51
|
Goldenberg JR, Carley AN, Ji R, Zhang X, Fasano M, Schulze PC, Lewandowski ED. Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking. Circulation 2019; 139:2765-2777. [PMID: 30909726 DOI: 10.1161/circulationaha.119.039610] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Metabolic remodeling in heart failure contributes to dysfunctional lipid trafficking and lipotoxicity. Acyl coenzyme A synthetase-1 (ACSL1) facilitates long-chain fatty acid (LCFA) uptake and activation with coenzyme A (CoA), mediating the fate of LCFA. The authors tested whether cardiac ACSL1 overexpression aids LCFA oxidation and reduces lipotoxicity under pathological stress of transverse aortic constriction (TAC). METHODS Mice with cardiac restricted ACSL1 overexpression (MHC-ACSL1) underwent TAC or sham surgery followed by serial in vivo echocardiography for 14 weeks. At the decompensated stage of hypertrophy, isolated hearts were perfused with 13C LCFA during dynamic-mode 13C nuclear magnetic resonance followed by in vitro nuclear magnetic resonance and mass spectrometry analysis to assess intramyocardial lipid trafficking. In parallel, acyl CoA was measured in tissue obtained from heart failure patients pre- and postleft ventricular device implantation plus matched controls. RESULTS TAC-induced cardiac hypertrophy and dysfunction was mitigated in MHC-ACSL1 hearts compared with nontransgenic hearts. At 14 weeks, TAC increased heart weight to tibia length by 46% in nontransgenic mice, but only 26% in MHC-ACSL1 mice, whereas ACSL1 mice retained greater ejection fraction (ACSL1 TAC: 65.8±7.5%; nontransgenic TAC: 45.9±7.3) and improvement in diastolic E/E'. Functional improvements were mediated by ACSL1 changes to cardiac LCFA trafficking. ACSL1 accelerated LCFA uptake, preventing C16 acyl CoA loss post-TAC. Long-chain acyl CoA was similarly reduced in human failing myocardium and restored to control levels by mechanical unloading. ACSL1 trafficked LCFA into ceramides without normalizing the reduced triglyceride storage in TAC. ACSL1 prevented de novo synthesis of cardiotoxic C16- and C24-, and C24:1 ceramides and increased potentially cardioprotective C20- and C22-ceramides post-TAC. ACLS1 overexpression activated AMP activated protein kinase at baseline, but during TAC, prevented the reduced LCFA oxidation in hypertrophic hearts and normalized energy state (phosphocreatine:ATP) and consequently, AMP activated protein kinase activation. CONCLUSIONS This is the first demonstration of reduced acyl CoA in failing hearts of humans and mice, and suggests possible mechanisms for maintaining mitochondrial oxidative energy metabolism by restoring long-chain acyl CoA through ASCL1 activation and mechanical unloading. By mitigating cardiac lipotoxicity, via redirected LCFA trafficking to ceramides, and restoring acyl CoA, ACSL1 delayed progressive cardiac remodeling and failure.
Collapse
Affiliation(s)
- Joseph R Goldenberg
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago (J.R.G., E.D.L.)
| | - Andrew N Carley
- Department of Internal Medicine, College of Medicine, The Ohio State University (A.N.C., M.F., E.D.L.), Columbus.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center (A.N.C., M.F., E.D.L.), Columbus
| | - Ruiping Ji
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (R.J., X.Z., P.C.S.)
| | - Xiaokan Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (R.J., X.Z., P.C.S.)
| | - Matt Fasano
- Department of Internal Medicine, College of Medicine, The Ohio State University (A.N.C., M.F., E.D.L.), Columbus.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center (A.N.C., M.F., E.D.L.), Columbus
| | - P Christian Schulze
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (R.J., X.Z., P.C.S.).,Department of Medicine I, Division of Cardiology, University Hospital Jena, Friedrich-Schiller-University Jena, Germany (P.C.S.)
