51
|
Topical liquid formulation of bacteriophages for metered-dose spray delivery. Eur J Pharm Biopharm 2022; 177:1-8. [DOI: 10.1016/j.ejpb.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
|
52
|
Wu Q, Cui L, Liu Y, Li R, Dai M, Xia Z, Wu M. CRISPR-Cas systems target endogenous genes to impact bacterial physiology and alter mammalian immune responses. MOLECULAR BIOMEDICINE 2022; 3:22. [PMID: 35854035 PMCID: PMC9296731 DOI: 10.1186/s43556-022-00084-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
CRISPR-Cas systems are an immune defense mechanism that is widespread in archaea and bacteria against invasive phages or foreign genetic elements. In the last decade, CRISPR-Cas systems have been a leading gene-editing tool for agriculture (plant engineering), biotechnology, and human health (e.g., diagnosis and treatment of cancers and genetic diseases), benefitted from unprecedented discoveries of basic bacterial research. However, the functional complexity of CRISPR systems is far beyond the original scope of immune defense. CRISPR-Cas systems are implicated in influencing the expression of physiology and virulence genes and subsequently altering the formation of bacterial biofilm, drug resistance, invasive potency as well as bacterial own physiological characteristics. Moreover, increasing evidence supports that bacterial CRISPR-Cas systems might intriguingly influence mammalian immune responses through targeting endogenous genes, especially those relating to virulence; however, unfortunately, their underlying mechanisms are largely unclear. Nevertheless, the interaction between bacterial CRISPR-Cas systems and eukaryotic cells is complex with numerous mysteries that necessitate further investigation efforts. Here, we summarize the non-canonical functions of CRISPR-Cas that potentially impact bacterial physiology, pathogenicity, antimicrobial resistance, and thereby altering the courses of mammalian immune responses.
Collapse
Affiliation(s)
- Qun Wu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Yingying Liu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA.
| |
Collapse
|
53
|
Meng L, Yang F, Pang Y, Cao Z, Wu F, Yan D, Liu J. Nanocapping-enabled charge reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition. SCIENCE ADVANCES 2022; 8:eabq2005. [PMID: 35857522 PMCID: PMC11581130 DOI: 10.1126/sciadv.abq2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages (phages) are widely explored as antimicrobials for treating infectious diseases due to their specificity and potency to infect and inhibit host bacteria. However, the application of phages to inhibit intracellular pathogens has been greatly restricted by inadequacy in cell entry and endosomal escape. Here, we describe the use of cationic polymers to selectively cap negatively charged phage head rather than positively charged tail by electrostatic interaction, resulting in charge-reversed phages with uninfluenced vitality. Given the positive surface charge and proton sponge effect of the nanocapping, capped phages are able to enter intestinal epithelial cells and subsequently escape from endosomes to lyse harbored pathogens. In a murine model of intestinal infection, oral ingestion of capped phages significantly reduces the translocation of pathogens to major organs, showing a remarkable inhibition efficacy. Our work proposes that simple synthetic nanocapping can manipulate phage bioactivity, offering a facile platform for preparing next-generation antimicrobials.
Collapse
Affiliation(s)
- Lu Meng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Deyue Yan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
54
|
Wang L, Zhang J, Liu X, Ning H, Lin H, Wang J. Biological characterization and complete genome analysis of a novel Stenotrophomonas maltophilia phage vB_SM_ytsc_ply2008005c. Virus Res 2022; 318:198856. [PMID: 35780912 DOI: 10.1016/j.virusres.2022.198856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Multidrug-resistant bacteria have become a major threat to global public health. Bacteriophages are regarded as a promising substitute. Here, we present a novel lytic Stenotrophomonas maltophilia phage, vB_SM_ytsc_ply2008005c, which was isolated from sewage water samples in Qingdao, east China. Virion morphology of phage particles indicated that ply2008005c has an icosahedral head (56±5 nm in diameter) and a noncontractile sheathed tail (129±6 nm in length), which are the typical characteristics of phages belonging to the family Siphoviridae. Phage ply2008005c could be used for phage therapy for its stability in a wide pH (4 to 12) range and high temperature (up to 70°C) environment. Genome analysis revealed that ply2008005c has a circular double-strand DNA of 42,318 bp with a G+C content of 63.02%. It shared the closest relationship with phage vB_PaeS_PAO1_Ab18, but the homology coverage is just 20%. There were 54 open reading frames predicted in its genome, including three unique proteins and 34 functional genes in different modules. The phylogenetic analysis revealed that ply2008005c forms a distinct branch of the family Siphoviridae. These results demonstrated that ply2008005c was supposed to be a representative new member within the family Siphoviridae, which could be considered a potential bioagent against multidrug-resistant S. maltophilia.
Collapse
Affiliation(s)
- Luokai Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China
| | - Jiayue Zhang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China
| | - Xing Liu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Houqi Ning
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, PR China.
| |
Collapse
|
55
|
Li J, Feng S, Liu X, Jia X, Qiao F, Guo J, Deng S. Effects of Traditional Chinese Medicine and its Active Ingredients on Drug-Resistant Bacteria. Front Pharmacol 2022; 13:837907. [PMID: 35721131 PMCID: PMC9204478 DOI: 10.3389/fphar.2022.837907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing and widespread application of antibacterial drugs makes antibiotic resistance a prominent and growing concern in clinical practice. The emergence of multidrug-resistant bacteria presents a global threat. However, the development and use of novel antibacterial agents involves time-consuming and costly challenges that may lead to yet further drug resistance. More recently, researchers have turned to traditional Chinese medicine to stem the rise of antibiotic resistance in pathogens. Many studies have shown traditional Chinese medicines to have significant bacteriostatic and bactericidal effects, with the advantage of low drug resistance. Some of which when combined with antibiotics, have also demonstrated antibacterial activity by synergistic effect. Traditional Chinese medicine has a variety of active components, including flavonoids, alkaloids, phenols, and quinones, which can inhibit the growth of drug-resistant bacteria and be used in combination with a variety of antibiotics to treat various drug-resistant bacterial infections. We reviewed the interaction between the active ingredients of traditional Chinese medicines and antibiotic-resistant bacteria. At present, flavonoids and alkaloids are the active ingredients that have been most widely studied, with significant synergistic activity demonstrated when used in combination with antibiotics against drug-resistant bacteria. The reviewed studies show that traditional Chinese medicine and its active ingredients have antimicrobial activity on antibiotic-resistant bacteria, which may enhance the susceptibility of antibiotic-resistant bacteria, potentially reduce the required dosage of antibacterial agents and the rate of drug resistance. Our results provide direction for finding and developing alternative methods to counteract drug-resistant bacteria, offering a new therapeutic strategy for tackling antibiotic resistance.
Collapse
Affiliation(s)
- Jimin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Shanshan Feng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Liu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China.,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Fengling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Deng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China.,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
56
|
Chang RYK, Nang SC, Chan HK, Li J. Novel antimicrobial agents for combating antibiotic-resistant bacteria. Adv Drug Deliv Rev 2022; 187:114378. [PMID: 35671882 DOI: 10.1016/j.addr.2022.114378] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Antibiotic therapy has become increasingly ineffective against bacterial infections due to the rise of resistance. In particular, ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have caused life-threatening infections in humans and represent a major global health threat due to a high degree of antibiotic resistance. To respond to this urgent call, novel strategies are urgently needed, such as bacteriophages (or phages), phage-encoded enzymes, immunomodulators and monoclonal antibodies. This review critically analyses these promising antimicrobial therapies for the treatment of multidrug-resistant bacterial infections. Recent advances in these novel therapeutic strategies are discussed, focusing on preclinical and clinical investigations, as well as combinatorial approaches. In this 'Bad Bugs, No Drugs' era, novel therapeutic strategies can play a key role in treating deadly infections and help extend the lifetime of antibiotics.
Collapse
|
57
|
Phage–Antibiotic Therapy as a Promising Strategy to Combat Multidrug-Resistant Infections and to Enhance Antimicrobial Efficiency. Antibiotics (Basel) 2022; 11:antibiotics11050570. [PMID: 35625214 PMCID: PMC9137994 DOI: 10.3390/antibiotics11050570] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) bacteria have highlighted the importance of the development of new antimicrobial agents. While bacteriophages (phages) are widely studied as alternative agents to antibiotics, combined treatments using phages and antibiotics have exhibited Phage–Antibiotic Synergy (PAS), in which antibiotics promote phage replication and extraordinary antimicrobial efficacy with reduced development of bacterial resistance. This review paper on the current progress of phage–antibiotic therapy includes aspects of the mechanisms of PAS and the therapeutic performance of PAS in combating multidrug-resistant bacterial infections. The choice of phages and antibiotics, the administration time and sequence, and the concentrations of the two agents impact the bacterial inhibitory effects to different extents.
