression of If-1h and If-1l alleles in Newcastle disease virus-infected mouse macrophages is associated with specific differences in viral gene transcription. J Interferon Cytokine Res 1998; 18:187-96. [PMID: 9555981 DOI: 10.1089/jir.1998.18.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have studied the expression of cytokines and viral genes induced by Newcastle disease virus (NDV) and Sendai virus in bone marrow-derived macrophages (BMM) and lymphocytes from C57BL/6 mice and the congenic line B6.C-H-28c. These mice carry the loci If-1h (high) or If-1l (low), respectively, that are responsible for up to tenfold differences in the interferon (IFN)-alpha, IFN-beta, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) response to NDV but not to Sendai virus. Only BMM but not spleen lymphocytes showed allele-specific differences in NDV-induced cytokine levels, indicating cell-specific If-1 expression. The If-1 locus harbors IFN-inducible gene(s) whose expression is prevented in the presence of cycloheximide. Our data provide evidence that the If-1l allele acts by specifically suppressing the cytokine response to NDV. Cytokine production was dependent on infectious virions, and kinetic analyses revealed a close correlation between the amount of viral transcripts and individual cytokine mRNA. BMM from lf-1l mice strongly restricted transcription of the NDV nucleoprotein (NP) gene, whereas BMM from If-1h mice supported NP transcription. Following treatment with IL-4, which inhibited constitutive IFN-beta gene expression, however, If-1l BMM became highly permissive for transcription of the viral NP gene and released high amounts of cytokines. We conclude that If-1l gene products are responsible for the low producer phenotype by efficiently interfering with NDV transcription, leading to strongly reduced intracellular levels of cytokine inducing viral dsRNA intermediates.
Collapse
Affiliation(s)
- P Nickolaus
- Institut für Zellbiologie, Abt. Immunologie, Eberhard-Karls-Universität, Tübingen, Germany
| | | | | |
Collapse
|
67
|
Kurotani A, Kiyotani K, Kato A, Shioda T, Sakai Y, Mizumoto K, Yoshida T, Nagai Y. Sendai virus C proteins are categorically nonessential gene products but silencing their expression severely impairs viral replication and pathogenesis. Genes Cells 1998; 3:111-24. [PMID: 9605405 DOI: 10.1046/j.1365-2443.1998.00170.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The P/C mRNA of Sendai virus (SeV), a prototypic member of the family Paramyxoviridae in the Mononegavirales superfamily comprising a large number of nonsegmented negative strand RNA viruses, encodes a nested set of accessory proteins, C', C, Y1 and Y2, referred to collectively as C proteins, initiating, respectively, at ACG/81 and AUGs/114, 183, 201 in the +1 frame relative to the ORF of phospho (P) protein, the smaller subunit of RNA polymerase. Among them, C is the major species expressed in infected cells at a molar ratio which is several-fold higher than the other three. However, their function has remained an enigma. It has not even been established whether or not the C proteins are essential for viral replication. Many other viruses in Mononegavirales encode C-like proteins, but their roles also remain to be defined. RESULTS By taking advantage of a recently developed reverse genetics system to recover infectious SeV from cDNA, we created mutants in which C protein frames were variously silenced. C/C'(-) viruses which did not express C and C', but did express Y1 and Y2, were severely attenuated in replication in tissue culture cells of various species and tissues, as well as in embryonated chicken eggs. More notably, they were almost totally incapable of growing productively in--and hence nonpathogenic for mice--the natural host. Both gene expression and genome replication appeared to be impaired in C/C'(-) viruses. Additionally silencing the Y1 and Y2 expression was also possible, and a critically impaired but viable clone, the 4C(-) virus, was isolated which expressed none of the four C proteins. CONCLUSION SeV C proteins are categorically nonessential gene products, but greatly contribute to full replication capability in vitro and are indispensable for in vivo multiplication and pathogenesis. This study represents the first comprehensive functional assessment of the accessary C protein for Mononegavirales.
Collapse
Affiliation(s)
- A Kurotani
- Department of Viral Infection, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L. Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 1998; 72:891-9. [PMID: 9444980 PMCID: PMC124558 DOI: 10.1128/jvi.72.2.891-899.1998] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- D Kolakofsky
- Department of Genetics and Microbiology, University of Geneva School of Medicine, Switzerland.
| | | | | | | | | | | |
Collapse
|
69
|
Murphy SK, Ito Y, Parks GD. A functional antigenomic promoter for the paramyxovirus simian virus 5 requires proper spacing between an essential internal segment and the 3' terminus. J Virol 1998; 72:10-9. [PMID: 9420195 PMCID: PMC109344 DOI: 10.1128/jvi.72.1.10-19.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1997] [Accepted: 09/26/1997] [Indexed: 02/05/2023] Open
Abstract
A previous analysis of naturally occurring defective interfering (DI) RNA genomes of the prototypic paramyxovirus simian virus 5 (SV5) indicated that 113 bases at the 3' terminus of the antigenome were sufficient to direct RNA encapsidation and replication. A nucleotide sequence alignment of the antigenomic 3'-terminal 113 bases of members of the Rubulavirus genus of the Paramyxoviridae family identified two regions of sequence identity: bases 1 to 19 at the 3' terminus (conserved region I [CRI]) and a more distal region consisting of antigenome bases 73 to 90 (CRII) that was contained within the 3' coding region of the L protein gene. To determine whether these regions of the antigenome were essential for SV5 RNA replication, a reverse genetics system was used to analyze the replication of copyback DI RNA analogs that contained a foreign gene (GL, encoding green fluorescence protein) flanked by 113 5'-terminal bases and various amounts of SV5 3'-terminal antigenomic sequences. Results from a deletion analysis showed that efficient encapsidation and replication of SV5-GL DI RNA analogs occurred when the 90 3'-terminal bases of the SV5 antigenomic RNA were retained, but replication was reduced approximately 5- to 14-fold in the case of truncated antigenomes that lacked the 3'-end CRII sequences. A chimeric copyback DI RNA containing the 3'-terminal 98 bases including the CRI and CRII sequences from the human parainfluenza virus type 2 (HPIV2) antigenome in place of the corresponding SV5 sequences was efficiently replicated by SV5 cDNA-derived components. However, replication was reduced approximately 20-fold for a truncated SV5-HPIV2 chimeric RNA that lacked the HPIV2 CRII sequences between antigenome bases 72 and 90. Progressive deletions of 6 to 18 bases in the region located between the SV5 antigenomic CRI and CRII segments (3'-end nucleotides 21 to 38) resulted in a approximately 25-fold decrease in SV5-GL RNA synthesis. Surprisingly, replication was restored to wild-type levels when these length alterations between CRI and CRII were corrected by replacing the deleted bases with nonviral sequences. Together, these data suggest that a functional SV5 antigenomic promoter requires proper spacing between an essential internal region and the 3' terminus. A model is presented for the structure of the 3' end of the SV5 antigenome which proposes that positioning of CRI and CRII along the same face of the helical nucleocapsid is an essential feature of a functional antigenomic promoter.
