51
|
Stangherlin A. Ion dynamics and the regulation of circadian cellular physiology. Am J Physiol Cell Physiol 2023; 324:C632-C643. [PMID: 36689675 DOI: 10.1152/ajpcell.00378.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circadian rhythms in physiology and behavior allow organisms to anticipate the daily environmental changes imposed by the rotation of our planet around its axis. Although these rhythms eventually manifest at the organismal level, a cellular basis for circadian rhythms has been demonstrated. Significant contributors to these cell-autonomous rhythms are daily cycles in gene expression and protein translation. However, recent data revealed cellular rhythms in other biological processes, including ionic currents, ion transport, and cytosolic ion abundance. Circadian rhythms in ion currents sustain circadian variation in action potential firing rate, which coordinates neuronal behavior and activity. Circadian regulation of metal ions abundance and dynamics is implicated in distinct cellular processes, from protein translation to membrane activity and osmotic homeostasis. In turn, studies showed that manipulating ion abundance affects the expression of core clock genes and proteins, suggestive of a close interplay. However, the relationship between gene expression cycles, ion dynamics, and cellular function is still poorly characterized. In this review, I will discuss the mechanisms that generate ion rhythms, the cellular functions they govern, and how they feed back to regulate the core clock machinery.
Collapse
Affiliation(s)
- Alessandra Stangherlin
- Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Institute for Mitochondrial Diseases and Ageing, University of Cologne, Cologne, Germany
| |
Collapse
|
52
|
Breast Cancer: How Hippotherapy Bridges the Gap between Healing and Recovery-A Randomized Controlled Clinical Trial. Cancers (Basel) 2023; 15:cancers15041317. [PMID: 36831658 PMCID: PMC9953804 DOI: 10.3390/cancers15041317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Breast cancer is the most diagnosed women's cancer, and has a high survival rate. Despite great progress in detection and treatment, life reconstruction requires comprehensive cross-sectoral approaches between different disciplines and deeper consideration of the patient's challenges. Hippotherapy is an emerging specialized rehabilitation approach, performed by accredited health professionals and equine specialists, on specially trained horses via their movement, activating major paths for physical, mental, psychic and social reinforcement, and is synergistic to rehabilitative and supportive care. METHODS We conducted a randomized open, prospective, two-armed, controlled trial on the effectiveness of hippotherapy versus conventional supportive care on adult women with a diagnosis of breast cancer, after the period of primary treatment (surgery, chemotherapy, radiotherapy). The 6-month program included, in the treated group, an initial 1-week daily hippotherapy session, followed by three short 2-day sessions with an interval of 2 months between each, where the patients received conventional supportive care. The control group received 6 months of conventional supportive care. The primary end point was quality of life. Cognitive performances, fatigue, anxiety, depression, and body image were the secondary end points. Measurements were done through self-reported questionnaires. RESULTS We observed statistical differences in the evolution of the measured parameters over time between the two groups. The hippotherapy group showed a much faster, favorable and continuous improvement until the end of the program for each function assessed. The most striking improvements were observed in global quality of life, and fatigue, while breast cancer-specific quality of life, cognitive performance, anxiety and depression and body image showed a less marked but still statistically significant difference at the final post-treatment evaluation. CONCLUSIONS We demonstrate the therapeutic relevance of hippotherapy, a one-health approach, as a key initial stage after cancer diagnosis and treatment to foster recovery. Furthermore, hippotherapy has a strong impact on cancer treatments' efficiency and reconstruction of patient's life and ecosystem. This work reveals a layer of complexity that needs to be broadly considered. TRIAL REGISTRATION ClincalTrials.gov NCT04350398 accessed on 1 January 2022. Registered 17 April 2020, retrospectively registered; French Clinical Trials in Cancer Register RECF3818. Registered 18 March 2019, retrospectively registered.
Collapse
|
53
|
Berezin CT. Modern Language for Modern Circadian Biologists: The End of the "Slave" Oscillator. J Biol Rhythms 2023:7487304231152982. [PMID: 36789723 DOI: 10.1177/07487304231152982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Casey-Tyler Berezin
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
54
|
Ono D, Wang H, Hung CJ, Wang HT, Kon N, Yamanaka A, Li Y, Sugiyama T. Network-driven intracellular cAMP coordinates circadian rhythm in the suprachiasmatic nucleus. SCIENCE ADVANCES 2023; 9:eabq7032. [PMID: 36598978 PMCID: PMC11318661 DOI: 10.1126/sciadv.abq7032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The mammalian central circadian clock, located in the suprachiasmatic nucleus (SCN), coordinates the timing of physiology and behavior to local time cues. In the SCN, second messengers, such as cAMP and Ca2+, are suggested to be involved in the input and/or output of the molecular circadian clock. However, the functional roles of second messengers and their dynamics in the SCN remain largely unclear. In the present study, we visualized the spatiotemporal patterns of circadian rhythms of second messengers and neurotransmitter release in the SCN. Here, we show that neuronal activity regulates the rhythmic release of vasoactive intestinal peptides from the SCN, which drives the circadian rhythms of intracellular cAMP in the SCN. Furthermore, optical manipulation of intracellular cAMP levels in the SCN shifts molecular and behavioral circadian rhythms. Together, our study demonstrates that intracellular cAMP is a key molecule in the organization of the SCN circadian neuronal network.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Chi Jung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hsin-tzu Wang
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Kon
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Akihiro Yamanaka
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Takashi Sugiyama
- Advanced Optics and Biological Engineering, Evident Corporation, Tokyo, Japan
| |
Collapse
|
55
|
Zheng Y, Pan L, Wang F, Yan J, Wang T, Xia Y, Yao L, Deng K, Zheng Y, Xia X, Su Z, Chen H, Lin J, Ding Z, Zhang K, Zhang M, Chen Y. Neural function of Bmal1: an overview. Cell Biosci 2023; 13:1. [PMID: 36593479 PMCID: PMC9806909 DOI: 10.1186/s13578-022-00947-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Bmal1 (Brain and muscle arnt-like, or Arntl) is a bHLH/PAS domain transcription factor central to the transcription/translation feedback loop of the biologic clock. Although Bmal1 is well-established as a major regulator of circadian rhythm, a growing number of studies in recent years have shown that dysfunction of Bmal1 underlies a variety of psychiatric, neurodegenerative-like, and endocrine metabolism-related disorders, as well as potential oncogenic roles. In this review, we systematically summarized Bmal1 expression in different brain regions, its neurological functions related or not to circadian rhythm and biological clock, and pathological phenotypes arising from Bmal1 knockout. This review also discusses oscillation and rhythmicity, especially in the suprachiasmatic nucleus, and provides perspective on future progress in Bmal1 research.
Collapse
Affiliation(s)
- Yuanjia Zheng
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China ,grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingyun Pan
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feixue Wang
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinglan Yan
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Taiyi Wang
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yucen Xia
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kelin Deng
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqi Zheng
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoye Xia
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikai Su
- grid.411866.c0000 0000 8848 7685The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Hongjie Chen
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Lin
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenwei Ding
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaitong Zhang
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Zhang
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China ,grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China ,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| |
Collapse
|
56
|
Athanasouli C, Kalmbach K, Booth V, Diniz Behn CG. NREM-REM alternation complicates transitions from napping to non-napping behavior in a three-state model of sleep-wake regulation. Math Biosci 2023; 355:108929. [PMID: 36448821 DOI: 10.1016/j.mbs.2022.108929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The temporal structure of human sleep changes across development as it consolidates from the polyphasic sleep of infants to the single nighttime sleep episode typical in adults. Experimental studies have shown that changes in the dynamics of sleep need may mediate this developmental transition in sleep patterning, however, it is unknown how sleep architecture interacts with these changes. We employ a physiologically-based mathematical model that generates wake, rapid eye movement (REM) and non-REM (NREM) sleep states to investigate how NREM-REM alternation affects the transition in sleep patterns as the dynamics of the homeostatic sleep drive are varied. To study the mechanisms producing these transitions, we analyze the bifurcations of numerically-computed circle maps that represent key dynamics of the full sleep-wake network model by tracking the evolution of sleep onsets across different circadian (∼ 24 h) phases. The maps are non-monotonic and discontinuous, being composed of branches that correspond to sleep-wake cycles containing distinct numbers of REM bouts. As the rates of accumulation and decay of the homeostatic sleep drive are varied, we identify the bifurcations that disrupt a period-adding-like behavior of sleep patterns in the transition between biphasic and monophasic sleep. These bifurcations include border collision and saddle-node bifurcations that initiate new sleep patterns, period-doubling bifurcations leading to higher-order patterns of NREM-REM alternation, and intervals of bistability of sleep patterns with different NREM-REM alternations. Furthermore, patterns of NREM-REM alternation exhibit variable behaviors in different regimes of constant sleep-wake patterns. Overall, the sequence of sleep-wake behaviors, and underlying bifurcations, in the transition from biphasic to monophasic sleep in this three-state model is more complex than behavior observed in models of sleep-wake regulation that do not consider the dynamics of NREM-REM alternation. These results suggest that interactions between the dynamics of the homeostatic sleep drive and the dynamics of NREM-REM alternation may contribute to the wide interindividual variation observed when young children transition from napping to non-napping behavior.