Collapse
|
58
|
Chang RYK, Li M, Chow MY, Ke WR, Tai W, Chan HK. A dual action of D-amino acids on anti-biofilm activity and moisture-protection of inhalable ciprofloxacin powders. Eur J Pharm Biopharm 2022; 173:132-140. [DOI: 10.1016/j.ejpb.2022.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 01/03/2023]
|
59
|
Vázquez R, Díez-Martínez R, Domingo-Calap P, García P, Gutiérrez D, Muniesa M, Ruiz-Ruigómez M, Sanjuán R, Tomás M, Tormo-Mas MÁ, García P. Essential Topics for the Regulatory Consideration of Phages as Clinically Valuable Therapeutic Agents: A Perspective from Spain. Microorganisms 2022; 10:microorganisms10040717. [PMID: 35456768 PMCID: PMC9025261 DOI: 10.3390/microorganisms10040717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance is one of the major challenges that humankind shall face in the short term. (Bacterio)phage therapy is a valuable therapeutic alternative to antibiotics and, although the concept is almost as old as the discovery of phages, its wide application was hindered in the West by the discovery and development of antibiotics in the mid-twentieth century. However, research on phage therapy is currently experiencing a renaissance due to the antimicrobial resistance problem. Some countries are already adopting new ad hoc regulations to favor the short-term implantation of phage therapy in clinical practice. In this regard, the Phage Therapy Work Group from FAGOMA (Spanish Network of Bacteriophages and Transducing Elements) recently contacted the Spanish Drugs and Medical Devices Agency (AEMPS) to promote the regulation of phage therapy in Spain. As a result, FAGOMA was asked to provide a general view on key issues regarding phage therapy legislation. This review comes as the culmination of the FAGOMA initiative and aims at appropriately informing the regulatory debate on phage therapy.
Collapse
Affiliation(s)
- Roberto Vázquez
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium;
| | | | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, University of Valencia-CSIC, 46980 Paterna, Spain; (P.D.-C.); (R.S.)
| | - Pedro García
- Center for Biological Research Margarita Salas (CIB-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28040 Madrid, Spain;
| | - Diana Gutiérrez
- Telum Therapeutics SL, 31110 Noáin, Spain; (R.D.-M.); (D.G.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain;
| | - María Ruiz-Ruigómez
- Internal Medicine, Infectious Diseases Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, University of Valencia-CSIC, 46980 Paterna, Spain; (P.D.-C.); (R.S.)
| | - María Tomás
- Department of Microbiology, Hospital Universitario de A Coruña (INIBIC-CHUAC, SERGAS), 15006 A Coruña, Spain;
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Ángeles Tormo-Mas
- Severe Infection Group, Hospital Universitari i Politècnic La Fe, Health Research Institute Hospital La Fe, IISLaFe, 46026 Valencia, Spain;
| | - Pilar García
- Dairy Research Institute of Asturias, IPLA-CSIC, 33300 Villaviciosa, Spain
- DairySafe Group, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence:
| |
Collapse
|
60
|
Shahin K, Zhang L, Mehraban MH, Collard JM, Hedayatkhah A, Mansoorianfar M, Soleimani-Delfan A, Wang R. Clinical and experimental bacteriophage studies: Recommendations for possible approaches for standing against SARS-CoV-2. Microb Pathog 2022; 164:105442. [PMID: 35151823 PMCID: PMC8830156 DOI: 10.1016/j.micpath.2022.105442] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022]
Abstract
In 2019, the world faced a serious health challenge, the rapid spreading of a life-threatening viral pneumonia, coronavirus disease 2019 (COVID-19) caused by a betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January 2022 WHO statistics shows more than 5.6 million death and about 350 million infection by SARS-CoV-2. One of the life threatening aspects of COVID-19 is secondary infections and reduced efficacy of antibiotics against them. Since the beginning of COVID-19 many researches have been done on identification, treatment, and vaccine development. Bacterial viruses (bacteriophages) could offer novel approaches to detect, treat and control COVID-19. Phage therapy and in particular using phage cocktails can be used to control or eliminate the bacterial pathogen as an alternative or complementary therapeutic agent. At the same time, phage interaction with the host immune system can regulate the inflammatory response. In addition, phage display and engineered synthetic phages can be utilized to develop new vaccines and antibodies, stimulate the immune system, and elicit a rapid and well-appropriate defense response. The emergence of SARS-CoV-2 new variants like delta and omicron has proved the urgent need for precise, efficient and novel approaches for vaccine development and virus detection techniques in which bacteriophages may be one of the plausible solutions. Therefore, phages with similar morphology and/or genetic content to that of coronaviruses can be used for ecological and epidemiological modeling of SARS-CoV-2 behavior and future generations of coronavirus, and in general new viral pathogens. This article is a comprehensive review/perspective of potential applications of bacteriophages in the fight against the present pandemic and the post-COVID era.
Collapse
Affiliation(s)
- Khashayar Shahin
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China; Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Lili Zhang
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Mohammad Hossein Mehraban
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jean-Marc Collard
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China
| | | | | | - Abbas Soleimani-Delfan
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ran Wang
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
61
|
Han K, He X, Fan H, Song L, An X, Li M, Tong Y. Characterization and genome analysis of a novel Stenotrophomonas maltophilia bacteriophage BUCT598 with extreme pH resistance. Virus Res 2022; 314:198751. [DOI: 10.1016/j.virusres.2022.198751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
|
62
|
Khan A, Rao TS, Joshi HM. Phage therapy in the Covid-19 era: Advantages over antibiotics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100115. [PMID: 35187507 PMCID: PMC8847111 DOI: 10.1016/j.crmicr.2022.100115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Today, the entire world is battling to contain the spread of COVID-19. Massive efforts are being made to find a therapeutic solution in the shortest possible time. However, the research community is becoming increasingly concerned about taking a shortsighted strategy without contemplating the long-term consequences. For example, It has been reported that only 8.4% of total COVID-19 patients develop a secondary bacterial infection. In comparison, 74.6% of them are administered with antibiotics as prophylactic treatment. We contend that overuse of broad-spectrum antibiotics increases the likelihood of AMR development and negatively affects the patient's recovery due to the prevalence of the "gut-lung axis.". Consequently, the use of antibiotics to treat COVID-19 patients must be rationalized, or an alternative treatment must be sought that does not risk contributing to AMR development and positively impacts the treatment outcomes. Phage therapy, a century-old concept, is one of the most promising approaches that can be adapted to serve this purpose. This review emphasizes the negative impact of excessive antibiotic use in COVID-19 treatment and provides an overview of how phage therapy can be used as an alternative treatment option. We have argued that targeted killing (narrow spectrum) and anti-inflammatory (which can target the primary cause of mortality in COVID-19) properties of phages can be an effective alternative to antibiotics.
Collapse
Affiliation(s)
- Atif Khan
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - T. Subba Rao
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Hiren M. Joshi
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
63
|
Kyung Chang RY, Chow MYT, Wang Y, Liu C, Hong Q, Morales S, McLachlan AJ, Kutter E, Li J, Chan HK. The effects of different doses of inhaled bacteriophage therapy for Pseudomonas aeruginosa pulmonary infections in mice. Clin Microbiol Infect 2022; 28:983-989. [PMID: 35123053 DOI: 10.1016/j.cmi.2022.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Inhaled phage therapy has been revisited as a potential treatment option for respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa; however, there is a distinct gap in understanding the dose-response effect. The aim of this study was to investigate the dose-response effect of Pseudomonas-targeting phage PEV31 delivered by pulmonary route in a mouse lung infection model. METHODS Neutropenic BALB/c mice were infected with MDR P. aeruginosa (2×104 colony forming units) through intra-tracheal route and then treated with PEV31 at three different doses of 7.5×104 (Group A), 5×106 (Group B) and 5×108 (Group C) plaque forming units, or phosphate-buffered saline at 2-h post-inoculation. Mice (n=5-7) were sacrificed at 2-h and 24-h post-infection and lungs, kidneys, spleen, liver, bronchoalveolar lavage fluid and blood were collected for bacteria and phage enumeration. RESULTS At 24-h post-infection, all the phage-treated groups exhibited a significant reduction in pulmonary bacterial load by 1.3-1.9 log10 independent of the delivered phage dose. The extent of phage replication was negatively correlated with the dose administered with log10 titre increases of 6.2, 2.7 and 9 for Groups A, B and C, respectivelyPhage-resistant bacterial subpopulations in the lung homogenate samples harvested at 24-h post-infection increased with the treatment dose (i.e., 30%, 74% and 91% in respective Groups A-C). However, the emerged mutants showed increased susceptibility to ciprofloxacin, impaired twitching motility, and reduced blue-green pigment production. The expression of the inflammatory cytokines (IL-1β and IL-6 and TNF-α) was suppressed with increasing PEV31 treatment dose. CONCLUSIONS This study provides dose-response effect of inhaled phage therapy that may guide dose selection for treating P. aeruginosa respiratory infections in humans.
Collapse
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael Y T Chow
- Advanced Drug Delivery Group, Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuncheng Wang
- Advanced Drug Delivery Group, Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Chengxi Liu
- Advanced Drug Delivery Group, Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Qixuan Hong
- Advanced Drug Delivery Group, Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Andrew J McLachlan
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Jian Li
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
64
|
Bai GH, Lin SC, Hsu YH, Chen SY. The Human Virome: Viral Metagenomics, Relations with Human Diseases, and Therapeutic Applications. Viruses 2022; 14:278. [PMID: 35215871 PMCID: PMC8876576 DOI: 10.3390/v14020278] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
The human body is colonized by a wide range of microorganisms. The field of viromics has expanded since the first reports on the detection of viruses via metagenomic sequencing in 2002. With the continued development of reference materials and databases, viral metagenomic approaches have been used to explore known components of the virome and discover new viruses from various types of samples. The virome has attracted substantial interest since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Increasing numbers of studies and review articles have documented the diverse virome in various sites in the human body, as well as interactions between the human host and the virome with regard to health and disease. However, there have been few studies of direct causal relationships. Viral metagenomic analyses often lack standard references and are potentially subject to bias. Moreover, most virome-related review articles have focused on the gut virome and did not investigate the roles of the virome in other sites of the body in human disease. This review presents an overview of viral metagenomics, with updates regarding the relations between alterations in the human virome and the pathogenesis of human diseases, recent findings related to COVID-19, and therapeutic applications related to the human virome.
