51
|
Ilan-Ber T, Ilan Y. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol Immunol 2019; 111:73-82. [DOI: 10.1016/j.molimm.2019.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
|
52
|
Lisovska N, Shanazarov N. Tumor progression mechanisms: Insights from the central immune regulation of tissue homeostasis. Oncol Lett 2019; 17:5311-5318. [PMID: 31186747 PMCID: PMC6507387 DOI: 10.3892/ol.2019.10218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/07/2019] [Indexed: 11/29/2022] Open
Abstract
Knowledge of the mechanisms underlying the spread of cancer at the cellular and molecular levels is expanding rapidly. However, the central regulators governing the initiation and the rate of tumor growth remain poorly established. The fundamental principles of innate and adaptive immunity may explain how immune cells generate a specific response to tumor tissue. In the current review, the functional features of the immune system that contribute to the maintenance of normal tissue homeostasis, as well as their disruption in malignant transformations, were analyzed. Experimental and clinical studies previously demonstrated the involvement of regulatory T-cells in the process of tumor metastasis in a tissue-specific manner. An understanding of the cross talk between lymphoid and tumor cells may provide an insight into cancer evolution in terms of the mechanisms of T-cell competency formation. Elucidating the mechanisms of tumor progression via central immune regulation has implications for the development of novel therapeutic agents that target immune checkpoints.
Collapse
Affiliation(s)
- Natalya Lisovska
- Department of Chemotherapy, Center of Oncology, Cyber Clinic of Spizhenko, Kyiv 08112, Ukraine, Republic of Kazakhstan
| | - Nasrulla Shanazarov
- Department of General Surgery, Medical Center Hospital of The President's Affairs Administration of The Republic of Kazakhstan, Astana 010000, Republic of Kazakhstan
| |
Collapse
|
53
|
Escribano J, Chen MB, Moeendarbary E, Cao X, Shenoy V, Garcia-Aznar JM, Kamm RD, Spill F. Balance of mechanical forces drives endothelial gap formation and may facilitate cancer and immune-cell extravasation. PLoS Comput Biol 2019; 15:e1006395. [PMID: 31048903 PMCID: PMC6497229 DOI: 10.1371/journal.pcbi.1006395] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022] Open
Abstract
The formation of gaps in the endothelium is a crucial process underlying both cancer and immune cell extravasation, contributing to the functioning of the immune system during infection, the unfavorable development of chronic inflammation and tumor metastasis. Here, we present a stochastic-mechanical multiscale model of an endothelial cell monolayer and show that the dynamic nature of the endothelium leads to spontaneous gap formation, even without intervention from the transmigrating cells. These gaps preferentially appear at the vertices between three endothelial cells, as opposed to the border between two cells. We quantify the frequency and lifetime of these gaps, and validate our predictions experimentally. Interestingly, we find experimentally that cancer cells also preferentially extravasate at vertices, even when they first arrest on borders. This suggests that extravasating cells, rather than initially signaling to the endothelium, might exploit the autonomously forming gaps in the endothelium to initiate transmigration.
Collapse
Affiliation(s)
- Jorge Escribano
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michelle B. Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Xuan Cao
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vivek Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Fabian Spill
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
54
|
Serrano R, Aung A, Yeh YT, Varghese S, Lasheras JC, Del Álamo JC. Three-Dimensional Monolayer Stress Microscopy. Biophys J 2019; 117:111-128. [PMID: 31103228 DOI: 10.1016/j.bpj.2019.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/07/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Many biological processes involve the collective generation and transmission of mechanical stresses across cell monolayers. In these processes, the monolayer undergoes lateral deformation and bending because of the tangential and normal components of the cell-generated stresses. Monolayer stress microscopy (MSM) methods have been developed to measure the intracellular stress distribution in cell monolayers. However, current methods assume plane monolayer geometry and neglect the contribution of bending to the intracellular stresses. This work introduces a three-dimensional (3D) MSM method that calculates monolayer stress from measurements of the 3D traction stresses exerted by the cells on a flexible substrate. The calculation is carried out by imposing equilibrium of forces and moments in the monolayer, subject to external loads given by the 3D traction stresses. The equilibrium equations are solved numerically, and the algorithm is validated for synthetic loads with known analytical solutions. We present 3D-MSM measurements of monolayer stress in micropatterned islands of endothelial cells of different sizes and shapes. These data indicate that intracellular stresses caused by lateral deformation emerge collectively over long distances; they increase with the distance from the island edge until they reach a constant value that is independent of island size. On the other hand, bending-induced intracellular stresses are more concentrated spatially and remain confined to within one to two cell lengths of bending sites. The magnitude of these bending stresses is highest at the edges of the cell islands, where they can exceed the intracellular stresses caused by lateral deformations. Our data from nonpatterned monolayers suggests that biomechanical perturbations far away from monolayer edges also cause significant localized alterations in bending tension. The localized effect of bending-induced stresses may be important in processes like cellular extravasation, which are accompanied by significant normal deflections of a cell monolayer (i.e., the endothelium) and require localized changes in monolayer permeability.
Collapse
Affiliation(s)
- Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California.
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California; Department of Bioengineering, San Diego, San Diego, California; Institute of Engineering in Medicine, University of California, San Diego, San Diego, California
| | - Shyni Varghese
- Department of Biomedical Engineering, Durham, North Carolina; Department of Mechanical Engineering and Material Sciences, Durham, North Carolina; Department of Orthopaedic Surgery, Duke University, Durham, North Carolina
| | - Juan C Lasheras
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California; Department of Bioengineering, San Diego, San Diego, California; Institute of Engineering in Medicine, University of California, San Diego, San Diego, California
| | - Juan C Del Álamo
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California.
| |
Collapse
|
55
|
Higashi Y, Gautam S, Delafontaine P, Sukhanov S. IGF-1 and cardiovascular disease. Growth Horm IGF Res 2019; 45:6-16. [PMID: 30735831 PMCID: PMC6504961 DOI: 10.1016/j.ghir.2019.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/17/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an inflammatory arterial pathogenic condition, which leads to ischemic cardiovascular diseases, such as coronary artery disease and myocardial infarction, stroke, and peripheral arterial disease. Atherosclerosis is a multifactorial disorder and its pathophysiology is highly complex. Changes in expression of multiple genes coupled with environmental and lifestyle factors initiate cascades of adverse events involving multiple types of cells (e.g. vascular endothelial cells, smooth muscle cells, and macrophages). IGF-1 is a pleiotropic factor, which is found in the circulation (endocrine IGF-1) and is also produced locally in arteries (endothelial cells and smooth muscle cells). IGF-1 exerts a variety of effects on these cell types in the context of the pathogenesis of atherosclerosis. In fact, there is an increasing body of evidence suggesting that IGF-1 has beneficial effects on the biology of atherosclerosis. This review will discuss recent findings relating to clinical investigations on the relation between IGF-1 and cardiovascular disease and basic research using animal models of atherosclerosis that have elucidated some of the mechanisms underlying atheroprotective effects of IGF-1.
Collapse
Affiliation(s)
- Yusuke Higashi
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States.
| | - Sandeep Gautam
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Patrick Delafontaine
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sergiy Sukhanov
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
56
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
57
|
Parsanathan R, Jain SK. Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine. Arch Biochem Biophys 2018; 663:11-21. [PMID: 30582899 DOI: 10.1016/j.abb.2018.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Glucose-6-phosphate dehydrogenase is a major enzyme that supplies the reducing agent nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), which is required to recycle oxidized/glutathione disulfide (GSSH) to reduced glutathione (GSH). G6PD-deficient cells are susceptible to oxidative stress and a deficiency of GSH. Endothelial dysfunction is characterized by the loss of nitric oxide (NO) bioavailability, which regulates leukocyte adhesion to endothelium. G6PD-deficient endothelial cells (EC) demonstrate reduced expression of endothelial nitric oxide synthase (eNOS) and NO levels along with reduced GSH. Whether G6PD deficiency plays any role in EC dysfunction is unknown. The chronic inflammation commonly seen in those with metabolic syndrome, characterized by elevated levels of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1), provided an incentive for investigation of these cytokines as well. A GSH/G6PD-deficient model was created using human umbilical vein endothelial cells (HUVEC) treated with either buthionine sulfoximine (BSO), a pharmacological inhibitor of the rate-limiting enzyme of GSH biosynthesis (γ-glutamylcysteine synthetase), or with 6-aminonicotinamide (6-AN), an inhibitor of G6PD or G6PD siRNA. Normal and G6PD-deficient cells were also treated with pro-atherosclerotic stimuli such as high glucose, TNF, and MCP-1. After inhibiting or knocking down G6PD/GSH, the capacity of endothelial cells for monocyte recruitment was assessed by determining the expression of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), which was upregulated by G6PD deficiency and accompanied by the presence of the oxidative stress markers NADPH oxidase 4 (NOX4), inducible nitric oxide synthase (iNOS), and reactive oxygen species (ROS). Treatment with the inhibitors BSO and 6-AN caused increased levels of adhesion molecule mRNA and monocyte-EC adhesion. Following treatment with high glucose, G6PD-deficient cells showed an increase in levels of ICAM-1 and VCAM-1 mRNA, as well as monocyte-EC adherence, compared with results seen in control cells. Treatment with l-cysteine (a precursor of GSH) protected endothelial cells by increasing GSH and attenuating ROS, ICAM-1, VCAM-1, and monocyte-EC adhesion. These results suggest that G6PD/GSH deficiency plays a role in endothelial dysfunction and that supplementation with l-cysteine can restore GSH levels and reduce the EC activation markers in G6PD-deficient conditions.
