51
|
Nishimura T, Suchy FP, Bhadury J, Igarashi KJ, Charlesworth CT, Nakauchi H. Generation of Functional Organs Using a Cell-Competitive Niche in Intra- and Inter-species Rodent Chimeras. Cell Stem Cell 2021; 28:141-149.e3. [PMID: 33373620 PMCID: PMC8025673 DOI: 10.1016/j.stem.2020.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Interspecies organ generation via blastocyst complementation has succeeded in rodents, but not yet in evolutionally more distant species. Early developmental arrest hinders the formation of highly chimeric fetuses. We demonstrate that the deletion of insulin-like growth factor 1 receptor (Igf1r) in mouse embryos creates a permissive "cell-competitive niche" in several organs, significantly augmenting both mouse intraspecies and mouse/rat interspecies donor chimerism that continuously increases from embryonic day 11 onward, sometimes even taking over entire organs within intraspecies chimeras. Since Igf1r deletion allows the evasion of early developmental arrest, interspecies fetuses with high levels of organ chimerism can be generated via blastocyst complementation. This observation should facilitate donor cell contribution to host tissues, resulting in whole-organ generation via blastocyst complementation across wide evolutionary distances.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian P Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Dept of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 413 45, Gothenburg, Sweden
| | - Kyomi J Igarashi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carsten T Charlesworth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
52
|
Aravalli RN. Generating liver using blastocyst complementation: Opportunities and challenges. Xenotransplantation 2020; 28:e12668. [PMID: 33372360 DOI: 10.1111/xen.12668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Orthotopic liver transplantation (OLT) is the only definitive treatment option for many patients with end-stage liver disease. Current supply of donor livers for OLT is not keeping up with the growing demand. To overcome this problem, a number of experimental strategies have been developed either to provide a bridge to transplant for patients on the waiting list or to bioengineer whole livers for OLT by replenishing them with fresh supplies of hepatic cells. In recent years, blastocyst complementation has emerged as the most promising approach for generating whole organs and, in combination with gene editing technology, it has revolutionized regenerative medicine. This methodology was successful in producing xenogeneic organs in animal hosts. Blastocyst complementation has the potential to produce whole livers in large animals that could be xenotransplanted in humans, thereby reducing the shortage of livers for OLT. However, significant experimental and ethical barriers remain for the production of human livers in domestic animals, such as the pig. This review summarizes the current knowledge and provides future perspectives for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
53
|
Babochkina TI, Gerlinskaya LA, Moshkin MP. Generation of donor organs in chimeric animals via blastocyst complementation. Vavilovskii Zhurnal Genet Selektsii 2020; 24:913-921. [PMID: 35088005 PMCID: PMC8763716 DOI: 10.18699/vj20.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
The lack of organs for transplantation is an important problem in medicine today. The growth of organs
in chimeric animals may be the solution of this. The proposed technology is the interspecific blastocyst complementation method in combination with genomic editing for obtaining “free niches” and pluripotent stem cell
production methods. The CRISPR/Cas9 method allows the so-called “free niches” to be obtained for blastocyst
complementation. The technologies of producing induced pluripotent stem cells give us the opportunity to obtain human donor cells capable of populating a “free niche”. Taken together, these technologies allow interspecific
blastocyst complementation between humans and other animals, which makes it possible in the future to grow
human organs for transplantations inside chimeric animals. However, in practice, in order to achieve successful
interspecific blastocyst complementation, it is necessary to solve a number of problems: to improve methods for
producing “chimeric competent” cells, to overcome specific interspecific barriers, to select compatible cell developmental stages for injection and the corresponding developmental stage of the host embryo, to prevent apoptosis of donor cells and to achieve effective proliferation of the human donor cells in the host animal. Also, it is
very important to analyze the ethical aspects related to developing technologies of chimeric organisms with the
participation of human cells. Today, many researchers are trying to solve these problems and also to establish new
approaches in the creation of interspecific chimeric organisms in order to grow human organs for transplantation.
In the present review we described the historical stages of the development of the blastocyst complementation
method, examined in detail the technologies that underlie modern blastocyst complementation, and analyzed
current progress that gives us the possibility to grow human organs in chimeric animals. We also considered the
barriers and issues preventing the successful implementation of interspecific blastocyst complementation in practice, and discussed the further development of this method
Collapse
Affiliation(s)
- T I Babochkina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Gerlinskaya
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M P Moshkin
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
54
|
Dai HQ, Liang Z, Chang AN, Chapdelaine-Williams AM, Alvarado B, Pollen AA, Alt FW, Schwer B. Direct analysis of brain phenotypes via neural blastocyst complementation. Nat Protoc 2020; 15:3154-3181. [PMID: 32778838 PMCID: PMC7685531 DOI: 10.1038/s41596-020-0364-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
We provide a protocol for generating forebrain structures in vivo from mouse embryonic stem cells (ESCs) via neural blastocyst complementation (NBC). We developed this protocol for studies of development and function of specific forebrain regions, including the cerebral cortex and hippocampus. We describe a complete workflow, from methods for modifying a given genomic locus in ESCs via CRISPR-Cas9-mediated editing to the generation of mouse chimeras with ESC-reconstituted forebrain regions that can be directly analyzed. The procedure begins with genetic editing of mouse ESCs via CRISPR-Cas9, which can be accomplished in ~4-8 weeks. We provide protocols to achieve fluorescent labeling of ESCs in ~2-3 weeks, which allows tracing of the injected, ESC-derived donor cells in chimeras generated via NBC. Once modified ESCs are ready, NBC chimeras are generated in ~3 weeks via injection of ESCs into genetically programmed blastocysts that are subsequently transferred into pseudo-pregnant fosters. Our in vivo brain organogenesis platform is efficient, allowing functional and systematic analysis of genes and other genomic factors in as little as 3 months, in the context of a whole organism.
Collapse
Affiliation(s)
- Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Zhuoyi Liang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Amelia N Chang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Aimee M Chapdelaine-Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Beatriz Alvarado
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Bjoern Schwer
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
55
|
Regenerated nephrons in kidney cortices ameliorate exacerbated serum creatinine levels in rats with adriamycin nephropathy. Biochem Biophys Res Commun 2020; 530:541-546. [PMID: 32753314 DOI: 10.1016/j.bbrc.2020.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/12/2020] [Indexed: 11/22/2022]
Abstract
Kidney regeneration could be classified into 2 groups: kidney generation and kidney repair. We have attempted in vivo nephron generation for kidney repair, as a therapy for chronic renal failure (CRF), by exploiting cellular interactions via conditioned media. In the previous report, we demonstrated the generation of rich nephrons in rat intact kidney cortices through percapsular injection of mesenchymal stem cell (MSC)-differentiated tubular epithelial cells (TECs) after pretreatment of 3-dimensional culture using a small amount of gel complex and condensed medium. In this study, to verify the amelioration of serum creatinine (sCr) levels by regenerated nephrons in rats with CRF, we first created damaged kidneys through systemic administration of adriamycin, and implanted the pretreated MSC-differentiated TECs into unilateral kidney cortices 2 weeks after adriamycin administration (A-2W, that is I-0W). After recovery of acute kidney injury, the control rats without cell implantation showed re-exacerbation of sCr levels, resulting in death within A-12W. Alternatively, the cell-implanted rats had a formation of mature nephrons in I-3W, and showed significant amelioration of sCr levels in I-7W. As a result, these rats could live until euthanization in I-12W or I-16W, indicating the utility of cell injection therapy into a kidney (K-CIT) for CRF. We expect that our K-CIT or the refined methods will be applied to patients with CRF.