Collapse
Affiliation(s)
- Geng-Hao Bai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Education, Taipei Medical University Hospital, Taipei City 11031, Taiwan
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Allergy, Asthma and Immunology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
65
|
Combination and nanotechnology based pharmaceutical strategies for combating respiratory bacterial biofilm infections. Int J Pharm 2022; 616:121507. [PMID: 35085729 DOI: 10.1016/j.ijpharm.2022.121507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
Respiratory infections are one of the major global health problems. Among them, chronic respiratory infections caused by biofilm formation are difficult to treat because of both drug tolerance and poor drug penetration into the complex biofilm structure. A major part of the current research on combating respiratory biofilm infections have been focused on destroying the matrix of extracellular polymeric substance and eDNA of the biofilm or promoting the penetration of antibiotics through the extracellular polymeric substance via delivery technologies in order to kill the bacteria inside. There are also experimental data showing that certain inhaled antibiotics with simple formulations can effectively penetrate EPS to kill surficially located bacteria and centrally located dormant bacteria or persisters. This article aims to review recent advances in the pharmaceutical strategies for combating respiratory biofilm infections with a focus on nanotechnology-based drug delivery approaches. The formation and characteristics of bacterial biofilm infections in the airway mucus are presented, which is followed by a brief review on the current clinical approaches to treat respiratory biofilm infections by surgical removal and antimicrobial therapy, and also the emerging clinical treatment approaches. The current combination of antibiotics and non-antibiotic adjuvants to combat respiratory biofilm infections are also discussed.
Collapse
|
66
|
Khullar L, Harjai K, Chhibber S. Exploring the therapeutic potential of staphylococcal phage formulations: Current challenges and applications in phage therapy. J Appl Microbiol 2022; 132:3515-3532. [DOI: 10.1111/jam.15462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lavanya Khullar
- Department of Microbiology Panjab University Chandigarh India
| | - Kusum Harjai
- Department of Microbiology Panjab University Chandigarh India
| | - Sanjay Chhibber
- Department of Microbiology Panjab University Chandigarh India
| |
Collapse
|
67
|
Chan HK, Chang RYK. Inhaled Delivery of Anti-Pseudomonal Phages to Tackle Respiratory Infections Caused by Superbugs. J Aerosol Med Pulm Drug Deliv 2021; 35:73-82. [PMID: 34967686 DOI: 10.1089/jamp.2021.0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Respiratory infections are increasingly difficult to treat due to the emergence of multidrug-resistant bacteria. Rediscovery and implementation of inhaled bacteriophage (phage) therapy as a standalone or supplement to antibiotic therapy is becoming recognized as a promising solution to combating respiratory infections caused by these superbugs. To ensure maximum benefit of the treatment, phages must remain stable during formulation as a liquid or powder and delivery using a nebulizer or dry powder inhaler. Methods: Pseudomonas-targeting PEV phages were used as model phages to assess the feasibility of aerosolizing biologically viable liquid formulations using commercial nebulizers in the presence and absence of inhaled antibiotics. The advantages of powder formulations were exploited by spray drying to produce inhalable powders containing PEV phages with and without the antibiotic ciprofloxacin. Results: The produced phage PEV20 and PEV20-ciprofloxacin powders remained stable over long-term storage and exhibited significant bacterial killing activities in a mouse lung infection model. Conclusion: These studies demonstrated that inhaled phage (-antibiotic) therapy has the potential to tackle respiratory infections caused by superbugs.
Collapse
Affiliation(s)
- Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
68
|
Wang X, Xie Z, Zhao J, Zhu Z, Yang C, Liu Y. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections. Front Cell Infect Microbiol 2021; 11:758392. [PMID: 34938668 PMCID: PMC8685529 DOI: 10.3389/fcimb.2021.758392] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
With respiratory infections accounting for significant morbidity and mortality, the issue of antibiotic resistance has added to the gravity of the situation. Treatment of pulmonary infections (bacterial pneumonia, cystic fibrosis-associated bacterial infections, tuberculosis) is more challenging with the involvement of multi-drug resistant bacterial strains, which act as etiological agents. Furthermore, with the dearth of new antibiotics available and old antibiotics losing efficacy, it is prudent to switch to non-antibiotic approaches to fight this battle. Phage therapy represents one such approach that has proven effective against a range of bacterial pathogens including drug resistant strains. Inhaled phage therapy encompasses the use of stable phage preparations given via aerosol delivery. This therapy can be used as an adjunct treatment option in both prophylactic and therapeutic modes. In the present review, we first highlight the role and action of phages against pulmonary pathogens, followed by delineating the different methods of delivery of inhaled phage therapy with evidence of success. The review aims to focus on recent advances and developments in improving the final success and outcome of pulmonary phage therapy. It details the use of electrospray for targeted delivery, advances in nebulization techniques, individualized controlled inhalation with software control, and liposome-encapsulated nebulized phages to take pulmonary phage delivery to the next level. The review expands knowledge on the pulmonary delivery of phages and the advances that have been made for improved outcomes in the treatment of respiratory infections.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zuozhou Xie
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Jinhong Zhao
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zhenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Chen Yang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| |
Collapse
|
69
|
Wienhold SM, Brack MC, Nouailles G, Krishnamoorthy G, Korf IHE, Seitz C, Wienecke S, Dietert K, Gurtner C, Kershaw O, Gruber AD, Ross A, Ziehr H, Rohde M, Neudecker J, Lienau J, Suttorp N, Hippenstiel S, Hocke AC, Rohde C, Witzenrath M. Preclinical Assessment of Bacteriophage Therapy against Experimental Acinetobacter baumannii Lung Infection. Viruses 2021; 14:33. [PMID: 35062236 PMCID: PMC8778864 DOI: 10.3390/v14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Respiratory infections caused by multidrug-resistant Acinetobacter baumannii are difficult to treat and associated with high mortality among critically ill hospitalized patients. Bacteriophages (phages) eliminate pathogens with high host specificity and efficacy. However, the lack of appropriate preclinical experimental models hampers the progress of clinical development of phages as therapeutic agents. Therefore, we tested the efficacy of a purified lytic phage, vB_AbaM_Acibel004, against multidrug-resistant A. baumannii clinical isolate RUH 2037 infection in immunocompetent mice and a human lung tissue model. Sham- and A. baumannii-infected mice received a single-dose of phage or buffer via intratracheal aerosolization. Group-specific differences in bacterial burden, immune and clinical responses were compared. Phage-treated mice not only recovered faster from infection-associated hypothermia but also had lower pulmonary bacterial burden, lower lung permeability, and cytokine release. Histopathological examination revealed less inflammation with unaffected inflammatory cellular recruitment. No phage-specific adverse events were noted. Additionally, the bactericidal effect of the purified phage on A. baumannii was confirmed after single-dose treatment in an ex vivo human lung infection model. Taken together, our data suggest that the investigated phage has significant potential to treat multidrug-resistant A. baumannii infections and further support the development of appropriate methods for preclinical evaluation of antibacterial efficacy of phages.
Collapse
Affiliation(s)
- Sandra-Maria Wienhold
- Division of Pulmonary Inflammation, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (S.-M.W.); (M.C.B.); (G.N.); (G.K.); (J.L.); (A.C.H.)
| | - Markus C. Brack
- Division of Pulmonary Inflammation, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (S.-M.W.); (M.C.B.); (G.N.); (G.K.); (J.L.); (A.C.H.)
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (N.S.); (S.H.)
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (S.-M.W.); (M.C.B.); (G.N.); (G.K.); (J.L.); (A.C.H.)
| | - Gopinath Krishnamoorthy
- Division of Pulmonary Inflammation, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (S.-M.W.); (M.C.B.); (G.N.); (G.K.); (J.L.); (A.C.H.)
| | - Imke H. E. Korf
- Department of Microorganisms, Leibniz Institute DSMZGerman Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (I.H.E.K.); (C.R.)
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 38124 Braunschweig, Germany; (C.S.); (S.W.); (A.R.); (H.Z.)
| | - Claudius Seitz
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 38124 Braunschweig, Germany; (C.S.); (S.W.); (A.R.); (H.Z.)
| | - Sarah Wienecke
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 38124 Braunschweig, Germany; (C.S.); (S.W.); (A.R.); (H.Z.)
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany; (K.D.); (C.G.); (O.K.); (A.D.G.)
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163 Berlin, Germany
| | - Corinne Gurtner
- Department of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany; (K.D.); (C.G.); (O.K.); (A.D.G.)
| | - Olivia Kershaw
- Department of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany; (K.D.); (C.G.); (O.K.); (A.D.G.)
| | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany; (K.D.); (C.G.); (O.K.); (A.D.G.)
| | - Anton Ross
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 38124 Braunschweig, Germany; (C.S.); (S.W.); (A.R.); (H.Z.)
| | - Holger Ziehr
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 38124 Braunschweig, Germany; (C.S.); (S.W.); (A.R.); (H.Z.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), 38124 Braunschweig, Germany;
| | - Jens Neudecker
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| | - Jasmin Lienau
- Division of Pulmonary Inflammation, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (S.-M.W.); (M.C.B.); (G.N.); (G.K.); (J.L.); (A.C.H.)
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (N.S.); (S.H.)
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (N.S.); (S.H.)
| | - Andreas C. Hocke
- Division of Pulmonary Inflammation, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (S.-M.W.); (M.C.B.); (G.N.); (G.K.); (J.L.); (A.C.H.)