Collapse
Affiliation(s)
- Christina Athanasouli
- Department of Mathematics University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA.
| | - Kelsey Kalmbach
- Department of Applied Mathematics and Statistics Colorado School of Mines, 1500 Illinois Street, Golden, 80401, CO, USA.
| | - Victoria Booth
- Department of Mathematics University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA; Department of Anesthesiology, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, 48109-5048, MI, USA.
| | - Cecilia G Diniz Behn
- Department of Applied Mathematics and Statistics Colorado School of Mines, 1500 Illinois Street, Golden, 80401, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 East 17th Place, Aurora, 80045, CO, USA.
| |
Collapse
|
57
|
Stowe TA, McClung CA. How Does Chronobiology Contribute to the Development of Diseases in Later Life. Clin Interv Aging 2023; 18:655-666. [PMID: 37101656 PMCID: PMC10124625 DOI: 10.2147/cia.s380436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
An increasingly older population is one of the major social and medical challenges we currently face. Between 2010 and 2050, it is estimated that the proportion of adults over 65 years of age will double from 8% to 16% of the global population. A major concern associated with aging is the changes in health that can lead to various diseases such as cancer and neurogenerative diseases, which are major burdens on individuals and societies. Thus, it is imperative to better understand changes in sleep and circadian rhythms that accompany aging to improve the health of an older population and target diseases associated with aging. Circadian rhythms play a role in most physiological processes and can contribute to age-related diseases. Interestingly, there is a relationship between circadian rhythms and aging. For example, many older adults have a shift in chronotype, which is an individual's natural inclination to sleep certain times of the day. As adults age, most people tend to go to sleep earlier while also waking up earlier. Numerous studies also suggest that disrupted circadian rhythms may be indicative of developing age-related diseases, like neurodegenerative disorders and cancer. Better understanding the relationship between circadian rhythms and aging may allow us to improve current treatments or develop novel ones that target diseases commonly associated with aging.
Collapse
Affiliation(s)
- Taylor A Stowe
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Correspondence: Colleen A McClung, Email
| |
Collapse
|
58
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
59
|
Morioka E, Miyamoto T, Tamogami S, Koketsu T, Kim J, Yoshikawa T, Mochizuki T, Ikeda M. Action potential firing rhythms in the suprachiasmatic nucleus of the diurnal grass rat, Arvicanthis niloticus. Neurosci Lett 2023; 792:136954. [PMID: 36347340 DOI: 10.1016/j.neulet.2022.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
In mammals, daily physiological activities are regulated by a central circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Recently, an increasing number of studies have used diurnal grass rats to analyze neuronal mechanisms regulating diurnal behavior. However, spontaneous action potential firing rhythms in SCN neurons have not been demonstrated clearly in diurnal grass rats. Therefore, the present study examined extracellular single-unit recordings from SCN neurons in acute hypothalamic slices of Arvicanthis niloticus (Nile grass rats). The results of this study found that circadian firing rhythms with the highest frequency occurred at dusk (6.4 Hz at zeitgeber time (ZT)10-12), while the secondary peak occurred at dawn (5.6 Hz at ZT0-2), and the lowest frequency took place in the middle of the night (3.6 Hz at ZT14-16). Locomotor activity recordings from a separate group of animals demonstrated that the Nile grass rats of the laboratory colony used in this study displayed diurnal behaviors that coincided with large crepuscular peaks under 12:12 h light-dark cycles and bimodal rhythms under constant dim red light. Thus, a positive correlation between SCN firing frequencies and locomotor activity levels was observed in the Nile grass rats. Previously, behavioral coupling of action potential firings in SCN neurons has been suggested by in vivo recordings while the present study demonstrates that the sustenance of bimodal firing rhythms in grass rat SCN neurons can last at least one day in vitro.
Collapse
Affiliation(s)
- Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Tsubasa Miyamoto
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Sakura Tamogami
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Takahiro Koketsu
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Juhyon Kim
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Tomoko Yoshikawa
- Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| | - Takatoshi Mochizuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Masayuki Ikeda
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan; Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
60
|
Vasopressin as a Possible Link between Sleep-Disturbances and Memory Problems. Int J Mol Sci 2022; 23:ijms232415467. [PMID: 36555107 PMCID: PMC9778878 DOI: 10.3390/ijms232415467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Normal biological rhythms, including sleep, are very important for a healthy life and their disturbance may induce-among other issues-memory impairment, which is a key problem of many psychiatric pathologies. The major brain center of circadian regulation is the suprachiasmatic nucleus, and vasopressin (AVP), which is one of its main neurotransmitters, also plays a key role in memory formation. In this review paper, we aimed to summarize our knowledge on the vasopressinergic connection between sleep and memory with the help of the AVP-deficient Brattleboro rat strain. These animals have EEG disturbances with reduced sleep and impaired memory-boosting theta oscillation and show memory impairment in parallel. Based upon human and animal data measuring AVP levels, haplotypes, and the administration of AVP or its agonist or antagonist via different routes (subcutaneous, intraperitoneal, intracerebroventricular, or intranasal), V1a receptors (especially of hippocampal origin) were implicated in the sleep-memory interaction. All in all, the presented data confirm the possible connective role of AVP between biological rhythms and memory formation, thus, supporting the importance of AVP in several psychopathological conditions.
Collapse
|
61
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shiftwork. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
62
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shift work. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
63
|
Tripp EA, Fu F, Pauls SD. Evolutionary Kuramoto dynamics. Proc Biol Sci 2022; 289:20220999. [PMID: 36350204 PMCID: PMC9653234 DOI: 10.1098/rspb.2022.0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Biological systems have a variety of time-keeping mechanisms ranging from molecular clocks within cells to a complex interconnected unit across an entire organism. The suprachiasmatic nucleus, comprising interconnected oscillatory neurons, serves as a master-clock in mammals. The ubiquity of such systems indicates an evolutionary benefit that outweighs the cost of establishing and maintaining them, but little is known about the process of evolutionary development. To begin to address this shortfall, we introduce and analyse a new evolutionary game theoretic framework modelling the behaviour and evolution of systems of coupled oscillators. Each oscillator is characterized by a pair of dynamic behavioural dimensions, a phase and a communication strategy, along which evolution occurs. We measure success of mutations by comparing the benefit of synchronization balanced against the cost of connections between the oscillators. Despite the simple set-up, this model exhibits non-trivial behaviours mimicking several different classical games—the Prisoner’s Dilemma, snowdrift games, coordination games—as the landscape of the oscillators changes over time. Across many situations, we find a surprisingly simple characterization of synchronization through connectivity and communication: if the benefit of synchronization is greater than twice the cost, the system will evolve towards complete communication and phase synchronization.
Collapse
Affiliation(s)
- Elizabeth A. Tripp
- Department of Mathematics, Sacred Heart University, Fairfield, CT 06825, USA
| | - Feng Fu
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Scott D. Pauls
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
64
|
Lu Q, Kim JY. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 2022; 289:6589-6604. [PMID: 34657394 DOI: 10.1111/febs.16233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
The brain has a complex structure composed of hundreds of regions, forming networks to cooperate body functions. Therefore, understanding how various brain regions communicate with each other and with peripheral organs is important to understand human physiology. The suprachiasmatic nucleus (SCN) in the brain is the circadian pacemaker. The SCN receives photic information from the environment and conveys this to other parts of the brain and body to synchronize all circadian clocks. The circadian clock is an endogenous oscillator that generates daily rhythms in metabolism and physiology in almost all cells via a conserved transcriptional-translational negative feedback loop. So, the information flow from the environment to the SCN to other tissues synchronizes locally distributed circadian clocks to maintain homeostasis. Thus, understanding the circadian networks and how they adjust to environmental changes will better understand human physiology. This review will focus on circadian networks mediated by the SCN to understand how the environment, brain, and peripheral tissues form networks for cooperation.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Tung Foundation Biomedical Sciences Centre, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
65
|
Du X, Cui Z, Ning Z, Deng X, Amevor FK, Shu G, Wang X, Zhang Z, Tian Y, Zhu Q, Wang Y, Li D, Zhang Y, Zhao X. Circadian miR-218-5p targets gene CA2 to regulate uterine carbonic anhydrase activity during egg shell calcification. Poult Sci 2022; 101:102158. [PMID: 36167021 PMCID: PMC9513254 DOI: 10.1016/j.psj.2022.102158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in regulating the circadian clock. In our previous work, miR-218-5p was found to be a circadian miRNA in the chicken uterus, but its role in the eggshell formation process was not clear. In the present study, we found that the expression levels of miR-218-5p and two 2 predicted target genes carbonic anhydrase 2 (CA2) and neuronal PAS domain protein 2 (NPAS2) were oscillated in the chicken uterus. The results of dual-luciferase reporter gene assays in the present study demonstrated that miR-218-5p directly targeted the 3' untranslated regions of CA2 and NPAS2. miR-218-5p showed an opposite expression profile to CA2 within a 24 h cycle in the chicken uterus. Moreover, over-expression of miR-218-5p reduced the mRNA and protein expression of CA2, while miR-218-5p knockdown increased CA2 mRNA and protein expression. Overexpression of CA2 also significantly increased the activity of carbonic anhydrase Ⅱ (P < 0.05), whereas knockdown of CA2 decreased the activity of carbonic anhydrase Ⅱ. miR-218-5p influenced carbonic anhydrase activity via regulating the expression of CA2. These results demonstrated that clock-controlled miR-218-5p regulates carbonic anhydrase activity in the chicken uterus by targeting CA2 during eggshell formation.