Collapse
|
56
|
Miura K, Matoba S, Hirose M, Ogura A. Generation of chimeric mice with spermatozoa fully derived from embryonic stem cells using a triple-target CRISPR method for Nanos3†. Biol Reprod 2020; 104:223-233. [PMID: 32965494 PMCID: PMC7786261 DOI: 10.1093/biolre/ioaa176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Conditional knockout (cKO) mice have contributed greatly to understanding the tissue- or stage-specific functions of genes in vivo. However, the current cKO method requires considerable time and effort because of the need to generate two gene-modified mouse strains (Cre transgenic and loxP knockin) for crossing. Here, we examined whether we could analyze the germ cell-related functions of embryonic lethal genes in F0 chimeric mice by restricting the origin of germ cells to mutant embryonic stem cells (ESCs). We confirmed that the full ESC origin of spermatozoa in fertile chimeric mice was achieved by the CRISPR/Cas9 system using three guide RNAs targeting Nanos3, which induced germ cell depletion in the host blastocyst-derived tissues. Among these fertile chimeric mice, those from male ESCs with a Dnmt3b mutation, which normally causes embryo death, also produced F1 mice derived exclusively from the mutant ESCs. Thus, our new chimeric strategy readily revealed that Dnmt3b is dispensable for male germ cell development, in agreement with a previous cKO study. Our new approach enables us to analyze the germ cell functions of embryonic lethal genes in the F0 generation without using the current cKO method.
Collapse
Affiliation(s)
- Kento Miura
- RIKEN BioResource Research Center, Ibaraki, Japan.,Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shogo Matoba
- RIKEN BioResource Research Center, Ibaraki, Japan.,Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki, Japan.,RIKEN Cluster for Pioneering Research, Saitama, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
57
|
Fujimoto T, Yamanaka S, Tajiri S, Takamura T, Saito Y, Matsumoto N, Matsumoto K, Tachibana T, Okano HJ, Yokoo T. Generation of Human Renal Vesicles in Mouse Organ Niche Using Nephron Progenitor Cell Replacement System. Cell Rep 2020; 32:108130. [DOI: 10.1016/j.celrep.2020.108130] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/19/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
|
58
|
Yokoo T, Yamanaka S, Kobayashi E. Xeno‐regenerative medicine: A novel concept for donor kidney fabrication. Xenotransplantation 2020; 27:e12622. [DOI: 10.1111/xen.12622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Takashi Yokoo
- Division of Nephrology and Hypertension Department of Internal Medicine The Jikei University School of Medicine Tokyo Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension Department of Internal Medicine The Jikei University School of Medicine Tokyo Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication Keio University School of Medicine Tokyo Japan
| |
Collapse
|
59
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|
60
|
Das S, Koyano-Nakagawa N, Gafni O, Maeng G, Singh BN, Rasmussen T, Pan X, Choi KD, Mickelson D, Gong W, Pota P, Weaver CV, Kren S, Hanna JH, Yannopoulos D, Garry MG, Garry DJ. Generation of human endothelium in pig embryos deficient in ETV2. Nat Biotechnol 2020; 38:297-302. [DOI: 10.1038/s41587-019-0373-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
|
61
|
Nishikawa M, Sakai Y, Yanagawa N. Design and strategy for manufacturing kidney organoids. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
62
|
Peired AJ, Mazzinghi B, De Chiara L, Guzzi F, Lasagni L, Romagnani P, Lazzeri E. Bioengineering strategies for nephrologists: kidney was not built in a day. Expert Opin Biol Ther 2020; 20:467-480. [DOI: 10.1080/14712598.2020.1709439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Benedetta Mazzinghi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Letizia De Chiara
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesco Guzzi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
63
|
Matsunari H, Watanabe M, Hasegawa K, Uchikura A, Nakano K, Umeyama K, Masaki H, Hamanaka S, Yamaguchi T, Nagaya M, Nishinakamura R, Nakauchi H, Nagashima H. Compensation of Disabled Organogeneses in Genetically Modified Pig Fetuses by Blastocyst Complementation. Stem Cell Reports 2020; 14:21-33. [PMID: 31883918 PMCID: PMC6962638 DOI: 10.1016/j.stemcr.2019.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
We have previously established a concept of developing exogenic pancreas in a genetically modified pig fetus with an apancreatic trait, thereby proposing the possibility of in vivo generation of functional human organs in xenogenic large animals. In this study, we aimed to demonstrate a further proof-of-concept of the compensation for disabled organogeneses in pig, including pancreatogenesis, nephrogenesis, hepatogenesis, and vasculogenesis. These dysorganogenetic phenotypes could be efficiently induced via genome editing of the cloned pigs. Induced dysorganogenetic traits could also be compensated by allogenic blastocyst complementation, thereby proving the extended concept of organ regeneration from exogenous pluripotent cells in empty niches during various organogeneses. These results suggest that the feasibility of blastocyst complementation using genome-edited cloned embryos permits experimentation toward the in vivo organ generation in pigs from xenogenic pluripotent cells.
Collapse
Affiliation(s)
- Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koki Hasegawa
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hideki Masaki
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sanae Hamanaka
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan; Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
64
|
Ran Q, Zhou Q, Oda K, Yasue A, Abe M, Ye X, Li Y, Sasaoka T, Sakimura K, Ajioka Y, Saijo Y. Generation of Thyroid Tissues From Embryonic Stem Cells via Blastocyst Complementation In Vivo. Front Endocrinol (Lausanne) 2020; 11:609697. [PMID: 33381086 PMCID: PMC7767966 DOI: 10.3389/fendo.2020.609697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
The generation of mature, functional, thyroid follicular cells from pluripotent stem cells would potentially provide a therapeutic benefit for patients with hypothyroidism, but in vitro differentiation remains difficult. We earlier reported the in vivo generation of lung organs via blastocyst complementation in fibroblast growth factor 10 (Fgf10), compound, heterozygous mutant (Fgf10 Ex1mut/Ex3mut) mice. Fgf10 also plays an essential role in thyroid development and branching morphogenesis, but any role thereof in thyroid organogenesis remains unclear. Here, we report that the thyroids of Fgf10 Ex1mut/Ex3mut mice exhibit severe hypoplasia, and we generate thyroid tissues from mouse embryonic stem cells (ESCs) in Fgf10 Ex1mut/Ex3mut mice via blastocyst complementation. The tissues were morphologically normal and physiologically functional. The thyroid follicular cells of Fgf10 Ex1mut/Ex3mut chimeric mice were derived largely from GFP-positive mouse ESCs although the recipient cells were mixed. Thyroid generation in vivo via blastocyst complementation will aid functional thyroid regeneration.
Collapse
Affiliation(s)
- Qingsong Ran
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Qiliang Zhou
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Qiliang Zhou,
| | - Kanako Oda
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiro Yasue
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Xulu Ye
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yingchun Li
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoichi Ajioka
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuo Saijo
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
65
|
Lu Y, Zhou Y, Ju R, Chen J. Human-animal chimeras for autologous organ transplantation: technological advances and future perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:576. [PMID: 31807557 DOI: 10.21037/atm.2019.10.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organ transplantation is the most promising curation for end-stage organ disease. However, the donor organ shortage has become a global problem that has limited the development of organ transplantation. Human-animal chimeras provide the ability to produce human organs in other species using autologous stem cells [e.g., induced pluripotent stem cells (iPSCs) or adult stem cells], which would be patient-specific and immune-matched for transplantation. Due to the potential application prospect of interspecies chimeras in basic and translational research, this technology has attracted much interest. This review focuses primarily on technological advances, including options of donor stem cell types and gene editing in donor cells and host animals, in addition to perspectives on human-animal chimeras in clinical and basic research.