| | - E Douglas Lewandowski
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago (J.R.G., E.D.L.).,Department of Internal Medicine, College of Medicine, The Ohio State University (A.N.C., M.F., E.D.L.), Columbus.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center (A.N.C., M.F., E.D.L.), Columbus
| |
Collapse
|
52
|
Cho HE, Maurer BJ, Reynolds CP, Kang MH. Hydrophilic interaction liquid chromatography-tandem mass spectrometric approach for simultaneous determination of safingol and D-erythro-sphinganine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1112:16-23. [PMID: 30836314 DOI: 10.1016/j.jchromb.2019.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
A simple and specific hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method was developed for the simultaneous determination of C18-L-threo-sphinganine (safingol, an anti-neoplastic in phase I trials) and its diastereomer, C18-D-erythro-sphinganine (sphinganine), in human plasma. Sample pretreatment involved a protein precipitation with methanol using 25 μL aliquots of plasma. Chromatographic separation of the diastereomers and C17-D-erythro-sphinganine, an internal standard, was achieved on a Xbridge HILIC (3.5 μm, 100 × 2.1 mm) using isocratic elution with the mobile phase of 2 mM ammonium bicarbonate in water (pH 8.3) and acetonitrile at a flow rate of 0.3 mL/min. Electrospray ionization (ESI) mass spectrometry was operated in the positive ion mode with multiple reaction monitoring (MRM). The calibration curves obtained were linear over the concentration range of 0.2-100 ng/mL with a lower limit of quantification of 0.2 ng/mL. The relative standard deviation of intra-day and inter-day precision was below 8.27%, and the accuracy ranged from 92.23 to 110.06%. The extraction recoveries were found to be higher than 93.22% and IS-normalized matrix effect was higher than 90.92%. The analytes were stable for the durations of the stability studies. The validated method was successfully applied to the analyses of pharmacokinetic samples from patients treated with safingol and all-trans-N-(4-hydroxyphenyl)retinamide; (fenretinide, 4-HPR) in a current phase I clinical trial (SPOC-2010-002, ClinicalTrials.gov Identifier: NCT01553071).
Collapse
Affiliation(s)
- Hwang Eui Cho
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Barry J Maurer
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - C Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
53
|
Calderón C, Sanwald C, Schlotterbeck J, Drotleff B, Lämmerhofer M. Comparison of simple monophasic versus classical biphasic extraction protocols for comprehensive UHPLC-MS/MS lipidomic analysis of Hela cells. Anal Chim Acta 2019; 1048:66-74. [DOI: 10.1016/j.aca.2018.10.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
|
54
|
Luberto C, Haley JD, Del Poeta M. Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead. Chem Phys Lipids 2019; 219:1-14. [PMID: 30641043 DOI: 10.1016/j.chemphyslip.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
In the last ten years, mass spectrometry (MS) has become the favored analytical technique for sphingolipid (SPL) analysis and measurements. Indeed MS has the unique ability to both acquire sensitive and quantitative measurements and to resolve the molecular complexity characteristic of SPL molecules, both across the different SPL families and within the same SPL family. Currently, two complementary MS-based approaches are used for lipid research: analysis of lipid extracts, mainly by infusion electrospray ionization (ESI), and mass spectrometry imaging (MSI) from a sample surface (i.e. intact tissue sections, cells, model membranes, thin layer chromatography plates) (Fig. 1). The first allows for sensitive and quantitative information about total lipid molecular species from a given specimen from which lipids have been extracted and chromatographically separated prior to the analysis; the second, albeit generally less quantitative and less specific in the identification of molecular species due to the complexity of the sample, allows for spatial information of lipid molecules from biological specimens. In the field of SPL research, MS analysis of lipid extracts from biological samples has been commonly utilized to implicate the role of these lipids in specific biological functions. On the other hand, the utilization of MSI in SPL research represents a more recent development that has started to provide interesting descriptive observations regarding the distribution of specific classes of SPLs within tissues. Thus, it is the aim of this review to discuss how MSI technology has been employed to extend the study of SPL metabolism and the type of information that has been obtained from model membranes, single cells and tissues. We envision this discussion as a complementary compendium to the excellent technical reviews recently published about the specifics of MSI technologies, including their application to SPL analysis (Fuchs et al., 2010; Berry et al., 2011; Ellis et al., 2013; Eberlin et al., 2011; Kraft and Klitzing, 2014).
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States.
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States; Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States; Veterans Administrations Medical Center, Northport, NY, United States
| |
Collapse
|
55
|
Native and Polyubiquitinated Forms of Dihydroceramide Desaturase Are Differentially Linked to Human Embryonic Kidney Cell Survival. Mol Cell Biol 2018; 38:MCB.00222-18. [PMID: 30224516 DOI: 10.1128/mcb.00222-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022] Open
Abstract
There is controversy concerning the role of dihydroceramide desaturase (Degs1) in regulating cell survival, with studies showing that it can both promote and protect against apoptosis. We have therefore investigated the molecular basis for these opposing roles of Degs1. Treatment of HEK293T cells with the sphingosine kinase inhibitor SKi [2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole] or fenretinide, but not the Degs1 inhibitor GT11 {N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octan-amide}, induced the polyubiquitination of Degs1 (M r = 40 to 140 kDa) via a mechanism involving oxidative stress, p38 mitogen-activated protein kinase (MAPK), and Mdm2 (E3 ligase). The polyubiquitinated forms of Degs1 exhibit "gain of function" and activate prosurvival pathways, p38 MAPK, c-Jun N-terminal kinase (JNK), and X-box protein 1s (XBP-1s). In contrast, another sphingosine kinase inhibitor, ABC294640 [3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl)amide], at concentrations of 25 to 50 μM failed to induce formation of the polyubiquitinated forms of Degs1. In contrast to SKi, ABC294640 (25 μM) promotes apoptosis of HEK293T cells via a Degs1-dependent mechanism that is associated with increased de novo synthesis of ceramide. These findings are the first to demonstrate that the polyubiquitination of Degs1 appears to change its function from proapoptotic to prosurvival. Thus, polyubiquitination of Degs1 might provide an explanation for the reported opposing functions of this enzyme in cell survival/apoptosis.