Collapse
Affiliation(s)
- Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xiaoqi Wang
- Agriculture and Animal Husbandry Comprehensive Service Center, Tibet Autonomous Region, P. R. China
| | - Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China.
| |
Collapse
|
66
|
Morimoto T, Yoshikawa T, Nagano M, Shigeyoshi Y. Regionality of short and long period oscillators in the suprachiasmatic nucleus and their manner of synchronization. PLoS One 2022; 17:e0276372. [PMID: 36256675 PMCID: PMC9578605 DOI: 10.1371/journal.pone.0276372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
In mammals, the center of the circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Many studies have suggested that there are multiple regions generating different circadian periods within the SCN, but the exact localization of the regions has not been elucidated. In this study, using a transgenic rat carrying a destabilized luciferase reporter gene driven by a regulatory element of Per2 gene (Per2::dLuc), we investigated the regional variation of period lengths in horizontal slices of the SCN. We revealed a distinct caudal medial region (short period region, SPR) and a rostro-lateral region (long period region, LPR) that generate circadian rhythms with periods shorter than and longer than 24 hours, respectively. We also found that the core region of the SCN marked by dense VIP (vasoactive intestinal peptide) mRNA-expressing neurons covered a part of LPR, and that the shell region of the SCN contains both SPR and the rest of the LPR. Furthermore, we observed how synchronization is achieved between regions generating distinct circadian periods in the SCN. We found that the longer circadian rhythm of the rostral region appears to entrain the circadian rhythm in the caudal region. Our findings clarify the localization of regionality of circadian periods and the mechanism by which the integrated circadian rhythm is formed in the SCN.
Collapse
Affiliation(s)
- Tadamitsu Morimoto
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Tomoko Yoshikawa
- Organization for International Education and Exchange, University of Toyama, Toyama, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan,* E-mail:
| |
Collapse
|
67
|
Gao F, Ma J, Yu YQ, Gao XF, Bai Y, Sun Y, Liu J, Liu X, Barry DM, Wilhelm S, Piccinni-Ash T, Wang N, Liu D, Ross RA, Hao Y, Huang X, Jia JJ, Yang Q, Zheng H, van Nispen J, Chen J, Li H, Zhang J, Li YQ, Chen ZF. A non-canonical retina-ipRGCs-SCN-PVT visual pathway for mediating contagious itch behavior. Cell Rep 2022; 41:111444. [PMID: 36198265 PMCID: PMC9595067 DOI: 10.1016/j.celrep.2022.111444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Contagious itch behavior informs conspecifics of adverse environment and is crucial for the survival of social animals. Gastrin-releasing peptide (GRP) and its receptor (GRPR) in the suprachiasmatic nucleus (SCN) of the hypothalamus mediates contagious itch behavior in mice. Here, we show that intrinsically photosensitive retina ganglion cells (ipRGCs) convey visual itch information, independently of melanopsin, from the retina to GRP neurons via PACAP-PAC1R signaling. Moreover, GRPR neurons relay itch information to the paraventricular nucleus of the thalamus (PVT). Surprisingly, neither the visual cortex nor superior colliculus is involved in contagious itch. In vivo calcium imaging and extracellular recordings reveal contagious itch-specific neural dynamics of GRPR neurons. Thus, we propose that the retina-ipRGC-SCN-PVT pathway constitutes a previously unknown visual pathway that probably evolved for motion vision that encodes salient environmental cues and enables animals to imitate behaviors of conspecifics as an anticipatory mechanism to cope with adverse conditions. It has been shown that GRP-GRPR neuropeptide signaling in the SCN is important for contagious itch behavior in mice. Gao et al. find that SCN-projecting ipRGCs are sufficient to relay itch information from the retina to the SCN by releasing neuropeptide PACAP to activate the GRP-GRPR pathway.
Collapse
Affiliation(s)
- Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun Ma
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yao-Qing Yu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, P. R. China
| | - Xiao-Fei Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, P. R. China
| | - Yang Bai
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China,Present address: Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110016, P. R. China
| | - Yi Sun
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China,Present address: Binzhou Medical University, Yantai 264003, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xianyu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devin M. Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tyler Piccinni-Ash
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Na Wang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Dongyang Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Pain Management, the State Key Clinical Specialty in Pain Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P.R. China
| | - Rachel A. Ross
- Department of Neuroscience, Psychiatry and Medicine, Albert Einstein College of Medicine Rose F. Kennedy Center, Bronx, NY, USA
| | - Yan Hao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Department of Pediatrics, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xu Huang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Jin-Jing Jia
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: College of Life Sciences, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Zheng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Johan van Nispen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, P. R. China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead contact,Correspondence:
| |
Collapse
|
68
|
Abdalla OHMH, Mascarenhas B, Cheng HYM. Death of a Protein: The Role of E3 Ubiquitin Ligases in Circadian Rhythms of Mice and Flies. Int J Mol Sci 2022; 23:ijms231810569. [PMID: 36142478 PMCID: PMC9502492 DOI: 10.3390/ijms231810569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian clocks evolved to enable organisms to anticipate and prepare for periodic environmental changes driven by the day–night cycle. This internal timekeeping mechanism is built on autoregulatory transcription–translation feedback loops that control the rhythmic expression of core clock genes and their protein products. The levels of clock proteins rise and ebb throughout a 24-h period through their rhythmic synthesis and destruction. In the ubiquitin–proteasome system, the process of polyubiquitination, or the covalent attachment of a ubiquitin chain, marks a protein for degradation by the 26S proteasome. The process is regulated by E3 ubiquitin ligases, which recognize specific substrates for ubiquitination. In this review, we summarize the roles that known E3 ubiquitin ligases play in the circadian clocks of two popular model organisms: mice and fruit flies. We also discuss emerging evidence that implicates the N-degron pathway, an alternative proteolytic system, in the regulation of circadian rhythms. We conclude the review with our perspectives on the potential for the proteolytic and non-proteolytic functions of E3 ubiquitin ligases within the circadian clock system.
Collapse
Affiliation(s)
- Osama Hasan Mustafa Hasan Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Brittany Mascarenhas
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence:
| |
Collapse
|
69
|
Tsao A, Yousefzadeh SA, Meck WH, Moser MB, Moser EI. The neural bases for timing of durations. Nat Rev Neurosci 2022; 23:646-665. [PMID: 36097049 DOI: 10.1038/s41583-022-00623-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Durations are defined by a beginning and an end, and a major distinction is drawn between durations that start in the present and end in the future ('prospective timing') and durations that start in the past and end either in the past or the present ('retrospective timing'). Different psychological processes are thought to be engaged in each of these cases. The former is thought to engage a clock-like mechanism that accurately tracks the continuing passage of time, whereas the latter is thought to engage a reconstructive process that utilizes both temporal and non-temporal information from the memory of past events. We propose that, from a biological perspective, these two forms of duration 'estimation' are supported by computational processes that are both reliant on population state dynamics but are nevertheless distinct. Prospective timing is effectively carried out in a single step where the ongoing dynamics of population activity directly serve as the computation of duration, whereas retrospective timing is carried out in two steps: the initial generation of population state dynamics through the process of event segmentation and the subsequent computation of duration utilizing the memory of those dynamics.