Collapse
Affiliation(s)
- Rajesh Parsanathan
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Sushil K Jain
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
58
|
Bajpai A, Tilley DG. The Role of Leukocytes in Diabetic Cardiomyopathy. Front Physiol 2018; 9:1547. [PMID: 30443223 PMCID: PMC6221939 DOI: 10.3389/fphys.2018.01547] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes is predominant risk factor for cardiovascular diseases such as myocardial infarction and heart failure. Recently, leukocytes, particularly neutrophils, macrophages, and lymphocytes, have become targets of investigation for their potential role in a number of chronic inflammatory diseases such as diabetes and heart failure. While leukocytes contribute significantly to the progression of diabetes and heart failure individually, understanding their participation in the pathogenesis of diabetic heart failure is much less understood. The present review summarizes the role of leukocytes in the complex interplay between diabetes and heart failure, which is critical to the discovery of new targeted therapies for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Anamika Bajpai
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
59
|
Oyeleke SA, Ajayi AM, Umukoro S, Aderibigbe AO, Ademowo OG. Anti-inflammatory activity of Theobroma cacao L. stem bark ethanol extract and its fractions in experimental models. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:239-248. [PMID: 29733944 DOI: 10.1016/j.jep.2018.04.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The stem bark of Theobroma cacao L. have been used for the treatment of inflammation, toothache, measles and malaria in ethnomedicine. However, the anti-inflammatory activity of Theobroma cacao stem bark has not been fully elucidated. AIM The anti-inflammatory activity of Theobroma cacao stem bark ethanol extract and its fractions was investigated in this study. MATERIALS AND METHODS The anti-inflammatory effect of ethanol extract of Theobroma cacao stem bark (EETc) and its dichloromethane (DCMF), ethylacetate (EAF) and aqueous (AQF) fractions was investigated in erythrocytes membrane stabilizing assay and carrageenan-induced paw oedema. The anti-inflammatory activity of the EAF and EETc was investigated in carrageenan induced-granuloma air pouch models. RESULTS The extract and fractions showed significant membrane stabilizing action on rat erythrocytes cell membrane. The oral administration of DCMF, EAF and AQF (250 mg/kg) significantly inhibited paw oedema induced by carrageenan (41.3%, 55.0% and 45.0%, respectively) compared to control group. The EAF (62.5, 125 and 250 mg/kg) and EETc (250 mg/kg) significantly inhibited exudates formation in carrageenan air pouch by (63.8, 71.5, 74.5, 64.3%) at 24 h and by (69.4%, 75.7%, 77.1% and 68.4%) at 72 h respectively. The EETc and EAF significantly reduced neutrophil counts, protein, nitrite, Tumor necrosis factor (TNF-α) and malondialdehyde (MDA) but increased reduced glutathione (GSH) levels compared to control in pouch exudates. The HPLC fingerprint of EAF revealed presence of caffeic acid, rutin, ferulic acid and morin. CONCLUSION Ethanol extract of Theobroma cacao and its ethylacetate fraction demonstrated anti-inflammatory activity partly by reducing neutrophil migration and inflammatory mediator production.
Collapse
Affiliation(s)
- Sabitiu A Oyeleke
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Solomon Umukoro
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - A O Aderibigbe
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Olusegun George Ademowo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
60
|
Yeung L, Hickey MJ, Wright MD. The Many and Varied Roles of Tetraspanins in Immune Cell Recruitment and Migration. Front Immunol 2018; 9:1644. [PMID: 30072994 PMCID: PMC6060431 DOI: 10.3389/fimmu.2018.01644] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/04/2018] [Indexed: 01/13/2023] Open
Abstract
Immune cell recruitment and migration is central to the normal functioning of the immune system in health and disease. Numerous adhesion molecules on immune cells and the parenchymal cells they interact with are well recognized for their roles in facilitating the movements of immune cells throughout the body. A growing body of evidence now indicates that tetraspanins, proteins known for their capacity to organize partner molecules within the cell membrane, also have significant impacts on the ability of immune cells to migrate around the body. In this review, we examine the tetraspanins expressed by immune cells and endothelial cells that influence leukocyte recruitment and motility and describe their impacts on the function of adhesion molecules and other partner molecules that modulate the movements of leukocytes. In particular, we examine the functional roles of CD9, CD37, CD63, CD81, CD82, and CD151. This reveals the diversity of the functions of the tetraspanin family in this setting, both in the nature of adhesive and migratory interactions that they regulate, and the positive or inhibitory effects mediated by the individual tetraspanin proteins.
Collapse
Affiliation(s)
- Louisa Yeung
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Department of Immunology, Monash University, Prahran, VIC, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Mark D Wright
- Department of Immunology, Monash University, Prahran, VIC, Australia
| |
Collapse
|
61
|
Chen B, Yang Z, Yang C, Qin W, Gu J, Hu C, Chen A, Ning J, Yi B, Lu K. A self-organized actomyosin drives multiple intercellular junction disruption and directly promotes neutrophil recruitment in lipopolysaccharide-induced acute lung injury. FASEB J 2018; 32:fj201701506RR. [PMID: 29879372 DOI: 10.1096/fj.201701506rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute lung injury (ALI), with the hallmarks of vascular integrity disruption and neutrophil recruitment, is associated with high morbidity and mortality. Enhanced actomyosin assembly contributes to endothelial cell contact dysfunction. However, the roles and mechanisms of actomyosin assembly in ALI are not totally clear. We investigated the dynamic alterations and roles of actomyosin in ALI in vivo and in vitro models induced by LPS. Pulmonary levels of E-cadherin, vascular endothelial-cadherin, occludin, myosin phosphatase target subunit 1, and thymosin β4 were decreased, and the number and activity of neutrophils and the levels of actomyosin, p-ρ-associated protein kinase, p-myosin light-chain kinase, and profilin1 were increased within 3 d after LPS administration, and then, those alterations were recovered within the next 4 d, which was consistent with the alterations of lung histology, vascular permeability, edema, and serum levels of IL-6 and TNF-α. Direct or indirect inhibition of increased F-actin or myosin assembly ameliorated the reduction of intercellular junction molecules, the activation and migration of neutrophils, and the degree of lung injury. Moreover, neutrophil activation further promoted actomyosin assembly and aggravated lung injury. Conclusively, the enhancement of self-organized actomyosin contributes to alveolar-capillary barrier disruption and neutrophil recruitment in inflammatory response, which is a potential therapeutic target for ALI.-Chen, B., Yang, Z., Yang, C., Qin, W., Gu, J., Hu, C., Chen, A., Ning, J., Yi, B., Lu, K. A self-organized actomyosin drives multiple intercellular junction disruption and directly promotes neutrophil recruitment in lipopolysaccharide-induced acute lung injury.
