51
|
Targeted pruning of a neuron's dendritic tree via femtosecond laser dendrotomy. Sci Rep 2016; 6:19078. [PMID: 26739126 PMCID: PMC4703956 DOI: 10.1038/srep19078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022] Open
Abstract
Neurons are classified according to action potential firing in response to current injection. While such firing patterns are shaped by the composition and distribution of ion channels, modelling studies suggest that the geometry of dendritic branches also influences temporal firing patterns. Verifying this link is crucial to understanding how neurons transform their inputs to output but has so far been technically challenging. Here, we investigate branching-dependent firing by pruning the dendritic tree of pyramidal neurons. We use a focused ultrafast laser to achieve highly localized and minimally invasive cutting of dendrites, thus keeping the rest of the dendritic tree intact and the neuron functional. We verify successful dendrotomy via two-photon uncaging of neurotransmitters before and after dendrotomy at sites around the cut region and via biocytin staining. Our results show that significantly altering the dendritic arborisation, such as by severing the apical trunk, enhances excitability in layer V cortical pyramidal neurons as predicted by simulations. This method may be applied to the analysis of specific relationships between dendritic structure and neuronal function. The capacity to dynamically manipulate dendritic topology or isolate inputs from various dendritic domains can provide a fresh perspective on the roles they play in shaping neuronal output.
Collapse
|
52
|
Vega-Zuniga T, Marín G, González-Cabrera C, Planitscher E, Hartmann A, Marks V, Mpodozis J, Luksch H. Microconnectomics of the pretectum and ventral thalamus in the chicken (Gallus gallus). J Comp Neurol 2015; 524:2208-29. [PMID: 26659271 DOI: 10.1002/cne.23941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/06/2022]
Abstract
The avian pretectal and ventrothalamic nuclei, encompassing the griseum tectale (GT), n. lentiformis mesencephali (LM), and n. geniculatus lateralis pars ventralis (GLv), are prominent retinorecipient structures related to optic flow operations and visuomotor control. Hence, a close coordination of these neural circuits is to be expected. Yet the connectivity among these nuclei is poorly known. Here, using intracellular labeling and in situ hybridization, we investigated the detailed morphology, connectivity, and neurochemical identity of neurons in these nuclei. Two different cell types exist in the GT: one that generates an axonal projection to the optic tectum (TeO), LM, GLv, and n. intercalatus thalami (ICT), and a second population that only projects to the LM and GLv. In situ hybridization revealed that most neurons in the GT express the vesicular glutamate transporter (VGluT2) mRNA, indicating a glutamatergic identity. In the LM, three morphological cell types were defined, two of which project axons towards dorsal targets. The LM neurons showed strong VGluT2 expression. Finally, the cells located in the GLv project to the TeO, LM, GT, n. principalis precommisuralis (PPC), and ICT. All neurons in the GLv showed strong expression of the vesicular inhibitory amino acid transporter (VIAAT) mRNA, suggesting a GABAergic identity. Our results show that the pretectal and ventrothalamic nuclei are highly interconnected, especially by glutamatergic and GABAergic neurons from the GT and GLv, respectively. This complex morphology and connectivity might be required to organize orienting visuomotor behaviors and coordinate the specific optic flow patterns that they induce. J. Comp. Neurol. 524:2208-2229, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomas Vega-Zuniga
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Gonzalo Marín
- Laboratorio de Neurobiología y Biología del Conocer, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Cristian González-Cabrera
- Laboratorio de Neurobiología y Biología del Conocer, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Eva Planitscher
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Anja Hartmann
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Vanessa Marks
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Jorge Mpodozis
- Laboratorio de Neurobiología y Biología del Conocer, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Harald Luksch
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
53
|
Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R, Lodder BN, Goriounova NA, Asamoah B, B Brakspear ABC, Groot C, van der Sluis S, Testa-Silva G, Obermayer J, Boudewijns ZSRM, Narayanan RT, Baayen JC, Segev I, Mansvelder HD, de Kock CPJ. Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex. Cereb Cortex 2015; 25:4839-53. [PMID: 26318661 PMCID: PMC4635923 DOI: 10.1093/cercor/bhv188] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The size and shape of dendrites and axons are strong determinants of neuronal information processing. Our knowledge on neuronal structure and function is primarily based on brains of laboratory animals. Whether it translates to human is not known since quantitative data on "full" human neuronal morphologies are lacking. Here, we obtained human brain tissue during resection surgery and reconstructed basal and apical dendrites and axons of individual neurons across all cortical layers in temporal cortex (Brodmann area 21). Importantly, morphologies did not correlate to etiology, disease severity, or disease duration. Next, we show that human L(ayer) 2 and L3 pyramidal neurons have 3-fold larger dendritic length and increased branch complexity with longer segments compared with temporal cortex neurons from macaque and mouse. Unsupervised cluster analysis classified 88% of human L2 and L3 neurons into human-specific clusters distinct from mouse and macaque neurons. Computational modeling of passive electrical properties to assess the functional impact of large dendrites indicates stronger signal attenuation of electrical inputs compared with mouse. We thus provide a quantitative analysis of "full" human neuron morphologies and present direct evidence that human neurons are not "scaled-up" versions of rodent or macaque neurons, but have unique structural and functional properties.
Collapse
Affiliation(s)
- Hemanth Mohan
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Matthijs B Verhoog
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Keerthi K Doreswamy
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Guy Eyal
- Department of Neurobiology and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Romy Aardse
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Brendan N Lodder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Boateng Asamoah
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - A B Clementine B Brakspear
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Colin Groot
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Sophie van der Sluis
- Department of Clinical Genetics, Section Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU Medical Center, Amsterdam, The Netherlands
| | - Guilherme Testa-Silva
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Joshua Obermayer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Zimbo S R M Boudewijns
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rajeevan T Narayanan
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Idan Segev
- Department of Neurobiology and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
54
|
Boychuk CR, Gyarmati P, Xu H, Smith BN. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. J Neurophysiol 2015; 114:999-1007. [PMID: 26084907 DOI: 10.1152/jn.00310.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/15/2015] [Indexed: 12/23/2022] Open
Abstract
Changes in blood glucose concentration alter autonomic function in a manner consistent with altered neural activity in brain regions controlling digestive processes, including neurons in the brain stem nucleus tractus solitarii (NTS), which process viscerosensory information. With whole cell or on-cell patch-clamp recordings, responses to elevating glucose concentration from 2.5 to 15 mM were assessed in identified GABAergic NTS neurons in slices from transgenic mice that express EGFP in a subset of GABA neurons. Single-cell real-time RT-PCR was also performed to detect glutamic acid decarboxylase (GAD67) in recorded neurons. In most identified GABA neurons (73%), elevating glucose concentration from 2.5 to 15 mM resulted in either increased (40%) or decreased (33%) neuronal excitability, reflected by altered membrane potential and/or action potential firing. Effects on membrane potential were maintained when action potentials or fast synaptic inputs were blocked, suggesting direct glucose sensing by GABA neurons. Glucose-inhibited GABA neurons were found predominantly in the lateral NTS, whereas glucose-excited cells were mainly in the medial NTS, suggesting regional segregation of responses. Responses were prevented in the presence of glucosamine, a glucokinase (GCK) inhibitor. Depolarizing responses were prevented when KATP channel activity was blocked with tolbutamide. Whereas effects on synaptic input to identified GABAergic neurons were variable in GABA neurons, elevating glucose increased glutamate release subsequent to stimulation of tractus solitarius in unlabeled, unidentified neurons. These results indicate that GABAergic NTS neurons act as GCK-dependent glucose sensors in the vagal complex, providing a means of modulating central autonomic signals when glucose is elevated.
Collapse
Affiliation(s)
- Carie R Boychuk
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Peter Gyarmati
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hong Xu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Bret N Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
55
|
Narayanan RT, Egger R, Johnson AS, Mansvelder HD, Sakmann B, de Kock CPJ, Oberlaender M. Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex. Cereb Cortex 2015; 25:4450-68. [PMID: 25838038 PMCID: PMC4816792 DOI: 10.1093/cercor/bhv053] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exact 3D model of vS1 revealed that the majority of intracortical (IC) axons project far beyond the borders of the principal column. We defined the corresponding innervation volume as the IC-unit. Deconstructing this structural cortical unit into its cell type-specific components, we found asymmetric projections that innervate columns of either the same whisker row or arc, and which subdivide vS1 into 2 orthogonal [supra-]granular and infragranular strata. We show that such organization could be most effective for encoding multi whisker inputs. Communication between columns is thus organized by multiple highly specific horizontal projection patterns, rendering IC-units as the primary structural entities for processing complex sensory stimuli.