Collapse
Affiliation(s)
- Albert Tsao
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - May-Britt Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
70
|
Tang M, Cao LH, Yang T, Ma SX, Jing BY, Xiao N, Xu S, Leng KR, Yang D, Li MT, Luo DG. An extra-clock ultradian brain oscillator sustains circadian timekeeping. SCIENCE ADVANCES 2022; 8:eabo5506. [PMID: 36054358 PMCID: PMC10848952 DOI: 10.1126/sciadv.abo5506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The master circadian clock generates 24-hour rhythms to orchestrate daily behavior, even running freely under constant conditions. Traditionally, the master clock is considered self-sufficient in sustaining free-running timekeeping via its cell-autonomous molecular clocks and interneuronal communications within the circadian neural network. Here, we find a set of bona fide ultradian oscillators in the Drosophila brain that support free-running timekeeping, despite being located outside the master clock circuit and lacking clock gene expression. These extra-clock electrical oscillators (xCEOs) generate cell-autonomous ultradian bursts, pacing widespread burst firing and promoting rhythmic resting membrane potentials in clock neurons via parallel monosynaptic connections. Silencing xCEOs disrupts daily electrical rhythms in clock neurons and impairs cycling of neuropeptide pigment dispersing factor, leading to the loss of free-running locomotor rhythms. Together, we conclude that the master clock is not self-sufficient to sustain free-running behavior rhythms but requires additional endogenous inputs to the clock from the extra-clock ultradian brain oscillators.
Collapse
Affiliation(s)
- Min Tang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
- PTN Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Hui Cao
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Tian Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Si-Xing Ma
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Bi-Yang Jing
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Na Xiao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuang Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Kang-Rui Leng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Meng-Tong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
71
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
72
|
Kauffman AS. Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Front Neurosci 2022; 16:953252. [PMID: 35968365 PMCID: PMC9364933 DOI: 10.3389/fnins.2022.953252] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023] Open
Abstract
A fundamental principle in reproductive neuroendocrinology is sex steroid feedback: steroid hormones secreted by the gonads circulate back to the brain to regulate the neural circuits governing the reproductive neuroendocrine axis. These regulatory feedback loops ultimately act to modulate gonadotropin-releasing hormone (GnRH) secretion, thereby affecting gonadotropin secretion from the anterior pituitary. In females, rising estradiol (E2) during the middle of the menstrual (or estrous) cycle paradoxically "switch" from being inhibitory on GnRH secretion ("negative feedback") to stimulating GnRH release ("positive feedback"), resulting in a surge in GnRH secretion and a downstream LH surge that triggers ovulation. While upstream neural afferents of GnRH neurons, including kisspeptin neurons in the rostral hypothalamus, are proposed as critical loci of E2 feedback action, the underlying mechanisms governing the shift between E2 negative and positive feedback are still poorly understood. Indeed, the precise cell targets, neural signaling factors and receptors, hormonal pathways, and molecular mechanisms by which ovarian-derived E2 indirectly stimulates GnRH surge secretion remain incompletely known. In many species, there is also a circadian component to the LH surge, restricting its occurrence to specific times of day, but how the circadian clock interacts with endocrine signals to ultimately time LH surge generation also remains a major gap in knowledge. Here, we focus on classic and recent data from rodent models and discuss the consensus knowledge of the neural players, including kisspeptin, the suprachiasmatic nucleus, and glia, as well as endocrine players, including estradiol and progesterone, in the complex regulation and generation of E2-induced LH surges in females.
Collapse
|
73
|
Kim H, Min C, Jeong B, Lee KJ. Deciphering clock cell network morphology within the biological master clock, suprachiasmatic nucleus: From the perspective of circadian wave dynamics. PLoS Comput Biol 2022; 18:e1010213. [PMID: 35666776 PMCID: PMC9203024 DOI: 10.1371/journal.pcbi.1010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/16/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The biological master clock, suprachiasmatic nucleus (of rat and mouse), is composed of ~10,000 clock cells which are heterogeneous with respect to their circadian periods. Despite this inhomogeneity, an intact SCN maintains a very good degree of circadian phase (time) coherence which is vital for sustaining various circadian rhythmic activities, and it is supposedly achieved by not just one but a few different cell-to-cell coupling mechanisms, among which action potential (AP)-mediated connectivity is known to be essential. But, due to technical difficulties and limitations in experiments, so far very little information is available about the morphology of the connectivity at a cellular scale. Building upon this limited amount of information, here we exhaustively and systematically explore a large pool (~25,000) of various network morphologies to come up with some plausible network features of SCN networks. All candidates under consideration reflect an experimentally obtained 'indegree distribution' as well as a 'physical range distribution of afferent clock cells.' Then, importantly, with a set of multitude criteria based on the properties of SCN circadian phase waves in extrinsically perturbed as well as in their natural states, we select out appropriate model networks: Some important measures are, 1) level of phase dispersal and direction of wave propagation, 2) phase-resetting ability of the model networks subject to external circadian forcing, and 3) decay rate of perturbation induced "phase-singularities." The successful, realistic networks have several common features: 1) "indegree" and "outdegree" should have a positive correlation; 2) the cells in the SCN ventrolateral region (core) have a much larger total degree than that of the dorsal medial region (shell); 3) The number of intra-core edges is about 7.5 times that of intra-shell edges; and 4) the distance probability density function for the afferent connections fits well to a beta function. We believe that these newly identified network features would be a useful guide for future explorations on the very much unknown AP-mediated clock cell connectome within the SCN.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Physics, Korea University, Seoul, Korea
| | - Cheolhong Min
- Department of Physics, Korea University, Seoul, Korea
| | - Byeongha Jeong
- University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kyoung J. Lee
- Department of Physics, Korea University, Seoul, Korea
| |
Collapse
|
74
|
Damato AR, Herzog ED. Circadian clock synchrony and chronotherapy opportunities in cancer treatment. Semin Cell Dev Biol 2022; 126:27-36. [PMID: 34362656 PMCID: PMC8810901 DOI: 10.1016/j.semcdb.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 07/27/2021] [Indexed: 01/29/2023]
Abstract
Cell-autonomous, tissue-specific circadian rhythms in gene expression and cellular processes have been observed throughout the human body. Disruption of daily rhythms by mistimed exposure to light, food intake, or genetic mutation has been linked to cancer development. Some medications are also more effective at certain times of day. However, a limited number of clinical studies have examined daily rhythms in the patient or drug timing as treatment strategies. This review highlights advances and challenges in cancer biology as a function of time of day. Recent evidence for daily rhythms and their entrainment in tumors indicate that personalized medicine should include understanding and accounting for daily rhythms in cancer patients.
Collapse
Affiliation(s)
- Anna R Damato
- Department of Biology, Washington University, Box 1137, St. Louis, MO 63130, USA
| | - Erik D Herzog
- Department of Biology, Washington University, Box 1137, St. Louis, MO 63130, USA.
| |
Collapse
|
75
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
76
|
Greiner P, Houdek P, Sládek M, Sumová A. Early rhythmicity in the fetal suprachiasmatic nuclei in response to maternal signals detected by omics approach. PLoS Biol 2022; 20:e3001637. [PMID: 35609026 PMCID: PMC9129005 DOI: 10.1371/journal.pbio.3001637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
The suprachiasmatic nuclei (SCN) of the hypothalamus harbor the central clock of the circadian system, which gradually matures during the perinatal period. In this study, time-resolved transcriptomic and proteomic approaches were used to describe fetal SCN tissue-level rhythms before rhythms in clock gene expression develop. Pregnant rats were maintained in constant darkness and had intact SCN, or their SCN were lesioned and behavioral rhythm was imposed by temporal restriction of food availability. Model-selecting tools dryR and CompareRhythms identified sets of genes in the fetal SCN that were rhythmic in the absence of the fetal canonical clock. Subsets of rhythmically expressed genes were assigned to groups of fetuses from mothers with either intact or lesioned SCN, or both groups. Enrichment analysis for GO terms and signaling pathways revealed that neurodevelopment and cell-to-cell signaling were significantly enriched within the subsets of genes that were rhythmic in response to distinct maternal signals. The findings discovered a previously unexpected breadth of rhythmicity in the fetal SCN at a developmental stage when the canonical clock has not yet developed at the tissue level and thus likely represents responses to rhythmic maternal signals.