Collapse
Affiliation(s)
- Bing Chen
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhen Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Congwen Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenhan Qin
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianteng Gu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chuanmin Hu
- Department of Clinical Biochemistry, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - An Chen
- Department of Clinical Biochemistry, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiaolin Ning
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
62
|
Xu S, Xu Y, Yin M, Zhang S, Liu P, Koroleva M, Si S, Little PJ, Pelisek J, Jin ZG. Flow-dependent epigenetic regulation of IGFBP5 expression by H3K27me3 contributes to endothelial anti-inflammatory effects. Theranostics 2018; 8:3007-3021. [PMID: 29896299 PMCID: PMC5996356 DOI: 10.7150/thno.21966] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/17/2018] [Indexed: 01/11/2023] Open
Abstract
Rationale: Atherosclerosis is a chronic inflammatory and epigenetic disease that is influenced by different patterns of blood flow. However, the epigenetic mechanism whereby atheroprotective flow controls endothelial gene programming remains elusive. Here, we investigated the possibility that flow alters endothelial gene expression through epigenetic mechanisms. Methods: En face staining and western blot were used to detect protein expression. Real-time PCR was used to determine relative gene expression. RNA-sequencing of human umbilical vein endothelial cells treated with siRNA of enhancer of zeste homolog 2 (EZH2) or laminar flow was used for transcriptional profiling. Results: We found that trimethylation of histone 3 lysine 27 (H3K27me3), a repressive epigenetic mark that orchestrates gene repression, was reduced in laminar flow areas of mouse aorta and flow-treated human endothelial cells. The decrease of H3K27me3 paralleled a reduction in the epigenetic "writer"-EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2). Moreover, laminar flow decreased expression of EZH2 via mechanosensitive miR101. Genome-wide transcriptome profiling studies in endothelial cells treated with EZH2 siRNA and flow revealed the upregulation of novel mechanosensitive gene IGFBP5 (insulin-like growth factor-binding protein 5), which is epigenetically silenced by H3K27me3. Functionally, inhibition of H3K27me3 by EZH2 siRNA or GSK126 (a specific EZH2 inhibitor) reduced H3K27me3 levels and monocyte adhesion to endothelial cells. Adenoviral overexpression of IGFBP5 also recapitulated the anti-inflammatory effects of H3K27me3 inhibition. More importantly, we observed EZH2 upregulation, and IGFBP5 downregulation, in advanced atherosclerotic plaques from human patients. Conclusion: Taken together, our findings reveal that atheroprotective flow reduces H3K27me3 as a chromatin-based mechanism to augment the expression of genes that confer an anti-inflammatory response in the endothelium. Our study exemplifies flow-dependent epigenetic regulation of endothelial gene expression, and also suggests that targeting the EZH2/H3K27me3/IGFBP5 pathway may offer novel therapeutics for inflammatory disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meimei Yin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Shuya Zhang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Peng Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Shuyi Si
- Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Peter J. Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence (PACE), Woolloongabba QLD 4102, Australia
- Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
63
|
Borkham-Kamphorst E, Van de Leur E, Meurer SK, Buhl EM, Weiskirchen R. N-Glycosylation of Lipocalin 2 Is Not Required for Secretion or Exosome Targeting. Front Pharmacol 2018; 9:426. [PMID: 29755357 PMCID: PMC5932398 DOI: 10.3389/fphar.2018.00426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/11/2018] [Indexed: 01/15/2023] Open
Abstract
Lipocalin 2 (LCN2) is a highly conserved secreted adipokine acting as a serum transport protein for small hydrophobic molecules such as fatty acids and steroids. In addition, LCN2 limits bacterial growth by sequestering iron-containing siderophores and further protects against intestinal inflammation and tumorigenesis associated with alterations in the microbiota. Human LCN2 contains one N-glycosylation site conserved in other species. It was postulated that this post-translational modification could facilitate protein folding, protects from proteolysis, is required for proper trafficking from the Golgi apparatus to the cell surface, and might be relevant for effective secretion. We here show that the homologous nucleoside antibiotic tunicamycin blocks N-linked glycosylation but not secretion of LCN2 in primary murine hepatocytes, derivatives thereof, human lung carcinoma cell line A549, and human prostate cancer cell line PC-3. Moreover, both the glycosylated and the non-glycosylated LCN2 variants are equally targeted to exosomes, demonstrating that this post-translational modification is not necessary for proper trafficking of LCN2 into these membranous extracellular vesicles. Furthermore, a hydrophobic cluster analysis revealed that the N-glycosylation site is embedded in a highly hydrophobic evolutionarily conserved surrounding. In sum, our data indicate that the N-glycosylation of LCN2 is not required for proper secretion and exosome cargo recruitment in different cell types, but might be relevant to increase overall solubility.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eva M Buhl
- Institute of Pathology, Electron Microscopy Facility, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
64
|
L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids 2018; 50:909-921. [PMID: 29626298 DOI: 10.1007/s00726-018-2559-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
L-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of L-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and L-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p < 0.005) increased the levels of cell adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. L-Cysteine treatment significantly (p < 0.005) increased G6PD activity and levels of GSH, and decreased NOX, ROS, and adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas L-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.
Collapse
|
65
|
Wang F, Zhang W, Wang C, Fang X, Cheng H, Liu S, Chen XL. Inhibitor of Tec kinase, LFM-A13, decreases pro-inflammatory mediators production in LPS-stimulated RAW264.7 macrophages via NF-κB pathway. Oncotarget 2018; 8:34099-34110. [PMID: 28415764 PMCID: PMC5470954 DOI: 10.18632/oncotarget.16212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Tec kinase, a prototypical member of the Tec tyrosine kinases family, was shown to mainly govern lymphocyte proliferation. In the present study, we investigated the role of Tec kinase in acute inflammatory response in lipopolysaccharide (LPS) challenge. First, we demonstrate that Tec kinase activity was observed in RAW264.7 macrophages exposed to LPS. Tec and phosphorylated Tec expression were upregulated in a dose- and time-dependent manner after LPS stimulation. LPS increased monocyte chemotactic protein (MCP)-1 secretion and intercellular adhesion molecule (ICAM)-1 expression, and increasing mRNA expression was consistently observed. LPS also induced IκBα phoshporylaytion and its degradation, increased NF-κB p65 phoshporylaytion and translocation to nuclei in RAW264.7 cells. Pretreatment with LFM-A13 decreased LPS-induced cytokines and chemokines production and mRNA levels, blocked NF-κB transactivation. These effects of LPS were also prevented by Tec-siRNA. Additionally, LFM-A13 or Tec-siRNA obviously inhibited LPS-induced TGFβ-activated kinase 1(TAK1) phosphorylation. Taken together, our results suggest that Tec kinase involves in acute inflammation process in LPS-stimulated RAW264.7 cells, at least mediated by activating TAK1/ NF-κB signal pathway.
Collapse
Affiliation(s)
- Fei Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Wei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Chao Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xu Fang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Hao Cheng
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Sheng Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
66
|
Smith ACW, Kenny PJ. MicroRNAs regulate synaptic plasticity underlying drug addiction. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12424. [PMID: 28873276 PMCID: PMC5837931 DOI: 10.1111/gbb.12424] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Chronic use of drugs of abuse results in neurochemical, morphological and behavioral plasticity that underlies the emergence of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence. Identifying and reversing addiction-relevant plasticity is seen as a potential point of pharmacotherapeutic intervention in drug-addicted individuals. Despite considerable advances in our understanding of the actions of drugs of abuse in the brain, this information has thus far yielded few novel treatment options addicted individuals. MicroRNAs are small noncoding RNAs that can each regulate the translation of hundreds to thousands of messenger RNAs. The highly pleiotropic nature of miRNAs has focused attention on their contribution to addiction-relevant structural and functional plasticity in the brain and their potential utility as targets for medications development. In this review, we discuss the roles of miRNAs in synaptic plasticity underlying the development of addiction and then briefly discuss the possibility of using circulating miRNA as biomarkers for addiction.