Collapse
Affiliation(s)
- S K Murphy
- Department of Microbiology and Immunology, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157-1064, USA
| | | | | |
Collapse
|
70
|
Garcin D, Itoh M, Kolakofsky D. A point mutation in the Sendai virus accessory C proteins attenuates virulence for mice, but not virus growth in cell culture. Virology 1997; 238:424-31. [PMID: 9400614 DOI: 10.1006/viro.1997.8836] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A mutant Sendai virus (SevMVC), which grows much better than its progenitor virus (SeVM) in cell culture, but, in strong contrast to SeVM, is totally avirulent for mice, has been described. SeVMVC contains two amino acid substitutions relative to SeVM, namely, F170S in the C protein and E2050A in the L protein. We have examined which substitutions were responsible for the above phenotypes by exchanging the C gene of our reference strain Z with those of SeVH (another reference strain), SeVM, and SeVMVC, in turn. We have found that the F170S mutation in the CMVC protein is responsible both for enhanced replication in cell culture and for avirulence in mice. Avirulence appeared to be due to restricted viral replication primarily after day 1, implicating some aspect of innate immunity in this process. The SeV C proteins thus appear to be required for multiple cycles of replication in mice.
Collapse
Affiliation(s)
- D Garcin
- Department of Genetics and Microbiology, University of Geneva School of Medicine, Switzerland
| | | | | |
Collapse
|
71
|
Murphy SK, Parks GD. Genome nucleotide lengths that are divisible by six are not essential but enhance replication of defective interfering RNAs of the paramyxovirus simian virus 5. Virology 1997; 232:145-57. [PMID: 9185598 DOI: 10.1006/viro.1997.8530] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For some members of the Paramyxoviridae family of negative strand RNA viruses, efficient genome replication only occurs when the total genome length is a multiple of six (6N length, where N is any integer). To determine if this "rule of six" requirement applied to the replication of the prototype paramyxovirus simian virus 5 (SV5), defective interfering (DI) RNA genomes were generated by sequential undiluted passage of virus in tissue culture. Molecular cloning and nucleotide sequence analysis of 10 RNA genomes revealed a series of copyback DI RNAs with chain lengths between 449 and 1365 bases, but only 4 of the 10 naturally occurring RNA genomes were of 6N length. Many of the cloned DI genomes could be grouped into two distinct nested sets, with the members of each set having the same polymerase crossover junctions and extent of terminal complementarity but differing from each other by internal deletions. One of these nested sets of genomes consisted of novel DI RNAs that contained a pentameric stretch of nontemplated adenosine residues inserted precisely at the polymerase crossover junction. A reverse genetics system was established in which SV5 DI genomes were replicated in vivo entirely by cDNA-derived components. Using this system, two naturally occurring SV5 DI RNAs were examined in a mutational analysis to determine the role of genome length on SV5 RNA replication. The progressive insertion of one to six nucleotides into a 6N length DI genome (852 bases) resulted in a reduction in replication for RNAs that contained one to four additional bases (approximately 35-50% of WT levels), followed by an increase back to WT replication levels for genomes that were altered by five and six base insertions (approximately 70 and 100% of WT levels, respectively). An insertion of five nucleotides into a second non-6N length DI RNA (499 total bases) created a genome length that was a multiple of six (504 bases) and led to a approximately 10-fold stimulation of replication over that of the unaltered genome. Together, these results indicate that there was a clear influence of 6N genome length on SV5 DI RNA replication, but the stringency of this replication requirement appeared to be less than that found previously for other paramyxoviruses. This work completes the testing of the rule of six replication requirement for representatives of each of the four genera of the Paramyxoviridae family and indicates that the preference for replication of 6N length RNA genomes varies between the individual paramyxoviruses.
Collapse
Affiliation(s)
- S K Murphy
- Department of Microbiology and Immunology, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
72
|
Liu Z, Huntley CC, De BP, Das T, Banerjee AK, Oglesbee MJ. Phosphorylation of canine distemper virus P protein by protein kinase C-zeta and casein kinase II. Virology 1997; 232:198-206. [PMID: 9185603 DOI: 10.1006/viro.1997.8548] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcription by nonsegmented negative-strand RNA viruses is mediated by the viral RNA-dependent RNA polymerase and transcriptional cofactor P. The P protein is activated by phosphorylation, an event initiated by cellular kinases. The kinase used differs among this group of RNA viruses; vesicular stomatitis virus and respiratory syncytial virus utilize casein kinase II (CKII), whereas human parainfluenza virus type 3 utilizes PKC isoform zeta (PKC-zeta) for activation of its P protein. To identify the cellular kinase(s) involved in the phosphorylation of the canine distemper virus (CDV) P protein, we used recombinant CDV P in phosphorylation assays with native kinase activities present in CV1 cell extracts or purified CKII and PKC isoforms. Here, we demonstrate that the CDV P protein is phosphorylated by two cellular kinases, where PKC-zeta has the major and CKII the minor activities. In contrast, the P protein of another member of the morbillivirus genus, measles virus, is phosphorylated predominantly by CKII, whereas PKC-zeta has only minor activity. Selective inhibition of PKC-zeta activity within CV1 cells eliminated permissiveness to CDV replication, indicating an in vivo role for PKC-zeta in the virus replication cycle. The broad tissue expression of PKC-zeta parallels the pantropic nature of CDV infections, suggesting that PKC-zeta activity is a determinant of cellular permissiveness to CDV replication.