Collapse
Affiliation(s)
- Rajeevan T Narayanan
- Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Robert Egger
- Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany Graduate School of Neural Information Processing, University of Tuebingen, Tuebingen, Germany
| | - Andrew S Johnson
- Digital Neuroanatomy, Max Planck Florida Institute for Neuroscience, Jupiter , FL 33458, USA
| | - Huibert D Mansvelder
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Bert Sakmann
- Digital Neuroanatomy, Max Planck Florida Institute for Neuroscience, Jupiter , FL 33458, USA
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Marcel Oberlaender
- Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany Digital Neuroanatomy, Max Planck Florida Institute for Neuroscience, Jupiter , FL 33458, USA Bernstein Center for Computational Neuroscience, Tuebingen, Germany
| |
Collapse
|
56
|
Kimura A, Imbe H. Anatomically structured burst spiking of thalamic reticular nucleus cells: implications for distinct modulations of sensory processing in lemniscal and non-lemniscal thalamocortical loop circuitries. Eur J Neurosci 2015; 41:1276-93. [DOI: 10.1111/ejn.12874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Akihisa Kimura
- Department of Physiology; Wakayama Medical University; Wakayama Kimiidera 811-1 641-8509 Wakayama Japan
| | - Hiroki Imbe
- Department of Physiology; Wakayama Medical University; Wakayama Kimiidera 811-1 641-8509 Wakayama Japan
| |
Collapse
|
57
|
Dempsey B, Turner AJ, Le S, Sun QJ, Bou Farah L, Allen AM, Goodchild AK, McMullan S. Recording, labeling, and transfection of single neurons in deep brain structures. Physiol Rep 2015; 3:3/1/e12246. [PMID: 25602013 PMCID: PMC4387759 DOI: 10.14814/phy2.12246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genetic tools that permit functional or connectomic analysis of neuronal circuits are rapidly transforming neuroscience. The key to deployment of such tools is selective transfection of target neurons, but to date this has largely been achieved using transgenic animals or viral vectors that transduce subpopulations of cells chosen according to anatomical rather than functional criteria. Here, we combine single‐cell transfection with conventional electrophysiological recording techniques, resulting in three novel protocols that can be used for reliable delivery of conventional dyes or genetic material in vitro and in vivo. We report that techniques based on single cell electroporation yield reproducible transfection in vitro, and offer a simple, rapid and reliable alternative to established dye‐labeling techniques in vivo, but are incompatible with targeted transfection in deep brain structures. In contrast, we show that intracellular electrophoresis of plasmid DNA transfects brainstem neurons recorded up to 9 mm deep in the anesthetized rat. The protocols presented here require minimal, if any, modification to recording hardware, take seconds to deploy, and yield high recovery rates in vitro (dye labeling: 89%, plasmid transfection: 49%) and in vivo (dye labeling: 66%, plasmid transfection: 27%). They offer improved simplicity compared to the juxtacellular labeling technique and for the first time offer genetic manipulation of functionally characterized neurons in previously inaccessible brain regions. The ability to label individual neurons after electrophysiological characterization of their functional properties is a foundational technique in neuroscience. A number of approaches that achieve this goal have been described, but all are technically challenging. Here, we describe a simple approach that is rapid, reliable, and compatible with delivery of conventional dyes or large plasmid DNA molecules.
Collapse
Affiliation(s)
- Bowen Dempsey
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Anita J Turner
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Sheng Le
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Qi-Jian Sun
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Lama Bou Farah
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Andrew M Allen
- Department of Physiology, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Ann K Goodchild
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| | - Simon McMullan
- Australian School of Advanced Medicine, Macquarie University, Sydney, 2109, NSW, Australia
| |
Collapse
|
58
|
Schnepel P, Kumar A, Zohar M, Aertsen A, Boucsein C. Physiology and Impact of Horizontal Connections in Rat Neocortex. Cereb Cortex 2014; 25:3818-35. [PMID: 25410428 DOI: 10.1093/cercor/bhu265] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cortical information processing at the cellular level has predominantly been studied in local networks, which are dominated by strong vertical connectivity between layers. However, recent studies suggest that the bulk of axons targeting pyramidal neurons most likely originate from outside this local range, emphasizing the importance of horizontal connections. We mapped a subset of these connections to L5B pyramidal neurons in rat somatosensory cortex with photostimulation, identifying intact projections up to a lateral distance of 2 mm. Our estimates of the spatial distribution of cells presynaptic to L5B pyramids support the idea that the majority is located outside the local volume. The synaptic physiology of horizontal connections does not differ markedly from that of local connections, whereas the layer and cell-type-dependent pattern of innervation does. Apart from L2/3, L6A provides a strong source of horizontal connections. Implementing our data into a spiking neuronal network model shows that more horizontal connections promote robust asynchronous ongoing activity states and reduce noise correlations in stimulus-induced activity.
Collapse
Affiliation(s)
- Philipp Schnepel
- Bernstein Center Freiburg, Freiburg 79104, Germany Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Arvind Kumar
- Bernstein Center Freiburg, Freiburg 79104, Germany Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Mihael Zohar
- Bernstein Center Freiburg, Freiburg 79104, Germany Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Ad Aertsen
- Bernstein Center Freiburg, Freiburg 79104, Germany Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Clemens Boucsein
- Bernstein Center Freiburg, Freiburg 79104, Germany Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
59
|
Anesthetized- and awake-patched whole-cell recordings in freely moving rats using UV-cured collar-based electrode stabilization. Nat Protoc 2014; 9:2784-95. [PMID: 25375992 DOI: 10.1038/nprot.2014.190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracellular recording allows precise measurement and manipulation of individual neurons, but it requires stable mechanical contact between the electrode and the cell membrane, and thus it has remained challenging to perform in behaving animals. Whole-cell recordings in freely moving animals can be obtained by rigidly fixing ('anchoring') the pipette electrode to the head; however, previous anchoring procedures were slow and often caused substantial pipette movement, resulting in loss of the recording or of recording quality. We describe a UV-transparent collar and UV-cured adhesive technique that rapidly (within 15 s) anchors pipettes in place with virtually no movement, thus substantially improving the reliability, yield and quality of freely moving whole-cell recordings. Recordings are first obtained from anesthetized or awake head-fixed rats. UV light cures the thin adhesive layers linking pipette to collar to head. Then, the animals are rapidly and smoothly released for recording during unrestrained behavior. The anesthetized-patched version can be completed in ∼4-7 h (excluding histology) and the awake-patched version requires ∼1-4 h per day for ∼2 weeks. These advances should greatly facilitate studies of neuronal integration and plasticity in identified cells during natural behaviors.
Collapse
|
60
|
Barry MD, Boddington LJ, Igelström KM, Gray JP, Shemmell J, Tseng KY, Oorschot DE, Reynolds JN. Utility of intracerebral theta burst electrical stimulation to attenuate interhemispheric inhibition and to promote motor recovery after cortical injury in an animal model. Exp Neurol 2014; 261:258-66. [DOI: 10.1016/j.expneurol.2014.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/12/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
|
61
|
Testa-Silva G, Verhoog MB, Linaro D, de Kock CPJ, Baayen JC, Meredith RM, De Zeeuw CI, Giugliano M, Mansvelder HD. High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biol 2014; 12:e1002007. [PMID: 25422947 PMCID: PMC4244038 DOI: 10.1371/journal.pbio.1002007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022] Open
Abstract
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.