Collapse
Affiliation(s)
- Yingfei Lu
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Yu Zhou
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.,Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Rong Ju
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.,Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
66
|
Mori M, Furuhashi K, Danielsson JA, Hirata Y, Kakiuchi M, Lin CS, Ohta M, Riccio P, Takahashi Y, Xu X, Emala CW, Lu C, Nakauchi H, Cardoso WV. Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells. Nat Med 2019; 25:1691-1698. [PMID: 31700187 PMCID: PMC9169232 DOI: 10.1038/s41591-019-0635-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Millions of people worldwide with incurable end-stage lung disease die because of inadequate treatment options and limited availability of donor organs for lung transplantation1. Current bioengineering strategies to regenerate the lung have not been able to replicate its extraordinary cellular diversity and complex three-dimensional arrangement, which are indispensable for life-sustaining gas exchange2,3. Here we report the successful generation of functional lungs in mice through a conditional blastocyst complementation (CBC) approach that vacates a specific niche in chimeric hosts and allows for initiation of organogenesis by donor mouse pluripotent stem cells (PSCs). We show that wild-type donor PSCs rescued lung formation in genetically defective recipient mouse embryos unable to specify (due to Ctnnb1cnull mutation) or expand (due to Fgfr2cnull mutation) early respiratory endodermal progenitors. Rescued neonates survived into adulthood and had lungs functionally indistinguishable from those of wild-type littermates. Efficient chimera formation and lung complementation required newly developed culture conditions that maintained the developmental potential of the donor PSCs and were associated with global DNA hypomethylation and increased H4 histone acetylation. These results pave the way for the development of new strategies for generating lungs in large animals to enable modeling of human lung disease as well as cell-based therapeutic interventions4-6.
Collapse
Affiliation(s)
- Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Kazuhiro Furuhashi
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jennifer A Danielsson
- Department of Anethesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yuichi Hirata
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Miwako Kakiuchi
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chyuan-Sheng Lin
- Bernard and Shirlee Brown Glaucoma Laboratory, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Mayu Ohta
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Paul Riccio
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Yusuke Takahashi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Xinjing Xu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles W Emala
- Department of Anethesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
| | - Wellington V Cardoso
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
67
|
Nephron generation in kidney cortices through injection of pretreated mesenchymal stem cell-differentiated tubular epithelial cells. Biochem Biophys Res Commun 2019; 518:141-147. [DOI: 10.1016/j.bbrc.2019.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 11/24/2022]
|
68
|
|
69
|
Yamanaka S, Saito Y, Fujimoto T, Takamura T, Tajiri S, Matsumoto K, Yokoo T. Kidney Regeneration in Later-Stage Mouse Embryos via Transplanted Renal Progenitor Cells. J Am Soc Nephrol 2019; 30:2293-2305. [PMID: 31548350 DOI: 10.1681/asn.2019020148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The limited availability of donor kidneys for transplantation has spurred interest in investigating alternative strategies, such as regenerating organs from stem cells transplanted into animal embryos. However, there is no known method for transplanting cells into later-stage embryos, which may be the most suitable host stages for organogenesis, particularly into regions useful for kidney regeneration. METHODS We demonstrated accurate transplantation of renal progenitor cells expressing green fluorescent protein to the fetal kidney development area by incising the opaque uterine muscle layer but not the transparent amniotic membrane. We allowed renal progenitor cell-transplanted fetuses to develop for 6 days postoperatively before removal for analysis. We also transplanted renal progenitor cells into conditional kidney-deficient mouse embryos. We determined growth and differentiation of transplanted cells in all cases. RESULTS Renal progenitor cell transplantation into the retroperitoneal cavity of fetuses at E13-E14 produced transplant-derived, vascularized glomeruli with filtration function and did not affect fetal growth or survival. Cells transplanted to the nephrogenic zone produced a chimera in the cap mesenchyme of donor and host nephron progenitor cells. Renal progenitor cells transplanted to conditional kidney-deficient fetuses induced the formation of a new nephron in the fetus that is connected to the host ureteric bud. CONCLUSIONS We developed a cell transplantation method for midstage to late-stage fetuses. In vivo kidney regeneration from renal progenitor cells using the renal developmental environment of the fetus shows promise. Our findings suggest that fetal transplantation methods may contribute to organ regeneration and developmental research.
Collapse
Affiliation(s)
- Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Takamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Tajiri
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
70
|
Crane AT, Aravalli RN, Asakura A, Grande AW, Krishna VD, Carlson DF, Cheeran MCJ, Danczyk G, Dutton JR, Hackett PB, Hu WS, Li L, Lu WC, Miller ZD, O'Brien TD, Panoskaltsis-Mortari A, Parr AM, Pearce C, Ruiz-Estevez M, Shiao M, Sipe CJ, Toman NG, Voth J, Xie H, Steer CJ, Low WC. Interspecies Organogenesis for Human Transplantation. Cell Transplant 2019; 28:1091-1105. [PMID: 31426664 PMCID: PMC6767879 DOI: 10.1177/0963689719845351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Blastocyst complementation combined with gene editing is an emerging approach in the
field of regenerative medicine that could potentially solve the worldwide problem of organ
shortages for transplantation. In theory, blastocyst complementation can generate fully
functional human organs or tissues, grown within genetically engineered livestock animals.
Targeted deletion of a specific gene(s) using gene editing to cause deficiencies in organ
development can open a niche for human stem cells to occupy, thus generating human
tissues. Within this review, we will focus on the pancreas, liver, heart, kidney, lung,
and skeletal muscle, as well as cells of the immune and nervous systems. Within each of
these organ systems, we identify and discuss (i) the common causes of organ failure; (ii)
the current state of regenerative therapies; and (iii) the candidate genes to knockout and
enable specific exogenous organ development via the use of blastocyst complementation. We
also highlight some of the current barriers limiting the success of blastocyst
complementation.
Collapse
Affiliation(s)
- Andrew T Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Andrew W Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | | | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | - Georgette Danczyk
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Perry B Hackett
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, USA
| | - Wei-Cheng Lu
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Zachary D Miller
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Timothy D O'Brien
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | | | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - Clairice Pearce
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Maple Shiao
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Nikolas G Toman
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Joseph Voth
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Hui Xie
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Clifford J Steer
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA.,Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
71
|
Zhang H, Huang J, Li Z, Qin G, Zhang N, Hai T, Hong Q, Zheng Q, Zhang Y, Song R, Yao J, Cao C, Zhao J, Zhou Q. Rescuing ocular development in an anophthalmic pig by blastocyst complementation. EMBO Mol Med 2019; 10:emmm.201808861. [PMID: 30446498 PMCID: PMC6284517 DOI: 10.15252/emmm.201808861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Porcine-derived xenogeneic sources for transplantation are a promising alternative strategy for providing organs for treatment of end-stage organ failure in human patients because of the shortage of human donor organs. The recently developed blastocyst or pluripotent stem cell (PSC) complementation strategy opens a new route for regenerating allogenic organs in miniature pigs. Since the eye is a complicated organ with highly specialized constituent tissues derived from different primordial cell lineages, the development of an intact eye from allogenic cells is a challenging task. Here, combining somatic cell nuclear transfer technology (SCNT) and an anophthalmic pig model (MITF L 247S/L247S), allogenic retinal pigmented epithelium cells (RPEs) were retrieved from an E60 chimeric fetus using blastocyst complementation. Furthermore, all structures were successfully regenerated in the intact eye from the injected donor blastomeres. These results clearly demonstrate that not only differentiated functional somatic cells but also a disabled organ with highly specialized constituent tissues can be generated from exogenous blastomeres when delivered to pig embryos with an empty organ niche. This system may also provide novel insights into ocular organogenesis.