Collapse
Affiliation(s)
- Philipp Greiner
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
77
|
Ono D. Neural circuits in the central circadian clock and their regulation of sleep and wakefulness in mammals ☆. Neurosci Res 2022; 182:1-6. [PMID: 35597406 DOI: 10.1016/j.neures.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Circadian rhythms are defined as approximately 24-hour oscillations in physiology and behavior. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is known as the central circadian clock. Based on current understanding, circadian rhythms are believed to be generated by transcription-translation feedback loops (TTFL) involving several clock genes and their protein products. However, several studies have shown that circadian oscillation in single SCN cells is still detectable in several clock gene deficient mice. These results suggest that there might be some oscillatory mechanisms without TTFL in mammalian cells. Other important aspects of circadian rhythms include neuronal circuits in the brain that regulate timing of physiological functions. Especially, functional output pathways from the SCN that regulate sleep and wakefulness have not been identified. In this review, I describe recent findings on circadian rhythm in the SCN, and of neuronal mechanisms that control circadian clock regulated sleep and wakefulness in mice.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
78
|
Morioka E, Kasuga Y, Kanda Y, Moritama S, Koizumi H, Yoshikawa T, Miura N, Ikeda M, Higashida H, Holmes TC, Ikeda M. Mitochondrial LETM1 drives ionic and molecular clock rhythms in circadian pacemaker neurons. Cell Rep 2022; 39:110787. [PMID: 35545046 DOI: 10.1016/j.celrep.2022.110787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
The mechanisms that generate robust ionic oscillation in circadian pacemaker neurons are under investigation. Here, we demonstrate critical functions of the mitochondrial cation antiporter leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1), which exchanges K+/H+ in Drosophila and Ca2+/H+ in mammals, in circadian pacemaker neurons. Letm1 knockdown in Drosophila pacemaker neurons reduced circadian cytosolic H+ rhythms and prolonged nuclear PERIOD/TIMELESS expression rhythms and locomotor activity rhythms. In rat pacemaker neurons in the hypothalamic suprachiasmatic nucleus (SCN), circadian rhythms in cytosolic Ca2+ and Bmal1 transcription were dampened by Letm1 knockdown. Mitochondrial Ca2+ uptake peaks late during the day were also observed in rat SCN neurons following photolytic elevation of cytosolic Ca2+. Since cation transport by LETM1 is coupled to mitochondrial energy synthesis, we propose that LETM1 integrates metabolic, ionic, and molecular clock rhythms in the central clock system in both invertebrates and vertebrates.
Collapse
Affiliation(s)
- Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Yusuke Kasuga
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Yuzuki Kanda
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Saki Moritama
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Hayato Koizumi
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Tomoko Yoshikawa
- Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan
| | - Nobuhiko Miura
- Department of Health Medicine, Yokohama University of Pharmacy, Yokohama, Kanagawa 245-0061, Japan
| | - Masaaki Ikeda
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Ishikawa 920-8640, Japan
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Masayuki Ikeda
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan; Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
79
|
Hoyt KR, Obrietan K. Circadian clocks, cognition, and Alzheimer's disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener 2022; 17:35. [PMID: 35525980 PMCID: PMC9078023 DOI: 10.1186/s13024-022-00537-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Modulation of basic biochemical and physiological processes by the circadian timing system is now recognized as a fundamental feature of all mammalian organ systems. Within the central nervous system, these clock-modulating effects are reflected in some of the most complex behavioral states including learning, memory, and mood. How the clock shapes these behavioral processes is only now beginning to be realized. In this review we describe recent findings regarding the complex set of cellular signaling events, including kinase pathways, gene networks, and synaptic circuits that are under the influence of the clock timing system and how this, in turn, shapes cognitive capacity over the circadian cycle. Further, we discuss the functional roles of the master circadian clock located in the suprachiasmatic nucleus, and peripheral oscillator populations within cortical and limbic circuits, in the gating of synaptic plasticity and memory over the circadian cycle. These findings are then used as the basis to discuss the connection between clock dysregulation and cognitive impairments resulting from Alzheimer's disease (AD). In addition, we discuss the conceptually novel idea that in AD, there is a selective disruption of circadian timing within cortical and limbic circuits, and that it is the disruption/desynchronization of these regions from the phase-entraining effects of the SCN that underlies aspects of the early- and mid-stage cognitive deficits in AD. Further, we discuss the prospect that the disruption of circadian timing in AD could produce a self-reinforcing feedback loop, where disruption of timing accelerates AD pathogenesis (e.g., amyloid deposition, oxidative stress and cell death) that in turn leads to a further disruption of the circadian timing system. Lastly, we address potential therapeutic approaches that could be used to strengthen cellular timing networks and, in turn, how these approaches could be used to improve cognitive capacity in Alzheimer's patients.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, 412 Riffe Building, 12th Ave, Columbus, OH, 43210, USA.
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
80
|
Recurrent circadian circuitry regulates central brain activity to maintain sleep. Neuron 2022; 110:2139-2154.e5. [PMID: 35525241 DOI: 10.1016/j.neuron.2022.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
Abstract
Animal brains have discrete circadian neurons, but little is known about how they are coordinated to influence and maintain sleep. Here, through a systematic optogenetic screening, we identified a subtype of uncharacterized circadian DN3 neurons that is strongly sleep promoting in Drosophila. These anterior-projecting DN3s (APDN3s) receive signals from DN1 circadian neurons and then output to newly identified noncircadian "claw" neurons (CLs). CLs have a daily Ca2+ cycle, which peaks at night and correlates with DN1 and DN3 Ca2+ cycles. The CLs feedback onto a subset of DN1s to form a positive recurrent loop that maintains sleep. Using trans-synaptic photoactivatable green fluorescent protein (PA-GFP) tracing and functional in vivo imaging, we demonstrated that the CLs drive sleep by interacting with and releasing acetylcholine onto the mushroom body γ lobe. Taken together, the data identify a novel self-reinforcing loop within the circadian network and a new sleep-promoting neuropile that are both essential for maintaining normal sleep.
Collapse
|
81
|
Zou C, Mei X, Li X, Hu J, Xu T, Zheng C. Effect of light therapy on delirium in older patients with Alzheimer's disease-related dementia. J Psychiatr Res 2022; 149:124-127. [PMID: 35272209 DOI: 10.1016/j.jpsychires.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
Abstract
Light therapy has been used as a non-pharmacologic treatment to modulate biorhythms in patients with mental and psychological conditions. These conditions include affective disorders and depression. Delirium is a syndrome characterized by an acute change in a patient's mental status. We hypothesized that light therapy might suppress delirium in patients with Alzheimer's disease (AD). A 4-week randomized controlled trial was conducted in which AD participants were randomly assigned to a treatment group or a control group. Delirium, defined by the Confusion Assessment Method (CAM), was evaluated at baseline and after 4 weeks. The Neuropsychiatric Inventory (NPI) and Zarit Caregiver Burden Interview (ZBI) were also conducted to assess the behavior of patients and the burden of their caregivers. For this study, 61 participants were initially recruited. A total of 34 and 27 participants were included in the treatment and control groups, respectively. After treatment with light therapy, the CAM score decreased during the second and fourth week. The NPI score in the therapy group also decreased during the second and fourth week. From the caregiver's perspective, after light therapy, the ZBI score significantly decreased during the second and fourth week. Compared with the control group, patients who underwent CAM and NPI assessments showed a small but significant improvement after 4 weeks of light therapy. In conclusion, a course of 4-week light therapy significantly suppressed delirium in patients with AD. The combined effects of light therapy and conventional treatment were superior to that of conventional treatment alone.
Collapse
Affiliation(s)
- Chenjun Zou
- Department of Geriatric, Ningbo Kangning Hospital, Zhuangyu South Road 1#, Zhenhai District, Ningbo City, Zhejiang Province, 315200, China.
| | - Xi Mei
- Key Lab of Sleep Medicine, Ningbo Kangning Hospital, Zhuangyu South Road 1#, Zhenhai District, Ningbo City, Zhejiang Province, 315200, China.
| | - Xingxing Li
- Key Lab of Sleep Medicine, Ningbo Kangning Hospital, Zhuangyu South Road 1#, Zhenhai District, Ningbo City, Zhejiang Province, 315200, China.
| | - Jun Hu
- Department of Geriatric, Ningbo Kangning Hospital, Zhuangyu South Road 1#, Zhenhai District, Ningbo City, Zhejiang Province, 315200, China.
| | - Ting Xu
- Department of Geriatric, Ningbo Kangning Hospital, Zhuangyu South Road 1#, Zhenhai District, Ningbo City, Zhejiang Province, 315200, China.
| | - Chengying Zheng
- Department of Geriatric, Ningbo Kangning Hospital, Zhuangyu South Road 1#, Zhenhai District, Ningbo City, Zhejiang Province, 315200, China.
| |
Collapse
|
82
|
Liang X, Holy TE, Taghert PH. Circadian pacemaker neurons display cophasic rhythms in basal calcium level and in fast calcium fluctuations. Proc Natl Acad Sci U S A 2022; 119:e2109969119. [PMID: 35446620 PMCID: PMC9173584 DOI: 10.1073/pnas.2109969119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Circadian pacemaker neurons in the Drosophila brain display daily rhythms in the levels of intracellular calcium. These calcium rhythms are driven by molecular clocks and are required for normal circadian behavior. To study their biological basis, we employed genetic manipulations in conjunction with improved methods of in vivo light-sheet microscopy to measure calcium dynamics in individual pacemaker neurons over complete 24-h durations at sampling frequencies as high as 5 Hz. This technological advance unexpectedly revealed cophasic daily rhythms in basal calcium levels and in high-frequency calcium fluctuations. Further, we found that the rhythms of basal calcium levels and of fast calcium fluctuations reflect the activities of two proteins that mediate distinct forms of calcium fluxes. One is the inositol trisphosphate receptor (ITPR), a channel that mediates calcium fluxes from internal endoplasmic reticulum calcium stores, and the other is a T-type voltage-gated calcium channel, which mediates extracellular calcium influx. These results suggest that Drosophila molecular clocks regulate ITPR and T-type channels to generate two distinct but coupled rhythms in basal calcium and in fast calcium fluctuations. We propose that both internal and external calcium fluxes are essential for circadian pacemaker neurons to provide rhythmic outputs and thereby, regulate the activities of downstream brain centers.