Collapse
Affiliation(s)
- Guilherme Testa-Silva
- Department of Integrative Neurophysiology, CNCR, VU University Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Matthijs B. Verhoog
- Department of Integrative Neurophysiology, CNCR, VU University Amsterdam, The Netherlands
| | - Daniele Linaro
- Department of Biomedical Sciences, University of Antwerp, Belgium
| | | | - Johannes C. Baayen
- Department of Neurosurgery, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - Rhiannon M. Meredith
- Department of Integrative Neurophysiology, CNCR, VU University Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Michele Giugliano
- Department of Biomedical Sciences, University of Antwerp, Belgium
- Department of Computer Science, University of Sheffield, United Kingdom
- Brain Mind Institute, Swiss Federal Institute of Technology of Lausanne, Switzerland
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, CNCR, VU University Amsterdam, The Netherlands
| |
Collapse
|
62
|
Garion L, Dubin U, Rubin Y, Khateb M, Schiller Y, Azouz R, Schiller J. Texture coarseness responsive neurons and their mapping in layer 2-3 of the rat barrel cortex in vivo. eLife 2014; 3:e03405. [PMID: 25233151 PMCID: PMC4166033 DOI: 10.7554/elife.03405] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/18/2014] [Indexed: 02/02/2023] Open
Abstract
Texture discrimination is a fundamental function of somatosensory systems, yet the manner by which texture is coded and spatially represented in the barrel cortex are largely unknown. Using in vivo two-photon calcium imaging in the rat barrel cortex during artificial whisking against different surface coarseness or controlled passive whisker vibrations simulating different coarseness, we show that layer 2-3 neurons within barrel boundaries differentially respond to specific texture coarsenesses, while only a minority of neurons responded monotonically with increased or decreased surface coarseness. Neurons with similar preferred texture coarseness were spatially clustered. Multi-contact single unit recordings showed a vertical columnar organization of texture coarseness preference in layer 2-3. These findings indicate that layer 2-3 neurons perform high hierarchical processing of tactile information, with surface coarseness embodied by distinct neuronal subpopulations that are spatially mapped onto the barrel cortex.
Collapse
Affiliation(s)
- Liora Garion
- Department of Physiology and Biophysics, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Uri Dubin
- Department of Physiology and Biophysics, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoav Rubin
- Department of Physiology and Biophysics, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mohamed Khateb
- Department of Physiology and Biophysics, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- Department of Physiology and Biophysics, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Azouz
- Department of Physiology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jackie Schiller
- Department of Physiology and Biophysics, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
63
|
Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat Protoc 2014; 9:2369-81. [PMID: 25211514 DOI: 10.1038/nprot.2014.161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that neural circuits consist of a great diversity of cell types, but very little is known about how neuronal diversity contributes to cognition and behavior. One approach to addressing this problem is to directly link cellular diversity to neuronal activity recorded in vivo in behaving animals. Here we describe the technical procedures for obtaining juxtacellular recordings from single neurons in trained rats engaged in exploratory behavior. The recorded neurons can be labeled to allow subsequent anatomical identification. In its current format, the protocol can be used for resolving the cellular identity of spatially modulated neurons (i.e., head-direction cells and grid cells), which form the basis of the animal's internal representation of space, but this approach can easily be extended to other unrestrained behaviors. The procedures described here, from the beginning of animal training to the histological processing of brain sections, can be completed in ≈ 3-4 weeks.
Collapse
|
64
|
Dargaei Z, Colmers PLW, Hodgson HM, Magoski NS. Electrical coupling between Aplysia bag cell neurons: characterization and role in synchronous firing. J Neurophysiol 2014; 112:2680-96. [PMID: 25185820 DOI: 10.1152/jn.00494.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In neuroendocrine cells, hormone release often requires a collective burst of action potentials synchronized by gap junctions. This is the case for the electrically coupled bag cell neurons in the reproductive system of the marine snail, Aplysia californica. These neuroendocrine cells are found in two clusters, and fire a synchronous burst, called the afterdischarge, resulting in neuropeptide secretion and the triggering of ovulation. However, the physiology and pharmacology of the bag cell neuron electrical synapse are not completely understood. As such, we made dual whole cell recordings from pairs of electrically coupled cultured bag cell neurons. The junctional current was nonrectifying and not influenced by postsynaptic voltage. Furthermore, junctional conductance was voltage independent and, not surprisingly, strongly correlated with coupling coefficient magnitude. The electrical synapse also acted as a low-pass filter, although under certain conditions, electrotonic potentials evoked by presynaptic action potentials could drive postsynaptic spikes. If coupled neurons were stimulated to spike simultaneously, they presented a high degree of action potential synchrony compared with not-coupled neurons. The electrical synapse failed to pass various intracellular dyes, but was permeable to Cs(+), and could be inhibited by niflumic acid, meclofenamic acid, or 5-nitro-2-(3-phenylpropylamino)benzoic acid. Finally, extracellular and sharp-electrode recording from the intact bag cell neuron cluster showed that these pharmacological uncouplers disrupted both electrical coupling and afterdischarge generation in situ. Thus electrical synapses promote bag cell neuron firing synchrony and may allow for electrotonic spread of the burst through the network, ultimately contributing to propagation of the species.
Collapse
Affiliation(s)
- Zahra Dargaei
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Phillip L W Colmers
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Heather M Hodgson
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
65
|
Synaptically induced long-term modulation of electrical coupling in the inferior olive. Neuron 2014; 81:1290-1296. [PMID: 24656251 PMCID: PMC3988996 DOI: 10.1016/j.neuron.2014.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 11/24/2022]
Abstract
Electrical coupling mediated by gap junctions is widespread in the mammalian CNS, and the interplay between chemical and electrical synapses on the millisecond timescale is crucial for determining patterns of synchrony in many neural circuits. Here we show that activation of glutamatergic synapses drives long-term depression of electrical coupling between neurons of the inferior olive. We demonstrate that this plasticity is not triggered by postsynaptic spiking alone and that it requires calcium entry following synaptic NMDA receptor activation. These results reveal that glutamatergic synapses can instruct plasticity at electrical synapses, providing a means for excitatory inputs to homeostatically regulate the long-term dynamics of microzones in olivocerebellar circuits. Chemical synapses trigger long-term depression of inferior olive electrical coupling Depression of electrical coupling requires NMDAR activation and calcium entry Plasticity is not triggered by postsynaptic spiking alone and EPSPs remain unchanged Excitatory inputs can thus homeostatically regulate synchrony patterns in the olive
Collapse
|
66
|
Kimura A. Diverse subthreshold cross-modal sensory interactions in the thalamic reticular nucleus: implications for new pathways of cross-modal attentional gating function. Eur J Neurosci 2014; 39:1405-18. [PMID: 24646412 DOI: 10.1111/ejn.12545] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/26/2014] [Accepted: 02/03/2014] [Indexed: 11/30/2022]
Abstract
Our attention to a sensory cue of a given modality interferes with attention to a sensory cue of another modality. However, an object emitting various sensory cues attracts attention more effectively. The thalamic reticular nucleus (TRN) could play a pivotal role in such cross-modal modulation of attention given that cross-modal sensory interaction takes place in the TRN, because the TRN occupies a highly strategic position to function in the control of gain and/or gating of sensory processing in the thalamocortical loop. In the present study cross-modal interactions between visual and auditory inputs were examined in single TRN cells of anesthetised rats using juxta-cellular recording and labeling techniques. Visual or auditory responses were modulated by subthreshold sound or light stimuli, respectively, in the majority of recordings (46 of 54 visual and 60 of 73 auditory cells). However, few bimodal sensory cells were found. Cells showing modulation of the sensory response were distributed in the whole visual and auditory sectors of the TRN. Modulated cells sent axonal projections to first-order or higher-order thalamic nuclei. Suppression predominated in modulation that took place not only in primary responses but also in late responses repeatedly evoked after sensory stimulation. Combined sensory stimulation also evoked de-novo responses, and modulated response latency and burst spiking. These results indicate that the TRN incorporates sensory inputs of different modalities into single cell activity to function in sensory processing in the lemniscal and non-lemniscal systems. This raises the possibility that the TRN constitutes neural pathways involved in cross-modal attentional gating.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, Wakayama, 641-8509, Japan
| |
Collapse
|
67
|
Abstract
The patch-clamp technique and the whole-cell measurements derived from it have greatly advanced our understanding of the coding properties of individual neurons by allowing for a detailed analysis of their excitatory/inhibitory synaptic inputs, intrinsic electrical properties, and morphology. Because such measurements require a high level of mechanical stability they have for a long time been limited to in vitro and anesthetized preparations. Recently, however, a considerable amount of effort has been devoted to extending these techniques to awake restrained/head-fixed preparations allowing for the study of the input-output functions of neurons during behavior. In this chapter we describe a technique extending patch-clamp recordings to awake animals free to explore their environments.