Collapse
Affiliation(s)
- Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zechen Li
- College of Life Sciences Qufu Normal University, Qufu, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Nan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ruigao Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
72
|
Pluripotent stem cell-derived organogenesis in the rat model system. Transgenic Res 2019; 28:287-297. [PMID: 31254209 DOI: 10.1007/s11248-019-00161-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
Rats make an excellent model system for studying xenotransplantation since, like mice pluripotent stem cell lines, such as embryonic stem cells and induced pluripotent stem cells as well as gene knock-outs are also available for rats, besides rats have larger organs. The emergence of new genome-editing tools combined with stem cell technology, has revolutionized biomedical research including the field of regenerative medicine. The aim of this manuscript is to provide an overview of the recent progresses in stem cell-derived organ regeneration involving "gene knock-out" and "blastocyst complementation" in the rat model system. Knocking-out Pdx1, Foxn1, and Sall1 genes have successfully generated rat models lacking the pancreas, thymus, and kidney, respectively. When allogeneic (rat) or xenogeneic (mouse) pluripotent stem cells were microinjected into blastocyst-stage rat embryos that had been designed to carry a suitable organogenetic niche, devoid of specific organs, the complemented blastocysts were able to develop to full-term chimeric rat offspring containing stem cell-derived functional organs in their respective niches. Thus, organs with a tridimensional structure can be generated with pluripotent stem cells in vivo, accelerating regenerative medical research, which is crucial for organ-based transplantation therapies. However, to address ethical concerns, public consent after informed discussions is essential before production of human organs within domestic animals.
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW To clarify the hurdles to generation of human islets via blastocyst complementation and to identify techniques to overcome them. RECENT FINDINGS Blastocyst complementation is a promising method for generating functional islets from pluripotent stem cells which are identical to in vivo islets. Studies have reported successful generation of mouse pancreas in rats and rat pancreas in mice via interspecies blastocyst complementation and have shown the possibility for generation of human organs in xenogeneic animals. However, there remain hurdles to generating human islets in animals. The major hurdles to generating human islets include difficulty in engineering human-animal chimeras due to the cellular status of human pluripotent stem cells, immunological rejection of donor tissue in xenogeneic animals, and ethical concerns.
Collapse
Affiliation(s)
- Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| |
Collapse
|
74
|
Zhang J, Li K, Kong F, Sun C, Zhang D, Yu X, Wang X, Li X, Liu T, Shao G, Guan Y, Zhao S. Induced Intermediate Mesoderm Combined with Decellularized Kidney Scaffolds for Functional Engineering Kidney. Tissue Eng Regen Med 2019; 16:501-512. [PMID: 31624705 DOI: 10.1007/s13770-019-00197-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/17/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background Chronic kidney disease is a severe threat to human health with no ideal treatment strategy. Mature mammalian kidneys have a fixed number of nephrons, and regeneration is difficult once they are damaged. For this reason, developing an efficient approach to achieve kidney regeneration is necessary. The technology of the combination of decellularized kidney scaffolds with stem cells has emerged as a new strategy; however, in previous studies, the differentiation of stem cells in decellularized scaffolds was insufficient for functional kidney regeneration, and many problems remain. Methods We used 0.5% sodium dodecyl sulfate (SDS) to produce rat kidney decellularized scaffolds, and induce adipose-derived stem cells (ADSCs) into intermediate mesoderm by adding Wnt agonist CHIR99021 and FGF9 in vitro. The characteristics of decellularized scaffolds and intermediate mesoderm induced from adipose-derived stem cells were identified. The scaffolds were recellularized with ADSCs and intermediate mesoderm cells through the renal artery and ureter. After cocultured for 10 days, cells adhesion and differentiation was evaluated. Results Intermediate mesoderm cells were successfully induced from ADSCs and identified by immunofluorescence and Western blotting assays (OSR1 + , PAX2 +). Immunofluorescence showed that intermediate mesoderm cells differentiated into tubular-like (E-CAD + , GATA3 +) and podocyte-like (WT1 +) cells with higher differentiation efficiency than ADSCs in the decellularized scaffolds. Comparatively, this phenomenon was not observed in induced intermediate mesoderm cells cultured in vitro. Conclusion In this study, we demonstrated that intermediate mesoderm cells could be induced from ADSCs and that they could differentiate well after cocultured with decellularized scaffolds.
Collapse
Affiliation(s)
- Jianye Zhang
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Kailin Li
- 2Department of Central Research Lab, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Feng Kong
- 2Department of Central Research Lab, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,Key Laboratory for Kidney Regeneration of Shandong Province, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,4Shandong University- Karolinska Institutet Collaborative Laboratory for Stem Cell Research, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Chao Sun
- 2Department of Central Research Lab, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Denglu Zhang
- 5The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan, 250011 Shandong People's Republic of China
| | - Xin Yu
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Xuesheng Wang
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Xian Li
- 6The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Tongyan Liu
- 6The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Guangfeng Shao
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Yong Guan
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,7Shandong Provincial Hospital of Shandong University, 324 Jingwuweiqi Road, Jinan, 250021 Shandong People's Republic of China
| | - Shengtian Zhao
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,Key Laboratory for Kidney Regeneration of Shandong Province, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,4Shandong University- Karolinska Institutet Collaborative Laboratory for Stem Cell Research, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,7Shandong Provincial Hospital of Shandong University, 324 Jingwuweiqi Road, Jinan, 250021 Shandong People's Republic of China
| |
Collapse
|
75
|
Anephrogenic phenotype induced by SALL1 gene knockout in pigs. Sci Rep 2019; 9:8016. [PMID: 31142767 PMCID: PMC6541644 DOI: 10.1038/s41598-019-44387-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/13/2019] [Indexed: 11/08/2022] Open
Abstract
To combat organ shortage in transplantation medicine, a novel strategy has been proposed to generate human organs from exogenous pluripotent stem cells utilizing the developmental mechanisms of pig embryos/foetuses. Genetically modified pigs missing specific organs are key elements in this strategy. In this study, we demonstrate the feasibility of using a genome-editing approach to generate anephrogenic foetuses in a genetically engineered pig model. SALL1 knockout (KO) was successfully induced by injecting genome-editing molecules into the cytoplasm of pig zygotes, which generated the anephrogenic phenotype. Extinguished SALL1 expression and marked dysgenesis of nephron structures were observed in the rudimentary kidney tissue of SALL1-KO foetuses. Biallelic KO mutations of the target gene induced nephrogenic defects; however, biallelic mutations involving small in-frame deletions did not induce the anephrogenic phenotype. Through production of F1 progeny from mutant founder pigs, we identified mutations that could reliably induce the anephrogenic phenotype and hence established a line of fertile SALL1-mutant pigs. Our study lays important technical groundwork for the realization of human kidney regeneration through the use of an empty developmental niche in pig foetuses.