Collapse
Affiliation(s)
- Z Liu
- Department of Veterinary Biosciences, The Ohio State University, Columbus 43210, USA
| | | | | | | | | | | |
Collapse
|
73
|
Kato A, Kiyotani K, Sakai Y, Yoshida T, Nagai Y. The paramyxovirus, Sendai virus, V protein encodes a luxury function required for viral pathogenesis. EMBO J 1997; 16:578-87. [PMID: 9034340 PMCID: PMC1169661 DOI: 10.1093/emboj/16.3.578] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Sendai virus (SeV) V protein is characterized by the unique cysteine-rich domain in its carboxy-terminal half which is fused to the amino-terminal half of the P protein, but its function has remained enigmatic. The V protein-directing mRNA is generated by a remarkable process known as mRNA editing involving the pseudotemplated addition of a single G residue at a specific septinucleotide locus in the P gene, whereas the unedited exact copy encodes the P protein. Here, we introduced two nucleotide changes in the septinucleotide motif (UUUUCCC to UUCUUCC) in a full-length SeV cDNA and were able to recover a virus from the cDNA, which was devoid of mRNA editing and hence unable to synthesize the V protein. Compared with the parental wild-type virus with regard to gene expression, replication and cytopathogenicity in various cell lines in vitro, the V(-) virus was found to be either potentiated or comparable but never attenuated. The V(-) virus, however, showed markedly attenuated in vivo replication capacity in and pathogenicity for mice. Thus, though categorized as a nonessential gene product, SeV V protein encodes a luxury function required for in vivo pathogenicity.
Collapse
Affiliation(s)
- A Kato
- Department of Viral Infection, Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | | | | | | | | |
Collapse
|
74
|
Jonscher KR, Yates JR. Matrix-assisted laser desorption ionization/quadrupole ion trap mass spectrometry of peptides. Application to the localization of phosphorylation sites on the P protein from Sendai virus. J Biol Chem 1997; 272:1735-41. [PMID: 8999854 DOI: 10.1074/jbc.272.3.1735] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The polymerase-associated phosphoprotein (P protein) from Sendai virus, a murine Paramyxovirus, is reported in the literature to be a highly phosphorylated protein. In vitro studies have detected phosphorylation in different regions of the protein, while a single phosphopeptide (identified as the sole phosphorylation) site) was observed using in vivo techniques. In this work, two phosphorylation sites of the P protein from Sendai virus are localized by a direct approach using matrix-assisted laser desorption ionization/quadrupole ion trap mass spectrometry. A computer-aided approach is used to confirm peptide identification.
Collapse
Affiliation(s)
- K R Jonscher
- Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195-7730, USA
| | | |
Collapse
|
75
|
Shin YS, Mori T, Tomonaga K, Iwatsuki K, Kai C, Mikami T. Expression of the nucleocapsid protein gene of the canine distemper virus. J Vet Med Sci 1997; 59:51-3. [PMID: 9035079 DOI: 10.1292/jvms.59.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We constructed a cDNA clone of canine distemper virus (CDV) encoding an entire nucleoprotein (NP) gene, by means of the reverse transcription-polymerase chain reaction (RT-PCR). The cloned NP gene was inserted into the eucaryotic expression vector, pRVSV. After transfection of the plasmid into Vero cells, we examined the expression of CDV-specific NP antigen by means of indirect immunofluorescence assay (IFA) and Western blotting, using various antibodies against NP of CDV and an antiserum against NP of measles virus. The CDV-NP specific antigen was detected in the nuclei of the cells transfected with pRV-ON, by means of IFA with antibodies specific to the NP.
Collapse
Affiliation(s)
- Y S Shin
- Department of Veterinary Microbiology, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
76
|
De BP, Banerjee AK. Role of host proteins in gene expression of nonsegmented negative strand RNA viruses. Adv Virus Res 1997; 48:169-204. [PMID: 9233433 DOI: 10.1016/s0065-3527(08)60288-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- B P De
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195, USA
| | | |
Collapse
|
77
|
Ghosh A, Nayak R, Shaila MS. Synthesis of leader RNA and editing of P mRNA during transcription by rinderpest virus. Virus Res 1996; 41:69-76. [PMID: 8725103 DOI: 10.1016/0168-1702(95)01276-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purified rinderpest virus was earlier shown to transcribe in vitro, all virus-specific mRNAs with the promoter-proximal N mRNA being the most abundant. Presently, this transcription system has been shown to synthesize full length monocistronic mRNAs comparable to those made in infected cells. Small quantities of bi- and tricistronic mRNAs are also synthesized. Rinderpest virus synthesizes in vitro, a leader RNA of approximately 55 nucleotides in length. Purified rinderpest virus also exhibits RNA editing activity during the synthesis of P mRNA as shown by primer extension analysis of the mRNA products.