Collapse
Affiliation(s)
- Albert K Lee
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA,
| | | | | |
Collapse
|
68
|
The Filament Editor: An Interactive Software Environment for Visualization, Proof-Editing and Analysis of 3D Neuron Morphology. Neuroinformatics 2013; 12:325-39. [DOI: 10.1007/s12021-013-9213-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
69
|
Directional hearing by linear summation of binaural inputs at the medial superior olive. Neuron 2013; 78:936-48. [PMID: 23764292 DOI: 10.1016/j.neuron.2013.04.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2013] [Indexed: 11/24/2022]
Abstract
Neurons in the medial superior olive (MSO) enable sound localization by their remarkable sensitivity to submillisecond interaural time differences (ITDs). Each MSO neuron has its own "best ITD" to which it responds optimally. A difference in physical path length of the excitatory inputs from both ears cannot fully account for the ITD tuning of MSO neurons. As a result, it is still debated how these inputs interact and whether the segregation of inputs to opposite dendrites, well-timed synaptic inhibition, or asymmetries in synaptic potentials or cellular morphology further optimize coincidence detection or ITD tuning. Using in vivo whole-cell and juxtacellular recordings, we show here that ITD tuning of MSO neurons is determined by the timing of their excitatory inputs. The inputs from both ears sum linearly, whereas spike probability depends nonlinearly on the size of synaptic inputs. This simple coincidence detection scheme thus makes accurate sound localization possible.
Collapse
|
70
|
Boudewijns ZSRM, Groen MR, Lodder B, McMaster MTB, Kalogreades L, de Haan R, Narayanan RT, Meredith RM, Mansvelder HD, de Kock CPJ. Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats. Front Cell Neurosci 2013; 7:99. [PMID: 23805075 PMCID: PMC3693071 DOI: 10.3389/fncel.2013.00099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/06/2013] [Indexed: 11/20/2022] Open
Abstract
Cortical pyramidal neurons show irregular in vivo action potential (AP) spiking with high-frequency bursts occurring on sparse background activity. Somatic APs can backpropagate from soma into basal and apical dendrites and locally generate dendritic calcium spikes. The critical AP frequency for generation of such dendritic calcium spikes can be very different depending on cell type or brain area involved. Previously, it was shown in vitro that calcium electrogenesis can be induced in L(ayer) 5 pyramidal neurons of prefrontal cortex (PFC). It remains an open question whether somatic burst spiking and the resulting dendritic calcium electrogenesis also occur in morphologically more compact L2/3 pyramidal neurons. Furthermore, it is not known whether critical frequencies that trigger dendritic calcium electrogenesis occur in PFC under awake conditions in vivo. Here, we addressed these issues and found that pyramidal neurons in both PFC L2/3 and L5 in awake rats spike APs in short bursts but with different probabilities. The critical frequency (CF) for calcium electrogenesis in vitro was layer-specific and lower in L5 neurons compared to L2/3. Taking the in vitro CF as a predictive measure for dendritic electrogenesis during in vivo spontaneous activity, supracritical bursts in vivo were observed in a larger fraction of L5 neurons compared to L2/3 neurons but with similar incidence within these subpopulations. Together, these results show that in PFC of awake rats, AP spiking occurs at frequencies that are relevant for dendritic calcium electrogenesis and suggest that in awake rat PFC, dendritic calcium electrogenesis may be involved in neuronal computation.
Collapse
Affiliation(s)
- Zimbo S R M Boudewijns
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Roland JJ, Janke KL, Servatius RJ, Pang KCH. GABAergic neurons in the medial septum-diagonal band of Broca (MSDB) are important for acquisition of the classically conditioned eyeblink response. Brain Struct Funct 2013; 219:1231-7. [PMID: 24965560 DOI: 10.1007/s00429-013-0560-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
The medial septum and diagonal band of Broca (MSDB) influence hippocampal function through cholinergic, GABAergic, and glutamatergic septohippocampal neurons. Non-selective damage of the MSDB or intraseptal scopolamine impairs classical conditioning of the eyeblink response (CCER). Scopolamine preferentially inhibits GABAergic MSDB neurons suggesting that these neurons may be an important modulator of delay CCER, a form of CCER not dependent on the hippocampus. The current study directly examined the importance of GABAergic MSDB neurons in acquisition of delay CCER. Adult male Sprague-Dawley rats received either a sham (PBS) or GABAergic MSDB lesion using GAT1-saporin (SAP). Rats were given two consecutive days of delay eyeblink conditioning with 100 conditioned stimulus-unconditioned stimulus paired trials. Intraseptal GAT1-SAP impaired acquisition of CCER. The impairment was observed on the first day with sham and lesion groups reaching similar performance by the end of the second day. Our results provide evidence that GABAergic MSDB neurons are an important modulator of delay CCER. The pathways by which MSDB neurons influence the neural circuits necessary for delay CCER are discussed.
Collapse
Affiliation(s)
- J J Roland
- Stress and Motivated Behavior Institute, East Orange, NJ, 07018, USA,
| | | | | | | |
Collapse
|
72
|
Egger R, Narayanan RT, Helmstaedter M, de Kock CPJ, Oberlaender M. 3D reconstruction and standardization of the rat vibrissal cortex for precise registration of single neuron morphology. PLoS Comput Biol 2012; 8:e1002837. [PMID: 23284282 PMCID: PMC3527218 DOI: 10.1371/journal.pcbi.1002837] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022] Open
Abstract
The three-dimensional (3D) structure of neural circuits is commonly studied by reconstructing individual or small groups of neurons in separate preparations. Investigation of structural organization principles or quantification of dendritic and axonal innervation thus requires integration of many reconstructed morphologies into a common reference frame. Here we present a standardized 3D model of the rat vibrissal cortex and introduce an automated registration tool that allows for precise placement of single neuron reconstructions. We (1) developed an automated image processing pipeline to reconstruct 3D anatomical landmarks, i.e., the barrels in Layer 4, the pia and white matter surfaces and the blood vessel pattern from high-resolution images, (2) quantified these landmarks in 12 different rats, (3) generated an average 3D model of the vibrissal cortex and (4) used rigid transformations and stepwise linear scaling to register 94 neuron morphologies, reconstructed from in vivo stainings, to the standardized cortex model. We find that anatomical landmarks vary substantially across the vibrissal cortex within an individual rat. In contrast, the 3D layout of the entire vibrissal cortex remains remarkably preserved across animals. This allows for precise registration of individual neuron reconstructions with approximately 30 µm accuracy. Our approach could be used to reconstruct and standardize other anatomically defined brain areas and may ultimately lead to a precise digital reference atlas of the rat brain.
Collapse
Affiliation(s)
- Robert Egger
- Digital Neuroanatomy, Max Planck Florida Institute, Jupiter, Florida, United States of America
| | - Rajeevan T. Narayanan
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Moritz Helmstaedter
- Structure of Neocortical Circuits Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Christiaan P. J. de Kock
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Marcel Oberlaender
- Digital Neuroanatomy, Max Planck Florida Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
73
|
Paul K, Cox CL. Age-dependent actions of dopamine on inhibitory synaptic transmission in superficial layers of mouse prefrontal cortex. J Neurophysiol 2012; 109:1323-32. [PMID: 23221420 DOI: 10.1152/jn.00756.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous developmental changes in the nervous system occur during the first several weeks of the rodent lifespan. Therefore, many characteristics of neuronal function described at the cellular level from in vitro slice experiments conducted during this early time period may not generalize to adult ages. We investigated the effect of dopamine (DA) on inhibitory synaptic transmission in superficial layers of the medial prefrontal cortex (PFC) in prepubertal [postnatal age (P; days) 12-20], periadolescent (P30-48), and adult (P70-100) mice. The PFC is associated with higher-level cognitive functions, such as working memory, and is associated with initiation, planning, and execution of actions, as well as motivation and cognition. It is innervated by DA-releasing fibers that arise from the ventral tegmental area. In slices from prepubertal mice, DA produced a biphasic modulation of inhibitory postsynaptic currents (IPSCs) recorded in layer II/III pyramidal neurons. Activation of D2-like receptors leads to an early suppression of the evoked IPSC, which was followed by a longer-lasting facilitation of the IPSC mediated by D1-like DA receptors. In periadolescent mice, the D2 receptor-mediated early suppression was significantly smaller compared with the prepubertal animals and absent in adult animals. Furthermore, we found significant differences in the DA-mediated lasting enhancement of the inhibitory response among the developmental groups. Our findings suggest that behavioral paradigms that elicit dopaminergic release in the PFC differentially modulate inhibition of excitatory pyramidal neuron output in prepuberty compared with periadolescence and adulthood in the superficial layers (II/III) of the cortex.