Collapse
|
56
|
Sphingolipidomics analysis of large clinical cohorts. Part 1: Technical notes and practical considerations. Biochem Biophys Res Commun 2018; 504:596-601. [PMID: 29654754 DOI: 10.1016/j.bbrc.2018.04.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 11/23/2022]
Abstract
Lipids comprise an exceptionally diverse class of bioactive macromolecules. While quantitatively abundant lipid species serve fundamental roles in cell structure and energy metabolism, thousands of structurally-distinct, quantitatively minor species may serve as important regulators of cellular processes. Historically, a complete understanding of the biological roles of these lipids has been limited by a lack of sensitive, discriminating analytical techniques. The class of sphingolipids alone, for example, is known to consist of over 600 different confirmed species, but is likely to include tens of thousands of metabolites with potential biological significance. Advances in mass spectrometry (MS) have improved the throughput and discrimination of lipid analysis, allowing for the determination of detailed lipid profiles in large cohorts of clinical samples. Databases emerging from these studies will provide a rich resource for the identification of novel biomarkers and for the discovery of potential drug targets, analogous to that of existing genomics databases. In this review, we will provide an overview of the field of sphingolipidomics, and will discuss some of the challenges and considerations facing the generation of robust lipidomics databases.
Collapse
|
57
|
Abstract
Sphingolipids are the most diverse class of lipids due to the numerous variations in their structural components. This diversity is also reflected in their extremely different functions. Sphingolipids are not only constituents of cell membranes but have also emerged as key signaling molecules involved in a variety of cellular functions, such as cell growth and differentiation, proliferation, and apoptotic cell death. Lipidomic analyses in clinical research have identified pathways and products of sphingolipid metabolism that are altered in several human pathologies. In this article, we describe how to properly design a lipidomic experiment in clinical research, how to handle plasma and serum samples for this purpose, and how to measure sphingolipids using liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sneha Muralidharan
- Singapore Lipidomics Incubator (SLING), Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
58
|
Ferrarini A, Righetti L, Martínez MP, Fernández-López M, Mastrangelo A, Horcajada JP, Betbesé A, Esteban A, Ordóñez J, Gea J, Cabello JR, Pellati F, Lorente JA, Nin N, Rupérez FJ. Discriminant biomarkers of acute respiratory distress syndrome associated to H1N1 influenza identified by metabolomics HPLC-QTOF-MS/MS platform. Electrophoresis 2017; 38:2341-2348. [PMID: 28714069 DOI: 10.1002/elps.201700112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/15/2017] [Accepted: 06/24/2017] [Indexed: 12/21/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious complication of influenza A (H1N1) virus infection. Its pathogenesis is unknown and biomarkers are lacking. Untargeted metabolomics allows the analysis of the whole metabolome in a biological compartment, identifying patterns associated with specific conditions. We hypothesized that LC-MS could help identify discriminant metabolites able to define the metabolic alterations occurring in patients with influenza A (H1N1) virus infection that developed ARDS. Serum samples from patients diagnosed with 2009 influenza A (H1N1) virus infection with (n = 25) or without (n = 32) ARDS were obtained on the day of hospital admission and analyzed by LC-MS/MS. Metabolite identification was determined by MS/MS analysis and analysis of standards. The specificity of the patterns identified was confirmed in patients without 2009 influenza A(H1N1) virus pneumonia (15 without and 17 with ARDS). Twenty-three candidate biomarkers were found to be significantly different between the two groups, including lysophospholipids and sphingolipids related to inflammation; bile acids, tryptophan metabolites, and thyroxine, related to the metabolism of the gut microflora. Confirmation results demonstrated the specificity of major alterations occurring in ARDS patients with influenza A (H1N1) virus infection.