Collapse
Affiliation(s)
- A. C. W. Smith
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P. J. Kenny
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
67
|
Nowicki M, Szemraj J, Wierzbowska A, Misiewicz M, Małachowski R, Pluta A, Grzybowska-Izydorczyk O, Robak T, Szmigielska-Kapłon A. miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, and miRNA-223 expressions in autologous hematopoietic stem cell transplantation and their impact on engraftment. Eur J Haematol 2018; 100:426-435. [PMID: 29380440 DOI: 10.1111/ejh.13036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE MicroRNAs engaged in angiogenesis and hematopoiesis can influence hematopoietic stem cells (HSCs) homing after transplantation by targeting bone marrow niche microenvironment. This study aimed to examine the kinetics of miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, and miRNA-223 in autologous HSC transplantation settings. METHODS The study comprised of 51 patients with hematological malignancies (42 multiple myeloma, 9 lymphoma). Samples were taken at four time points: before conditioning, after chemotherapy but prior to autologous HSC transplantation (day 0), on day +7, and +14 days after HSCT. The miRNA levels were evaluated by the real-time PCR method. RESULTS A significant, steady decline of all tested microRNAs in the course of transplantation, as compared to the baseline, was found. The study revealed that higher levels of miRNA-15a, miRNA-16, miRNA-126, and miRNA-146a on day 0 correlated with longer time to engraftment. Additionally, a positive correlation between the levels of miRNA-15a, miRNA-146a, and miRNA-223 assessed on day +7 and the time to engraftment was observed. CONCLUSIONS In conclusion, all investigated microRNAs changed significantly in the course of transplantation. Our results suggest that the miRNAs may participate in hematopoietic recovery in the early post-transplant period and influence engraftment efficiency after HSCT.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | - Roman Małachowski
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Agnieszka Pluta
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Olga Grzybowska-Izydorczyk
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Anna Szmigielska-Kapłon
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
68
|
Kuebler WM, Bonnet S, Tabuchi A. Inflammation and autoimmunity in pulmonary hypertension: is there a role for endothelial adhesion molecules? (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893218757596. [PMID: 29480134 PMCID: PMC5865459 DOI: 10.1177/2045893218757596] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While pulmonary hypertension (PH) has traditionally not been considered as a disease that is directly linked to or, potentially, even caused by inflammation, a rapidly growing body of evidence has demonstrated the accumulation of a variety of inflammatory and immune cells in PH lungs, in and around the wall of remodeled pulmonary resistance vessels and in the vicinity of plexiform lesions, respectively. Concomitantly, abundant production and release of various inflammatory mediators has been documented in both PH patients and experimental models of PH. While these findings unequivocally demonstrate an inflammatory component in PH, they have fueled an intense and presently ongoing debate as to the nature of this inflammatory aspect: is it a mere bystander of or response to the actual disease process, or is it a pathomechanistic contributor or potentially even a trigger of endothelial injury, smooth muscle hypertrophy and hyperplasia, and the resulting lung vascular remodeling? In this review, we will discuss the present evidence for an inflammatory component in PH disease with a specific focus on the potential role of the endothelium in this scenario and highlight future avenues of experimental investigation which may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| | | | - Arata Tabuchi
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| |
Collapse
|
69
|
Yang M, Zhi R, Lu L, Dong M, Wang Y, Tian F, Xia M, Hu J, Dai Q, Jiang S, Li W. A CCR5 antagonist-based HIV entry inhibitor exhibited potent spermicidal activity: Potential application for contraception and prevention of HIV sexual transmission. Eur J Pharm Sci 2018; 117:313-320. [PMID: 29496533 DOI: 10.1016/j.ejps.2018.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 12/31/2022]
Abstract
B07 is a small-molecule CCR5 antagonist-based HIV-1 entry inhibitor that is being developed as an anti-HIV microbicide for preventing sexual transmission of HIV. Here we evaluated its spermicidal and contraceptive potential, including sperm motility, plasma membrane integrity, and contraceptive efficacy tested in rabbits. We found that B07 inhibited sperm motility and movement patterns in a concentration- and time-dependent manner. Within 30 min, B07 induced sperm immobilization with the minimum 100% effective concentration and median effective concentration of 640.0 and 64.4 μg/mL, respectively. The hypo-osmotic swelling test showed that plasma membranes of B07-treated sperms exhibited slight disruption, as verified by electron micrographs. In both B07 gel and N-9 gel groups, not a single implantation site or embryo was observed based on the contraceptive efficacy test in rabbits, indicating that B07 could effectively block the potential of sperm to reach and/or fertilize oocytes. The safety profile of B07 in vivo was evaluated by use of an optimized rabbit vaginal irritation test. While the pathological scores of the N-9 gel group was 14.67 ± 1.21, those of the blank control and B07 gel groups were 2.17 ± 0.76 and 4.00 ± 0.89, respectively, which were within the clinically acceptable range (<8). The proportion of inflammatory cells and CD45+ cells in the cervicovaginal lavages of the B07 gel group showed no significant change compared to those of the control group. Therefore, our results confirmed that B07 exhibited significant spermicidal and contraceptive effects, suggesting its potential for development as a microbicidal spermicide for contraception and prevention of HIV sexual transmission.
Collapse
Affiliation(s)
- Mingjun Yang
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, People's Republic of China
| | - Ruina Zhi
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, People's Republic of China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Mingxin Dong
- Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Yuzhu Wang
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, People's Republic of China
| | - Fang Tian
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, People's Republic of China
| | - Minjie Xia
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, People's Republic of China
| | - Jingying Hu
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, People's Republic of China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Shibo Jiang
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, People's Republic of China; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, United States.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, People's Republic of China.
| |
Collapse
|
70
|
Vulesevic B, Sirois MG, Allen BG, de Denus S, White M. Subclinical Inflammation in Heart Failure: A Neutrophil Perspective. Can J Cardiol 2018; 34:717-725. [PMID: 29801737 DOI: 10.1016/j.cjca.2018.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
Abstract
Although it is widely recognized that inflammation plays a critical role in the development and pathology of heart failure (HF), very little is known about the involvement of one of the most abundant immune cells in the blood, a primary immune response cell: the neutrophil. This review summarizes the current literature on the role of subclinical inflammation, with a focus on the neutrophil in the pathophysiology of the HF syndrome. Some emerging therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Branka Vulesevic
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Martin G Sirois
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Bruce G Allen
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Simon de Denus
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Québec, Canada
| | - Michel White
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada.
| |
Collapse
|
71
|
Ingram PN, Hind LE, Jiminez-Torres JA, Huttenlocher A, Beebe DJ. An Accessible Organotypic Microvessel Model Using iPSC-Derived Endothelium. Adv Healthc Mater 2018; 7. [PMID: 29364596 DOI: 10.1002/adhm.201700497] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/03/2017] [Indexed: 12/30/2022]
Abstract
While organotypic approaches promise increased relevance through the inclusion of increased complexity (e.g., 3D extracellular microenvironment, structure/function relationships, presence of multiple cell types), cell source is often overlooked. Induced pluripotent stem cell (iPSC)-derived cells are potentially more physiologically relevant than cell lines, while also being less variable than primary cells, and recent advances have made them commercially available at costs similar to cell lines. Here, the use of induced pluripotent stem cell-derived endothelium for the generation of a functional microvessel model is demonstrated. High precision structural and microenvironmental control afforded by the design approach synergizes with the advantages of iPSC to produce microvessels for modeling endothelial biology in vitro. iPSC microvessels show endothelial characteristics, exhibit barrier function, secrete angiogenic and inflammatory mediators, and respond to changes in the extracellular microenvironment by altering vessel phenotype. Importantly, when deployed in the investigation of neutrophils during innate immune recruitment, the presence of the iPSC endothelial vessel facilitates neutrophil extravasation and migration toward a chemotactic source. Relevant cell sources, such as iPSC, combine with organotypic models to open the way for improved and increasingly accessible in vitro tissue, disease, and patient-specific models.
Collapse
Affiliation(s)
- Patrick N. Ingram
- Department of Biomedical Engineering; Wisconsin Institutes for Medical Research; University of Wisconsin-Madison; WIMR I Room 6028, 1111 Highland Ave Madison WI 53705 USA
| | - Laurel E. Hind
- Departments of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Microbial Sciences Building Room 4205, 1550 Linden Dr Madison WI 53705 USA
| | - Jose A. Jiminez-Torres
- Department of Biomedical Engineering; Wisconsin Institutes for Medical Research; University of Wisconsin-Madison; WIMR I Room 6028, 1111 Highland Ave Madison WI 53705 USA
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Microbial Sciences Building Room 4205, 1550 Linden Dr Madison WI 53705 USA
| | - David J. Beebe
- Department of Biomedical Engineering; Wisconsin Institutes for Medical Research; University of Wisconsin-Madison; WIMR I Room 6028, 1111 Highland Ave Madison WI 53705 USA
- University of Wisconsin Carbone Cancer Center; University of Wisconsin-Madison; WIMR I Room 6009, 1111 Highland Ave Madison WI 53705 USA
| |
Collapse
|
72
|
Boff D, Fagundes CT, Russo RC, Amaral FA. Innate Immunity and Inflammation: The Molecular Mechanisms Governing the Cross-Talk Between Innate Immune and Endothelial Cells. IMMUNOPHARMACOLOGY AND INFLAMMATION 2018:33-56. [DOI: 10.1007/978-3-319-77658-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
73
|
Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. Proc Natl Acad Sci U S A 2017; 115:133-138. [PMID: 29255056 DOI: 10.1073/pnas.1717489115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Leukocyte transmigration across vessel walls is a critical step in the innate immune response. Upon their activation and firm adhesion to vascular endothelial cells (VECs), leukocytes preferentially extravasate across junctional gaps in the endothelial monolayer (paracellular diapedesis). It has been hypothesized that VECs facilitate paracellular diapedesis by opening their cell-cell junctions in response to the presence of an adhering leukocyte. However, it is unclear how leukocytes interact mechanically with VECs to open the VEC junctions and migrate across the endothelium. In this study, we measured the spatial and temporal evolution of the 3D traction stresses generated by the leukocytes and VECs to elucidate the sequence of mechanical events involved in paracellular diapedesis. Our measurements suggest that the contractile stresses exerted by the leukocytes and the VECs can separately perturb the junctional tensions of VECs to result in the opening of gaps before the initiation of leukocyte transmigration. Decoupling the stresses exerted by the transmigrating leukocytes and the VECs reveals that the leukocytes actively contract the VECs to open a junctional gap and then push themselves across the gap by generating strong stresses that push into the matrix. In addition, we found that diapedesis is facilitated when the tension fluctuations in the VEC monolayer were increased by proinflammatory thrombin treatment. Our findings demonstrate that diapedesis can be mechanically regulated by the transmigrating leukocytes and by proinflammatory signals that increase VEC contractility.