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (N.S.); (S.H.)
| | - Christine Rohde
- Department of Microorganisms, Leibniz Institute DSMZGerman Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (I.H.E.K.); (C.R.)
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (S.-M.W.); (M.C.B.); (G.N.); (G.K.); (J.L.); (A.C.H.)
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (N.S.); (S.H.)
- German Center for Lung Research (DZL), Partner Site Charité, 10117 Berlin, Germany
| |
Collapse
|
70
|
Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: A story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm 2021; 613:121388. [PMID: 34923051 DOI: 10.1016/j.ijpharm.2021.121388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is an inherited multisystem disease affecting the lung which leads to a progressive decline in lung function as a result of malfunctioning mucociliary clearance and subsequent chronic bacterial infections. Pseudomonas aeruginosa is the predominant cause of lung infection in CF patients and is associated with significant morbidity and mortality. Thus, antibiotic therapy remains the cornerstone of the treatment of CF. Pulmonary delivery of antibiotics for lung infections significantly reduces the required dose and the associated systemic side effects while improving therapeutic outcomes. Ciprofloxacin is one of the most widely used antibiotics against P. aeruginosa and the most effective fluoroquinolone. However, in spite of the substantial amount of research aimed at developing ciprofloxacin powder for inhalation, none of these formulations has been commercialized. Here, we present an integrated view of the diverse challenges associated with delivering ciprofloxacin dry particles to the lungs of CF patients and the rationales behind recent formulations of ciprofloxacin dry powder for inhalation. This review will discuss the challenges in developing ciprofloxacin powder for inhalation along with the physiological and pathophysiological challenges such as ciprofloxacin lung permeability, overproduction of viscous mucus and bacterial biofilms. The review will also discuss the current and emerging particle engineering approaches to overcoming these challenges. By doing so, we believe the review will help the reader to understand the current limitations in developing an inhalable ciprofloxacin powder and explore new opportunities of rational design strategies.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
71
|
Khanal D, Chang RYK, Hick C, Morales S, Chan HK. Enteric-coated bacteriophage tablets for oral administration against gastrointestinal infections. Int J Pharm 2021; 609:121206. [PMID: 34673163 DOI: 10.1016/j.ijpharm.2021.121206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Intestinal Pseudomonas aeruginosa is highly problematic in immunocompromised patients such as those in intensive care units in hospitals. Phage therapy is an attractive alternative or supplementary therapy to antibiotics as it not only kills multidrug-resistant bacteria, but also minimises the disruption of gut microflora. Solid oral dosage forms (i.e., tablets) have the potential to effectively deliver viable phages to the gastrointestinal tract, but formulation studies have been scarce. In this study, Pseudomonas-targeting phage PEV20 was used as a model to produce tablets suitable for oral delivery by utilising industry-scale tablet compression and tablet coating machines. Phage tablets were produced by (i) spray drying of phages, (ii) direct compression of the phage powders into tablets, and then (iii) tablet coating. The resulting phage tablets had negligible phage titre reduction throughout the process and passed the British Pharmacopeia tests, including friability, weight variation, disintegration and dissolution of the tablets as well as weight gain and disintegration (in 0.1 M HCl and pH 7.4 phosphate buffer) of coated tablets. The developed formulation method can be utilised to produce tablets containing other phages and phage cocktails that are effective against enteric bacterial infections.
Collapse
Affiliation(s)
- Dipesh Khanal
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, The University of Sydney, Sydney, New South Wales, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Hick
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
72
|
Li P, Wang H, Li M, Qi W, Qi Z, Chen W, Dong Y, Xu Z, Zhang W. Characterization and genome analysis of a broad lytic spectrum bacteriophage P479 against multidrug-resistant Escherichia coli. Virus Res 2021; 308:198628. [PMID: 34780885 DOI: 10.1016/j.virusres.2021.198628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
The increase of multi-drug resistant and multi-serotypes of pathogenic Escherichia coli has brought more severe challenge to control infection. Nowadays, bacteriophage is a promising tool to treat colibacillosis as an alternative of antibiotics. A coliphage P479, isolated from sewage of poultry farm, could lyse multiple serotypes, including not only O1, O2, O8, O9, O21, O78, O83, O145 of Avian pathogenic E. coli, but O157:H7 of Enterohaemorrhagic E. coli and O18:K1:H7 Neonatal meningitis E. coli. Additionally, P479 could also lyse multi-drug resistant E. coli. These indicated that P479 had good lytic ability. One-step growth curve revealed that the latent time period of P479 was 10 min and the burst size was about 318 PFU/cell. Stability tests demonstrated that P479 had good stability under various temperature (4 to 50 °C) and pH (3 to11) conditions. P479 contained of a linear, double-stranded DNA molecule of 172,033 bp with 40.3% GC content. P479 contained 296 putative coding sequences (CDSs) and two tRNA genes. Based on genomic comparison, P479 was classified as a member of genus Gaprivervirus, subfamily Tevenvirinae, family Myoviridae, order Caudovirales. No known virulent or lysogenic genes were detected in the genome of P479, manifesting P479 was safe to adhibit. Antibacterial activity in vitro manifested that P479 has varying degrees bacteriostatic activity against different bacteria. According to the above properties, P479 has the potential to be applied in phage therapy in the future.
Collapse
Affiliation(s)
- Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Min Li
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Weiling Qi
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Zitai Qi
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Weiye Chen
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China
| | - Yongyi Dong
- Jiangsu Animal Disease Control Center, 124 Caochangmen street, Gulou District, Nanjing 210036, China
| | - Zhengjun Xu
- Jiangsu Animal Disease Control Center, 124 Caochangmen street, Gulou District, Nanjing 210036, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, No.1 Weigang, Xuanwu District Nanjing City 210095, China; OIE Reference Lab for Swine Streptococcosis, No.1 Weigang, Xuanwu District Nanjing City 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Xuanwu District Nanjing City 210095, China.
| |
Collapse
|
73
|
Xuan J, Wang J, Wei B. Diagnostic Value of Thromboelastography (TEG) for the Diagnosis of Death in Infected Patients. Clin Appl Thromb Hemost 2021; 27:10760296211047231. [PMID: 34657478 PMCID: PMC8527583 DOI: 10.1177/10760296211047231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, we want to investigate the clinical value of each index of thromboelastography (TEG) on the prognosis of infected patients.The clinical baseline data and TEG test results of 431 infected patients in our hospital's emergency department between January 2018 and December 2018 were selected. And the patients were divided into death and survival groups to analyze the predictive value of each index of TEG and the joint model on the death of infected patients.In the correlation study of C-reactive protein (CRP) and procalcitonin (PCT) with each TEG parameter, CRP was positively correlated with maximum amplitude (MA, r = 0.145, P = .003) and elasticity constants (E, r = 0.098, P = .043), respectively. PCT was positively correlated with coagulation reaction time (R, r = 0.124, P = .010) and time to MA (TMA) (r = 0.165, P = .001), respectively; PCT was negatively correlated with α-Angle (r = 0.124, P = .010) and coagulation index (CI, r = -0.108, P = .026), respectively. Multifactorial regression analysis showed that granulocytes, thrombocytes, platelet distribution width (PDW), and infection site were independent influences on infected patients' death. Diagnostic data showed that all eight TEG indicators had good specificity for predicting death, but all had poor sensitivity; thrombodynamic potential index (TPI) had the best diagnostic value (area under the curve, AUC = 0.609, P = .002). The eight-indicator modeling of TEG showed that the TEG model combined with PCT and CRP, respectively, had lower diagnostic efficacy than PCT (AUC = 0.756, P < .001); however, TEG had better specificity (82.73%) when diagnosed independently.The granulocytes, thrombocytes, PDW, and infection site are independent influencing factors of death in infected patients. Each index of TEG has better specificity in the diagnosis of death in infected patients.
Collapse
Affiliation(s)
- Jingchao Xuan
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, China
| | - Junyu Wang
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, China
| | - Bing Wei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, China
| |
Collapse
|
74
|
Critically ill patient with multidrug-resistant Acinetobacter baumannii respiratory infection successfully treated with intravenous and nebulized bacteriophage therapy. Antimicrob Agents Chemother 2021; 66:e0082421. [PMID: 34662188 DOI: 10.1128/aac.00824-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hospitalized patients are at risk of developing serious multi-drug resistant bacterial infections. This risk is heightened in patients who are on mechanical ventilation, are immunocompromised, and/or have chronic comorbidities. We report the case of a 52-year-old critically ill patient with a multidrug resistant Acinetobacter baumannii (MDR-A) respiratory infection who was successfully treated with antibiotics and intravenous and nebulized bacteriophage therapy.
Collapse
|
75
|
Wu Z, Zhang Y, Xu X, Ahmed T, Yang Y, Loh B, Leptihn S, Yan C, Chen J, Li B. The Holin-Endolysin Lysis System of the OP2-Like Phage X2 Infecting Xanthomonas oryzae pv. oryzae. Viruses 2021; 13:v13101949. [PMID: 34696380 PMCID: PMC8541568 DOI: 10.3390/v13101949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023] Open
Abstract
Most endolysins of dsDNA phages are exported by a holin-dependent mechanism, while in some cases endolysins are exported via a holin-independent mechanism. However, it is still unclear whether the same endolysins can be exported by both holin-dependent and holin-independent mechanisms. This study investigated the lysis system of OP2-like phage X2 infecting Xanthomonas oryzae pv. oryzae, causing devastating bacterial leaf blight disease in rice. Based on bioinformatics and protein biochemistry methods, we show that phage X2 employs the classic "holin-endolysin" lysis system. The endolysin acts on the cell envelope and exhibits antibacterial effects in vitro, while the holin facilitates the release of the protein into the periplasm. We also characterized the role of the transmembrane domain (TMD) in the translocation of the endolysin across the inner membrane. We found that the TMD facilitated the translocation of the endolysin via the Sec secretion system. The holin increases the efficiency of protein release, leading to faster and more efficient lysis. Interestingly, in E. coli, the expression of either holin or endolysin with TMDs resulted in the formation of long rod shaped cells. We conclude that the TMD of X2-Lys plays a dual role: One is the transmembrane transport while the other is the inhibition of cell division, resulting in larger cells and thus in a higher number of released viruses per cell.