Collapse
Affiliation(s)
- Kush Paul
- Department of Molecular and Integrative Physiology, Department of Pharmacology, Beckman Institute for Advanced Scienceand Technology, University of Illinois, Urbana, IL, USA.
| | | |
Collapse
|
74
|
Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 2012; 16:64-70. [PMID: 23143518 PMCID: PMC3700812 DOI: 10.1038/nn.3269] [Citation(s) in RCA: 404] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/23/2012] [Indexed: 12/14/2022]
Abstract
Cerebrocortical injuries, such as stroke, are a major source of disability. Maladaptive consequences can result from post-injury local reorganization of cortical circuits. For example, epilepsy is a common sequela of cortical stroke, yet mechanisms responsible for seizures following cortical injuries remain unknown. In addition to local reorganization, long-range, extra-cortical connections might be critical for seizure maintenance. Here we report in rats the first evidence that the thalamus – a structure remote from but connected to the injured cortex – is required to maintain cortical seizures. Thalamocortical neurons connected to the injured epileptic cortex undergo changes in HCN channel expression and become hyperexcitable. Targeting these neurons with a closed-loop optogenetic strategy demonstrates that reducing their activity in real-time is sufficient to immediately interrupt electrographic and behavioral seizures. This approach is of therapeutic interest for intractable epilepsy, since it spares cortical function between seizures, in contrast to existing treatments such as surgical lesioning or drugs.
Collapse
Affiliation(s)
- Jeanne T Paz
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Heistek TS, Ruiperez-Alonso M, Timmerman AJ, Brussaard AB, Mansvelder HD. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations. J Physiol 2012; 591:845-58. [PMID: 23109109 DOI: 10.1113/jphysiol.2012.243725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
GABA(A) receptors are critically involved in hippocampal oscillations. GABA(A) receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABA(A) receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABA(A) receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABA(A) receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABA(A) receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations.
Collapse
Affiliation(s)
- Tim S Heistek
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
76
|
Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y. Distinctions in burst spiking between thalamic reticular nucleus cells projecting to the dorsal lateral geniculate and lateral posterior nuclei in the anesthetized rat. Neuroscience 2012; 226:208-26. [PMID: 22989916 DOI: 10.1016/j.neuroscience.2012.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Thalamic cell activity is under a significant influence of inhibition from the thalamic reticular nucleus (TRN) that is composed of domains connected with first and higher order thalamic nuclei, which are thought to subserve transmission of sensory inputs to the cortex and cortico-thalamo-cortical transmission of cortical outputs, respectively. Provided that TRN cells have distinct activities along with their projections to first and higher order thalamic nuclei, TRN cells could shape cell activities of the two thalamic nuclei in different manners for the distinct functions. In anesthetized rats, visual response and spontaneous activity were recorded from TRN cells projecting to the dorsal lateral geniculate (first order) and lateral posterior (higher order) nuclei (TRN-DLG and TRN-LP cells), using juxta-cellular recording and labeling techniques. TRN-DLG cells had a higher propensity for burst spiking and exhibited bursts of larger numbers of spikes with shorter inter-spike intervals as compared to TRN-LP cells in both visual response and spontaneous activity. Sustained effects of visual input on burst spiking were recognized in recurrent activation of TRN-DLG but not of TRN-LP cells. Further, the features of burst spiking were related with the locations of topographically connected cell bodies and terminal fields. The difference in burst spiking contrasts with the difference between thalamic cells in the DLG and LP, which show low and high levels of burst spiking, respectively. The synergy between thalamic and TRN cell activities with their contrasting features of burst spiking may compose distinctive sensory processing and attentional gating functions of geniculate and extra-geniculate systems.
Collapse
Affiliation(s)
- A Kimura
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-8509 Wakayama, Japan.
| | | | | | | | | |
Collapse
|
77
|
Santos DVV, Costa KM, Vaz MCG, Da Silva Filho M. Relationships between dendritic morphology, spatial distribution and firing patterns in rat layer 1 neurons. Braz J Med Biol Res 2012; 45:1221-33. [PMID: 22930412 PMCID: PMC3854215 DOI: 10.1590/s0100-879x2012007500137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/15/2012] [Indexed: 11/24/2022] Open
Abstract
The cortical layer 1 contains mainly small interneurons, which have traditionally been classified according to their axonal morphology. The dendritic morphology of these cells, however, has received little attention and remains ill defined. Very little is known about how the dendritic morphology and spatial distribution of these cells may relate to functional neuronal properties. We used biocytin labeling and whole cell patch clamp recordings, associated with digital reconstruction and quantitative morphological analysis, to assess correlations between dendritic morphology, spatial distribution and membrane properties of rat layer 1 neurons. A total of 106 cells were recorded, labeled and subjected to morphological analysis. Based on the quantitative patterns of their dendritic arbor, cells were divided into four major morphotypes: horizontal, radial, ascendant, and descendant cells. Descendant cells exhibited a highly distinct spatial distribution in relation to other morphotypes, suggesting that they may have a distinct function in these cortical circuits. A significant difference was also found in the distribution of firing patterns between each morphotype and between the neuronal populations of each sublayer. Passive membrane properties were, however, statistically homogeneous among all subgroups. We speculate that the differences observed in active membrane properties might be related to differences in the synaptic input of specific types of afferent fibers and to differences in the computational roles of each morphotype in layer 1 circuits. Our findings provide new insights into dendritic morphology and neuronal spatial distribution in layer 1 circuits, indicating that variations in these properties may be correlated with distinct physiological functions.
Collapse
Affiliation(s)
- D V V Santos
- Laboratório de Biofísica Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil.
| | | | | | | |
Collapse
|
78
|
Hartveit E, Veruki ML. Electrical synapses between AII amacrine cells in the retina: Function and modulation. Brain Res 2012; 1487:160-72. [PMID: 22776293 DOI: 10.1016/j.brainres.2012.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/09/2012] [Indexed: 12/24/2022]
Abstract
Adaptation enables the visual system to operate across a large range of background light intensities. There is evidence that one component of this adaptation is mediated by modulation of gap junctions functioning as electrical synapses, thereby tuning and functionally optimizing specific retinal microcircuits and pathways. The AII amacrine cell is an interneuron found in most mammalian retinas and plays a crucial role for processing visual signals in starlight, twilight and daylight. AII amacrine cells are connected to each other by gap junctions, potentially serving as a substrate for signal averaging and noise reduction, and there is evidence that the strength of electrical coupling is modulated by the level of background light. Whereas there is extensive knowledge concerning the retinal microcircuits that involve the AII amacrine cell, it is less clear which signaling pathways and intracellular transduction mechanisms are involved in modulating the junctional conductance between electrically coupled AII amacrine cells. Here we review the current state of knowledge, with a focus on the recent evidence that suggests that the modulatory control involves activity-dependent changes in the phosphorylation of the gap junction channels between AII amacrine cells, potentially linked to their intracellular Ca(2+) dynamics. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Espen Hartveit
- University of Bergen, Department of Biomedicine, Bergen, Norway.
| | | |
Collapse
|
79
|
Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y. Auditory thalamic reticular nucleus of the rat: Anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 2012; 520:1457-80. [DOI: 10.1002/cne.22805] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
80
|
|
81
|
Intact In Vitro Preparations of the Neonatal Rodent Cortex: Analysis of Cellular Properties and Network Activity. ISOLATED CENTRAL NERVOUS SYSTEM CIRCUITS 2012. [DOI: 10.1007/978-1-62703-020-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
82
|
Oberlaender M, de Kock CPJ, Bruno RM, Ramirez A, Meyer HS, Dercksen VJ, Helmstaedter M, Sakmann B. Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. ACTA ACUST UNITED AC 2011; 22:2375-91. [PMID: 22089425 PMCID: PMC3432239 DOI: 10.1093/cercor/bhr317] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type- and location-specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type–specific lemniscal synaptic wiring diagram and elucidates structure–function relationships of this physiologically relevant pathway at single-cell resolution.