Collapse
|
74
|
Mobarrez F, Wallen H, Westerlund E, Hovatta O, Henriksson P, Olausson N. Microparticles reveal cell activation during IVF – a possible early marker of a prothrombotic state during the first trimester. Thromb Haemost 2017; 116:517-23. [DOI: 10.1160/th15-12-0970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/10/2016] [Indexed: 01/07/2023]
Abstract
SummaryCell-derived microparticles (MPs) are known to be elevated in a number of diseases related to arterial and venous thromboembolism (VTE), such as acute myocardial infarction, VTE (deep-vein thrombosis and pulmonary embolism) and peripheral arterial disease. IVF-associated pregnancies have previously been shown to be associated with an increased incidence of VTE, mechanisms behind being unknown and sparsely studied. Our objective was to assess cell activation during IVF through analysis of MP levels and phenotype following ovarian stimulation. Thirty-one women undergoing IVF were included and blood samples were collected at down regulation of oestrogen and at high level stimulation with 10- to 100-fold increased endogenous oestrogen levels. MPs were analysed by flow cytometry and phenotyped according to size and protein expression. We found that overall phosphatidylserine positive platelet-, endothelial- and monocyte-derived MPs significantly increased following ovarian stimulation with increased levels of platelet activation markers CD40 ligand and P-selectin. Furthermore, there was an increase in endothelial-derived MPs exposing activation marker E-selectin and monocyte-derived MPs, while neutrophil-derived MPs decreased slightly. In conclusion we found a major increase in MPs and markers indicating cell activation in parallel with the profound oestrogen boost during IVF. To assess whether these changes in MPs are associated with thromboembolic events requires extended longitudinal studies.
Collapse
|
75
|
Bulk E, Kramko N, Liashkovich I, Glaser F, Schillers H, Schnittler HJ, Oberleithner H, Schwab A. K Ca3.1 channel inhibition leads to an ICAM-1 dependent increase of cell-cell adhesion between A549 lung cancer and HMEC-1 endothelial cells. Oncotarget 2017; 8:112268-112282. [PMID: 29348824 PMCID: PMC5762509 DOI: 10.18632/oncotarget.22735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Early metastasis leads to poor prognosis of lung cancer patients, whose 5-year survival rate is only 15%. We could recently show that the Ca2+ sensitive K+ channel KCa3.1 promotes aggressive behavior of non-small cell lung cancer (NSCLC) cells and that it can serve as a prognostic marker in NSCLC. Since NSCLC patients die of metastases, we investigated whether KCa3.1 channels contribute to poor patient prognosis by regulating distinct steps of the metastatic cascade. We investigated the extravasation of NSCLC cells and focused on their adhesion to endothelial cells and on transendothelial migration. We quantified the adhesion forces between NSCLC cells and endothelial cells by applying single cell force spectroscopy, and we monitored transendothelial migration using live-cell imaging. Inhibition of KCa3.1 channels with senicapoc or KCa3.1 silencing increases the adhesion force of A549 lung cancer cells to human microvascular endothelial cells (HMEC-1). Western blotting, immunofluorescence staining and biotinylation assays indicate that the elevated adhesion force is due to increased expression of ICAM-1 in both cell lines when KCa3.1 channels are downregulated. Consistent with this interpretation, an anti-ICAM-1 blocking antibody abolishes the KCa3.1-dependent increase in adhesion. Senicapoc inhibits transendothelial migration of A549 cells by 50%. Selectively silencing KCa3.1 channels in either NSCLC or endothelial cells reveals that transendothelial migration depends predominantly on endothelial KCa3.1 channels. In conclusion, our findings disclose a novel function of KCa3.1 channels in cancer. KCa3.1 channels regulate ICAM-1 dependent cell-cell adhesion between endothelial and cancer cells that affects the transmigration step of the metastatic cascade.
Collapse
Affiliation(s)
- Etmar Bulk
- Institute of Physiology II, University of Muenster, Münster, Germany
| | - Nadzeya Kramko
- Institute of Anatomy and Vascular Biology, University of Muenster, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Muenster, Münster, Germany
| | - Felix Glaser
- Institute of Physiology II, University of Muenster, Münster, Germany
| | - Hermann Schillers
- Institute of Physiology II, University of Muenster, Münster, Germany
| | | | - Hans Oberleithner
- Institute of Physiology II, University of Muenster, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Muenster, Münster, Germany
| |
Collapse
|
76
|
CD99-Derived Agonist Ligands Inhibit Fibronectin-Induced Activation of β1 Integrin through the Protein Kinase A/SHP2/Extracellular Signal-Regulated Kinase/PTPN12/Focal Adhesion Kinase Signaling Pathway. Mol Cell Biol 2017; 37:MCB.00675-16. [PMID: 28483911 DOI: 10.1128/mcb.00675-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 01/13/2023] Open
Abstract
The human CD99 protein is a 32-kDa glycosylated transmembrane protein that regulates various cellular responses, including cell adhesion and leukocyte extravasation. We previously reported that CD99 activation suppresses β1 integrin activity through dephosphorylation of focal adhesion kinase (FAK) at Y397. We explored a molecular mechanism underlying the suppression of β1 integrin activity by CD99 agonists and its relevance to tumor growth in vivo CD99-Fc fusion proteins or a series of CD99-derived peptides suppressed β1 integrin activity by specifically interacting with three conserved motifs of the CD99 extracellular domain. CD99CRIII3, a representative CD99-derived 3-mer peptide, facilitated protein kinase A-SHP2 interaction and subsequent activation of the HRAS/RAF1/MEK/ERK signaling pathway. Subsequently, CD99CRIII3 induced FAK phosphorylation at S910, which led to the recruitment of PTPN12 and PIN1 to FAK, followed by FAK dephosphorylation at Y397. Taken together, these results indicate that CD99-derived agonist ligands inhibit fibronectin-mediated β1 integrin activation through the SHP2/ERK/PTPN12/FAK signaling pathway.
Collapse
|
77
|
Schnoor M, García Ponce A, Vadillo E, Pelayo R, Rossaint J, Zarbock A. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cell Mol Life Sci 2017; 74:1985-1997. [PMID: 28154894 PMCID: PMC11107778 DOI: 10.1007/s00018-016-2449-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/20/2023]
Abstract
Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.
Collapse
Affiliation(s)
- Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| | - Alexander García Ponce
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720, Mexico City, Mexico
| | - Jan Rossaint
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
78
|
Liu Y, Gill E, Shery Huang YY. Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint. Future Sci OA 2017; 3:FSO173. [PMID: 28670465 PMCID: PMC5481809 DOI: 10.4155/fsoa-2016-0084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
A plethora of 3D and microfluidics-based culture models have been demonstrated in the recent years with the ultimate aim to facilitate predictive in vitro models for pharmaceutical development. This article summarizes to date the progress in the microfluidics-based tissue culture models, including organ-on-a-chip and vasculature-on-a-chip. Specific focus is placed on addressing the question of what kinds of 3D culture and system complexities are deemed desirable by the biological and biomedical community. This question is addressed through analysis of a research survey to evaluate the potential use of microfluidic cell culture models among the end users. Our results showed a willingness to adopt 3D culture technology among biomedical researchers, although a significant gap still exists between the desired systems and existing 3D culture options. With these results, key challenges and future directions are highlighted.