Collapse
Affiliation(s)
- A Ghosh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
78
|
Precious B, Young DF, Bermingham A, Fearns R, Ryan M, Randall RE. Inducible expression of the P, V, and NP genes of the paramyxovirus simian virus 5 in cell lines and an examination of NP-P and NP-V interactions. J Virol 1995; 69:8001-10. [PMID: 7494313 PMCID: PMC189745 DOI: 10.1128/jvi.69.12.8001-8010.1995] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The P, V, and NP genes of the paramyxovirus simian virus 5 (SV5) were cloned such that their expression was regulated by the tetracycline-controlled transactivator (M. Gossen and H. Bujard, Proc. Natl. Acad. Sci. USA 89:5547-5551, 1992), and mammalian cell lines that inducibly expressed individually the P, V, or NP protein or coexpressed the P plus NP or V plus NP proteins were isolated. A plasmid that expresses the tetracycline-controlled transactivator linked, via the foot-and-mouth disease virus 2A cleavage peptide sequence, to the neomycin aminoglycoside phosphotransferase gene was constructed. Cells were cotransfected with this plasmid, and the appropriate responder plasmids and clonies were selected on the basis of their resistance to Geneticin (via the neomycin aminoglycoside phosphotransferase gene). The properties of these cell lines, in terms of the induction of the P, V, and NP genes, are described in detail. Both the P and V proteins were phosphorylated when expressed alone. In immunoprecipitation studies using a monoclonal antibody that recognizes both the P and V proteins, a nonphosphorylated host cell protein with an estimated molecular weight of 150,000 was coprecipitated with V but not P. Immunofluorescence data demonstrated that when expressed separately, the P protein had a diffuse cytoplasmic distribution, but the related V protein had both a nuclear and cytoplasmic distribution. The NP protein had a granular cytoplasmic distribution, giving rise to punctate and granular fluorescence. Coexpression of the NP and P proteins resulted in the accumulation of large cytoplasmic inclusion aggregates, similar to those visualized at late times in SV5-infected cells. Coexpression of V with NP led to a partial redistribution of the NP protein in that the NP protein had both a diffuse cytoplasmic and nuclear distribution in the presence of V, but no NP-V aggregates or inclusion bodies were visualized. Direct binding studies also revealed that NP bound to both P and V. For SV5, these studies suggest that V may have a role in keeping NP soluble prior to encapsidation.
Collapse
Affiliation(s)
- B Precious
- School of Biological and Medical Sciences, University of St. Andrews, Fife, Scotland
| | | | | | | | | | | |
Collapse
|
79
|
Liston P, Briedis DJ. Ribosomal frameshifting during translation of measles virus P protein mRNA is capable of directing synthesis of a unique protein. J Virol 1995; 69:6742-50. [PMID: 7474085 PMCID: PMC189585 DOI: 10.1128/jvi.69.11.6742-6750.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Members of the Paramyxoviridae family utilize a variety of different strategies to increase coding capacity within their P cistrons. Translation initiation at alternative 5'-proximal AUG codons is used by measles virus (MV) to express the virus-specific P and C proteins from overlapping reading frames on their mRNAs. Additional species of mRNAs are transcribed from the MV P cistron by the insertion of extra nontemplated G residues at a specific site within the P transcript. Addition of only a single nontemplated G residue results in the expression of the V protein, which contains a unique carboxyl terminus. We have used an Escherichia coli system to express MV P cistron-related mRNAs and proteins. We have found that ribosomal frameshifting on the MV P protein mRNA is capable of generating a previously unrecognized P cistron-encoded protein that we have designated R. Some ribosomes which have initiated translation of the P protein mRNA use the sequence TCC CCG AG (24 nucleotides upstream of the V protein stop codon) to slip into the -1 reading frame, thus translating the sequence as TC CCC GAG. The resulting R protein terminates five codons downstream of the frameshift site at the V protein stop codon. We have gone on to use a chloramphenicol acetyltransferase reporter system to demonstrate that this MV-specific sequence is capable of directing frameshifting during in vivo translation in eukaryotic cells. Analysis of immunoprecipitated proteins from MV-infected cells by two-dimensional gel electrophoresis allowed detection of a protein species consistent with R protein in MV-infected cells. Quantitation of this protein species allowed a rough estimation of frameshift frequency of approximately 1.8%. Significant stimulation of ribosomal frameshift frequency at this locus of the MV P mRNA was mediated by a downstream stimulator element which, although not yet fully defined, appeared to be neither a conventional stem-loop nor an RNA pseudoknot structure.
Collapse
Affiliation(s)
- P Liston
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
80
|
Liston P, DiFlumeri C, Briedis DJ. Protein interactions entered into by the measles virus P, V, and C proteins. Virus Res 1995; 38:241-59. [PMID: 8578862 DOI: 10.1016/0168-1702(95)00067-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Measles virus (MV) expresses at least 3 proteins from the phosphoprotein (P) cistron. Alternative translation initiation directs synthesis of the C protein from the +1 reading frame, while so-called RNA editing generates a second population of mRNAs which express the V protein from the -1 reading frame which lies within and overlaps the larger P reading frame. While the P protein has been demonstrated to be an essential cofactor for the L protein in the formation of active transcriptase complexes, the functions of the V and C proteins remain unknown. In order to investigate these functions, we have expressed the MV P, V and C proteins as GST fusions in E. coli for affinity purification and use in an in vitro binding assay with other viral and cellular proteins. The P protein was found to interact with L, NP, and with itself. These interactions were mapped to the carboxy-terminal half of the protein which is absent in the V protein. In contrast, both the V and C proteins failed to interact with any other viral proteins, but were each found to interact specifically with one or more cellular proteins. Appropriate aspects of these results were confirmed in vivo using the yeast two-hybrid system. These observations suggest that the V and C proteins may be involved in modulation of the host cellular environment within MV-infected cells. Such activity would be distinct from their previously proposed role in the possible down-regulation of virus-specific RNA transcription and replication.