Collapse
Affiliation(s)
- Marcel Oberlaender
- Digital Neuroanatomy, Max Planck Florida Institute, Jupiter, FL 33458-2906, USA.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Zorović M. Temporal processing of vibratory communication signals at the level of ascending interneurons in Nezara viridula (Hemiptera: Pentatomidae). PLoS One 2011; 6:e26843. [PMID: 22053216 PMCID: PMC3203904 DOI: 10.1371/journal.pone.0026843] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/05/2011] [Indexed: 11/18/2022] Open
Abstract
During mating, males and females of N. viridula (Heteroptera: Pentatomidae) produce sex- and species-specific calling and courtship substrate-borne vibratory signals, grouped into songs. Recognition and localization of these signals are fundamental for successful mating. The recognition is mainly based on the temporal pattern, i.e. the amplitude modulation, while the frequency spectrum of the signals usually only plays a minor role. We examined the temporal selectivity for vibratory signals in four types of ascending vibratory interneurons in N. viridula. Using intracellular recording and labelling technique, we analyzed the neurons' responses to 30 pulse duration/interval duration (PD/ID) combinations. Two response arrays were created for each neuron type, showing the intensity of the responses either as time-averaged spike counts or as peak instantaneous spike rates. The mean spike rate response arrays showed preference of the neurons for short PDs (below 600 ms) and no selectivity towards interval duration; while the peak spike rate response arrays exhibited either short PD/long ID selectivity or no selectivity at all. The long PD/short ID combinations elicited the weakest responses in all neurons tested. No response arrays showed the receiver preference for either constant period or duty cycle. The vibratory song pattern selectivity matched the PD of N. viridula male vibratory signals, thus pointing to temporal filtering for the conspecific vibratory signals already at level of the ascending interneurons. In some neurons the responses elicited by the vibratory stimuli were followed by distinct, regular oscillations of the membrane potential. The distance between the oscillation peaks matched the temporal structure of the male calling song, indicating a possible resonance based mechanism for signal recognition.
Collapse
Affiliation(s)
- Maja Zorović
- Department of Entomology, National Institute of Biology, Ljubljana, Slovenia.
| |
Collapse
|
84
|
Lang S, Dercksen VJ, Sakmann B, Oberlaender M. Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex. Neural Netw 2011; 24:998-1011. [DOI: 10.1016/j.neunet.2011.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/19/2011] [Accepted: 06/16/2011] [Indexed: 11/27/2022]
|
85
|
Mishra A, Schüz A, Engelmann J, Beyerlein M, Logothetis NK, Canals S. Biocytin-derived MRI contrast agent for longitudinal brain connectivity studies. ACS Chem Neurosci 2011; 2:578-87. [PMID: 22860157 DOI: 10.1021/cn200022m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/03/2011] [Indexed: 11/28/2022] Open
Abstract
To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels.
Collapse
Affiliation(s)
| | | | | | | | - Nikos K. Logothetis
- Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PL, England
| | - Santiago Canals
- Instituto de Neurociencias CSIC-UMH, Campus de San Juan, 03550 San Juan de Alicante, Spain
| |
Collapse
|
86
|
Abstract
Tonically active neurons in the primate striatum, believed to be cholinergic interneurons (CINs), respond to sensory stimuli with a pronounced pause in firing. Although inhibitory and neuromodulatory mechanisms have been implicated, it is not known how sensory stimuli induce firing pauses in CINs in vivo. Here, we used intracellular recordings in anesthetized rats to investigate the effectiveness of a visual stimulus at modulating spike activity in CINs. Initially, no neuron was visually responsive. However, following pharmacological activation of tecto-thalamic pathways, the firing pattern of most CINs was significantly modulated by a light flashed into the contralateral eye. Typically, this induced an excitation followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. Stimulation of thalamic afferents in vitro evoked similar responses that were independent of synaptic inhibition. Thus, visual stimulation likely induces an initial depolarization via a subcortical tecto-thalamo-striatal pathway, pausing CIN firing through an intrinsic afterhyperpolarization.
Collapse
|
87
|
Stuart DG, Brownstone RM. The beginning of intracellular recording in spinal neurons: facts, reflections, and speculations. Brain Res 2011; 1409:62-92. [PMID: 21782158 PMCID: PMC5061568 DOI: 10.1016/j.brainres.2011.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
Intracellular (IC) recording of action potentials in neurons of the vertebrate central nervous system (CNS) was first reported by John Eccles and two colleagues, Walter Brock and John Coombs, in Dunedin, NZL in 1951/1952 and by Walter Woodbury and Harry Patton in Seattle, WA, USA in 1952. Both groups studied spinal cord neurons of the adult cat. In this review, we discuss the precedents to their notable achievement and reflect and speculate on some of the scientific and personal nuances of their work and its immediate and later impact. We then briefly discuss early achievements in IC recording in the study of CNS neurobiology in other laboratories around the world, and some of the methods that led to enhancement of CNS IC-recording techniques. Our modern understanding of CNS neurophysiology directly emanates from the pioneering endeavors of the five who wrote the seminal 1951/1952 articles.
Collapse
Affiliation(s)
- Douglas G Stuart
- Department of Physiology, University of Arizona, Tucson, AZ 85721-0093, USA.
| | | |
Collapse
|
88
|
Grantyn A, Kuze B, Brandi AM, Thomas MA, Quenech'du N. Direct projections of omnipause neurons to reticulospinal neurons: a double-labeling light microscopic study in the cat. J Comp Neurol 2011; 518:4792-812. [PMID: 20963829 DOI: 10.1002/cne.22488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Omnipause neurons (OPNs) are inhibitory neurons located in the midline region of the caudal pons. Their role in gating the discharges of saccade-related burst neurons is well known, but there is no agreement concerning their influence on brainstem neurons that control other muscle groups participating in rapid gaze shifts. In the present study, we inquired whether OPNs project directly to pontobulbar reticulospinal neurons (RSNs) in the cat. Retrograde transport of horseradish peroxidase from the cervical spinal cord was used to label RSNs and an anterograde tracer (biocytin) was iontophoresed at sites of extracellular recording of the OPN activity. Somadendritic characteristics of biocytin-labeled OPNs were largely similar to those obtained previously with intracellular labeling. Three-dimensional reconstruction of axonal trajectories and collaterals revealed that projections of OPNs, regarded as a population, are bilateral. Their terminals were restricted to the reticular formation and midline structures throughout the rostral bulbar and pontine tegmentum. Appositions of synaptic boutons originating from five fully stained OPNs were detected on 38 retrogradely labeled RSNs, each of the OPNs contacting 3-13 cells. The numbers of boutons (1-46; mean 11.8) on the RSN somata and proximal dendrites indicate that the anatomical strength of paired OPN-RSN connections is comparable to that of other similarly studied inhibitory neurons in the cat. The existence of connections with RSNs supports the hypothesis of a generalized influence of OPNs on several effectors participating in orienting gaze shifts as opposed to the idea of their strict specialization for the control of eye saccades.