Collapse
Affiliation(s)
- Alessia Ferrarini
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Laura Righetti
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain.,Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Ma Paz Martínez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | | | - Annalaura Mastrangelo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Juan P Horcajada
- Hospital del Mar. IMIM. DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antoni Betbesé
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrés Esteban
- Hospital Universitario de Getafe, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain
| | - Jordi Ordóñez
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquín Gea
- Hospital del Mar. IMIM. DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain
| | - Jesús Ruiz Cabello
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain.,Departamento de Química Física II, Universidad Complutense de Madrid Facultad de Farmacia, Madrid, Spain
| | - Federica Pellati
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - José A Lorente
- Hospital Universitario de Getafe, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain
| | - Nicolás Nin
- Hospital de Torrejón de Ardoz, Madrid, Spain.,Hospital Español Juan José Crottogini, Montevideo, Uruguay
| | - Francisco J Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| |
Collapse
|
59
|
Li Y, Lou Y, Mu T, Ke A, Ran Z, Xu J, Chen J, Zhou C, Yan X, Xu Q, Tan Y. Sphingolipids in marine microalgae: Development and application of a mass spectrometric method for global structural characterization of ceramides and glycosphingolipids in three major phyla. Anal Chim Acta 2017; 986:82-94. [PMID: 28870328 DOI: 10.1016/j.aca.2017.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 01/01/2023]
Abstract
Sphingolipid compositions are crucial for the structural and physiological properties of microalgae membranes. In the present study, we developed a quadrupole time-of-flight (Q-TOF) mass spectrometric method based on MSE data collection for the identification of sphingolipids with high efficiency, selectivity, sensitivity and mass accuracy and applied this method for precise structural identification and quantitative profiling of ceramides and glycosphingolipids in total lipid extracts from 17 strains of microalgae, including 11 strains of diatom, 3 strains of dinoflagellate and 3 strains of haptophyta. Using this method, four species of sphingolipids including 27 ceramides, 13 monosaccharide ceramides, 18 disaccharide ceramides and 18 trisaccharide ceramides were identified. The compositions of sphingolipid-included glycosyl moieties, long chain bases and N-acyl chains showed a significant difference among different microalgae categories. Some long chain bases including d19:2, d19:3 and d19:4, glycosyl moieties including disaccharide and trisaccharide, and N-acyl chains such as 14:0, 14:1, 24:0, 24:1, h18:1, h19:1 and h22:0-2 can be chosen as the molecular signature for microalgae from three major phyla. This methodology will be useful for a wide range of physiological and pathological studies of sphingolipids. Furthermore, the diversity of sphingolipid structure could provide a new criterion for microalgae chemotaxonomy.
Collapse
Affiliation(s)
- Yanrong Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China; Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Yamin Lou
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Tong Mu
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Aiying Ke
- Zhejiang Mariculture Research Institute, Wenzhou 325000, China
| | - Zhaoshou Ran
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Jilin Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China.
| | - Juanjuan Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Chengxu Zhou
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Xiaojun Yan
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China.
| | - Qingshan Xu
- Lijing Chenhai Baoer Bio. Ltd., Lijiang, Yunnan 674100, China
| | - Yinghong Tan
- Lijing Chenhai Baoer Bio. Ltd., Lijiang, Yunnan 674100, China
| |
Collapse
|
60
|
Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death. Cell Death Differ 2017; 24:1288-1302. [PMID: 28574511 PMCID: PMC5520177 DOI: 10.1038/cdd.2017.80] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022] Open
Abstract
Activating alternative cell death pathways, including autophagic cell death, is a promising direction to overcome the apoptosis resistance observed in various cancers. Yet, whether autophagy acts as a death mechanism by over consumption of intracellular components is still controversial and remains undefined at the ultrastructural and the mechanistic levels. Here we identified conditions under which resveratrol-treated A549 lung cancer cells die by a mechanism that fulfills the previous definition of autophagic cell death. The cells displayed a strong and sustained induction of autophagic flux, cell death was prevented by knocking down autophagic genes and death occurred in the absence of apoptotic or necroptotic pathway activation. Detailed ultrastructural characterization revealed additional critical events, including a continuous increase over time in the number of autophagic vacuoles, in particular autolysosomes, occupying most of the cytoplasm at terminal stages. This was followed by loss of organelles, disruption of intracellular membranes including the swelling of perinuclear space and, occasionally, a unique type of nuclear shedding. A signalome-wide shRNA-based viability screen was applied to identify positive mediators of this type of autophagic cell death. One top hit was GBA1, the Gaucher disease-associated gene, which encodes glucocerebrosidase, an enzyme that metabolizes glucosylceramide to ceramide and glucose. Interestingly, glucocerebrosidase expression levels and activity were elevated, concomitantly with increased intracellular ceramide levels, both of which correlated in time with the appearance of the unique death characteristics. Transfection with siGBA1 attenuated the increase in glucocerebrosidase activity and the intracellular ceramide levels. Most importantly, GBA1 knockdown prevented the strong increase in LC3 lipidation, and many of the ultrastructural changes characteristic of this type of autophagic cell death, including a significant decrease in cytoplasmic area occupied by autophagic vacuoles. Together, these findings highlight the critical role of GBA1 in mediating enhanced self-consumption of intracellular components and endomembranes, leading to autophagic cell death.