Collapse
Affiliation(s)
- Ye Liu
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 1PZ
| | - Elisabeth Gill
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 1PZ
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 1PZ
| |
Collapse
|
79
|
Aragon-Sanabria V, Pohler SE, Eswar VJ, Bierowski M, Gomez EW, Dong C. VE-Cadherin Disassembly and Cell Contractility in the Endothelium are Necessary for Barrier Disruption Induced by Tumor Cells. Sci Rep 2017; 7:45835. [PMID: 28393886 PMCID: PMC5385522 DOI: 10.1038/srep45835] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
During metastasis, breakdown of the endothelial barrier is critical for tumor cell extravasation through blood vessel walls and is mediated by a combination of tumor secreted soluble factors and receptor-ligand interactions. However, a complete mechanism governing tumor cell transendothelial migration remains unclear. Here, we investigate the roles of tumor-associated signals in regulating endothelial cell contractility and adherens junction disassembly leading to endothelial barrier breakdown. We show that Src mediates VE-cadherin disassembly in response to metastatic melanoma cells. Through the use of pharmacological inhibitors of cytoskeletal contractility we find that endothelial cell contractility is responsive to interactions with metastatic cancer cells and that reducing endothelial cell contractility abrogates migration of melanoma cells across endothelial monolayers. Furthermore, we find that a combination of tumor secreted soluble factors and receptor-ligand interactions mediate activation of Src within endothelial cells that is necessary for phosphorylation of VE-cadherin and for breakdown of the endothelial barrier. Together, these results provide insight into how tumor cell signals act in concert to modulate cytoskeletal contractility and adherens junctions disassembly during extravasation and may aid in identification of therapeutic targets to block metastasis.
Collapse
Affiliation(s)
- Virginia Aragon-Sanabria
- Department of Biomedical Engineering, Pennsylvania State university, University Park, PA, 16802, USA
| | - Steven E. Pohler
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Vikram J. Eswar
- Department of Biomedical Engineering, Pennsylvania State university, University Park, PA, 16802, USA
| | - Matthew Bierowski
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Esther W. Gomez
- Department of Biomedical Engineering, Pennsylvania State university, University Park, PA, 16802, USA
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Pennsylvania State university, University Park, PA, 16802, USA
| |
Collapse
|
80
|
Immune Regulation of Antibody Access to Neuronal Tissues. Trends Mol Med 2017; 23:227-245. [PMID: 28185790 DOI: 10.1016/j.molmed.2017.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
This review highlights recent advances in how the innate and adaptive immune systems control the blood-brain barrier (BBB) and the blood-nerve barrier (BNB). Interferons and TAM receptors play key roles in innate immune control of the BBB. Cells of the adaptive immune system, particularly CD4+ T cells, take distinct routes to enter neural tissues and mediate immune surveillance. Furthermore, T cell-mediated opening of the BBB and the BNB is crucial to allow antibody access and thereby block the replication of neurotropic viruses. Such novel insights gained from basic research provide key foundations for future design of therapeutic strategies - enabling antibody access to the brain may be key to cancer immunotherapy and to the use of vaccines against neurodegenerative conditions such as Alzheimer's disease.
Collapse
|
81
|
Ibrahim SA, Kulshrestha A, Katara GK, Amin MA, Beaman KD. Cancer derived peptide of vacuolar ATPase 'a2' isoform promotes neutrophil migration by autocrine secretion of IL-8. Sci Rep 2016; 6:36865. [PMID: 27845385 PMCID: PMC5109272 DOI: 10.1038/srep36865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/20/2016] [Indexed: 01/14/2023] Open
Abstract
Neutrophils play significant regulatory roles within the tumor microenvironment by directly promoting tumor progression that leads to poor clinical outcomes. Identifying the tumor associated molecules that regulate neutrophil infiltration into tumors may provide new and specific therapeutic targets for cancer treatment. The a2-isoform of vacuolar ATPase (a2V) is uniquely and highly expressed on cancer cell plasma membrane. Cancer cells secrete a peptide from a2V (a2NTD) that promotes the pro-tumorigenic properties of neutrophils. This provides a2V the propensity to control neutrophil migration. Here, we report that the treatment of human neutrophils with recombinant a2NTD leads to neutrophil adherence and polarization. Moreover, a2NTD treatment activates surface adhesion receptors, as well as FAK and Src kinases that are essential regulators of the migration process in neutrophils. Functional analysis reveals that a2NTD can act as a chemo-attractant and promotes neutrophil migration. In addition, a2Neuɸ secrete high levels of IL-8 via NF-κB pathway activation. Confirmatory assays demonstrate that the promoted migration of a2Neuɸ was dependent on the autocrine secretion of IL-8 from a2Neuɸ. These findings demonstrate for the first time the direct regulatory role of cancer associated a2-isoform V-ATPase on neutrophil migration, suggesting a2V as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Safaa A. Ibrahim
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K. Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Magdy A. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| | - Kenneth D. Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
82
|
García-Ponce A, Chánez Paredes S, Castro Ochoa KF, Schnoor M. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers 2016; 4:e1228439. [PMID: 28123925 DOI: 10.1080/21688370.2016.1228439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
The correct regulation of tissue barriers is of utmost importance for health. Barrier dysfunction accompanies inflammatory disorders and, if not controlled properly, can contribute to the development of chronic diseases. Tissue barriers are formed by monolayers of epithelial cells that separate organs from their environment, and endothelial cells that cover the vasculature, thus separating the blood stream from underlying tissues. Cells within the monolayers are connected by intercellular junctions that are linked by adaptor molecules to the cytoskeleton, and the regulation of these interactions is critical for the maintenance of tissue barriers. Many endogenous and exogenous molecules are known to regulate barrier functions in both ways. Proinflammatory cytokines weaken the barrier, whereas anti-inflammatory mediators stabilize barriers. Adrenomedullin (ADM) and intermedin (IMD) are endogenous peptide hormones of the same family that are produced and secreted by many cell types during physiologic and pathologic conditions. They activate certain G-protein-coupled receptor complexes to regulate many cellular processes such as cytokine production, actin dynamics and junction stability. In this review, we summarize current knowledge about the barrier-stabilizing effects of ADM and IMD in health and disease.
Collapse
Affiliation(s)
- Alexander García-Ponce
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Sandra Chánez Paredes
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Karla Fabiola Castro Ochoa
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| |
Collapse
|
83
|
Sullivan DP, Watson RL, Muller WA. 4D intravital microscopy uncovers critical strain differences for the roles of PECAM and CD99 in leukocyte diapedesis. Am J Physiol Heart Circ Physiol 2016; 311:H621-32. [PMID: 27422987 DOI: 10.1152/ajpheart.00289.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023]
Abstract
Leukocyte transendothelial migration (TEM) is an essential component of the inflammatory response. In vitro studies with human cells have demonstrated that platelet/endothelial cell adhesion molecule (PECAM) functions upstream of CD99 during TEM; however, results in vivo with mice have been apparently contradictory. In this study we use four-dimensional (4D) intravital microscopy to demonstrate that the site and order of function of PECAM and CD99 in vivo are dependent on the strain of mice. In FVB/n mice, PECAM functions upstream of CD99, as in human cells in vitro, and blocking antibodies against either molecule arrest neutrophils before they traverse the endothelium. However, in C57BL/6 mice, PECAM and CD99 appear to function at a different step, as the same antibodies arrest leukocyte migration through the endothelial basement membrane. These results are the first direct comparison of PECAM and CD99 function in different murine strains as well as the first demonstration of the sequential function of PECAM and CD99 in vivo.
Collapse
Affiliation(s)
- David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Chicago, Illinois
| | - Richard L Watson
- Department of Pathology, Feinberg School of Medicine, Chicago, Illinois
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
84
|
Nekolla K, Kick K, Sellner S, Mildner K, Zahler S, Zeuschner D, Krombach F, Rehberg M. Influence of Surface Modifications on the Spatiotemporal Microdistribution of Quantum Dots In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2641-2651. [PMID: 27028603 DOI: 10.1002/smll.201600071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/20/2016] [Indexed: 06/05/2023]
Abstract
For biomedical applications of nanoconstructs, it is a general prerequisite to efficiently reach the desired target site. In this regard, it is crucial to determine the spatiotemporal distribution of nanomaterials at the microscopic tissue level. Therefore, the effect of different surface modifications on the distribution of microinjected quantum dots (QDs) in mouse skeletal muscle tissue has been investigated. In vivo real-time fluorescence microscopy and particle tracking reveal that carboxyl QDs preferentially attach to components of the extracellular matrix (ECM), whereas QDs coated with polyethylene glycol (PEG) show little interaction with tissue constituents. Transmission electron microscopy elucidates that carboxyl QDs adhere to collagen fibers as well as basement membranes, a type of ECM located on the basolateral side of blood vessel walls. Moreover, carboxyl QDs have been found in endothelial junctions as well as in caveolae of endothelial cells, enabling them to translocate into the vessel lumen. The in vivo QD distribution is confirmed by in vitro experiments. The data suggest that ECM components act as a selective barrier depending on QD surface modification. For future biomedical applications, such as targeting of blood vessel walls, the findings of this study offer design criteria for nanoconstructs that meet the requirements of the respective application.