Collapse
Affiliation(s)
- P Liston
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
81
|
Steward M, Samson AC, Errington W, Emmerson PT. The Newcastle disease virus V protein binds zinc. Arch Virol 1995; 140:1321-8. [PMID: 7646364 DOI: 10.1007/bf01322759] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The V protein of Newcastle disease virus (NDV) is produced by the insertion of a single nontemplated G residue at a specific point during transcription of the phosphoprotein (P) gene, accessing a new reading frame upon translation. The V protein, in common with its counterpart in other paramyxoviruses contains a highly cysteine rich motif near the carboxyl terminus, suggestive of a zinc-binding domain. By constructing E. coli overexpression plasmids for the NDV P and V proteins, and monitoring the binding of 65ZnCl2 to proteins electroblotted onto nitrocellulose membranes, we have demonstrated that the V protein strongly binds zinc.
Collapse
Affiliation(s)
- M Steward
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, U.K
| | | | | | | |
Collapse
|
82
|
Gombart AF, Hirano A, Wong TC. Nucleoprotein phosphorylated on both serine and threonine is preferentially assembled into the nucleocapsids of measles virus. Virus Res 1995; 37:63-73. [PMID: 7483823 DOI: 10.1016/0168-1702(95)00020-q] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The nucleoprotein (N) in the nucleocapsids of measles virus (MV) has different conformation and antigenicity than the free N-protein in MV-infected cells. These two forms of N-protein have identical methionine-containing tryptic peptides. The free N-protein contains 4 phosphorylated tryptic peptides. However, the nucleocapsid-associated N-protein has an additional phosphorylated peptide not found in the free N-protein. The free N-protein is phosphorylated only on serine residues, whereas the nucleocapsid-associated N-protein is phosphorylated on both serine and threonine residues. The MV N-protein expressed from a cloned gene in primate cells is also phosphorylated on both serine and threonine residues. These results suggest that cellular kinases phosphorylate the MV N-protein, and N-protein with phosphorylated serine and threonine is preferentially assembled into the viral nucleocapsids.
Collapse
Affiliation(s)
- A F Gombart
- Department of Microbiology, University of Washington School of Medicine, Seattle 98195, USA
| | | | | |
Collapse
|
83
|
De BP, Gupta S, Gupta S, Banerjee AK. Cellular protein kinase C isoform zeta regulates human parainfluenza virus type 3 replication. Proc Natl Acad Sci U S A 1995; 92:5204-8. [PMID: 7761474 PMCID: PMC41877 DOI: 10.1073/pnas.92.11.5204] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation of the P proteins of nonsegmented negative-strand RNA viruses is critical for their function as transactivators of the viral RNA polymerases. Using unphosphorylated P protein of human parainfluenza virus type 3 (HPIV3) expressed in Escherichia coli, we have shown that the cellular protein kinase that phosphorylates P in vitro is biochemically and immunologically indistinguishable from cellular protein kinase C isoform zeta (PKC-zeta). Further, PKC-zeta is specifically packaged within the progeny HPIV3 virions and remains tightly associated with the ribonucleoprotein complex. The P protein seems also to be phosphorylated intracellularly by PKC-zeta, as shown by the similar protease digestion pattern of the in vitro and in vivo phosphorylated P proteins. The growth of HPIV3 in CV-1 cells is completely abrogated when a PKC-zeta-specific inhibitor pseudosubstrate peptide was delivered into cells. These data indicate that PKC-zeta plays an important role in HPIV3 gene expression by phosphorylating P protein, thus providing an opportunity to develop antiviral agents against an important human pathogen.
Collapse
Affiliation(s)
- B P De
- Department of Molecular Biology, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | |
Collapse
|
84
|
Horikami SM, Moyer SA. Structure, transcription, and replication of measles virus. Curr Top Microbiol Immunol 1995; 191:35-50. [PMID: 7789161 DOI: 10.1007/978-3-642-78621-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S M Horikami
- Department of Immunology and Medical Microbiology, College of Medicine, University of Florida, Gainesville 32610-0266, USA
| | | |
Collapse
|
85
|
Ryan KW, Power UF. Selective interference with P protein binding to paramyxovirus nucleocapsids. Virus Res 1994; 32:365-72. [PMID: 7521549 DOI: 10.1016/0168-1702(94)90084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We previously observed that some anti-nucleoprotein monoclonal antibodies were able to displace P protein from Sendai virus (SV) nucleocapsid cores. The current work extends that observation by showing that such antibody-mediated P displacement is not unique to Sendai virus nucleocapsids, but can also occur with nucleocapsids of a related human respiratory pathogen. Anti-NP antibody prevents binding of SV P protein to nucleocapsids from human parainfluenza virus type 1 (PIV1) or from SV. Antibody also prevents binding of PIV1 P protein to PIV1 nucleocapsids, but not to SV nucleocapsids. We have also examined the stoichiometry of antibody interference with P binding, to determine how large a nucleocapsid region can be protected from P binding by a single antibody molecule. We found that approximately 40 antibody molecules per nucleocapsid complex can block attachment of most P protein. This indicates that a single antibody molecule can prevent P binding to a region representing about 65 nucleoprotein monomers on the nucleocapsid core.
Collapse
Affiliation(s)
- K W Ryan
- Department of Virology & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38101
| | | |
Collapse
|
86
|
Abstract
Parainfluenza virus types 1 to 4 (PIV1 to PIV4) are important human pathogens that cause upper and lower respiratory tract infections, especially in infants and children. PIV1, PIV2, and PIV3 are second only to respiratory syncytial virus as a cause of croup in young children. Although some clinical symptoms are typical of PIVs, etiologic diagnosis always requires detection of infectious virus, viral components, or an antibody response. PIVs are typical paramyxoviruses, causing a syncytial cytopathic effect in cell cultures; virus growth can be confirmed either by hemadsorption or by using immunological reagents. Currently, PIV is most often diagnosed by demonstrating viral antigens in clinical specimens by rapid and highly sensitive immunoassays. More recently, PCR has been used for the detection of PIVs. Serological diagnosis is made by detecting a rising titer of immunoglobulin G or by demonstrating immunoglobulin M antibodies. PIVs infect species other than humans, and animal models are used to study the pathogenesis of PIV infections and to test candidate vaccines. Accumulating knowledge on the molecular structure and mechanisms of replication of PIVs has accelerated research on prevention and treatment. Several strategies for vaccine development, such as the use of live attenuated, inactivated, recombinant, and subunit vaccines, have been investigated, and it may become possible to prevent PIV infections in the near future.