Collapse
Affiliation(s)
- Xitong Liang
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
| | - Timothy E. Holy
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
| | - Paul H. Taghert
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
83
|
Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci 2022; 23:ijms23094599. [PMID: 35562990 PMCID: PMC9103574 DOI: 10.3390/ijms23094599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep and wakefulness are basic behavioral states that require coordination between several brain regions, and they involve multiple neurochemical systems, including neuropeptides. Neuropeptides are a group of peptides produced by neurons and neuroendocrine cells of the central nervous system. Like traditional neurotransmitters, neuropeptides can bind to specific surface receptors and subsequently regulate neuronal activities. For example, orexin is a crucial component for the maintenance of wakefulness and the suppression of rapid eye movement (REM) sleep. In addition to orexin, melanin-concentrating hormone, and galanin may promote REM sleep. These results suggest that neuropeptides play an important role in sleep–wake regulation. These neuropeptides can be divided into three categories according to their effects on sleep–wake behaviors in rodents and humans. (i) Galanin, melanin-concentrating hormone, and vasoactive intestinal polypeptide are sleep-promoting peptides. It is also noticeable that vasoactive intestinal polypeptide particularly increases REM sleep. (ii) Orexin and neuropeptide S have been shown to induce wakefulness. (iii) Neuropeptide Y and substance P may have a bidirectional function as they can produce both arousal and sleep-inducing effects. This review will introduce the distribution of various neuropeptides in the brain and summarize the roles of different neuropeptides in sleep–wake regulation. We aim to lay the foundation for future studies to uncover the mechanisms that underlie the initiation, maintenance, and end of sleep–wake states.
Collapse
|
84
|
Jiménez A, Lu Y, Jambhekar A, Lahav G. Principles, mechanisms and functions of entrainment in biological oscillators. Interface Focus 2022; 12:20210088. [PMID: 35450280 PMCID: PMC9010850 DOI: 10.1098/rsfs.2021.0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Entrainment is a phenomenon in which two oscillators interact with each other, typically through physical or chemical means, to synchronize their oscillations. This phenomenon occurs in biology to coordinate processes from the molecular to organismal scale. Biological oscillators can be entrained within a single cell, between cells or to an external input. Using six illustrative examples of entrainable biological oscillators, we discuss the distinctions between entrainment and synchrony and explore features that contribute to a system's propensity to entrain. Entrainment can either enhance or reduce the heterogeneity of oscillations within a cell population, and we provide examples and mechanisms of each case. Finally, we discuss the known functions of entrainment and discuss potential functions from an evolutionary perspective.
Collapse
Affiliation(s)
- Alba Jiménez
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ying Lu
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| |
Collapse
|
85
|
|
86
|
Schellinger JN, Sun Q, Pleinis JM, An SW, Hu J, Mercenne G, Titos I, Huang CL, Rothenfluh A, Rodan AR. Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade. Curr Biol 2022; 32:1429-1438.e6. [PMID: 35303418 PMCID: PMC8972083 DOI: 10.1016/j.cub.2022.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/02/2021] [Accepted: 03/04/2022] [Indexed: 12/21/2022]
Abstract
Central pacemaker neurons regulate circadian rhythms and undergo diurnal variation in electrical activity in mammals and flies.1,2 Circadian variation in the intracellular chloride concentration of mammalian pacemaker neurons has been proposed to influence the response to GABAergic neurotransmission through GABAA receptor chloride channels.3 However, results have been contradictory,4-9 and a recent study demonstrated circadian variation in pacemaker neuron chloride without an effect on GABA response.10 Therefore, whether and how intracellular chloride regulates circadian rhythms remains controversial. Here, we demonstrate a signaling role for intracellular chloride in the Drosophila small ventral lateral (sLNv) pacemaker neurons. In control flies, intracellular chloride increases in sLNvs over the course of the morning. Chloride transport through sodium-potassium-2-chloride (NKCC) and potassium-chloride (KCC) cotransporters is a major determinant of intracellular chloride concentrations.11Drosophila melanogaster with loss-of-function mutations in the NKCC encoded by Ncc69 have abnormally low intracellular chloride 6 h after lights on, loss of morning anticipation, and a prolonged circadian period. Loss of kcc, which is expected to increase intracellular chloride, suppresses the long-period phenotype of Ncc69 mutant flies. Activation of a chloride-inhibited kinase cascade, consisting of WNK (with no lysine [K]) kinase and its downstream substrate, Fray, is necessary and sufficient to prolong period length. Fray activation of an inwardly rectifying potassium channel, Irk1, is also required for the long-period phenotype. These results indicate that the NKCC-dependent rise in intracellular chloride in Drosophila sLNv pacemakers restrains WNK-Fray signaling and overactivation of an inwardly rectifying potassium channel to maintain normal circadian period length.
Collapse
Affiliation(s)
- Jeffrey N Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Qifei Sun
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Sung-Wan An
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jianrui Hu
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Gaëlle Mercenne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Adrian Rothenfluh
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT 84148, USA.
| |
Collapse
|
87
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
88
|
Hung CJ, Yamanaka A, Ono D. Conditional Knockout of Bmal1 in Corticotropin-Releasing Factor Neurons Does Not Alter Sleep–Wake Rhythm in Mice. Front Neurosci 2022; 15:808754. [PMID: 35250437 PMCID: PMC8894318 DOI: 10.3389/fnins.2021.808754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
Sleep and wakefulness are regulated by both the homeostatic mechanism and circadian clock. In mammals, the central circadian clock, the suprachiasmatic nucleus, in the hypothalamus plays a crucial role in the timing of physiology and behavior. Recently, we found that the circadian regulation of wakefulness was transmitted via corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus to orexin neurons in the lateral hypothalamus. However, it is still unclear how the molecular clock in the CRF neurons contributes to the regulation of sleep and wakefulness. In the present study, we established CRF neuron-specific Bmal1-deficient mice and measured locomotor activity or electroencephalography and electromyography. We found that these mice showed normal circadian locomotor activity rhythms in both light–dark cycle and constant darkness. Furthermore, they showed normal daily patterns of sleep and wakefulness. These results suggest that Bmal1 in CRF neurons has no effect on either circadian locomotor activity or sleep and wakefulness.