Collapse
Affiliation(s)
- Katharina Nekolla
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| | - Kerstin Kick
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Sabine Sellner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| | - Karina Mildner
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Dagmar Zeuschner
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| | - Markus Rehberg
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377, Munich, Germany
| |
Collapse
|
85
|
Wang S, Peng L, Gai Z, Zhang L, Jong A, Cao H, Huang SH. Pathogenic Triad in Bacterial Meningitis: Pathogen Invasion, NF-κB Activation, and Leukocyte Transmigration that Occur at the Blood-Brain Barrier. Front Microbiol 2016; 7:148. [PMID: 26925035 PMCID: PMC4760054 DOI: 10.3389/fmicb.2016.00148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis remains the leading cause of disabilities worldwide. This life-threatening disease has a high mortality rate despite the availability of antibiotics and improved critical care. The interactions between bacterial surface components and host defense systems that initiate bacterial meningitis have been studied in molecular and cellular detail over the past several decades. Bacterial meningitis commonly exhibits triad hallmark features (THFs): pathogen penetration, nuclear factor-kappaB (NF-κB) activation in coordination with type 1 interferon (IFN) signaling and leukocyte transmigration that occur at the blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells (BMEC). This review outlines the progression of these early inter-correlated events contributing to the central nervous system (CNS) inflammation and injury during the pathogenesis of bacterial meningitis. A better understanding of these issues is not only imperative to elucidating the pathogenic mechanism of bacterial meningitis, but may also provide the in-depth insight into the development of novel therapeutic interventions against this disease.
Collapse
Affiliation(s)
- Shifu Wang
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong UniversityJinan, China
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| | - Liang Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Zhongtao Gai
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong UniversityJinan, China
| | - Lehai Zhang
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong UniversityJinan, China
| | - Ambrose Jong
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| | - Hong Cao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health and Tropical Medicine, Southern Medical UniversityGuangzhou, China
| | - Sheng-He Huang
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
86
|
Recruitment of Immune Cells into Inflamed Tissues: Consequences for Endothelial Barrier Integrity and Tissue Functionality. Mediators Inflamm 2016; 2016:1561368. [PMID: 26989330 PMCID: PMC4773555 DOI: 10.1155/2016/1561368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/14/2022] Open
|
87
|
Abstract
In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS. For example, immune cell trafficking through the cerebral vasculature is essential to clear microbes or cell debris from neural tissues, while poorly regulated cellular transmigration can underlie or worsen CNS pathology. In this chapter, we focus on the specialized multicellular structure and function of the BBB/neurovascular unit and discuss how BBB breakdown can precede or be a consequence of neuroinflammation. We introduce the blood-cerebrospinal fluid barrier and include a brief aside about evolutionary aspects of barrier formation and refinements. Lastly, since restoration of barrier function is considered key to ameliorate neurologic disease, we speculate about new therapeutic avenues to repair a damaged BBB.
Collapse
Affiliation(s)
| | - Ajay Verma
- Biomarkers and Experimental Medicine, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
88
|
Crossing the Vascular Wall: Common and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation. Mediators Inflamm 2015; 2015:946509. [PMID: 26568666 PMCID: PMC4629053 DOI: 10.1155/2015/946509] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/13/2015] [Indexed: 12/30/2022] Open
Abstract
Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers.
Collapse
|
89
|
Understanding the effects of mature adipocytes and endothelial cells on fatty acid metabolism and vascular tone in physiological fatty tissue for vascularized adipose tissue engineering. Cell Tissue Res 2015; 362:269-79. [PMID: 26340984 DOI: 10.1007/s00441-015-2274-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023]
Abstract
Engineering of large vascularized adipose tissue constructs is still a challenge for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Communication between mature adipocytes and endothelial cells is important for homeostasis and the maintenance of adipose tissue mass but, to date, is mainly neglected in tissue engineering strategies. Thus, new co-culture strategies are needed to integrate adipocytes and endothelial cells successfully into a functional construct. This review focuses on the cross-talk of mature adipocytes and endothelial cells and considers their influence on fatty acid metabolism and vascular tone. In addition, the properties and challenges with regard to these two cell types for vascularized tissue engineering are highlighted.
Collapse
|
90
|
Iijima N, Iwasaki A. Tissue instruction for migration and retention of TRM cells. Trends Immunol 2015; 36:556-64. [PMID: 26282885 PMCID: PMC4567393 DOI: 10.1016/j.it.2015.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 01/21/2023]
Abstract
During infection, a subset of effector T cells seeds the lymphoid and non-lymphoid tissues and gives rise to tissue-resident memory T cells (TRM). Recent findings have provided insight into the molecular and cellular mechanisms underlying tissue instruction of TRM cell homing, as well as the programs involved in their retention and maintenance. We review these findings here, highlighting both common features and distinctions between CD4 TRM and CD8 TRM cells. In this context we examine the role of memory lymphocyte clusters (MLCs), and propose that the MLCs serve as an immediate response center consisting of TRM cells on standby, capable of detecting incoming pathogens and mounting robust local immune responses to contain and limit the spread of infectious agents.
Collapse
Affiliation(s)
- Norifumi Iijima
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
91
|
Liu J, Hou M, Yan M, Lü X, Gu W, Zhang S, Gao J, Liu B, Wu X, Liu G. ICAM-1-dependent and ICAM-1-independent neutrophil lung infiltration by porcine reproductive and respiratory syndrome virus infection. Am J Physiol Lung Cell Mol Physiol 2015; 309:L226-36. [DOI: 10.1152/ajplung.00037.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are innate immune cells that play a crucial role in the first line of host defense. It is also known that neutrophil lung recruitment and infiltration may cause lung injury. The roles of neutrophils in virus infection-induced lung injury are not clear. We explore the mechanisms of neutrophil lung infiltration and the potential biomarkers for lung injury in a swine model of lung injury caused by natural or experimental porcine reproductive and respiratory syndrome virus (PRRSV) infection. Neutrophil lung infiltration was determined by measurement of myeloperoxidase expression and enzyme activity of lung tissues. Myeloperoxidase expression and enzyme activity were dramatically increased in the naturally and experimentally infected lung tissues. Chemokine analysis by quantitative PCR and ELISA showed that IL-8 expression was increased in both infections, while monocyte chemoattractant protein-1 expression was increased only in experimentally infected lung tissues. Expression of the cell adhesion molecules VCAM-1 and ICAM-1 was measured by quantitative PCR and Western blotting. VCAM-1 expression was increased in experimentally and naturally infected lungs, whereas ICAM-1 expression was increased only in the naturally infected lung samples. Our results suggest that neutrophil lung infiltrations in the infected animals are both ICAM-1- and -independent and that combined expression of VCAM-1 and IL-8 may serve as the biomarker for lung injury induced by virus infection.