Collapse
Affiliation(s)
- R Vainionpää
- Department of Virology, University of Turku, Finland
| | | |
Collapse
|
87
|
Abstract
We have obtained a polyclonal antiserum, N-BE, against the denatured, amino-terminal half of the measles virus (MV) nucleocapsid (N) protein and a monoclonal antibody (MAb), N46, which recognizes a conformation-dependent epitope in the same region. Amino acid residues 23 to 239 were required and sufficient for the formation of the conformational epitope. Using these antibodies, we show that the N protein of MV is synthesized as a relatively unfolded protein which first appears in the free-protein pool. This nascent N protein undergoes a conformational change into a more folded mature form. This change does not require the participation of other viral proteins or genomic RNA. The mature N protein does not accumulate in the free-protein pool but is quickly and selectively incorporated into the viral nucleocapsids. The mature N protein is a target for interaction with the phosphoprotein (P protein) of MV. This interaction interferes with the recognition of the N protein by the N46 MAb. This suggests that the association with the P protein may mask the binding site for the N46 MAb or that it induces a conformational change in the N protein.
Collapse
Affiliation(s)
- A F Gombart
- Department of Microbiology, University of Washington School of Medicine, Seattle 98195
| | | | | |
Collapse
|
88
|
De B, Burdsall A, Banerjee A. Role of cellular actin in human parainfluenza virus type 3 genome transcription. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53375-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
89
|
Gombart AF, Hirano A, Wong TC. Expression and properties of the V protein in acute measles virus and subacute sclerosing panencephalitis virus strains. Virus Res 1992; 25:63-78. [PMID: 1413994 DOI: 10.1016/0168-1702(92)90100-n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Measles virus (MV) inserts one guanosine (G) residue at a specific site in a subpopulation of the mRNA transcribed from the phosphoprotein (P) gene to produce V mRNA. Using an antiserum against the unique carboxyl-terminal region of the predicted V protein, we found that a phosphorylated V protein was expressed in two acute MV strains (Edmonston and Nagahata) and three SSPE virus strains (Biken, Yamagata, and Niigata). The V protein of Biken strain SSPE virus was electrophoretically and antigenically indistinguishable from the V protein of Nagahata strain acute MV, the likely progenitor of the Biken strain. The V protein of these two viruses was not present in the intracellular viral nucleocapsids, but was found only in the cytosolic free protein pool. Pulse-chase experiments failed to show transport of the V protein to the plasma membrane. The V protein was also absent in the extracellular virions. The P protein synthesized from the cloned gene associated with the MV nucleocapsids in vitro, but the V protein had no affinity to the MV nucleocapsids. These results suggest that expression and properties of the V protein are conserved in chronic MV infection.
Collapse
Affiliation(s)
- A F Gombart
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
90
|
Curran J, Marq JB, Kolakofsky D. The Sendai virus nonstructural C proteins specifically inhibit viral mRNA synthesis. Virology 1992; 189:647-56. [PMID: 1322593 DOI: 10.1016/0042-6822(92)90588-g] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An in vitro transcription system for paramyxoviruses is described, in which polymerase-free templates are combined with cell extracts containing polymerase made in vivo via transfected plasmids. Both P and L are required for polymerase activity, and both must be coexpressed for optimum activity. mRNA synthesis here was found to be inversely proportional to the level of C expression, whereas defective interfering genome replication was largely unaffected by the level of C in the extract. The inhibition of transcription appeared to be due to the C' and C, but not the Y1 and Y2 proteins, and only occurred when C'/C was coexpressed with P and L. C'/C appears to intervene during polymerase formation, possibly by forming polymerase complexes which are inactive for transcription, but still competent for genome replication.
Collapse
Affiliation(s)
- J Curran
- Department of Genetics and Microbiology, University of Geneva School of Medicine, Switzerland
| | | | | |
Collapse
|
91
|
Daskalakis S, Menke J, Stripp B, Stone H. Nucleotide sequence of the phosphoprotein (P) gene of Newcastle disease virus (strain Beaudette C). Nucleic Acids Res 1992; 20:616. [PMID: 1741301 PMCID: PMC310439 DOI: 10.1093/nar/20.3.616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- S Daskalakis
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27858-4354
| | | | | | | |
Collapse
|
92
|
Komase K, Haga T, Yoshikawa Y, Yamanouchi K. Complete nucleotide sequence of the phosphoprotein of the Yamagata-1 strain of a defective subacute sclerosing panencephalitis (SSPE) virus. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1129:342-4. [PMID: 1536889 DOI: 10.1016/0167-4781(92)90515-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The complete nucleotide sequence of the phosphoprotein (P) gene of the Yamagata-1 strain of a defective subacute sclerosing panencephalitis (SSPE) virus was determined. Comparison with the P gene of the Edmonston strain of measles virus (MV) revealed 44 differences of which 23 nucleotides substitutions were identical with those revealed between other SSPE viruses and MV (Cattaneo et al. (1989) Virology 173, 415-425). The consensus sequence of the G insertion site was completely conserved, whereas mRNAs with one or three non-templated G residue insertions were found in addition to the mRNA of the exact genome copy. As a result of the frameshift downstream of the site of G insertion, the cysteine-rich V protein was predicted from the one G-inserted mRNA besides the P and C proteins predicted from the genome-copied mRNA.