Collapse
|
76
|
In vivo regeneration of interspecies chimeric kidneys using a nephron progenitor cell replacement system. Sci Rep 2019; 9:6965. [PMID: 31061458 PMCID: PMC6502858 DOI: 10.1038/s41598-019-43482-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
Kidney regeneration is expected to be a new alternative treatment to the currently limited treatments for chronic kidney disease. By transplanting exogeneous nephron progenitor cells (NPCs) into the metanephric mesenchyme of a xenogeneic foetus, we aimed to regenerate neo-kidneys that originate from transplanted NPCs. Previously, we generated a transgenic mouse model enabling drug-induced ablation of NPCs (the Six2-iDTR mouse). We demonstrated that eliminating existing native host NPCs allowed their 100% replacement with donor mouse or rat NPCs, which could generate neo-nephrons on a culture dish. To apply this method to humans in the future, we examined the possibility of the in vivo regeneration of nephrons between different species via NPC replacement. We injected NPCs-containing rat renal progenitor cells and diphtheria toxin below the renal capsule of E13.5 metanephroi (MNs) of Six2-iDTR mice; the injected MNs were then transplanted into recipient rats treated with immunosuppressants. Consequently, we successfully regenerated rat/mouse chimeric kidneys in recipient rats receiving the optimal immunosuppressive therapy. We revealed a functional connection between the neo-glomeruli and host vessels and proper neo-glomeruli filtration. In conclusion, we successfully regenerated interspecies kidneys in vivo that acquired a vascular system. This novel strategy may represent an effective method for human kidney regeneration.
Collapse
|
77
|
Messner F, Guo Y, Etra JW, Brandacher G. Emerging technologies in organ preservation, tissue engineering and regenerative medicine: a blessing or curse for transplantation? Transpl Int 2019; 32:673-685. [PMID: 30920056 DOI: 10.1111/tri.13432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Since the beginning of transplant medicine in the 1950s, advances in surgical technique and immunosuppressive therapy have created the success story of modern organ transplantation. However, today more than ever, we are facing a huge discrepancy between organ supply and demand, limiting the potential for transplantation to save and improve the lives of millions. To address the current limitations and shortcomings, a variety of emerging new technologies focusing on either maximizing the availability of organs or on generating new organs and organ sources hold great potential to eventully overcoming these hurdles. These advances are mainly in the field of regenerative medicine and tissue engineering. This review gives an overview of this emerging field and its multiple sub-disciplines and highlights recent advances and existing limitations for widespread clinical application and potential impact on the future of transplantation.
Collapse
Affiliation(s)
- Franka Messner
- Vascularized Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Yinan Guo
- Vascularized Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Joanna W Etra
- Vascularized Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Brandacher
- Vascularized Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
78
|
Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat Commun 2019; 10:451. [PMID: 30723213 PMCID: PMC6363802 DOI: 10.1038/s41467-019-08394-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
Regeneration of human kidneys in animal models would help combat the severe shortage of donors in transplantation therapy. Previously, we demonstrated by interspecific blastocyst complementation between mouse and rats, generation of pluripotent stem cell (PSC)-derived functional pancreas, in apancreatic Pdx1 mutant mice. We, however, were unable to obtain rat PSC-derived kidneys in anephric Sall1 mutant mice, likely due to the poor contribution of rat PSCs to the mouse metanephric mesenchyme, a nephron progenitor. Here, conversely, we show that mouse PSCs can efficiently differentiate into the metanephric mesenchyme in rat, allowing the generation of mouse PSC-derived kidney in anephric Sall1 mutant rat. Glomerular epithelium and renal tubules in the kidneys are entirely composed of mouse PSC-derived cells expressing key functional markers. Importantly, the ureter-bladder junction is normally formed. These data provide proof-of-principle for interspecific blastocyst complementation as a viable approach for kidney generation.
Collapse
|
79
|
Rethinking Regenerative Medicine From a Transplant Perspective (and Vice Versa). Transplantation 2019; 103:237-249. [DOI: 10.1097/tp.0000000000002370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
80
|
Wang J, Liu M, Zhao L, Li Y, Zhang M, Jin Y, Xiong Q, Liu X, Zhang L, Jiang H, Chen Q, Wang C, You Z, Yang H, Cao C, Dai Y, Li R. Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting. Xenotransplantation 2019; 26:e12484. [PMID: 30623494 DOI: 10.1111/xen.12484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022]
Abstract
SIX1 and SIX4 genes play critical roles in kidney development. We evaluated the effect of these genes on pig kidney development by generating SIX1-/- and SIX1-/- /SIX4-/- pig foetuses using CRISPR/Cas9 and somatic cell nuclear transfer. We obtained 3 SIX1-/- foetuses and 16 SIX1-/- /SIX4-/- foetuses at different developmental stages. The SIX1-/- foetuses showed a migration block of the left kidney and a smaller size for both kidneys. The ureteric bud failed to form the normal branching and collecting system. Abnormal expressions of kidney development-related genes (downregulation of PAX2, PAX8, and BMP4 and upregulation of EYA1 and SALL1) were also observed in SIX1-/- foetal kidneys and confirmed in vitro in porcine kidney epithelial cells (PK15) following SIX1 gene deletion. The SIX1-/- /SIX4-/- foetuses exhibited more severe phenotypes, with most foetuses showing retarded development at early stages of gestation. The kidney developed only to the initial stage of metanephros formation. These results demonstrated that SIX1 and SIX4 are key genes for porcine metanephros development. The creation of kidney-deficient porcine foetuses provides a platform for generating human kidneys inside pigs using blastocyst complementation.
Collapse
Affiliation(s)
- Junzheng Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Manling Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Yanru Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Department of Nephrology, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Xiong
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xiaorui Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lining Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Haibin Jiang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Qiaoyu Chen
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Chenyu Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhihuan You
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
81
|
Chang AN, Liang Z, Dai HQ, Chapdelaine-Williams AM, Andrews N, Bronson RT, Schwer B, Alt FW. Neural blastocyst complementation enables mouse forebrain organogenesis. Nature 2018; 563:126-130. [PMID: 30305734 PMCID: PMC6588192 DOI: 10.1038/s41586-018-0586-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
Genetically modified mice are commonly generated by the microinjection of pluripotent embryonic stem (ES) cells into wild-type host blastocysts1, producing chimeric progeny that require breeding for germline transmission and homozygosity of modified alleles. As an alternative approach and to facilitate studies of the immune system, we previously developed RAG2-deficient blastocyst complementation2. Because RAG2-deficient mice cannot undergo V(D)J recombination, they do not develop B or T lineage cells beyond the progenitor stage2: injecting RAG2-sufficient donor ES cells into RAG2-deficient blastocysts generates somatic chimaeras in which all mature lymphocytes derive from donor ES cells. This enables analysis, in mature lymphocytes, of the functions of genes that are required more generally for mouse development3. Blastocyst complementation has been extended to pancreas organogenesis4, and used to generate several other tissues or organs5-10, but an equivalent approach for brain organogenesis has not yet been achieved. Here we describe neural blastocyst complementation (NBC), which can be used to study the development and function of specific forebrain regions. NBC involves targeted ablation, mediated by diphtheria toxin subunit A, of host-derived dorsal telencephalic progenitors during development. This ablation creates a vacant forebrain niche in host embryos that results in agenesis of the cerebral cortex and hippocampus. Injection of donor ES cells into blastocysts with forebrain-specific targeting of diphtheria toxin subunit A enables donor-derived dorsal telencephalic progenitors to populate the vacant niche in the host embryos, giving rise to neocortices and hippocampi that are morphologically and neurologically normal with respect to learning and memory formation. Moreover, doublecortin-deficient ES cells-generated via a CRISPR-Cas9 approach-produced NBC chimaeras that faithfully recapitulated the phenotype of conventional, germline doublecortin-deficient mice. We conclude that NBC is a rapid and efficient approach to generate complex mouse models for studying forebrain functions; this approach could more broadly facilitate organogenesis based on blastocyst complementation.