Collapse
|
61
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
62
|
Ferreira NS, Engelsby H, Neess D, Kelly SL, Volpert G, Merrill AH, Futerman AH, Færgeman NJ. Regulation of very-long acyl chain ceramide synthesis by acyl-CoA-binding protein. J Biol Chem 2017; 292:7588-7597. [PMID: 28320857 DOI: 10.1074/jbc.m117.785345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 11/06/2022] Open
Abstract
Ceramide and more complex sphingolipids constitute a diverse group of lipids that serve important roles as structural entities of biological membranes and as regulators of cellular growth, differentiation, and development. Thus, ceramides are vital players in numerous diseases including metabolic and cardiovascular diseases, as well as neurological disorders. Here we show that acyl-coenzyme A-binding protein (ACBP) potently facilitates very-long acyl chain ceramide synthesis. ACBP increases the activity of ceramide synthase 2 (CerS2) by more than 2-fold and CerS3 activity by 7-fold. ACBP binds very-long-chain acyl-CoA esters, which is required for its ability to stimulate CerS activity. We also show that high-speed liver cytosol from wild-type mice activates CerS3 activity, whereas cytosol from ACBP knock-out mice does not. Consistently, CerS2 and CerS3 activities are significantly reduced in the testes of ACBP-/- mice, concomitant with a significant reduction in long- and very-long-chain ceramide levels. Importantly, we show that ACBP interacts with CerS2 and CerS3. Our data uncover a novel mode of regulation of very-long acyl chain ceramide synthesis by ACBP, which we anticipate is of crucial importance in understanding the regulation of ceramide metabolism in pathogenesis.
Collapse
Affiliation(s)
- Natalia Santos Ferreira
- From the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hanne Engelsby
- the Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, and
| | - Ditte Neess
- the Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, and
| | - Samuel L Kelly
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Giora Volpert
- From the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alfred H Merrill
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Anthony H Futerman
- From the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nils J Færgeman
- the Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, and
| |
Collapse
|
63
|
Volpert G, Ben-Dor S, Tarcic O, Duan J, Saada A, Merrill AH, Pewzner-Jung Y, Futerman AH. Oxidative stress elicited by modifying the ceramide acyl chain length reduces the rate of clathrin-mediated endocytosis. J Cell Sci 2017; 130:1486-1493. [PMID: 28280117 DOI: 10.1242/jcs.199968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/28/2017] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids modulate clathrin-mediated endocytosis (CME) by altering the biophysical properties of membranes. We now examine CME in astrocytes cultured from ceramide synthase 2 (CerS2) null mice, which have an altered sphingolipid acyl chain composition. The rate of endocytosis of low-density lipoprotein and transferrin, which are internalized via CME, was reduced in CerS2 null astrocytes, although the rate of caveolin-mediated endocytosis was unaltered. Levels of clathrin heavy chain were increased, which was due to decreased levels of Hsc70 (also known as HSPA8), a protein involved in clathrin uncoating. Hsc70 levels were decreased because of lower levels of binding of Sp1 to position -68 in the Hsc70 promoter. Levels of Sp1 were downregulated due to oxidative stress, which was elevated fourfold in CerS2 null astrocytes. Furthermore, induction of oxidative stress in wild-type astrocytes decreased the rate of CME, whereas amelioration of oxidative stress in CerS2 null astrocytes reversed the decrease. Our data are consistent with the notion that sphingolipids not only change membrane biophysical properties but also that changes in their composition can result in downstream effects that indirectly impinge upon a number of cellular pathways, such as CME.