Collapse
Affiliation(s)
- Chi Jung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- *Correspondence: Daisuke Ono,
| |
Collapse
|
89
|
Zhang S, Feng X. Effect of 17β-trenbolone exposure during adolescence on the circadian rhythm in male mice. CHEMOSPHERE 2022; 288:132496. [PMID: 34627821 DOI: 10.1016/j.chemosphere.2021.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The suprachiasmatic nucleus (SCN) is the main control area of the clock rhythm in the mammalian brain. It drives daily behaviours and rhythms by synchronizing or suppressing the oscillations of clock genes in peripheral tissue. It is an important brain tissue structure that affects rhythm stability. SCN has high plasticity and is easily affected by the external environment. In this experiment, we found that exposure to the endocrine disruptor 17β-trenbolone (17β-TBOH) affects the rhythmic function of SCN in the brains of adolescent male balb/c mice. Behavioural results showed that exposure to 17β-TBOH disrupted daily activity-rest rhythms, reduced the robustness of endogenous rhythms, altered sleep-wake-related behaviours, and increased the stress to light stimulation. At the cellular level, exposure to 17β-TBOH decreased the c-fos immune response of SCN neurons to the large phase shift, indicating that it affected the coupling ability of SCN neurons. At the molecular level, exposure to 17β-TBOH interfered with the daily expression of hormones, changed the expression levels of the core clock genes and cell communication genes in the SCN, and affected the expression of wake-up genes in the hypothalamus. Finally, we observed the effect of exposure to 17β-TBOH on energy metabolism. The results showed that 17β-TBOH reduced the metabolic response and affected the metabolic function of the liver. This study revealed the influence of environmental endocrine disrupting chemicals (EDCs) on rhythms and metabolic disorders, and provides references for follow-up research.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
90
|
Heyde I, Oster H. Induction of internal circadian desynchrony by misaligning zeitgebers. Sci Rep 2022; 12:1601. [PMID: 35102210 PMCID: PMC8803932 DOI: 10.1038/s41598-022-05624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
24-h rhythms in physiology and behaviour are orchestrated by an endogenous circadian clock system. In mammals, these clocks are hierarchically organized with a master pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN). External time signals-so-called zeitgebers-align internal with geophysical time. During shift work, zeitgeber input conflicting with internal time induces circadian desynchrony which, in turn, promotes metabolic and psychiatric disorders. However, little is known about how internal desynchrony is expressed at the molecular level under chronodisruptive environmental conditions. We here investigated the effects of zeitgeber misalignment on circadian molecular organisation by combining 28-h light-dark (LD-28) cycles with either 24-h (FF-24) or 28-h feeding-fasting (FF-28) regimes in mice. We found that FF cycles showed strong effects on peripheral clocks, while having little effect on centrally coordinated activity rhythms. Systemic, i.e., across-tissue internal circadian desynchrony was profoundly induced within four days in LD-28/FF-24, while phase coherence between tissue clocks was maintained to a higher degree under LD-28/FF-28 conditions. In contrast, temporal coordination of clock gene activity across tissues was reduced under LD-28/FF-28 conditions compared to LD-28/FF-24. These results indicate that timed food intake may improve internal synchrony under disruptive zeitgeber conditions but may, at the same time, weaken clock function at the tissue level.
Collapse
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, CBBM (House 66), Marie Curie Street, 23562, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, CBBM (House 66), Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
91
|
Melhuish Beaupre LM, Brown GM, Braganza NA, Kennedy JL, Gonçalves VF. Mitochondria's role in sleep: Novel insights from sleep deprivation and restriction studies. World J Biol Psychiatry 2022; 23:1-13. [PMID: 33821750 DOI: 10.1080/15622975.2021.1907723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES/METHODS The biology underlying sleep is not yet fully elucidated, but it is known to be complex and largely influenced by circadian rhythms. Compelling evidence supports of a link among circadian rhythms, sleep and metabolism, which suggests a role for mitochondria. These organelles play a significant role in energy metabolism via oxidative phosphorylation (OXPHOS) and several mitochondrial enzymes display circadian oscillations. However, the interplay between mitochondria and sleep is not as well-known. This review summarises human and animal studies that have examined the role of mitochondria in sleep. Literature searches were conducted using PubMed and Google Scholar. RESULTS Using various models of sleep deprivation, animal studies support the involvement of mitochondria in sleep via differential gene and protein expression patterns, OXPHOS enzyme activity, and morphology changes. Human studies are more limited but also show differences in OXPHOS enzyme activity and protein levels among individuals who have undergone sleep deprivation or suffer from different forms of insomnia. CONCLUSIONS Taken altogether, both types of study provide evidence for mitochondria's involvement in the sleep-wake cycle. We briefly discuss the potential clinical implications of these studies.
Collapse
Affiliation(s)
- Lindsay M Melhuish Beaupre
- Department of Molecular Brain Science Research, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Gregory M Brown
- Department of Molecular Brain Science Research, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nicole A Braganza
- Department of Molecular Brain Science Research, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James L Kennedy
- Department of Molecular Brain Science Research, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Vanessa F Gonçalves
- Department of Molecular Brain Science Research, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
92
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
93
|
Casey TM, Plaut K, Boerman J. Circadian clocks and their role in lactation competence. Domest Anim Endocrinol 2022; 78:106680. [PMID: 34607219 DOI: 10.1016/j.domaniend.2021.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Circadian rhythms are 24 h cycles of behavior, physiology and gene expression that function to synchronize processes across the body and coordinate physiology with the external environment. Circadian clocks are central to maintaining homeostasis and regulating coordinated changes in physiology in response to internal and external cues. Orchestrated changes occur in maternal physiology during the periparturient period to support the growth of the fetus and the energetic and nutritional demands of lactation. Discoveries in our lab made over a decade ago led us to hypothesize that the circadian timing system functions to regulate metabolic and mammary specific changes that occur to support a successful lactation. Findings of studies that ensued are summarized, and point to the importance of circadian clocks in the regulation of lactation competence. Disruption of the circadian timing system can negatively affect mammary gland development and differentiation, alter maternal metabolism and impair milk production.
Collapse
Affiliation(s)
- T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - K Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
94
|
Cheng AH, Fung SW, Hegazi S, Abdalla OHMH, Cheng HYM. SOX2 Regulates Neuronal Differentiation of the Suprachiasmatic Nucleus. Int J Mol Sci 2021; 23:ijms23010229. [PMID: 35008655 PMCID: PMC8745319 DOI: 10.3390/ijms23010229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
In mammals, the hypothalamic suprachiasmatic nucleus (SCN) functions as the central circadian pacemaker, orchestrating behavioral and physiological rhythms in alignment to the environmental light/dark cycle. The neurons that comprise the SCN are anatomically and functionally heterogeneous, but despite their physiological importance, little is known about the pathways that guide their specification and differentiation. Here, we report that the stem/progenitor cell transcription factor, Sex determining region Y-box 2 (Sox2), is required in the embryonic SCN to control the expression of SCN-enriched neuropeptides and transcription factors. Ablation of Sox2 in the developing SCN leads to downregulation of circadian neuropeptides as early as embryonic day (E) 15.5, followed by a decrease in the expression of two transcription factors involved in SCN development, Lhx1 and Six6, in neonates. Thymidine analog-retention assays revealed that Sox2 deficiency contributed to reduced survival of SCN neurons during the postnatal period of cell clearance, but did not affect progenitor cell proliferation or SCN specification. Our results identify SOX2 as an essential transcription factor for the proper differentiation and survival of neurons within the developing SCN.
Collapse
Affiliation(s)
- Arthur H. Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (A.H.C.); (S.W.F.); (S.H.); (O.H.M.H.A.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Samuel W. Fung
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (A.H.C.); (S.W.F.); (S.H.); (O.H.M.H.A.)
| | - Sara Hegazi
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (A.H.C.); (S.W.F.); (S.H.); (O.H.M.H.A.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Osama Hasan Mustafa Hasan Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (A.H.C.); (S.W.F.); (S.H.); (O.H.M.H.A.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (A.H.C.); (S.W.F.); (S.H.); (O.H.M.H.A.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence:
| |
Collapse
|
95
|
Cui Z, Zhang Z, Amevor FK, Du X, Li L, Tian Y, Kang X, Shu G, Zhu Q, Wang Y, Li D, Zhang Y, Zhao X. Circadian miR-449c-5p regulates uterine Ca 2+ transport during eggshell calcification in chickens. BMC Genomics 2021; 22:764. [PMID: 34702171 PMCID: PMC8547053 DOI: 10.1186/s12864-021-08074-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background miRNAs regulate circadian patterns by modulating the biological clocks of animals. In our previous study, we found that the clock gene exhibited a cosine expression pattern in the fallopian tube of chicken uterus. Clock-controlled miRNAs are present in mammals and Drosophila; however, whether there are clock-controlled miRNAs in the chicken uterus and, if so, how they regulate egg-laying rhythms is unclear. In this study, we selected 18 layer hens with similar ovipositional rhythmicity (each of three birds were sacrificed for study per 4 h throughout 24 h); their transcriptomes were scanned to identify the circadian miRNAs and to explore regulatory mechanisms within the uterus of chickens. Results We identified six circadian miRNAs that are mainly associated with several biological processes including ion trans-membrane transportation, response to calcium ion, and enrichment of calcium signaling pathways. Verification of the experimental results revealed that miR-449c-5p exhibited a cosine expression pattern in the chicken uterus. Ca2+-transporting ATPase 4 (ATP2B4) in the plasma membrane is the predicted target gene of circadian miR-449c-5p and is highly enriched in the calcium signaling pathway. We speculated that clock-controlled miR-449c-5p regulated Ca2+ transportation during eggshell calcification in the chicken uterus by targeting ATP2B4. ATP2B4 mRNA and protein were rhythmically expressed in the chicken uterus, and dual-luciferase reporter gene assays confirmed that ATP2B4 was directly targeted by miR-449c-5p. The expression of miR-449c-5p showed an opposite trend to that of ATP2B4 within a 24 h cycle in the chicken uterus; it inhibited mRNA and protein expression of ATP2B4 in the uterine tubular gland cells. In addition, overexpression of ATP2B4 significantly decreased intracellular Ca2+ concentration (P < 0.05), while knockdown of ATP2B4 accelerated intracellular Ca2+ concentrations. We found similar results after ATP2B4 knockdown by miR-449c-5p. Taken together, these results indicate that ATP2B4 promotes uterine Ca2+ trans-epithelial transport. Conclusions Clock-controlled miR-449c-5p regulates Ca2+ transport in the chicken uterus by targeting ATP2B4 during eggshell calcification. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08074-3.