Collapse
Affiliation(s)
- Amelia N Chang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Zhuoyi Liang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Aimee M Chapdelaine-Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nick Andrews
- Division of Neurology, Kirby Center for Neurobiology, Boston Children's Hospital, Boston, MA, USA
| | | | - Bjoern Schwer
- Department of Neurological Surgery and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
82
|
Okumura H, Nakanishi A, Toyama S, Yamanoue M, Yamada K, Ukai A, Hashita T, Iwao T, Miyamoto T, Tagawa YI, Hirabayashi M, Miyoshi I, Matsunaga T. Contribution of rat embryonic stem cells to xenogeneic chimeras in blastocyst or 8-cell embryo injection and aggregation. Xenotransplantation 2018; 26:e12468. [PMID: 30375053 DOI: 10.1111/xen.12468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/23/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022]
Abstract
The ultimate goal of regenerative medicine is the transplantation of a target organ generated by the patient's own cells. Recently, a method of organ generation using pluripotent stem cells (PSCs) and blastocyst complementation was reported. This approach is based on chimeric animal generation using an early embryo and PSCs, and the contribution of PSCs to the target organ is key to the method's success. However, the contribution rate of PSCs in target organs generated by different chimeric animal generation methods remains unknown. In this study, we used 8-cell embryo aggregation, 8-cell embryo injection, and blastocyst injection to generate interspecies chimeric mice using rat embryonic stem (ES) cells and then investigated the differences in the contribution rate of the rat ES cells. The rate of chimeric mouse generation was the highest using blastocyst injection, followed in order by 8-cell embryo injection and 8-cell embryo aggregation. However, the contribution rate of rat ES cells was the highest in chimeric neonates generated by 8-cell embryo injection, and the difference was statistically significant in the liver. Live functionality was confirmed by analyzing the expression of rat hepatocyte-derived drug-metabolizing enzyme. Collectively, these findings indicate that the 8-cell embryo injection method is the most suitable for generation of PSC-derived organs via chimeric animal generation, particularly for the liver.
Collapse
Affiliation(s)
- Hiroki Okumura
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Anna Nakanishi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoshi Toyama
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Mai Yamanoue
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kana Yamada
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akane Ukai
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomomi Miyamoto
- Center for Experimental Animal Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoh-Ichi Tagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ichiro Miyoshi
- Center for Experimental Animal Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
83
|
|
84
|
Vilarino M, Suchy FP, Rashid ST, Lindsay H, Reyes J, McNabb BR, van der Meulen T, Huising MO, Nakauchi H, Ross PJ. Mosaicism diminishes the value of pre-implantation embryo biopsies for detecting CRISPR/Cas9 induced mutations in sheep. Transgenic Res 2018; 27:525-537. [PMID: 30284144 DOI: 10.1007/s11248-018-0094-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022]
Abstract
The production of knock-out (KO) livestock models is both expensive and time consuming due to their long gestational interval and low number of offspring. One alternative to increase efficiency is performing a genetic screening to select pre-implantation embryos that have incorporated the desired mutation. Here we report the use of sheep embryo biopsies for detecting CRISPR/Cas9-induced mutations targeting the gene PDX1 prior to embryo transfer. PDX1 is a critical gene for pancreas development and the target gene required for the creation of pancreatogenesis-disabled sheep. We evaluated the viability of biopsied embryos in vitro and in vivo, and we determined the mutation efficiency using PCR combined with gel electrophoresis and digital droplet PCR (ddPCR). Next, we determined the presence of mosaicism in ~ 50% of the recovered fetuses employing a clonal sequencing methodology. While the use of biopsies did not compromise embryo viability, the presence of mosaicism diminished the diagnostic value of the technique. If mosaicism could be overcome, pre-implantation embryo biopsies for mutation screening represents a powerful approach that will streamline the creation of KO animals.
Collapse
Affiliation(s)
- Marcela Vilarino
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Fabian Patrik Suchy
- School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sheikh Tamir Rashid
- Centre for Stem Cells and Regenerative Medicine and Institute for Liver Studies, King's College, London, UK
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zürich, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zürich, Zurich, Switzerland
| | - Juan Reyes
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Bret Roberts McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Hiromitsu Nakauchi
- School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| | - Pablo Juan Ross
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
85
|
Hamanaka S, Umino A, Sato H, Hayama T, Yanagida A, Mizuno N, Kobayashi T, Kasai M, Suchy FP, Yamazaki S, Masaki H, Yamaguchi T, Nakauchi H. Generation of Vascular Endothelial Cells and Hematopoietic Cells by Blastocyst Complementation. Stem Cell Reports 2018; 11:988-997. [PMID: 30245211 PMCID: PMC6178562 DOI: 10.1016/j.stemcr.2018.08.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
In the case of organ transplantation accompanied by vascular anastomosis, major histocompatibility complex mismatched vascular endothelial cells become a target for graft rejection. Production of a rejection-free, transplantable organ, therefore, requires simultaneous generation of vascular endothelial cells within the organ. To generate pluripotent stem cell (PSC)-derived vascular endothelial cells, we performed blastocyst complementation with a vascular endothelial growth factor receptor-2 homozygous mutant blastocyst. This mutation is embryonic lethal at embryonic (E) day 8.5–9.5 due to an early defect in endothelial and hematopoietic cells. The Flk-1 homozygous knockout chimeric mice survived to adulthood for over 1 year without any abnormality, and all vascular endothelial cells and hematopoietic cells were derived from the injected PSCs. This approach could be used in conjunction with other gene knockouts which induce organ deficiency to produce a rejection-free, transplantable organ in which all the organ's cells and vasculature are PSC derived. Flk-1-deficient PSCs did not contribute to vascular endothelial cells in chimeric mice Flk-1-deficient mice survived into adulthood by blastocyst complementation Both vascular endothelial cells and hematopoietic cells were generated from PSCs
Collapse
Affiliation(s)
- Sanae Hamanaka
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayumi Umino
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideyuki Sato
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomonari Hayama
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayaka Yanagida
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoaki Mizuno
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiro Kobayashi
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mariko Kasai
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Fabian Patrik Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Satoshi Yamazaki
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideki Masaki
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
86
|
Becherucci F, Mazzinghi B, Allinovi M, Angelotti ML, Romagnani P. Regenerating the kidney using human pluripotent stem cells and renal progenitors. Expert Opin Biol Ther 2018; 18:795-806. [PMID: 29939787 DOI: 10.1080/14712598.2018.1492546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chronic kidney disease is a major health-care problem worldwide and its cost is becoming no longer affordable. Indeed, restoring damaged renal structures or building a new kidney represents an ambitious and ideal alternative to renal replacement therapy. Streams of research have explored the possible application of pluripotent stem cells (SCs) (embryonic SCs and induced pluripotent SCs) in different strategies aimed at regenerate functioning nephrons and at understanding the mechanisms of kidney regeneration. AREAS COVERED In this review, we will focus on the main potential applications of human pluripotent SCs to kidney regeneration, including those leading to rebuilding new kidneys or part of them (organoids, scaffolds, biological microdevices) as well as those aimed at understanding the pathophysiological mechanisms of renal disease and regenerative processes (modeling of kidney disease, genome editing). Moreover, we will discuss the role of endogenous renal progenitors cells in order to understand and promote kidney regeneration, as an attractive alternative to pluripotent SCs. EXPERT OPINION Opportunities and pitfalls of all these strategies will be underlined, finally leading to the conclusion that a deeper knowledge of the biology of pluripotent SCs is mandatory, in order to allow us to hypothesize their clinical application.