Collapse
Affiliation(s)
- Zhifeng Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Xinyang Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
| | - Belinda Loh
- University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China; (B.L.); (S.L.)
| | - Sebastian Leptihn
- University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China; (B.L.); (S.L.)
| | - Chenqi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.C.); (B.L.); Tel.: +86-571-8898-2412 (B.L.)
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
- Correspondence: (J.C.); (B.L.); Tel.: +86-571-8898-2412 (B.L.)
| |
Collapse
|
76
|
Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. Phage Therapy for Multi-Drug Resistant Respiratory Tract Infections. Viruses 2021; 13:v13091809. [PMID: 34578390 PMCID: PMC8472870 DOI: 10.3390/v13091809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
The emergence of multi-drug resistant (MDR) bacteria is recognised today as one of the greatest challenges to public health. As traditional antimicrobials are becoming ineffective and research into new antibiotics is diminishing, a number of alternative treatments for MDR bacteria have been receiving greater attention. Bacteriophage therapies are being revisited and present a promising opportunity to reduce the burden of bacterial infection in this post-antibiotic era. This review focuses on the current evidence supporting bacteriophage therapy against prevalent or emerging multi-drug resistant bacterial pathogens in respiratory medicine and the challenges ahead in preclinical data generation. Starting with efforts to improve delivery of bacteriophages to the lung surface, the current developments in animal models for relevant efficacy data on respiratory infections are discussed before finishing with a summary of findings from the select human trials performed to date.
Collapse
Affiliation(s)
- Joshua J. Iszatt
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Alexander N. Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, University of Sydney, Camperdown 2006, Australia;
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
77
|
Loganathan A, Manohar P, Eniyan K, VinodKumar CS, Leptihn S, Nachimuthu R. Phage therapy as a revolutionary medicine against Gram-positive bacterial infections. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:49. [PMID: 34485539 PMCID: PMC8401357 DOI: 10.1186/s43088-021-00141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/17/2021] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Antibiotic resistance among pathogenic bacteria has created a global emergency, prompting the hunt for an alternative cure. Bacteriophages were discovered over a century ago and have proven to be a successful replacement during antibiotic treatment failure. This review discusses on the scientific investigation of phage therapy for Gram-positive pathogens and general outlook of phage therapy clinical trials and commercialization. MAIN BODY OF THE ABSTRACT This review aimed to highlight the phage therapy in Gram-positive bacteria and the need for phage therapy in the future. Phage therapy to treat Gram-positive bacterial infections is in use for a very long time. However, limited review on the phage efficacy in Gram-positive bacteria exists. The natural efficiency and potency of bacteriophages against bacterial strains have been advantageous amidst the other non-antibiotic agents. The use of phages to treat oral biofilm, skin infection, and recurrent infections caused by Gram-positive bacteria has emerged as a predominant research area in recent years. In addition, the upsurge in research in the area of phage therapy for spore-forming Gram-positive bacteria has added a wealth of information to phage therapy. SHORT CONCLUSION We conclude that the need of phage as an alternative treatment is obvious in future. However, phage therapy can be used as reserve treatment. This review focuses on the potential use of phage therapy in treating Gram-positive bacterial infections, as well as their therapeutic aspects. Furthermore, we discussed the difficulties in commercializing phage drugs and their problems as a breakthrough medicine.
Collapse
Affiliation(s)
- Archana Loganathan
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| | - Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, School of Medicine, Haining, 314400 Zhejiang People’s Republic of China
- School of Medicine, The Second Affiliated Hospital Zhejiang University (SAHZU), Hangzhou, Zhejiang People’s Republic of China
| | - Kandasamy Eniyan
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| | - C. S. VinodKumar
- Department of Microbiology, S.S. Institute of Medical Sciences and Research Centre, Davanagere, India
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, School of Medicine, Haining, 314400 Zhejiang People’s Republic of China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ UK
| | - Ramesh Nachimuthu
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| |
Collapse
|
78
|
Observed transaminitis with a unique bacteriophage therapy protocol to treat recalcitrant Staphylococcal biofilm infections. Infection 2021; 50:281-283. [PMID: 34328615 DOI: 10.1007/s15010-021-01675-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
|
79
|
Avershina E, Shapovalova V, Shipulin G. Fighting Antibiotic Resistance in Hospital-Acquired Infections: Current State and Emerging Technologies in Disease Prevention, Diagnostics and Therapy. Front Microbiol 2021; 12:707330. [PMID: 34367112 PMCID: PMC8334188 DOI: 10.3389/fmicb.2021.707330] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Rising antibiotic resistance is a global threat that is projected to cause more deaths than all cancers combined by 2050. In this review, we set to summarize the current state of antibiotic resistance, and to give an overview of the emerging technologies aimed to escape the pre-antibiotic era recurrence. We conducted a comprehensive literature survey of >150 original research and review articles indexed in the Web of Science using "antimicrobial resistance," "diagnostics," "therapeutics," "disinfection," "nosocomial infections," "ESKAPE pathogens" as key words. We discuss the impact of nosocomial infections on the spread of multi-drug resistant bacteria, give an overview over existing and developing strategies for faster diagnostics of infectious diseases, review current and novel approaches in therapy of infectious diseases, and finally discuss strategies for hospital disinfection to prevent MDR bacteria spread.
Collapse
Affiliation(s)
- Ekaterina Avershina
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Laboratory or Postgenomic Technologies, Izmerov Research Institute of Occupational Health, Moscow, Russia
| | - Valeria Shapovalova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| |
Collapse
|
80
|
Sui B, Han L, Ren H, Liu W, Zhang C. A Novel Polyvalent Bacteriophage vB_EcoM_swi3 Infects Pathogenic Escherichia coli and Salmonella enteritidis. Front Microbiol 2021; 12:649673. [PMID: 34335489 PMCID: PMC8317433 DOI: 10.3389/fmicb.2021.649673] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
A novel virulent bacteriophage vB_EcoM_swi3 (swi3), isolated from swine feces, lyzed 9% (6/65) of Escherichia coli and isolates 54% (39/72) of Salmonella enteritidis isolates, which were all clinically pathogenic multidrug-resistant strains. Morphological observation showed that phage swi3 belonged to the Myoviridae family with an icosahedral head (80 nm in diameter) and a contractile sheathed tail (120 nm in length). At the optimal multiplicity of infection of 1, the one-step growth analysis of swi3 showed a 25-min latent period with a burst size of 25-plaque-forming units (PFU)/infected cell. Phage swi3 remained stable both at pH 6.0–8.0 and at less than 50°C for at least 1 h. Genomic sequencing and bioinformatics analysis based on genomic sequences and the terminase large subunit showed that phage swi3 was a novel member that was most closely related to Salmonella phages and belonged to the Rosemountvirus genus. Phage swi3 harbored a 52-kb double-stranded DNA genome with 46.02% GC content. Seventy-two potential open reading frames were identified and annotated, only 15 of which had been assigned to functional genes. No gene associated with pathogenicity and virulence was identified. The effects of phage swi3 in treating pathologic E. coli infections in vivo were evaluated using a mouse model. The administration of a single intraperitoneal injection of swi3 (106 PFU) at 2 h after challenge with the E. coli strain (serotype K88) (108 colony-forming units) sufficiently protected all mice without toxic side effects. This finding highlighted that phage swi3 might be used as an effective antibacterial agent to prevent E. coli and S. enteritidis infection.
Collapse
Affiliation(s)
- Bingrui Sui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lili Han
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
81
|
Vlassov VV, Tikunova NV, Morozova VV. Bacteriophages as Therapeutic Preparations: What Restricts Their Application in Medicine. BIOCHEMISTRY (MOSCOW) 2021; 85:1350-1361. [PMID: 33280578 DOI: 10.1134/s0006297920110061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The increasing prevalence of bacterial pathogens with multiple antibiotic resistance requires development of new approaches to control infections. Phage therapy is one of the most promising approaches. In recent years, research organizations and a number of pharmaceutical companies have intensified investigations aimed at developing bacteriophage-based therapeutics. In the United States and European countries, special centers have been established that experimentally apply phage therapy to treat patients who do not respond to antibiotic therapy. This review describes the features of bacteriophages as therapeutic tools, critically discusses the results of clinical trials of bacteriophage preparations, and assesses the prospects for using phage therapy to treat certain types of infectious diseases.