Collapse
Affiliation(s)
- Jie Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Make Hou
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Meiping Yan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Xinhui Lü
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Gu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Songlin Zhang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, Shandong Province, People's Republic of China
| | - Jianfeng Gao
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Bang Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China; and
- Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Xiaoxiong Wu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Guoquan Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
92
|
Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life 2015; 67:145-59. [PMID: 25899846 DOI: 10.1002/iub.1358] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Blood vessel formation is a fundamental process for the development of organism and tissue regeneration. Of importance, angiogenesis occurring during postnatal development is usually connected with inflammation. Here, we review how molecular and cellular mechanisms underlying inflammatory reactions regulate angiogenesis. Inflamed tissues are characterized by hypoxic conditions and immune cell infiltration. In this review, we describe an interplay of hypoxia-inducible factors (HIFs), HIF1 and HIF2, as well as NF-κB and nitric oxide in the regulation of angiogenesis. The mobilization of macrophages and the differential role of M1 and M2 macrophage subsets in angiogenesis are also discussed. Next, we present the current knowledge about microRNA regulation of inflammation in the context of new blood vessel formation. Finally, we describe how the mechanisms involved in inflammation influence tumor angiogenesis. We underlay and discuss the role of NF-E2-related factor 2/heme oxygenase-1 pathway as crucial in the regulation of inflammation-induced angiogenesis.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|
93
|
Zhang RL, Wang QQ, Zhang JP, Yang LJ. Tp17 membrane protein of Treponema pallidum activates endothelial cells in vitro. Int Immunopharmacol 2015; 25:538-44. [DOI: 10.1016/j.intimp.2015.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/12/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
|
94
|
L-selectin shedding is activated specifically within transmigrating pseudopods of monocytes to regulate cell polarity in vitro. Proc Natl Acad Sci U S A 2015; 112:E1461-70. [PMID: 25775539 DOI: 10.1073/pnas.1417100112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
L-selectin is a cell adhesion molecule that tethers free-flowing leukocytes from the blood to luminal vessel walls, facilitating the initial stages of their emigration from the circulation toward an extravascular inflammatory insult. Following shear-resistant adhesion to the vessel wall, L-selectin has frequently been reported to be rapidly cleaved from the plasma membrane (known as ectodomain shedding), with little knowledge of the timing or functional consequence of this event. Using advanced imaging techniques, we observe L-selectin shedding occurring exclusively as primary human monocytes actively engage in transendothelial migration (TEM). Moreover, the shedding was localized to transmigrating pseudopods within the subendothelial space. By capturing monocytes in midtransmigration, we could monitor the subcellular distribution of L-selectin and better understand how ectodomain shedding might contribute to TEM. Mechanistically, L-selectin loses association with calmodulin (CaM; a negative regulator of shedding) specifically within transmigrating pseudopods. In contrast, L-selectin/CaM interaction remained intact in nontransmigrated regions of monocytes. We show phosphorylation of L-selectin at Ser 364 is critical for CaM dissociation, which is also restricted to the transmigrating pseudopod. Pharmacological or genetic inhibition of L-selectin shedding significantly increased pseudopodial extensions in transmigrating monocytes, which potentiated invasive behavior during TEM and prevented the establishment of front/back polarity for directional migration persistence once TEM was complete. We conclude that L-selectin shedding directly regulates polarity in transmigrated monocytes, which affirms an active role for this molecule in driving later stages of the multistep adhesion cascade.
Collapse
|
95
|
Onken MD, Mooren OL, Mukherjee S, Shahan ST, Li J, Cooper JA. Endothelial monolayers and transendothelial migration depend on mechanical properties of the substrate. Cytoskeleton (Hoboken) 2015; 71:695-706. [PMID: 25545622 DOI: 10.1002/cm.21203] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023]
Abstract
Endothelial cells (ECs) line the microvasculature and constitute a barrier between the vessel lumen and surrounding tissues. ECs inform circulating immune cells of the health and integrity of surrounding tissues, recruiting them in response to pathogens and tissue damage. ECs play an active role in the transmigration of immune cells across the vessel wall. We have discovered important differences in the properties of ECs on soft hydrogel substrates of varying stiffness, in comparison to glass. Primary ECs from several human sources were tested; all formed monolayers normally on soft substrates. EC monolayers formed more mature cell-cell junctions on soft substrates, relative to glass, based on increased recruitment of vinculin and F-actin. EC monolayers supported transendothelial migration (TEM) on soft substrates. Immune cells, including peripheral blood lymphocytes (PBLs) and natural killer cells, showed decreasing numbers of paracellular (between-cell) transmigration events with decreasing substrate stiffness, while the number of transcellular (through-cell) events increased for PBLs. Melanoma cancer cells showed increased transmigration with decreased stiffness. Our findings demonstrate that endothelial monolayers respond to the mechanical properties of their surroundings, which can regulate the integrity and function of the monolayer independently from inflammatory signals. Soft hydrogel substrates are a more appropriate and physiological model for tissue environments than hard substrates, with important implications for the experimental analysis of TEM.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | |
Collapse
|
96
|
Huang Y, Clarke F, Karimi M, Roy NH, Williamson EK, Okumura M, Mochizuki K, Chen EJH, Park TJ, Debes GF, Zhang Y, Curran T, Kambayashi T, Burkhardt JK. CRK proteins selectively regulate T cell migration into inflamed tissues. J Clin Invest 2015; 125:1019-32. [PMID: 25621495 DOI: 10.1172/jci77278] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022] Open
Abstract
Effector T cell migration into inflamed sites greatly exacerbates tissue destruction and disease severity in inflammatory diseases, including graft-versus-host disease (GVHD). T cell migration into such sites depends heavily on regulated adhesion and migration, but the signaling pathways that coordinate these functions downstream of chemokine receptors are largely unknown. Using conditional knockout mice, we found that T cells lacking the adaptor proteins CRK and CRK-like (CRKL) exhibit reduced integrin-dependent adhesion, chemotaxis, and diapedesis. Moreover, these two closely related proteins exhibited substantial functional redundancy, as ectopic expression of either protein rescued defects in T cells lacking both CRK and CRKL. We determined that CRK proteins coordinate with the RAP guanine nucleotide exchange factor C3G and the adhesion docking molecule CASL to activate the integrin regulatory GTPase RAP1. CRK proteins were required for effector T cell trafficking into sites of inflammation, but not for migration to lymphoid organs. In a murine bone marrow transplantation model, the differential migration of CRK/CRKL-deficient T cells resulted in efficient graft-versus-leukemia responses with minimal GVHD. Together, the results from our studies show that CRK family proteins selectively regulate T cell adhesion and migration at effector sites and suggest that these proteins have potential as therapeutic targets for preventing GVHD.
Collapse
|
97
|
Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther 2014; 147:123-135. [PMID: 25448040 DOI: 10.1016/j.pharmthera.2014.11.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
Infection or sterile inflammation triggers site-specific attraction of leukocytes. Leukocyte recruitment is a process comprising several steps orchestrated by adhesion molecules, chemokines, cytokines and endogenous regulatory molecules. Distinct adhesive interactions between endothelial cells and leukocytes and signaling mechanisms contribute to the temporal and spatial fine-tuning of the leukocyte adhesion cascade. Central players in the leukocyte adhesion cascade include the leukocyte adhesion receptors of the β2-integrin family, such as the αLβ2 and αMβ2 integrins, or of the β1-integrin family, such as the α4β1-integrin. Given the central involvement of leukocyte recruitment in different inflammatory and autoimmune diseases, the leukocyte adhesion cascade in general, and leukocyte integrins in particular, represent key therapeutic targets. In this context, the present review focuses on the role of leukocyte integrins in the leukocyte adhesion cascade. Experimental evidence that has implicated leukocyte integrins as targets in animal models of inflammatory disorders, such as experimental autoimmune encephalomyelitis, psoriasis, inflammatory bone loss and inflammatory bowel disease as well as preclinical and clinical therapeutic applications of antibodies that target leukocyte integrins in various inflammatory disorders are presented. Finally, we review recent findings on endogenous inhibitors that modify leukocyte integrin function, which could emerge as promising therapeutic targets.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Vasileia I Alexaki
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Athanassios Ziogas
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
98
|
Sawicki CM, McKim DB, Wohleb ES, Jarrett BL, Reader BF, Norden DM, Godbout JP, Sheridan JF. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain. Neuroscience 2014; 302:151-64. [PMID: 25445193 DOI: 10.1016/j.neuroscience.2014.10.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 01/02/2023]
Abstract
Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner.
Collapse
Affiliation(s)
- C M Sawicki
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - D B McKim
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - E S Wohleb
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - B L Jarrett
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - B F Reader
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - D M Norden
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - J P Godbout
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA.
| | - J F Sheridan
- Divsion of Biosciences, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
99
|
Blocking monocyte transmigration in in vitro system by a human antibody scFv anti-CD99. Efficient large scale purification from periplasmic inclusion bodies in E. coli expression system. J Immunol Methods 2014; 408:35-45. [PMID: 24798881 DOI: 10.1016/j.jim.2014.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/21/2022]
Abstract
Migration of leukocytes into site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells, inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies and the absence of toxic reagents utilized for solubilization and refolding step of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting, we herein describe an efficient and large scale production of the antibody fragments expressed in E. coli as periplasmic insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signaling. This protocol can be useful for the successful purification of other monomeric scFvs which are expressed as periplasmic inclusion bodies in bacterial systems.
Collapse
|