Collapse
Affiliation(s)
- Francesca Becherucci
- a Nephrology and Dialysis Unit , Meyer Children's University Hospital , Florence , Italy
| | - Benedetta Mazzinghi
- a Nephrology and Dialysis Unit , Meyer Children's University Hospital , Florence , Italy
| | - Marco Allinovi
- b Department of Biomedical Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Maria Lucia Angelotti
- b Department of Biomedical Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Paola Romagnani
- a Nephrology and Dialysis Unit , Meyer Children's University Hospital , Florence , Italy.,b Department of Biomedical Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
87
|
Interspecies chimeras. Curr Opin Genet Dev 2018; 52:36-41. [PMID: 29859382 DOI: 10.1016/j.gde.2018.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/18/2022]
Abstract
By probing early embryogenesis and regeneration, interspecies chimeras provide a unique platform for discovery and clinical use. Although efficient generation of human:animal chimeric embryos remains elusive, recent advancements attempt to overcome incompatibilities in xenogeneic development and transplantation.
Collapse
|
88
|
Cito M, Pellegrini S, Piemonti L, Sordi V. The potential and challenges of alternative sources of β cells for the cure of type 1 diabetes. Endocr Connect 2018; 7:R114-R125. [PMID: 29555660 PMCID: PMC5861368 DOI: 10.1530/ec-18-0012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
The experience in the field of islet transplantation shows that it is possible to replace β cells in a patient with type 1 diabetes (T1D), but this cell therapy is limited by the scarcity of organ donors and by the danger associated to the immunosuppressive drugs. Stem cell therapy is becoming a concrete opportunity to treat various diseases. In particular, for a disease like T1D, caused by the loss of a single specific cell type that does not need to be transplanted back in its originating site to perform its function, a stem cell-based cell replacement therapy seems to be the ideal cure. New and infinite sources of β cells are strongly required. In this review, we make an overview of the most promising and advanced β cell production strategies. Particular hope is placed in pluripotent stem cells (PSC), both embryonic (ESC) and induced pluripotent stem cells (iPSC). The first phase 1/2 clinical trials with ESC-derived pancreatic progenitor cells are ongoing in the United States and Canada, but a successful strategy for the use of PSC in patients with diabetes has still to overcome several important hurdles. Another promising strategy of generation of new β cells is the transdifferentiation of adult cells, both intra-pancreatic, such as alpha, exocrine and ductal cells or extra-pancreatic, in particular liver cells. Finally, new advances in gene editing technologies have given impetus to research on the production of human organs in chimeric animals and on in situ reprogramming of adult cells through in vivo target gene activation.
Collapse
Affiliation(s)
- Monia Cito
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele UniversityMilan, Italy
| | - Valeria Sordi
- Diabetes Research InstituteIRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
89
|
|
90
|
Meier RPH, Muller YD, Balaphas A, Morel P, Pascual M, Seebach JD, Buhler LH. Xenotransplantation: back to the future? Transpl Int 2018; 31:465-477. [PMID: 29210109 DOI: 10.1111/tri.13104] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/26/2022]
Abstract
The field of xenotransplantation has fluctuated between great optimism and doubts over the last 50 years. The initial clinical attempts were extremely ambitious but faced technical and ethical issues that prompted the research community to go back to preclinical studies. Important players left the field due to perceived xenozoonotic risks and the lack of progress in pig-to-nonhuman-primate transplant models. Initial apparently unsurmountable issues appear now to be possible to overcome due to progress of genetic engineering, allowing the generation of multiple-xenoantigen knockout pigs that express human transgenes and the genomewide inactivation of porcine endogenous retroviruses. These important steps forward were made possible by new genome editing technologies, such as CRISPR/Cas9, allowing researchers to precisely remove or insert genes anywhere in the genome. An additional emerging perspective is the possibility of growing humanized organs in pigs using blastocyst complementation. This article summarizes the current advances in xenotransplantation research in nonhuman primates, and it describes the newly developed genome editing technology tools and interspecific organ generation.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Yannick D Muller
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Balaphas
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Jörg D Seebach
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Leo H Buhler
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
91
|
Vilarino M, Rashid ST, Suchy FP, McNabb BR, van der Meulen T, Fine EJ, Ahsan SD, Mursaliyev N, Sebastiano V, Diab SS, Huising MO, Nakauchi H, Ross PJ. CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep. Sci Rep 2017; 7:17472. [PMID: 29234093 PMCID: PMC5727233 DOI: 10.1038/s41598-017-17805-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
One of the ultimate goals of regenerative medicine is the generation of patient-specific organs from pluripotent stem cells (PSCs). Sheep are potential hosts for growing human organs through the technique of blastocyst complementation. We report here the creation of pancreatogenesis-disabled sheep by oocyte microinjection of CRISPR/Cas9 targeting PDX1, a critical gene for pancreas development. We compared the efficiency of target mutations after microinjecting the CRISPR/Cas9 system in metaphase II (MII) oocytes and zygote stage embryos. MII oocyte microinjection reduced lysis, improved blastocyst rate, increased the number of targeted bi-allelic mutations, and resulted in similar degree of mosaicism when compared to zygote microinjection. While the use of a single sgRNA was efficient at inducing mutated fetuses, the lack of complete gene inactivation resulted in animals with an intact pancreas. When using a dual sgRNA system, we achieved complete PDX1 disruption. This PDX1-/- fetus lacked a pancreas and provides the basis for the production of gene-edited sheep as a host for interspecies organ generation. In the future, combining gene editing with CRISPR/Cas9 and PSCs complementation could result in a powerful approach for human organ generation.
Collapse
Affiliation(s)
- Marcela Vilarino
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Sheikh Tamir Rashid
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States
- Centre for Stem Cells & Regenerative Medicine and Institute for Liver Studies, King's College, London, UK
| | - Fabian Patrik Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | - Bret Roberts McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California Davis, Davis, CA, United States
| | - Eli J Fine
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | - Syed Daniyal Ahsan
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States
- Centre for Stem Cells & Regenerative Medicine and Institute for Liver Studies, King's College, London, UK
| | - Nurlybek Mursaliyev
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | - Santiago Sain Diab
- Davis, California Animal Health and Food Safety Laboratory, University of California Davis, Davis, CA, United States
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California Davis, Davis, CA, United States
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, United States.