Collapse
Affiliation(s)
- V V Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - N V Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - V V Morozova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
82
|
Chang RYK, Okamoto Y, Morales S, Kutter E, Chan HK. Hydrogel formulations containing non-ionic polymers for topical delivery of bacteriophages. Int J Pharm 2021; 605:120850. [PMID: 34216771 DOI: 10.1016/j.ijpharm.2021.120850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 02/01/2023]
Abstract
Hydrogel is an attractive delivery vehicle for phages as it keeps the wound moist, acts as a protective barrier and facilitates wound healing process. The aim of this study was to formulate biologically stable phage hydrogels that enable controlled release of infective phages. Pseudomonas-targeting phages, PEV1 (myovirus) and PEV31 (podovirus) were formulated in hydrogels (109 PFU/g) consisting of non-ionic polymers, including hydroxyethyl cellulose (HEC), hydroxypropyl methylcellulose (HPMC), polyethylene oxide (PEO), polyvinyl alcohol (PVA), hydroxypropyl cellulose (HPC) and polyvinylpyrrolidone (PVP). The formulations were evaluated for physical properties, in vitro release profiles, antibacterial activity, and storage stability. Controlled release of phages was observed in 7.5% PEO, 20% PVA and 75% PVP hydrogels with >108 PFU release within 8 h. Poor phage release (7 × 105-4 × 107 PFU) was observed in 5% HPMC, 5% HEC and 30% HPC gels. The biostability of the optimized hydrogels was phage-specific with less titer loss observed for PEV1 (0-0.8 log) than for PEV31 (0.3-1.4 log). Both phages remained stable in PEO, PVA and HPMC hydrogels with <1 log titer reductions when stored at 5 °C. This study showed that 7.5% PEO and 20% PVA hydrogel formulations could be promising therapeutic systems for delivering phages for the treatment of wound infections.
Collapse
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, The University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, New South Wales, Australia.
| | - Yuko Okamoto
- Advanced Drug Delivery Group, The University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, New South Wales, Australia; Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | | | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, The University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, New South Wales, Australia.
| |
Collapse
|
83
|
Improving Phage-Biofilm In Vitro Experimentation. Viruses 2021; 13:v13061175. [PMID: 34205417 PMCID: PMC8234374 DOI: 10.3390/v13061175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages or phages, the viruses of bacteria, are abundant components of most ecosystems, including those where bacteria predominantly occupy biofilm niches. Understanding the phage impact on bacterial biofilms therefore can be crucial toward understanding both phage and bacterial ecology. Here, we take a critical look at the study of bacteriophage interactions with bacterial biofilms as carried out in vitro, since these studies serve as bases of our ecological and therapeutic understanding of phage impacts on biofilms. We suggest that phage-biofilm in vitro experiments often may be improved in terms of both design and interpretation. Specific issues discussed include (a) not distinguishing control of new biofilm growth from removal of existing biofilm, (b) inadequate descriptions of phage titers, (c) artificially small overlying fluid volumes, (d) limited explorations of treatment dosing and duration, (e) only end-point rather than kinetic analyses, (f) importance of distinguishing phage enzymatic from phage bacteriolytic anti-biofilm activities, (g) limitations of biofilm biomass determinations, (h) free-phage interference with viable-count determinations, and (i) importance of experimental conditions. Toward bettering understanding of the ecology of bacteriophage-biofilm interactions, and of phage-mediated biofilm disruption, we discuss here these various issues as well as provide tips toward improving experiments and their reporting.
Collapse
|
84
|
Marongiu L, Burkard M, Venturelli S, Allgayer H. Dietary Modulation of Bacteriophages as an Additional Player in Inflammation and Cancer. Cancers (Basel) 2021; 13:cancers13092036. [PMID: 33922485 PMCID: PMC8122878 DOI: 10.3390/cancers13092036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Natural compounds such as essential oils and tea have been used successfully in naturopathy and folk medicine for hundreds of years. Current research is unveiling the molecular role of their antibacterial, anti-inflammatory, and anticancer properties. Nevertheless, the effect of these compounds on bacteriophages is still poorly understood. The application of bacteriophages against bacteria has gained a particular interest in recent years due to, e.g., the constant rise of antimicrobial resistance to antibiotics, or an increasing awareness of different types of microbiota and their potential contribution to gastrointestinal diseases, including inflammatory and malignant conditions. Thus, a better knowledge of how dietary products can affect bacteriophages and, in turn, the whole gut microbiome can help maintain healthy homeostasis, reducing the risk of developing diseases such as diverse types of gastroenteritis, inflammatory bowel disease, or even cancer. The present review summarizes the effect of dietary compounds on the physiology of bacteriophages. In a majority of works, the substance class of polyphenols showed a particular activity against bacteriophages, and the primary mechanism of action involved structural damage of the capsid, inhibiting bacteriophage activity and infectivity. Some further dietary compounds such as caffeine, salt or oregano have been shown to induce or suppress prophages, whereas others, such as the natural sweeter stevia, promoted species-specific phage responses. A better understanding of how dietary compounds could selectively, and specifically, modulate the activity of individual phages opens the possibility to reorganize the microbial network as an additional strategy to support in the combat, or in prevention, of gastrointestinal diseases, including inflammation and cancer.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery—Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany;
| | - Markus Burkard
- Department of Biochemistry of Nutrition, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sascha Venturelli
- Department of Biochemistry of Nutrition, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Otfried-Müllerstr. 27, 72076 Tuebingen, Germany
- Correspondence: (S.V.); (H.A.); Tel.: +49-(0)711-459-24113 (ext. 24195) (S.V.); +49-(0)621-383-71630 (ext. 71635) (H.A.); Fax: +49-(0)-711-459-23822 (S.V.); +49-(0)-621-383-71631 (H.A.)
| | - Heike Allgayer
- Department of Experimental Surgery—Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany;
- Correspondence: (S.V.); (H.A.); Tel.: +49-(0)711-459-24113 (ext. 24195) (S.V.); +49-(0)621-383-71630 (ext. 71635) (H.A.); Fax: +49-(0)-711-459-23822 (S.V.); +49-(0)-621-383-71631 (H.A.)
| |
Collapse
|
85
|
Staquicini DI, Barbu EM, Zemans RL, Dray BK, Staquicini FI, Dogra P, Cardó-Vila M, Miranti CK, Baze WB, Villa LL, Kalil J, Sharma G, Prossnitz ER, Wang Z, Cristini V, Sidman RL, Berman AR, Panettieri RA, Tuder RM, Pasqualini R, Arap W. Targeted Phage Display-based Pulmonary Vaccination in Mice and Non-human Primates. MED 2021; 2:321-342. [PMID: 33870243 PMCID: PMC8049167 DOI: 10.1016/j.medj.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The extensive alveolar capillary network of the lungs is an attractive route for administration of several agents. One key functional attribute is the rapid onset of systemic action due to the absence of first-pass metabolism. METHODS Here we applied a combinatorial approach for ligand-directed pulmonary delivery as a unique route for systemic targeting in vaccination. FINDINGS We screened a phage display random peptide library in vivo to select, identify, and validate a ligand (CAKSMGDIVC) that specifically targets and is internalized through its receptor, α3β1 integrin, on the surface of cells lining the lung airways and alveoli and mediates CAKSMGDIVC-displaying phage binding and systemic delivery without compromising lung homeostasis. As a proof-of-concept, we show that the pulmonary delivery of targeted CAKSMGDIVC-displaying phage particles in mice and non-human primates elicit a systemic and specific humoral response. CONCLUSIONS This broad methodology blueprint represents a robust and versatile platform tool enabling new ligand-receptor discovery with many potential translational applications. FUNDING Cancer Center Support Grants to the University of Texas M.D. Anderson Cancer Center (CA016672), University of New Mexico Comprehensive Cancer Center (CA118100), Rutgers Cancer Institute of New Jersey (CA072720), research awards from the Gillson Longenbaugh Foundation, and National Institutes of Health (NIH) grant no. 1R01CA226537.
Collapse
Affiliation(s)
- Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- These authors equally contributed to this work
| | - E. Magda Barbu
- David H. Koch Center, Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- These authors equally contributed to this work
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Beth K. Dray
- Michale E. Keeling Center for Comparative Medicine and Research, Department of Comparative Medicine, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX 78602, USA
- Current address: Charles River Laboratories, Ashland, OH, USA
| | - Fernanda I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
- Current address: MBrace Therapeutics, Summit, NJ, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Marina Cardó-Vila
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Department of Otolaryngology - Head & Neck Surgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Cindy K. Miranti
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Wallace B. Baze
- Michale E. Keeling Center for Comparative Medicine and Research, Department of Comparative Medicine, The University of Texas M. D. Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Luisa L. Villa
- Cancer Institute of São Paulo, University of São Paulo Medical School, São Paulo, SP 01246, Brazil
- Department of Radiology and Medical Oncology, University of São Paulo Medical School, São Paulo, SP 01246, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute, University of São Paulo Medical School, São Paulo, SP 05403, Brazil
- Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo Medical School, São Paulo, SP 05403, Brazil
| | - Geetanjali Sharma
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Eric R. Prossnitz
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77230, USA
- Department of Nanomedicine, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Richard L. Sidman
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew R. Berman
- Division of Pulmonary, Critical Care Medicine, Allergy & Rheumatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ 08901, USA
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- These authors jointly supervised this work
- Lead contact
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- These authors jointly supervised this work
| |
Collapse
|
86
|
田 而, 王 玥, 吴 卓, 万 紫, 程 伟. [Bacteriophage Therapy: Retrospective Review and Future Prospects]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:170-175. [PMID: 33829687 PMCID: PMC10408932 DOI: 10.12182/20210360207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 02/05/2023]
Abstract
At present, bacterial infections are mainly treated with antibiotics, but new treatment methods are urgently needed because of growing problems with antibiotic resistance. Therefore, phage therapy will be a potential solution to the problem of bacterial drug resistance, and the combined use of bacteriophage and antibiotics is also considered a potential treatment option. However, there has not been any well-designed clinical controlled trials on phage therapy. More future research needs to be done to solve the problems of phage therapy, for example, its narrow antibacterial spectrum, the uncertainty regarding treatment safety, and the bacterial resistance. Some refractory diseases such as breast cancer and alcoholic hepatitis are difficult to treat clinically. The successful experimental research on bacteriophages reported in these fields provides new ideas of treatment for more refractory diseases in the future. In addition, bacteriophages also showed promising performance in vaccine applications and osteanagenesis. We herein summarize the existing weaknesses of phage therapy and its application prospects in treating systemic diseases, hoping to promote further clinical application research of phage therapy.