Collapse
Affiliation(s)
- Giora Volpert
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shifra Ben-Dor
- Department of Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ohad Tarcic
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jingjing Duan
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel.,The Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel
| | - Alfred H Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Yael Pewzner-Jung
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
64
|
Merrill AH, Sullards MC. Opinion article on lipidomics: Inherent challenges of lipidomic analysis of sphingolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:774-776. [PMID: 28161582 DOI: 10.1016/j.bbalip.2017.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
A challenge for sphingolipidomic analysis is the vast number of subspecies, including a large number of isomers-a complication that was even appreciated by the original discoverer of sphingolipids J. L. W. Thudichum (The Chemistry of the Brain, p. x, 1884): "In the course of my researches many unforeseen complications arose, prominent amongst which were those caused by the occurrence of chemical principles having the same atomic or elementary composition, but differing in other chemical, or in physical properties, varieties producing the phenomenon which in chemistry is termed isomerism." Therefore, it is essential to choose the appropriate method(s) for the goal of the analysis, to know the assumptions and limitations of method(s) used, and to temper interpretation of the data accordingly. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences, Chemistry and Biochemistry, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230 USA.
| | - M Cameron Sullards
- School of Biological Sciences, Chemistry and Biochemistry, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230 USA.
| |
Collapse
|
65
|
Zemski Berry KA, Barkley RM, Berry JJ, Hankin JA, Hoyes E, Brown JM, Murphy RC. Tandem Mass Spectrometry in Combination with Product Ion Mobility for the Identification of Phospholipids. Anal Chem 2017; 89:916-921. [PMID: 27958700 PMCID: PMC5250582 DOI: 10.1021/acs.analchem.6b04047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Concerted tandem and traveling wave ion mobility mass spectrometry (CTS analysis) is a unique method that results in a four-dimensional data set including nominal precursor ion mass, product ion mobility, accurate mass of product ion, and ion abundance. This nontargeted lipidomics CTS approach was applied in both positive- and negative-ion mode to phospholipids present in human serum, and the data set was used to evaluate the value of product ion mobility in identifying lipids in a complex mixture. It was determined that the combination of diagnostic product ions and unique collisional cross-section values of product ions is a powerful tool in the structural identification of lipids in a complex biological sample.
Collapse
Affiliation(s)
- Karin A. Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave, Aurora, CO 80045
| | - Robert M. Barkley
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave, Aurora, CO 80045
| | - Joseph J. Berry
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401
| | - Joseph A. Hankin
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave, Aurora, CO 80045
| | - Emmy Hoyes
- Waters Corporation, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom
| | - Jeffery M. Brown
- Waters Corporation, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave, Aurora, CO 80045
| |
Collapse
|
66
|
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Comprehensive review of trends and analytical strategies applied for biological samples preparation and storage in modern medical lipidomics: State of the art. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
67
|
Jones JW, Carter CL, Li F, Yu J, Pierzchalski K, Jackson IL, Vujaskovic Z, Kane MA. Ultraperformance convergence chromatography-high resolution tandem mass spectrometry for lipid biomarker profiling and identification. Biomed Chromatogr 2016; 31. [PMID: 27557409 DOI: 10.1002/bmc.3822] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/07/2016] [Accepted: 08/20/2016] [Indexed: 11/07/2022]
Abstract
Lipids represent biologically ubiquitous and highly dynamic molecules in terms of abundance and structural diversity. Whereas the potential for lipids to inform on disease/injury is promising, their unique characteristics make detection and identification of lipids from biological samples analytically demanding. We report the use of ultraperformance convergence chromatography (UPC2 ), a variant of supercritical fluid chromatography, coupled to high-resolution, data-independent tandem mass spectrometry for characterization of total lipid extracts from mouse lung tissue. The UPC2 platform resulted in lipid class separation and when combined with orthogonal column chemistries yielded chromatographic separation of intra-class species based on acyl chain hydrophobicity. Moreover, the combined approach of using UPC2 with orthogonal column chemistries, accurate mass measurements, time-aligned low- and high-collision energy total ion chromatograms, and positive and negative ion mode product ion spectra correlation allowed for confident lipid identification. Of great interest was the identification of differentially expressed ceramides that were elevated 24 h post whole thorax lung irradiation. The identification of lipids that were elevated 24 h post-irradiation signifies a unique opportunity to investigate early mechanisms of action prior to the onset of clinical symptoms in the whole thorax lung irradiation mouse model.