Collapse
Affiliation(s)
- Alexej Grantyn
- Laboratoire de Physiologie de la Perception et de l'Action, UMR7152, Collège de France-CNRS, Paris, France.
| | | | | | | | | |
Collapse
|
89
|
Cepeda C, André VM, Hauptman JS, Yamazaki I, Huynh MN, Chang JW, Chen JY, Fisher RS, Vinters HV, Levine MS, Mathern GW. Enhanced GABAergic network and receptor function in pediatric cortical dysplasia Type IIB compared with Tuberous Sclerosis Complex. Neurobiol Dis 2011; 45:310-21. [PMID: 21889982 DOI: 10.1016/j.nbd.2011.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 12/24/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) and cortical dysplasia Type IIB (CDIIB) share histopathologic features that suggest similar epileptogenic mechanisms. This study compared the morphological and electrophysiological properties of cortical cells in tissue from pediatric TSC (n=20) and CDIIB (n=20) patients using whole-cell patch clamp recordings and biocytin staining. Cell types were normal-appearing and dysmorphic-cytomegalic pyramidal neurons, interneurons, and giant/balloon cells, including intermediate neuronal-glial cells. In the cortical mantle, giant/balloon cells occurred more frequently in TSC than in CDIIB cases, whereas cytomegalic pyramidal neurons were found more frequently in CDIIB. Cell morphology and membrane properties were similar in TSC and CDIIB cases. Except for giant/balloon and intermediate cells, all neuronal cell types fired action potentials and displayed spontaneous postsynaptic currents. However, the frequency of spontaneous glutamatergic postsynaptic currents in normal pyramidal neurons and interneurons was significantly lower in CDIIB compared with TSC cases and the GABAergic activity was higher in all neuronal cell types in CDIIB. Further, acutely dissociated pyramidal neurons displayed higher sensitivity to exogenous application of GABA in CDIIB compared with TSC cases. These results indicate that, in spite of similar histopathologic features and basic cell membrane properties, TSC and CDIIB display differences in the topography of abnormal cells, excitatory and inhibitory synaptic network properties, and GABA(A) receptor sensitivity. These differences support the notion that the mechanisms of epileptogenesis could differ in patients with TSC and CDIIB. Consequently, pharmacologic therapies should take these findings into consideration.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Testa-Silva G, Loebel A, Giugliano M, de Kock CPJ, Mansvelder HD, Meredith RM. Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. ACTA ACUST UNITED AC 2011; 22:1333-42. [PMID: 21856714 DOI: 10.1093/cercor/bhr224] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuronal theories of neurodevelopmental disorders (NDDs) of autism and mental retardation propose that abnormal connectivity underlies deficits in attentional processing. We tested this theory by studying unitary synaptic connections between layer 5 pyramidal neurons within medial prefrontal cortex (mPFC) networks in the Fmr1-KO mouse model for mental retardation and autism. In line with predictions from neurocognitive theory, we found that neighboring pyramidal neurons were hyperconnected during a critical period in early mPFC development. Surprisingly, excitatory synaptic connections between Fmr1-KO pyramidal neurons were significantly slower and failed to recover from short-term depression as quickly as wild type (WT) synapses. By 4-5 weeks of mPFC development, connectivity rates were identical for both KO and WT pyramidal neurons and synapse dynamics changed from depressing to facilitating responses with similar properties in both groups. We propose that the early alteration in connectivity and synaptic recovery are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low-frequency stimulation, which may explain deficits in integration and early information processing in attentional neuronal networks in NDDs.
Collapse
Affiliation(s)
- Guilherme Testa-Silva
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
91
|
Valverde Salzmann MF, Wallace DJ, Logothetis NK, Schüz A. Multimodal vessel mapping for precise large area alignment of functional optical imaging data to neuroanatomical preparations in marmosets. J Neurosci Methods 2011; 201:159-72. [PMID: 21843550 DOI: 10.1016/j.jneumeth.2011.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 11/19/2022]
Abstract
Imaging technologies, such as intrinsic optical imaging (IOI), functional magnetic resonance imaging (fMRI) or multiphoton microscopy provide excellent opportunities to study the relationship between functional signals recorded from a cortical area and the underlying anatomical structure. This, in turn, requires accurate alignment of the recorded functional imaging data with histological datasets from the imaged tissue obtained after the functional experiment. This alignment is complicated by distortions of the tissue which naturally occur during histological treatment, and is particularly difficult to achieve over large cortical areas, such as primate visual areas. We present here a method that uses IOI vessel maps revealed in the time course of the intrinsic signal, in combination with vascular casts and vascular lumen labeling techniques together with a pseudo three dimensional (p3D) reconstruction of the tissue architecture in order to facilitate alignment of IOI data with posthoc histological datasets. We demonstrate that by such a multimodal vessel mapping approach, we are able to constitute a hook in anatomical-functional data alignment that enables the accurate assignment of functional signals over large cortical regions. As an example, we present precise alignments of IOI responses showing orientation selectivity of primate V1 with anatomical sections stained for cytochrome-oxidase-reactivity.
Collapse
|
92
|
Angelo K, Margrie TW. Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells. Sci Rep 2011; 1:50. [PMID: 22355569 PMCID: PMC3216537 DOI: 10.1038/srep00050] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/13/2011] [Indexed: 01/06/2023] Open
Abstract
Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons.
Collapse
Affiliation(s)
- Kamilla Angelo
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Troy W. Margrie
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Neurophysiology, The National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| |
Collapse
|
93
|
A half century of experimental neuroanatomical tracing. J Chem Neuroanat 2011; 42:157-83. [PMID: 21782932 DOI: 10.1016/j.jchemneu.2011.07.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/04/2011] [Accepted: 07/04/2011] [Indexed: 01/05/2023]
Abstract
Most of our current understanding of brain function and dysfunction has its firm base in what is so elegantly called the 'anatomical substrate', i.e. the anatomical, histological, and histochemical domains within the large knowledge envelope called 'neuroscience' that further includes physiological, pharmacological, neurochemical, behavioral, genetical and clinical domains. This review focuses mainly on the anatomical domain in neuroscience. To a large degree neuroanatomical tract-tracing methods have paved the way in this domain. Over the past few decades, a great number of neuroanatomical tracers have been added to the technical arsenal to fulfill almost any experimental demand. Despite this sophisticated arsenal, the decision which tracer is best suited for a given tracing experiment still represents a difficult choice. Although this review is obviously not intended to provide the last word in the tract-tracing field, we provide a survey of the available tracing methods including some of their roots. We further summarize our experience with neuroanatomical tracers, in an attempt to provide the novice user with some advice to help this person to select the most appropriate criteria to choose a tracer that best applies to a given experimental design.
Collapse
|
94
|
Schulz JM, Pitcher TL, Savanthrapadian S, Wickens JR, Oswald MJ, Reynolds JNJ. Enhanced high-frequency membrane potential fluctuations control spike output in striatal fast-spiking interneurones in vivo. J Physiol 2011; 589:4365-81. [PMID: 21746788 DOI: 10.1113/jphysiol.2011.212944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fast-spiking interneurones (FSIs) constitute a prominent part of the inhibitory microcircuitry of the striatum; however, little is known about their recruitment by synaptic inputs in vivo. Here, we report that, in contrast to cholinergic interneurones (CINs), FSIs (n = 9) recorded in urethane-anaesthetized rats exhibit Down-to-Up state transitions very similar to spiny projection neurones (SPNs). Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). The membrane potential exhibited short and steep trajectories preceding spontaneous spike discharge, suggesting that fast input components controlled spike output in FSIs. Spontaneous spike data contained a high proportion (43.6 ± 32.8%) of small inter-spike intervals (ISIs) of <30 ms, setting FSIs clearly apart from SPNs and CINs. Cortical-evoked inputs had slower dynamics in SPNs than FSIs, and repetitive stimulation entrained SPN spike output only if the stimulation was delivered at an intermediate frequency (20 Hz), but not at a high frequency (100 Hz). Pharmacological induction of an activated ECoG state, known to promote rapid FSI spiking, mildly increased the power (by 43 ± 55%, n = 13) at gamma frequencies in the membrane potential of SPNs, but resulted in few small ISIs (<30 ms; 4.3 ± 6.4%, n = 8). The gamma frequency content did not change in CINs (n = 8). These results indicate that FSIs are uniquely responsive to high-frequency input sequences. By controlling the spike output of SPNs, FSIs could serve gating of top-down signals and long-range synchronisation of gamma-oscillations during behaviour.