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, United States.
| |
Collapse
|
92
|
Ramos-Ibeas P, Nichols J, Alberio R. States and Origins of Mammalian Embryonic Pluripotency In Vivo and in a Dish. Curr Top Dev Biol 2017; 128:151-179. [PMID: 29477162 DOI: 10.1016/bs.ctdb.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse embryonic stem cells (ESC), derived from preimplantation embryos in 1981, defined mammalian pluripotency for many decades. However, after the derivation of human ESC in 1998, comparative studies showed that different types of pluripotency exist in early embryos and that these can be captured in vitro under various culture conditions. Over the past decade much has been learned about the key signaling pathways, growth factor requirements, and transcription factor profiles of pluripotent cells in embryos, allowing improvement of derivation and culture conditions for novel pluripotent stem cell types. More recently, studies using single-cell transcriptomics of embryos from different species provided an unprecedented level of resolution of cellular interactions and cell fate decisions that are informing new ways to understand the emergence of pluripotency in different organisms. These new approaches enhance knowledge of species differences during early embryogenesis and will be instrumental for improving methodologies for generating intra- and interspecies chimeric animals using pluripotent stem cells. Here, we discuss the recent developments in our understanding of early embryogenesis in different mammalian species.
Collapse
Affiliation(s)
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
93
|
Yamanaka S, Tajiri S, Fujimoto T, Matsumoto K, Fukunaga S, Kim BS, Okano HJ, Yokoo T. Generation of interspecies limited chimeric nephrons using a conditional nephron progenitor cell replacement system. Nat Commun 2017; 8:1719. [PMID: 29170512 PMCID: PMC5701015 DOI: 10.1038/s41467-017-01922-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023] Open
Abstract
Animal fetuses and embryos may have applications in the generation of human organs. Progenitor cells may be an appropriate cell source for regenerative organs because of their safety and availability. However, regenerative organs derived from exogenous lineage progenitors in developing animal fetuses have not yet been obtained. Here, we established a combination system through which donor cells could be precisely injected into the nephrogenic zone and native nephron progenitor cells (NPCs) could be eliminated in a time- and tissue-specific manner. We successfully achieved removal of Six2+ NPCs within the nephrogenic niche and complete replacement of transplanted NPCs with donor cells. These NPCs developed into mature glomeruli and renal tubules, and blood flow was observed following transplantation in vivo. Furthermore, this artificial nephron could be obtained using NPCs from different species. Thus, this technique enables in vivo differentiation from progenitor cells into nephrons, providing insights into nephrogenesis and organ regeneration. The transplantation of tissue-specific progenitor cells may be an approach in organ regeneration. Here the authors show that the nephron progenitor population of a developing mouse kidney, when ablated, can be replaced by exogenously supplied rat nephron progenitors, generating interspecies nephrons.
Collapse
Affiliation(s)
- S Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan
| | - S Tajiri
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan.,Division of Regenerative Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan
| | - T Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan.,Division of Regenerative Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan
| | - K Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan
| | - S Fukunaga
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan.,Department of Internal Medicine IV, Shimane University, Izumo, Shimane, 6938501, Japan
| | - B S Kim
- Division of Regenerative Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan.,Department of Urology, Kyungpook National University School of Medicine, Daegu, 41944, Korea
| | - H J Okano
- Division of Regenerative Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan
| | - T Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 1058461, Japan.
| |
Collapse
|
94
|
Stem cells and genome editing: approaches to tissue regeneration and regenerative medicine. J Hum Genet 2017; 63:165-178. [PMID: 29192237 DOI: 10.1038/s10038-017-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Understanding the basis of regeneration of each tissue and organ, and incorporating this knowledge into clinical treatments for degenerative tissues and organs in patients, are major goals for researchers in regenerative biology. Here we provide an overview of current work, from high-regeneration animal models, to stem cell-based culture models, transplantation technologies, large-animal chimeric models, and programmable nuclease-based genome-editing technologies. Three-dimensional culture generating organoids, which represents intact tissue/organ identity including cell fate and morphology are getting more general approaches in the fields by taking advantage of embryonic stem cells, induced pluripotent stem cells and adult stem cells. The organoid culture system potentially has profound impact on the field of regenerative medicine. We also emphasize that the large animal model, in particular pig model would be a hope to manufacture humanized organs in in vivo empty (vacant) niche, which now potentially allows not only appropriate cell fate identity but nearly the same property as human organs in size. Therefore, integrative and collaborative researches across different fields might be critical to the aims needed in clinical trial.
Collapse
|
95
|
Freedman BS. Hopes and Difficulties for Blastocyst Complementation. Nephron Clin Pract 2017; 138:42-47. [PMID: 29017167 DOI: 10.1159/000480370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/31/2017] [Indexed: 12/29/2022] Open
Abstract
CONTEXT The clinical need for organ replacement therapies has inspired the idea of growing human organs in animal hosts. The injection of human pluripotent stem cells into animal blastocysts provides a possible strategy to accomplish this goal. Subject of Review: A recent study [Wu et al. Cell 2017;168:473-486.e415] tests the feasibility of this approach by creating chimeric embryos between humans and large domestic animals, including pigs and cattle. The study further examines the potential of combining CRISPR-Cas9 gene editing with blastocyst complementation to grow fully foreign organs in chimeric hosts. Second Opinion: Here, we consider what this report and related studies reveal about the likelihood of human-animal chimeras reaching the clinic and translating into therapies. A careful look suggests hope for eventual success in this area but also underscores important challenges that will require dedicated effort to resolve.
Collapse
|
96
|
Chaterji S, Ahn EH, Kim DH. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics 2017; 7:4445-4469. [PMID: 29158838 PMCID: PMC5695142 DOI: 10.7150/thno.18456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.
Collapse
|
97
|
Abstract
As chimeras transform from beasts of Greek mythology into tools of contemporary bioscience, secrets of developmental biology and evolutionary divergence are being revealed. Recent advances in stem cell biology and interspecies chimerism have generated new models with extensive basic and translational applications, including generation of transplantable, patient-specific organs.
Collapse
Affiliation(s)
- Fabian Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
| |
Collapse
|
98
|
Kusunose M, Inoue Y, Kamisato A, Muto K. A Preliminary Study Exploring Japanese Public Attitudes Toward the Creation and Utilization of Human-Animal Chimeras: a New Perspective on Animals Containing “Human Material” (ACHM). Asian Bioeth Rev 2017. [DOI: 10.1007/s41649-017-0020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
99
|
Morizane R, Miyoshi T, Bonventre JV. Concise Review: Kidney Generation with Human Pluripotent Stem Cells. Stem Cells 2017; 35:2209-2217. [PMID: 28869686 DOI: 10.1002/stem.2699] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217.
Collapse
Affiliation(s)
- Ryuji Morizane
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Tomoya Miyoshi
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V Bonventre
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
100
|
Yanamandala M, Zhu W, Garry DJ, Kamp TJ, Hare JM, Jun HW, Yoon YS, Bursac N, Prabhu SD, Dorn GW, Bolli R, Kitsis RN, Zhang J. Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. J Am Coll Cardiol 2017; 70:766-775. [PMID: 28774384 PMCID: PMC5553556 DOI: 10.1016/j.jacc.2017.06.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury; however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart's contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality.
Collapse
Affiliation(s)
- Mounica Yanamandala
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Wuqiang Zhu
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua M Hare
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Young-Sup Yoon
- Department of Medicine, Emory University, and Severance Biomedical Science Institute, Yonsei University College of Medicine, Atlanta, Georgia
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Sumanth D Prabhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| | - Richard N Kitsis
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|