Collapse
Affiliation(s)
- Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Claire L Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Fei Li
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Keely Pierzchalski
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Isabel L Jackson
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD, USA
| | - Zeljko Vujaskovic
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD, USA
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| |
Collapse
|
68
|
Fong BY, Ma L, Khor GL, van der Does Y, Rowan A, McJarrow P, MacGibbon AKH. Ganglioside Composition in Beef, Chicken, Pork, and Fish Determined Using Liquid Chromatography-High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6295-6305. [PMID: 27436425 DOI: 10.1021/acs.jafc.6b02200] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gangliosides (GA) are found in animal tissues and fluids, such as blood and milk. These sialo-glycosphingolipids have bioactivities in neural development, the gastrointestinal tract, and the immune system. In this study, a high-performance liquid chromatography-mass spectrometry (HPLC-MS) method was validated to characterize and quantitate the GA in beef, chicken, pork, and fish species (turbot, snapper, king salmon, and island mackerel). For the first time, we report the concentration of GM3, the dominant GA in these foods, as ranging from 0.35 to 1.1 mg/100 g and 0.70 to 5.86 mg/100 g of meat and fish, respectively. The minor GAs measured were GD3, GD1a, GD1b, and GT1b. Molecular species distribution revealed that the GA contained long- to very-long-chain acyl fatty acids attached to the ceramide moiety. Fish GA contained only N-acetylneuraminic acid (NeuAc) sialic acid, while beef, chicken, and pork contained GD1a/b species that incorporated both NeuAc and N-glycolylneuraminic acid (NeuGc) and hydroxylated fatty acids.
Collapse
Affiliation(s)
- Bertram Y Fong
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Lin Ma
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Geok Lin Khor
- School of Health Sciences, International Medical University , No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yvonne van der Does
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Angela Rowan
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Paul McJarrow
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Alastair K H MacGibbon
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| |
Collapse
|
69
|
Mi S, Zhao YY, Dielschneider RF, Gibson SB, Curtis JM. An LC/MS/MS method for the simultaneous determination of individual sphingolipid species in B cells. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1031:50-60. [PMID: 27450899 DOI: 10.1016/j.jchromb.2016.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 12/27/2022]
Abstract
Comprehensive profiling of sphingolipids is of great importance for clinical and pharmaceutical studies. An LC/MS/MS method was established for the simultaneous separation and quantification of individual sphingolipid species including ceramides, dihydroceramides, glucosylceramides, sphingosine, sphingosine-1-phosphate, sphinganine and sphinganine-1-phosphate. All target individual sphingolipid species were separated and quantified in a single chromatographic run of <20min. Method validation results indicated that calibration curves were linear in the range of 2.5-10,000nM for ceramides and glucosylceramides, 10-10,000nM for dihydroceramides, 5-10,000nM for sphingosine, sphingosine-1-phosphate, sphinganine and sphinganine-1-phosphate, respectively. The limits of detection ranged from 0.5nM to 5nM. Accuracies of 92.5-113% with precisions of 0.3-8.0% RSD were obtained for all of the standards over a wide range of concentrations. The application of this method was demonstrated using B cells collected from Chronic Lymphocytic Leukemia patients (n=5) and healthy donors (n=4). 17 sphingolipid species were successfully characterized and quantified in the lipid extract. This is a rapid method that could be readily adapted to lipidomic investigations of sphingolipids in other bio-fluids and tissues.
Collapse
Affiliation(s)
- Si Mi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Yuan-Yuan Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rebecca F Dielschneider
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Spencer B Gibson
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
70
|
Miyamoto S, Hsu CC, Hamm G, Darshi M, Diamond-Stanic M, Declèves AE, Slater L, Pennathur S, Stauber J, Dorrestein PC, Sharma K. Mass Spectrometry Imaging Reveals Elevated Glomerular ATP/AMP in Diabetes/obesity and Identifies Sphingomyelin as a Possible Mediator. EBioMedicine 2016; 7:121-34. [PMID: 27322466 PMCID: PMC4909366 DOI: 10.1016/j.ebiom.2016.03.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is suppressed in diabetes and may be due to a high ATP/AMP ratio, however the quantitation of nucleotides in vivo has been extremely difficult. Via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to localize renal nucleotides we found that the diabetic kidney had a significant increase in glomerular ATP/AMP ratio. Untargeted MALDI-MSI analysis revealed that a specific sphingomyelin species (SM(d18:1/16:0)) accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with wild-type controls. In vitro studies in mesangial cells revealed that exogenous addition of SM(d18:1/16:0) significantly elevated ATP via increased glucose consumption and lactate production with a consequent reduction of AMPK and PGC1α. Furthermore, inhibition of sphingomyelin synthases reversed these effects. Our findings suggest that AMPK is reduced in the diabetic kidney due to an increase in the ATP/AMP ratio and that SM(d18:1/16:0) could be responsible for the enhanced ATP production via activation of the glycolytic pathway. MALDI-MSI revealed an increase in glomerular ATP/AMP ratio in the diabetic kidney. SM(d18:1/16:0) is increased in the glomeruli of diabetic and high-fat diet-fed mice. SM(d18:1/16:0) stimulated ATP production via enhanced aerobic glycolysis and reduced AMPK activity in mesangial cells. AMPK is known to be suppressed in states of high ATP/AMP ratio but the measurement of nucleotides in vivo has been difficult. Miyamoto et al. utilize matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the distribution of nucleotides and find an increase in glomerular ATP/AMP ratio in the diabetic kidney. Untargeted MALDI-MSI revealed that sphingomyelin(d18:1/16:0) is accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with controls. Sphingomyelin(d18:1/16:0) promotes ATP production in mesangial cells via activation of the glycolytic pathway. The inhibition of sphingomyelin(d18:1/16:0) synthesis may lead to novel therapeutic targets for the treatment of caloric-induced CKD.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Cheng-Chih Hsu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Gregory Hamm
- ImaBiotech, MS Imaging Department, Lille 59120, France
| | - Manjula Darshi
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA
| | - Maggie Diamond-Stanic
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA
| | - Anne-Emilie Declèves
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA
| | - Larkin Slater
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA
| | | | | | - Pieter C Dorrestein
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kumar Sharma
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA.