Collapse
Affiliation(s)
- Jan M Schulz
- J. M. Schulz: Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
95
|
Helmstaedter M, Briggman KL, Denk W. High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 2011; 14:1081-8. [DOI: 10.1038/nn.2868] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/23/2011] [Indexed: 11/09/2022]
|
96
|
Modla S, Czymmek KJ. Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 2011; 42:773-92. [PMID: 21782457 DOI: 10.1016/j.micron.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022]
Abstract
Imaging tools for exploring the neurological samples have seen a rapid transformation over the last decade. Approaches that allow clear and specific delineation of targeted tissues, individual neurons, and their cell-cell connections as well as subcellular constituents have been especially valuable. Considering the significant complexity and extent to which the nervous system interacts with every organ system in the body, one non-trivial challenge has been how to identify and target specific structures and pathologies by microscopy. To this end, correlative methods enable one to view the same exact structure of interest utilizing the capabilities of typically separate, but powerful, microscopy platforms. As such, correlative microscopy is well-positioned to address the three critical problems of identification, scale, and resolution inherent to neurological systems. Furthermore, the application of multiple imaging platforms to the study of singular biological events enables more detailed investigations of structure-function relationships to be conducted, greatly facilitating our understanding of relevant phenomenon. This comprehensive review provides an overview of methods for correlative microscopy, including histochemistry, transgenic markers, immunocytochemistry, photo-oxidation as well as various probes and tracers. An emphasis is placed on correlative light and electron microscopic strategies used to facilitate relocation of neurological structures. Correlative microscopy is an invaluable tool for neurological research, and we fully anticipate developments in automation of the process, and the increasing availability of genomic and transgenic tools will facilitate the adoption of correlative microscopy as the method of choice for many imaging experiments.
Collapse
Affiliation(s)
- Shannon Modla
- Delaware Biotechnology Institute, Bio-Imaging Center, 15 Innovation Way, Suite 117, Newark, DE 19711, USA.
| | | |
Collapse
|
97
|
Amir A, Amano T, Pare D. Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons. J Neurophysiol 2011; 105:3054-66. [PMID: 21471396 PMCID: PMC3118749 DOI: 10.1152/jn.00136.2011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/03/2011] [Indexed: 11/22/2022] Open
Abstract
Intercalated (ITC) amygdala neurons are thought to play a critical role in the extinction of conditioned fear. However, several factors hinder progress in studying ITC contributions to extinction. First, although extinction is usually studied in rats and mice, most ITC investigations were performed in guinea pigs or cats. Thus it is unclear whether their connectivity is similar across species. Second, we lack criteria to identify ITC cells on the basis of their discharge pattern. As a result, key predictions of ITC extinction models remain untested. Among these, ITC cells were predicted to be strongly excited by infralimbic inputs, explaining why infralimbic inhibition interferes with extinction. To study the connectivity of ITC cells, we labeled them with neurobiotin during patch recordings in slices of the rat amygdala. This revealed that medially located ITC cells project topographically to the central nucleus and to other ITC clusters located more ventrally. To study the infralimbic responsiveness of ITC cells, we performed juxtacellular recording and labeling of amygdala cells with neurobiotin in anesthetized rats. All ITC cells were orthodromically responsive to infralimbic stimuli, and their responses usually consisted of high-frequency (~350 Hz) trains of four to six spikes, a response pattern never seen in neighboring amygdala nuclei. Overall, our results suggest that the connectivity of ITC cells is conserved across species and that ITC cells are strongly responsive to infralimbic stimuli, as predicted by extinction models. The unique response pattern of ITC cells to infralimbic stimuli can now be used to identify them in fear conditioning experiments.
Collapse
Affiliation(s)
- Alon Amir
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | | | | |
Collapse
|
98
|
Neuronal bursting properties in focal and parafocal regions in pediatric neocortical epilepsy stratified by histology. J Clin Neurophysiol 2011; 27:387-97. [PMID: 21076335 DOI: 10.1097/wnp.0b013e3181fe06d8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To test the hypothesis that focal and parafocal neocortical tissue from pediatric patients with intractable epilepsy exhibits cellular and synaptic differences, the authors characterized the propensity of these neurons to generate (a) voltage-dependent bursting and (b) synaptically driven paroxysmal depolarization shifts. Neocortical slices were prepared from tissue resected from patients with intractable epilepsy. Multiunit network activity and simultaneous whole-cell patch recordings were made from neurons from three patient groups: (1) those with normal histology; (2) those with mild and severe cortical dysplasia; and (3) those with abnormal pathology but without cortical dysplasia. Seizure-like activity was characterized by population bursting with concomitant bursting in intracellularly recorded cortical neurons (n = 59). The authors found significantly more N-methyl-D-aspartic acid-driven voltage-dependent bursting neurons in focal versus parafocal tissue in patients with severe cortical dysplasia (P < 0.01). Occurrence of paroxysmal depolarization shifts and burst amplitude and burst duration were significantly related to tissue type: focal or parafocal (P < 0.05). The authors show that functional differences between focal and parafocal tissue in patients with severe cortical dysplasia exist. There are functional differences between patient groups with different histology, and bursting properties can be significantly associated with the distinction between focal and parafocal tissue.
Collapse
|
99
|
Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci U S A 2011; 108:4188-93. [PMID: 21368112 DOI: 10.1073/pnas.1100647108] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cortical output layer 5 contains two excitatory cell types, slender- and thick-tufted neurons. In rat vibrissal cortex, slender-tufted neurons carry motion and phase information during active whisking, but remain inactive after passive whisker touch. In contrast, thick-tufted neurons reliably increase spiking preferably after passive touch. By reconstructing the 3D patterns of intracortical axon projections from individual slender- and thick-tufted neurons, filled in vivo with biocytin, we were able to identify cell type-specific intracortical circuits that may encode whisker motion and touch. Individual slender-tufted neurons showed elaborate and dense innervation of supragranular layers of large portions of the vibrissal area (total length, 86.8 ± 5.5 mm). During active whisking, these long-range projections may modulate and phase-lock the membrane potential of dendrites in layers 2 and 3 to the whisking cycle. Thick-tufted neurons with soma locations intermingling with those of slender-tufted ones display less dense intracortical axon projections (total length, 31.6 ± 14.3 mm) that are primarily confined to infragranular layers. Based on anatomical reconstructions and previous measurements of spiking, we put forward the hypothesis that thick-tufted neurons in rat vibrissal cortex receive input of whisker motion from slender-tufted neurons onto their apical tuft dendrites and input of whisker touch from thalamic neurons onto their basal dendrites. During tactile-driven behavior, such as object location, near-coincident input from these two pathways may result in increased spiking activity of thick-tufted neurons and thus enhanced signaling to their subcortical targets.
Collapse
|
100
|
Schmitz SK, Hjorth JJJ, Joemai RMS, Wijntjes R, Eijgenraam S, de Bruijn P, Georgiou C, de Jong APH, van Ooyen A, Verhage M, Cornelisse LN, Toonen RF, Veldkamp WJH, Veldkamp W. Automated analysis of neuronal morphology, synapse number and synaptic recruitment. J Neurosci Methods 2011; 195:185-93. [PMID: 21167201 DOI: 10.1016/j.jneumeth.2010.12.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 11/17/2022]
Abstract
The shape, structure and connectivity of nerve cells are important aspects of neuronal function. Genetic and epigenetic factors that alter neuronal morphology or synaptic localization of pre- and post-synaptic proteins contribute significantly to neuronal output and may underlie clinical states. To assess the impact of individual genes and disease-causing mutations on neuronal morphology, reliable methods are needed. Unfortunately, manual analysis of immuno-fluorescence images of neurons to quantify neuronal shape and synapse number, size and distribution is labor-intensive, time-consuming and subject to human bias and error. We have developed an automated image analysis routine using steerable filters and deconvolutions to automatically analyze dendrite and synapse characteristics in immuno-fluorescence images. Our approach reports dendrite morphology, synapse size and number but also synaptic vesicle density and synaptic accumulation of proteins as a function of distance from the soma as consistent as expert observers while reducing analysis time considerably. In addition, the routine can be used to detect and quantify a wide range of neuronal organelles and is capable of batch analysis of a large number of images enabling high-throughput analysis.
Collapse
Affiliation(s)
- Sabine K Schmitz
- Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|