Collapse
Affiliation(s)
- 而慷 田
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 玥 王
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 卓轩 吴
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 紫千红 万
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 伟 程
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
87
|
Kaźmierczak Z, Majewska J, Milczarek M, Owczarek B, Dąbrowska K. Circulation of Fluorescently Labelled Phage in a Murine Model. Viruses 2021; 13:297. [PMID: 33672895 PMCID: PMC7917791 DOI: 10.3390/v13020297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Interactions between bacteriophages and mammals strongly affect possible applications of bacteriophages. This has created a need for tools that facilitate studies of phage circulation and deposition in tissues. Here, we propose red fluorescent protein (RFP)-labelled E. coli lytic phages as a new tool for the investigation of phage interactions with cells and tissues. The interaction of RFP-labelled phages with living eukaryotic cells (macrophages) was visualized after 20 min of co-incubation. RFP-labeled phages were applied in a murine model of phage circulation in vivo. Phages administered by three different routes (intravenously, orally, rectally) were detected through the course of time. The intravenous route of administration was the most efficient for phage delivery to multiple body compartments: 20 min after administration, virions were detected in lymph nodes, lungs, and liver; 30 min after administration, they were detectable in muscles; and 1 h after administration, phages were detected in spleen and lymph nodes. Oral and rectal administration of RFP-labelled phages allowed for their detection in the gastrointestinal (GI) tract only.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (J.M.); (B.O.); (K.D.)
| | - Joanna Majewska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (J.M.); (B.O.); (K.D.)
| | - Magdalena Milczarek
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland;
| | - Barbara Owczarek
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (J.M.); (B.O.); (K.D.)
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (J.M.); (B.O.); (K.D.)
| |
Collapse
|
88
|
Bacteriophage-Delivering Hydrogels: Current Progress in Combating Antibiotic Resistant Bacterial Infection. Antibiotics (Basel) 2021; 10:antibiotics10020130. [PMID: 33572929 PMCID: PMC7911734 DOI: 10.3390/antibiotics10020130] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance remains as an unresolved global challenge in the health care system, posing serious threats to global health. As an alternative to antibiotics, bacteriophage (phage) therapy is rising as a key to combating antibiotic-resistant bacterial infections. In order to deliver a phage to the site of infection, hydrogels have been formulated to incorporate phages, owing to its favorable characteristics in delivering biological molecules. This paper reviews the formulation of phage-delivering hydrogels for orthopedic implant-associated bone infection, catheter-associated urinary tract infection and trauma-associated wound infection, with a focus on the preparation methods, stability, efficacy and safety of hydrogels as phage carriers.
Collapse
|
89
|
Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Animal Models in the Evaluation of the Effectiveness of Phage Therapy for Infections Caused by Gram-Negative Bacteria from the ESKAPE Group and the Reliability of Its Use in Humans. Microorganisms 2021; 9:206. [PMID: 33498243 PMCID: PMC7909267 DOI: 10.3390/microorganisms9020206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
The authors emphasize how extremely important it is to highlight the role played by animal models in an attempt to determine possible phage interactions with the organism into which it was introduced as well as to determine the safety and effectiveness of phage therapy in vivo taking into account the individual conditions of a given organism and its physiology. Animal models in which phages are used make it possible, among other things, to evaluate the effective therapeutic dose and to choose the possible route of phage administration depending on the type of infection developed. These results cannot be applied in detail to the human body, but the knowledge gained from animal experiments is invaluable and very helpful. We would like to highlight how useful animal models may be for the possible effectiveness evaluation of phage therapy in the case of infections caused by gram-negative bacteria from the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species) group of pathogens. In this review, we focus specifically on the data from the last few years.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| |
Collapse
|
90
|
Hou F, Pan Z, Yang R, Zhi F, Bi Y. Gold digging: Searching for gut microbiota that enhances antitumor immunity. J Cell Physiol 2021; 236:5495-5511. [PMID: 33452716 DOI: 10.1002/jcp.30272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 11/09/2022]
Abstract
Programmed cell death protein-1/programmed cell death-ligand 1 and cytotoxic T-lymphocyte antigen-4 are two immune checkpoint inhibitors (ICIs), exhibiting significant antitumor effects on multiple types of cancers in clinical practice. However, only some patients respond to ICI agents, which limits their widespread application. Recent findings revealed that the gut microbiota is relevant to host health through the modulation of host physical and immune functions. Therefore, the modulation of gut microbiota to achieve the desired taxa may be a potential strategy to improve the efficacy of immunotherapies. In this review, we classified the relative microbes according to their taxonomic information and aimed to clarify their modulatory functions and potent effects on ICI immunotherapy by focusing on recent trials investigating the relationships between the gut microbiota and ICIs.
Collapse
Affiliation(s)
- Fengyi Hou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Pathogen and Biosecurity, Department of Unknown Microbiology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Department of Unknown Microbiology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Department of Unknown Microbiology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Department of Unknown Microbiology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
91
|
Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci 2021; 22:ijms22020735. [PMID: 33450990 PMCID: PMC7828454 DOI: 10.3390/ijms22020735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| | - Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| |
Collapse
|
92
|
Düzgüneş N, Sessevmez M, Yildirim M. Bacteriophage Therapy of Bacterial Infections: The Rediscovered Frontier. Pharmaceuticals (Basel) 2021; 14:34. [PMID: 33466546 PMCID: PMC7824886 DOI: 10.3390/ph14010034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic-resistant infections present a serious health concern worldwide. It is estimated that there are 2.8 million antibiotic-resistant infections and 35,000 deaths in the United States every year. Such microorganisms include Acinetobacter, Enterobacterioceae, Pseudomonas, Staphylococcus and Mycobacterium. Alternative treatment methods are, thus, necessary to treat such infections. Bacteriophages are viruses of bacteria. In a lytic infection, the newly formed phage particles lyse the bacterium and continue to infect other bacteria. In the early 20th century, d'Herelle, Bruynoghe and Maisin used bacterium-specific phages to treat bacterial infections. Bacteriophages are being identified, purified and developed as pharmaceutically acceptable macromolecular "drugs," undergoing strict quality control. Phages can be applied topically or delivered by inhalation, orally or parenterally. Some of the major drug-resistant infections that are potential targets of pharmaceutically prepared phages are Pseudomonas aeruginosa, Mycobacterium tuberculosis and Acinetobacter baumannii.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
| | - Metin Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin 33400, Turkey;
| |
Collapse
|
93
|
Chow MYT, Chang RYK, Li M, Wang Y, Lin Y, Morales S, McLachlan AJ, Kutter E, Li J, Chan HK. Pharmacokinetics and Time-Kill Study of Inhaled Antipseudomonal Bacteriophage Therapy in Mice. Antimicrob Agents Chemother 2020; 65:e01470-20. [PMID: 33077657 PMCID: PMC7927809 DOI: 10.1128/aac.01470-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/10/2020] [Indexed: 12/21/2022] Open
Abstract
Inhaled bacteriophage (phage) therapy is a potential alternative to conventional antibiotic therapy to combat multidrug-resistant (MDR) Pseudomonas aeruginosa infections. However, pharmacokinetics (PK) and pharmacodynamics (PD) of phages are fundamentally different from antibiotics and the lack of understanding potentially limits optimal dosing. The aim of this study was to investigate the in vivo PK and PD profiles of antipseudomonal phage PEV31 delivered by pulmonary route in immune-suppressed mice. BALB/c mice were administered phage PEV31 at doses of 107 and 109 PFU by the intratracheal route. Mice (n = 4) were sacrificed at 0, 1, 2, 4, 8, and 24 h posttreatment and various tissues (lungs, kidney, spleen, and liver), bronchoalveolar lavage fluid, and blood were collected for phage quantification. In a separate study combining phage with bacteria, mice (n = 4) were treated with PEV31 (109 PFU) or phosphate-buffered saline (PBS) at 2 h postinoculation with MDR P. aeruginosa Infective PEV31 and bacteria were enumerated from the lungs. In the phage-only study, the PEV31 titer gradually decreased in the lungs over 24 h, with a half-life of approximately 8 h for both doses. In the presence of bacteria, in contrast, the PEV31 titer increased by almost 2-log10 in the lungs at 16 h. Furthermore, bacterial growth was suppressed in the PEV31-treated group, while the PBS-treated group showed exponential growth. Of the 10 colonies tested, four phage-resistant isolates were observed from the lung homogenates sampled at 24 h after phage treatment. These colonies had a different antibiogram to the parent bacteria. This study provides evidence that pulmonary delivery of phage PEV31 in mice can reduce the MDR bacterial burden.