Collapse
Affiliation(s)
- K Komase
- Department of Technology, Kitasato Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
93
|
Galinski MS, Troy RM, Banerjee AK. RNA editing in the phosphoprotein gene of the human parainfluenza virus type 3. Virology 1992; 186:543-50. [PMID: 1310183 PMCID: PMC7130814 DOI: 10.1016/0042-6822(92)90020-p] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/1991] [Accepted: 10/28/1991] [Indexed: 12/26/2022]
Abstract
RNA editing of the human parainfluenza virus type 3 (HPIV3) phosphoprotein (P) gene was found to occur for the accession of an alternate discontinuous cistron. Editing occurred within a purine-rich sequence (AAUUAAAAAAGGGGG) found at the mRNA nucleotides 791-805. This sequence resembles an HPIV3 consensus transcription termination sequence and is located at the 5'-end of the putative D protein coding sequences. Editing at an alternate site (AAUUGGAAAGGAAAGG), mRNA nucleotides 1121-1136, for accession of a conserved V cistron, which is present in a number of paramyxovirus P genes, was not found to occur in HPIV3. In contrast with many other paramyxoviruses, editing was indiscriminate with the insertion of 1-12 additional G residues not present in the gene template. RNA editing was found to occur in both in vivo (HPIV3 infected cells) and in vitro (purified nucleocapsid complexes) synthesized mRNAs. Further, the in vitro prepared mRNA was edited regardless of whether the nucleocapsid complexes were transcribed in the presence or absence of uninfected human lung carcinoma (HLC) cell lysates. These results support the notion that RNA editing appears to be exclusively a function of viral proteins.
Collapse
Affiliation(s)
- M S Galinski
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195
| | | | | |
Collapse
|
94
|
Curran J, de Melo M, Moyer S, Kolakofsky D. Characterization of the Sendai virus V protein with an anti-peptide antiserum. Virology 1991; 184:108-16. [PMID: 1651586 PMCID: PMC7130646 DOI: 10.1016/0042-6822(91)90827-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Sendai virus V protein, which is a fusion of the P and V ORFs of the P gene, was characterized with antisera to a portion of the V ORF and compared to the P protein. The only property found in common with P is that V is also highly phosphorylated, and this is so even when these proteins are expressed independently of the other viral proteins. Otherwise, V was not found in virions, was not strongly associated with viral nucleocapsids like P, and anti-V had no effect on viral RNA synthesis in vitro under conditions where anti-P was highly inhibitory. The available evidence suggests that V may play a role in RNA synthesis, but it is not an essential one like that of the P protein.
Collapse
Affiliation(s)
- J Curran
- Department of Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
95
|
Stec DS, Hill MG, Collins PL. Sequence analysis of the polymerase L gene of human respiratory syncytial virus and predicted phylogeny of nonsegmented negative-strand viruses. Virology 1991; 183:273-87. [PMID: 2053282 DOI: 10.1016/0042-6822(91)90140-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The complete nucleotide sequence of the large (L) polymerase gene of human respiratory syncytial virus (RSV) strain A2 was determined by analysis of cloned-cDNAs representing the entire gene and confirmed in part by dideoxy sequencing of genomic RNA. The RSV L gene is 6578 nucleotides in length and contains a single major open reading frame that encodes a protein of 2165 amino acids. The molecular weight (250,226) and amino acid composition of the deduced RSV L protein are similar to those of other negative-strand RNA viruses. Regions of statistically significant amino acid sequence similarity were identified in pairwise global alignments of the RSV L protein with its counterparts in four paramyxoviruses (parainfluenza virus type 3, Sendai virus, measles virus, Newcastle disease virus) and two rhabdoviruses (rabies virus, vesicular stomatitis virus). In addition, amino acid sequence alignments showed that the RSV L protein has a 70-amino acid amino-terminal extension relative to the others. This is suggested to be due to the acquisition of gene overlap of the RSV L gene with its upstream neighbor, the 22K (M2) gene and the use of a new translational start site. The most highly related region among these seven proteins is located within the amino-terminal half, representing approximately 20% of each protein sequences. This region contains six discrete segments that are colinear and highly conserved in each paramyxovirus and rhabdovirus L protein, and three of these overlapped with sequence motifs found previously in other RNA-dependent RNA and DNA polymerases. A phylogenetic tree was constructed from the paramyxovirus and rhabdovirus L protein sequences to further define their relationships. The branching order indicates that RSV represents a lineage within the paramyxovirus family which is relatively distinct from the others, which in turn are more closely interrelated. Among these other members of the family Paramyxoviridae, the branching order does not entirely conform to their current taxonomic organization, providing support for its reevaluation.
Collapse
Affiliation(s)
- D S Stec
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | |
Collapse
|
96
|
Kawano M, Okamoto K, Bando H, Kondo K, Tsurudome M, Komada H, Nishio M, Ito Y. Characterizations of the human parainfluenza type 2 virus gene encoding the L protein and the intergenic sequences. Nucleic Acids Res 1991; 19:2739-46. [PMID: 1645865 PMCID: PMC328195 DOI: 10.1093/nar/19.10.2739] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We cloned and determined the nucleotide sequences of cDNAs against genomic RNA encoding the L protein of human parainfluenza type 2 virus (PIV-2). The L gene is 6904 nucleotides long including the intergenic region at the HN-L junction and putative negative strand leader RNA, almost all of which is complementary to the positive strand leader RNA of PIV-2. The deduced L protein contains 2262 amino acids with a calculated molecular weight of 256,366. The L protein of PIV-2 shows 39.9, 28.9, 27.8 and 28.3% homologies with Newcastle disease virus (NDV), Sendai virus (SV), parainfluenza type 3 virus (PIV-3) and measles virus (MV), respectively. Although sequence data on other components of transcriptive complex, NP and P, suggested a closer relationship between PIV-2 and MV, as concerns the L protein, MV is closely related to another group as SV and PIV-3. From analysis of the alignment of the five l proteins, six blocks composed of conserved amino acids were found in the L proteins. The L protein of PIV-2 was detected in purified virions and virus-infected cells using antiserum directed against an oligopeptide corresponding to the amino terminal region. Primer extension analyses showed that the intergenic regions at the NP-P, P-M, M-F, F-HN and HN-L junctions are 4, 45, 28, 8 and 42 nucleotides long, respectively, indicating that the intergenic regions exhibit no conservation of length and sequence. Furthermore, the starting and ending sequences of paramyxoviruses were summarized.