Collapse
Affiliation(s)
- Zhifu Cui
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Zhichao Zhang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Felix Kwame Amevor
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaxia Du
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Liang Li
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yaofu Tian
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xincheng Kang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, People's Republic of China
| | - Qing Zhu
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yan Wang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Diyan Li
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yao Zhang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaoling Zhao
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
96
|
Abstract
Circadian clocks are important to much of life on Earth and are of inherent interest to humanity, implicated in fields ranging from agriculture and ecology to developmental biology and medicine. New techniques show that it is not simply the presence of clocks, but coordination between them that is critical for complex physiological processes across the kingdoms of life. Recent years have also seen impressive advances in synthetic biology to the point where parallels can be drawn between synthetic biological and circadian oscillators. This review will emphasize theoretical and experimental studies that have revealed a fascinating dichotomy of coupling and heterogeneity among circadian clocks. We will also consolidate the fields of chronobiology and synthetic biology, discussing key design principles of their respective oscillators.
Collapse
Affiliation(s)
- Chris N Micklem
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CH3 0HE, UK
| | - James C W Locke
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
97
|
Gu C, Li J, Zhou J, Yang H, Rohling J. Network Structure of the Master Clock Is Important for Its Primary Function. Front Physiol 2021; 12:678391. [PMID: 34483953 PMCID: PMC8415478 DOI: 10.3389/fphys.2021.678391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
A master clock located in the suprachiasmatic nucleus (SCN) regulates the circadian rhythm of physiological and behavioral activities in mammals. The SCN has two main functions in the regulation: an endogenous clock produces the endogenous rhythmic signal in body rhythms, and a calibrator synchronizes the body rhythms to the external light-dark cycle. These two functions have been determined to depend on either the dynamic behaviors of individual neurons or the whole SCN neuronal network. In this review, we first introduce possible network structures for the SCN, as revealed by time series analysis from real experimental data. It was found that the SCN network is heterogeneous and sparse, that is, the average shortest path length is very short, some nodes are hubs with large node degrees but most nodes have small node degrees, and the average node degree of the network is small. Secondly, the effects of the SCN network structure on the SCN function are reviewed based on mathematical models of the SCN network. It was found that robust rhythms with large amplitudes, a high synchronization between SCN neurons and a large entrainment ability exists mainly in small-world and scale-free type networks, but not other types. We conclude that the SCN most probably is an efficient small-world type or scale-free type network, which drives SCN function.
Collapse
Affiliation(s)
- Changgui Gu
- Business School, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiahui Li
- Business School, University of Shanghai for Science and Technology, Shanghai, China
| | - Jian Zhou
- Business School, University of Shanghai for Science and Technology, Shanghai, China
| | - Huijie Yang
- Business School, University of Shanghai for Science and Technology, Shanghai, China
| | - Jos Rohling
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
98
|
Finger AM, Jäschke S, Del Olmo M, Hurwitz R, Granada AE, Herzel H, Kramer A. Intercellular coupling between peripheral circadian oscillators by TGF-β signaling. SCIENCE ADVANCES 2021; 7:7/30/eabg5174. [PMID: 34301601 PMCID: PMC8302137 DOI: 10.1126/sciadv.abg5174] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/08/2021] [Indexed: 05/04/2023]
Abstract
Coupling between cell-autonomous circadian oscillators is crucial to prevent desynchronization of cellular networks and disruption of circadian tissue functions. While neuronal oscillators within the mammalian central clock, the suprachiasmatic nucleus, couple intercellularly, coupling among peripheral oscillators is controversial and the molecular mechanisms are unknown. Using two- and three-dimensional mammalian culture models in vitro (mainly human U-2 OS cells) and ex vivo, we show that peripheral oscillators couple via paracrine pathways. We identify transforming growth factor-β (TGF-β) as peripheral coupling factor that mediates paracrine phase adjustment of molecular clocks through transcriptional regulation of core-clock genes. Disruption of TGF-β signaling causes desynchronization of oscillator networks resulting in reduced amplitude and increased sensitivity toward external zeitgebers. Our findings reveal an unknown mechanism for peripheral clock synchrony with implications for rhythmic organ functions and circadian health.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sebastian Jäschke
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marta Del Olmo
- Charité and Humboldt Universität zu Berlin, Institute for Theoretical Biology, Laboratory of Theoretical Chronobiology, Philippstraße 13, 10115 Berlin, Germany
| | - Robert Hurwitz
- Max Planck Institute for Infection Biology, Biochemistry-Protein Purification Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Adrián E Granada
- Charité-Universitätsmedizin, Charité Comprehensive Cancer Center, Laboratory of Systems Oncology, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Berlin, 69120, Heidelberg, Germany
| | - Hanspeter Herzel
- Charité and Humboldt Universität zu Berlin, Institute for Theoretical Biology, Laboratory of Theoretical Chronobiology, Philippstraße 13, 10115 Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
99
|
Nave C, Roberts L, Hwu P, Estrella JD, Vo TC, Nguyen TH, Bui TT, Rindner DJ, Pervolarakis N, Shaw PJ, Leise TL, Holmes TC. Weekend Light Shifts Evoke Persistent Drosophila Circadian Neural Network Desynchrony. J Neurosci 2021; 41:5173-5189. [PMID: 33931552 PMCID: PMC8211545 DOI: 10.1523/jneurosci.3074-19.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
We developed a method for single-cell resolution longitudinal bioluminescence imaging of PERIOD (PER) protein and TIMELESS (TIM) oscillations in cultured male adult Drosophila brains that captures circadian circuit-wide cycling under simulated day/night cycles. Light input analysis confirms that CRYPTOCHROME (CRY) is the primary circadian photoreceptor and mediates clock disruption by constant light (LL), and that eye light input is redundant to CRY; 3-h light phase delays (Friday) followed by 3-h light phase advances (Monday morning) simulate the common practice of staying up later at night on weekends, sleeping in later on weekend days then returning to standard schedule Monday morning [weekend light shift (WLS)]. PER and TIM oscillations are highly synchronous across all major circadian neuronal subgroups in unshifted light schedules for 11 d. In contrast, WLS significantly dampens PER oscillator synchrony and rhythmicity in most circadian neurons during and after exposure. Lateral ventral neuron (LNv) oscillations are the first to desynchronize in WLS and the last to resynchronize in WLS. Surprisingly, the dorsal neuron group-3 (DN3s) increase their within-group synchrony in response to WLS. In vivo, WLS induces transient defects in sleep stability, learning, and memory that temporally coincide with circuit desynchrony. Our findings suggest that WLS schedules disrupt circuit-wide circadian neuronal oscillator synchrony for much of the week, thus leading to observed behavioral defects in sleep, learning, and memory.
Collapse
Affiliation(s)
- Ceazar Nave
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Logan Roberts
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Patrick Hwu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Jerson D Estrella
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Thanh C Vo
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Thanh H Nguyen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Tony Thai Bui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Daniel J Rindner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Nicholas Pervolarakis
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California 92697
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts 01002
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
100
|
Sanchez REA, Kalume F, de la Iglesia HO. Sleep timing and the circadian clock in mammals: Past, present and the road ahead. Semin Cell Dev Biol 2021; 126:3-14. [PMID: 34092510 DOI: 10.1016/j.semcdb.2021.05.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023]
Abstract
Nearly all mammals display robust daily rhythms of physiology and behavior. These approximately 24-h cycles, known as circadian rhythms, are driven by a master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and affect biological processes ranging from metabolism to immune function. Perhaps the most overt output of the circadian clock is the sleep-wake cycle, the integrity of which is critical for health and homeostasis of the organism. In this review, we summarize our current understanding of the circadian regulation of sleep. We discuss the neural circuitry and molecular mechanisms underlying daily sleep timing, and the trajectory of circadian regulation of sleep across development. We conclude by proposing future research priorities for the field that will significantly advance our mechanistic understanding of the circadian regulation of sleep.
Collapse
Affiliation(s)
- Raymond E A Sanchez
- Department of Biology, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| | - Franck Kalume
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Horacio O de la Iglesia
- Department of Biology, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| |
Collapse
|