Collapse
Affiliation(s)
- Michael Y T Chow
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Mengyu Li
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuncheng Wang
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Yu Lin
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Andrew J McLachlan
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Jian Li
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
94
|
Lin Y, Yoon Kyung Chang R, Britton WJ, Morales S, Kutter E, Li J, Chan HK. Storage stability of phage-ciprofloxacin combination powders against Pseudomonas aeruginosa respiratory infections. Int J Pharm 2020; 591:119952. [DOI: 10.1016/j.ijpharm.2020.119952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
|
95
|
Lin Y, Quan D, Chang RYK, Chow MYT, Wang Y, Li M, Morales S, Britton WJ, Kutter E, Li J, Chan HK. Synergistic activity of phage PEV20-ciprofloxacin combination powder formulation-A proof-of-principle study in a P. aeruginosa lung infection model. Eur J Pharm Biopharm 2020; 158:166-171. [PMID: 33253892 DOI: 10.1016/j.ejpb.2020.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Combination treatment using bacteriophage and antibiotics is potentially an advanced approach to combatting antimicrobial-resistant bacterial infections. We have recently developed an inhalable powder by co-spray drying Pseudomonas phage PEV20 with ciprofloxacin. The purpose of this study was to assess the in vivo effect of the powder using a neutropenic mouse model of acute lung infection. The synergistic activity of PEV20 and ciprofloxacin was investigated by infecting mice with P. aeruginosa, then administering freshly spray-dried single PEV20 (106 PFU/mg), single ciprofloxacin (0.33 mg/mg) or combined PEV20-ciprofloxacin treatment using a dry powder insufflator. Lung tissues were then harvested for colony counting and flow cytometry analysis at 24 h post-treatment. PEV20 and ciprofloxacin combination powder significantly reduced the bacterial load of clinical P. aeruginosa strain in mouse lungs by 5.9 log10 (p < 0.005). No obvious reduction in the bacterial load was observed when the animals were treated only with PEV20 or ciprofloxacin. Assessment of immunological responses in the lungs showed reduced inflammation associating with the bactericidal effect of the PEV20-ciprofloxacin powder. In conclusion, this study has demonstrated the synergistic potential of using the combination PEV20-ciprofloxacin powder for P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Yu Lin
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Quan
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Y T Chow
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Yuncheng Wang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mengyu Li
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | - Warwick J Britton
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
96
|
Maturation of Pseudo-Nucleus Compartment in P. aeruginosa, Infected with Giant phiKZ Phage. Viruses 2020; 12:v12101197. [PMID: 33096802 PMCID: PMC7589130 DOI: 10.3390/v12101197] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
The giant phiKZ phage infection induces the appearance of a pseudo-nucleus inside the bacterial cytoplasm. Here, we used RT-PCR, fluorescent in situ hybridization (FISH), electron tomography, and analytical electron microscopy to study the morphology of this unique nucleus-like shell and to demonstrate the distribution of phiKZ and bacterial DNA in infected Pseudomonas aeruginosa cells. The maturation of the pseudo-nucleus was traced in short intervals for 40 min after infection and revealed the continuous spatial separation of the phage and host DNA. Immediately after ejection, phage DNA was located inside the newly-identified round compartments; at a later infection stage, it was replicated inside the pseudo-nucleus; in the mature pseudo-nucleus, a saturated internal network of filaments was observed. This network consisted of DNA bundles in complex with DNA-binding proteins. On the other hand, the bacterial nucleoid underwent significant rearrangements during phage infection, yet the host DNA did not completely degrade until at least 40 min after phage application. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that, during the infection, the sulfur content in the bacterial cytoplasm increased, which suggests an increase of methionine-rich DNA-binding protein synthesis, whose role is to protect the bacterial DNA from stress caused by infection.
Collapse
|
97
|
Characterization of Novel Lytic Bacteriophages of Achromobacter marplantensis Isolated from a Pneumonia Patient. Viruses 2020; 12:v12101138. [PMID: 33049935 PMCID: PMC7600146 DOI: 10.3390/v12101138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
Achromobacter spp. are becoming increasingly associated with lung infections in patients suffering from cystic fibrosis (CF). A. marplatensis, which is closely related to A. xylosoxidans, has been isolated from the lungs of CF patients and other human infections. This article describes the isolation, morphology and characterization of two lytic bacteriophages specific for an A. marplatensis strain isolated from a pneumonia patient. This host strain was the causal agent of hospital acquired pneumonia–the first clinical report of such an occurrence. Full genome sequencing revealed bacteriophage genomes ranging in size from 45901 to 46,328 bp. Transmission electron microscopy revealed that the two bacteriophages AMA1 and AMA2 belonged to the Siphoviridae family. Host range analysis showed that their host range did not extend to A. xylosoxidans. The possibility exists for future testing of such bacteriophages in the control of Achromobacter infections such as those seen in CF and other infections of the lungs. The incidence of antibiotic resistance in this genus highlights the importance of seeking adjuncts and alternatives in CF and other lung infections.
Collapse
|
98
|
Choi IY, Park DH, Chin BA, Lee C, Lee J, Park MK. Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:668-681. [PMID: 33089232 PMCID: PMC7553841 DOI: 10.5187/jast.2020.62.5.668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/23/2022]
Abstract
The purpose of this study was aimed to isolate a Salmonella
Typhimurium-specific phage (KFS-ST) from washing water in a poultry processing
facility and to investigate the feasibility of the KFS-ST as a novel
bio-receptor for the magnetoelastic (ME) biosensor method. KFS-ST against
S. Typhimurium was isolated, propagated, and purified using
a CsCl-gradient ultracentrifugation. Morphological characteristics of KFS-ST
were analyzed using transmission electron microscopy (TEM). Its specificity and
efficiency of plating analysis were conducted against 39 foodborne pathogens.
The temperature and pH stabilities of KFS-ST were investigated by the exposure
of the phage to various temperatures (−70°C–70°C)
and pHs (1–12) for 1 h. A one-step growth curve analysis was performed to
determine the eclipse time, latent time and burst size of phage. The storage
stability of KFS-ST was studied by exposing KFS-ST to various storage
temperatures (−70°C, −20°C, 4°C, and
22°C) for 12 weeks. KFS-ST was isolated and purified with a high
concentration of (11.47 ± 0.25) Log PFU/mL. It had an icosahedral head
(56.91 ± 2.90 nm) and a non-contractile tail (225.49 ± 2.67 nm),
which was classified into the family of Siphoviridae in the
order of Caudovirales. KFS-ST exhibited an excellent
specificity against only S. Typhimurium and S.
Enteritidis, which are considered two of the most problematic
Salmonella strains in the meat and poultry. However, KFS-ST
did not exhibit any specificity against six other Salmonella
and 27 non-Salmonella strains. KFS-ST was stable at temperature
of 4°C to 50°C and at pH of 4 to 12. The eclipse time, latent
time, and burst size of KFS-ST were determined to be 10 min, 25 min and 26 PFU/
infected cell, respectively. KFS-ST was relatively stable during the 12-week
storage period at all tested temperatures. Therefore, this study demonstrated
the feasibility of KFS-ST as a novel bio-receptor for the detection of
S. Typhimurium and S. Enteritidis in meat
and poultry products using the ME biosensor method.
Collapse
Affiliation(s)
- In Young Choi
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Do Hyeon Park
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Brayan A Chin
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Cheonghoon Lee
- Graduate School of Public Health, and Institute of Health and Environment, Seoul National University, Seoul 08826, Korea
| | - Jinyoung Lee
- Gyedong General Education Institute, Sangmyung University, Cheonan 31066, Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
99
|
Chang RYK, Chen L, Chen D, Chan HK. Overcoming challenges for development of amorphous powders for inhalation. Expert Opin Drug Deliv 2020; 17:1583-1595. [DOI: 10.1080/17425247.2020.1813105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Lan Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Donghao Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
100
|
Wang C, Li P, Zhu Y, Huang Y, Gao M, Yuan X, Niu W, Liu H, Fan H, Qin Y, Tong Y, Mi Z, Bai C. Identification of a Novel Acinetobacter baumannii Phage-Derived Depolymerase and Its Therapeutic Application in Mice. Front Microbiol 2020; 11:1407. [PMID: 32903329 PMCID: PMC7396526 DOI: 10.3389/fmicb.2020.01407] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/29/2020] [Indexed: 12/02/2022] Open
Abstract
The rapid expansion of Acinetobacter baumannii clinical isolates exhibiting resistance to most or all available antibiotics is a global concern. Current treatments for infections caused by this bacterium have become less effective, and the need to explore new alternative therapies is urgent. Depolymerases derived from phages are emerging as attractive anti-virulence agents. In this study, a previously isolated A. baumannii phage (designated as vB_AbaM_IME285) was characterized, and genomic study was carried out using various bioinformatics tools. A gene predicted as encoding for the depolymerase was cloned and expressed, and the depolymerase activity of the recombinant enzyme (Dp49) was identified both in vitro and in experimental mice. The results showed that phage IME285 formed translucent halos around the plaques when inoculated onto a lawn of the host bacteria, exibiting depolymerase activity against this strain. On the basis of complete genome sequencing and bioinformatics analysis, ORF49 was speculated to be a gene encoding for the putative capsule depolymerase. The expressed recombinant Dp49 displayed an effective depolymerase activity and had a spectrum of activity similar to its parental phage IME285, which was active against 25 out of 49 A. baumannii strains. It was found that Dp49 greatly improved the inhibitory effect of serum on bacterial growth in vitro, and the administration of this enzyme significantly increased the survival rates of A. baumannii-infected mice in the animal experiment. In conclusion, the phage-encoded depolymerase Dp49 might be a promising alternative means of controlling infections mediated by multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Can Wang
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, Anhui, China
| | - Puyuan Li
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Zhu
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, Anhui, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mingming Gao
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Yuan
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenkai Niu
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiying Liu
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanhong Qin
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Changqing Bai
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Respiratory and Critical Care Diseases, General Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|