Collapse
Affiliation(s)
- M Kawano
- Department of Microbiology, Mie University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Curran JA, Kolakofsky D. Rescue of a Sendai virus DI genome by other parainfluenza viruses: implications for genome replication. Virology 1991; 182:168-76. [PMID: 1850900 DOI: 10.1016/0042-6822(91)90660-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using a defective interfering Sendai virus stock (DIH4) freed of nondefective helper virus, we found that the closely related parainfluenza viruses 1 and 3 could substitute for the Sendai virus helper in replicating DIH4, creating chimeric nucleocapsids. The morbillivirus measles and the rhabdovirus VSV could not substitute. When DIH4 is incubated intracellularly for 5 days in the absence of help, the ability of PIV3 to rescue DIH4 at this time depended on fresh Sendai virus polymerase. The PIV3 polymerase apparently can only copy the chimeric template, but not that wrapped in the homologous Sendai NP protein. These results suggest that the cis-acting RNA sequences important for genome replication, e.g., the promoter and the encapsidation site, have been conserved among these viruses, but that the interactions between the polymerase and the template protein NP are unique for each virus.
Collapse
Affiliation(s)
- J A Curran
- Department of Microbiology, University of Geneva School of Medicine, Switzerland
| | | |
Collapse
|
98
|
Homann HE, Willenbrink W, Buchholz CJ, Neubert WJ. Sendai virus protein-protein interactions studied by a protein-blotting protein-overlay technique: mapping of domains on NP protein required for binding to P protein. J Virol 1991; 65:1304-9. [PMID: 1847456 PMCID: PMC239905 DOI: 10.1128/jvi.65.3.1304-1309.1991] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Proteins from Sendai virus particles and from infected cells were analyzed in a protein-blotting protein-overlay assay for their interaction with in vitro-synthesized, [35S]methionine-labeled viral proteins NP, P, and M. After separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transfer onto polyvinylidene difluoride membranes, and renaturation, the immobilized proteins were found to interact specifically with radiolabeled proteins. NP proteins from virus particles and from infected cells retained 35S-P protein equally well. Conversely, P protein from virus particles and from infected cells retained 35S-NP protein. 35S-M protein was retained mainly by NP protein but also by several cellular proteins. To determine the domains on NP protein required for binding to immobilized P protein, a series of truncated and internally deleted 35S-NP proteins was constructed. The only deletion that did not affect binding resides between residues 426 and 497. The carboxyl-terminal 27 residues (positions 498 to 524) contribute significantly to the binding affinity. Removal of 20 residues (positions 225 to 244) in the hydrophobic middle part of NP protein completely abolished its binding to P protein.
Collapse
Affiliation(s)
- H E Homann
- Abteilung für Virusforschung, Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | |
Collapse
|
99
|
Ryan KW, Morgan EM, Portner A. Two noncontiguous regions of Sendai virus P protein combine to form a single nucleocapsid binding domain. Virology 1991; 180:126-34. [PMID: 1701944 DOI: 10.1016/0042-6822(91)90016-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Binding of Sendai virus P protein to viral nucleocapsids requires amino acids in two separate regions of P protein. Both required regions are near the carboxyl terminus, and they are separated by a region which is expendable for binding (K. W. Ryan and A. Portner, 1990, Virology 174, 515-521). To examine the topography of these regions in the folded P protein molecule we mapped the epitopes present in several undenatured P proteins with overlaping deletions near their carboxyl termini. The epitopes recognized by two monoclonal antibodies were each composed of both protein regions necessary for binding, indicating that these two regions are each required at some point during the folding of P protein. To determine if these protein regions interact directly in forming the nucleocapsid binding domain, we constructed a deleted P gene which encodes a protein comprising only these two regions with all other P protein sequences deleted. This protein was able to bind to nucleocapsids, demonstrating that these two regions alone are sufficient to form the nucleocapsid-binding domain. In addition, this protein formed the folded epitopes comprising the two nucleocapsid-binding regions, indicating that the two regions interact directly with each other to form a single folded structure. The involvement of this binding domain in viral mRNA synthesis was examined by testing the ability of each monoclonal antibody to inhibit the in vitro transcription activity of full-size P protein. Several antibodies to epitopes near the binding domain were found to be potent inhibitors of viral transcription, showing that these regions contribute to P protein's role in mRNA synthesis.
Collapse
Affiliation(s)
- K W Ryan
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | |
Collapse
|
100
|
Neubert WJ, Eckerskorn C, Homann HE. Sendai virus NP gene codes for a 524 amino acid NP protein. Virus Genes 1991; 5:25-32. [PMID: 1850185 DOI: 10.1007/bf00571728] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The complete nucleoprotein (NP) gene sequences of the Sendai virus Fushimi and 6/94 strains were determined. For both viruses an open reading frame of 524 amino acids can be predicted for the NP proteins. By comparing the sequences with others reported in the literature, the 5' noncoding region and the middle third of the coding region were found to be highly conserved. The carboxyl terminal part carries nine amino acid changes and a completely different sequence of the carboxyl terminus with a seven amino acid extension. This carboxyl terminus of the Sendai virus NP protein was confirmed using tryptic peptide sequence analysis.
Collapse
Affiliation(s)
- W J Neubert
- Abteilung fuer Virusforschung, Max-Planck-Institut fuer Biochemie, Martinsried, FRG
| | | | | |
Collapse
|