| |
Collapse
|
71
|
Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem Phys Lipids 2016; 199:106-135. [PMID: 27016337 DOI: 10.1016/j.chemphyslip.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.
Collapse
|
72
|
Goldenberg JR, Wang X, Lewandowski ED. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice. J Mol Cell Cardiol 2016; 94:1-9. [PMID: 26995156 DOI: 10.1016/j.yjmcc.2016.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
RATIONALE Acyl CoA synthetase-1 (ACSL1) is localized at intracellular membranes, notably the mitochondrial membrane. ACSL1 and female sex are suggested to indirectly facilitate lipid availability to the heart and other organs. However, such mechanisms in intact, functioning myocardium remain unexplored, and roles of ACSL1 and sex in the uptake and trafficking of fats are poorly understood. OBJECTIVE To determine the potential for ACSL1 and sex-dependent differences in metabolic trapping and trafficking effects of long-chain fatty acids (LCFA) within cardiomyocytes of intact hearts. METHODS AND RESULTS (13)C NMR of intact, beating mouse hearts, supplied (13)C palmitate, revealed 44% faster trans-sarcolemmal uptake of LCFA in male hearts overexpressing ACSL1 (MHC-ACSL1) than in non-transgenic (NTG) males (p<0.05). Acyl CoA content was elevated by ACSL1 overexpression, 404% in males and 164% in female, relative to NTG. Despite similar ACSL1 content, NTG females displayed faster LCFA uptake kinetics compared to NTG males, which was reversed by ovariectomy. NTG female LCFA uptake rates were similar to those in ACSL1 males and ACSL1 females. ACSL1 and female sex hormones both accelerated LCFA uptake without affecting triglyceride content or turnover. ACSL1 hearts contained elevated ceramide, particularly C22 ceramide in both sexes and specifically, C24 in males. ACSL1 also induced lower content of fatty acid transporter-6 (FATP6) indicating cooperative regulation with ACSL1. Surprisingly, ACSL1 overexpression did not increase mitochondrial oxidation of exogenous palmitate, which actually dropped in female ACSL1 hearts. CONCLUSIONS ACSL1-mediated metabolic trapping of exogenous LCFA accelerates LCFA uptake rates, albeit to a lesser extent in females, which distinctly affects LCFA trafficking to acyl intermediates but not triglyceride storage or mitochondrial oxidation and is affected by female sex hormones.
Collapse
Affiliation(s)
- Joseph R Goldenberg
- Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Xuerong Wang
- Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA
| | - E Douglas Lewandowski
- Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA; Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA.
| |
Collapse
|
73
|
Vallabhaneni KC, Penfornis P, Dhule S, Guillonneau F, Adams KV, Mo YY, Xu R, Liu Y, Watabe K, Vemuri MC, Pochampally R. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget 2016; 6:4953-67. [PMID: 25669974 PMCID: PMC4467126 DOI: 10.18632/oncotarget.3211] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/27/2014] [Indexed: 12/20/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSCs) have been shown to support breast cancer cell proliferation and metastasis, partly through their secretome. hMSCs have a remarkable ability to survive for long periods under stress, and their secretome is tumor supportive. In this study, we have characterized the cargo of extracellular vesicular (EV) fraction (that is in the size range of 40-150nm) of serum deprived hMSCs (SD-MSCs). Next Generation Sequencing assays were used to identify small RNA secreted in the EVs, which indicated presence of tumor supportive miRNA. Further assays demonstrated the role of miRNA-21 and 34a as tumor supportive miRNAs. Next, proteomic assays revealed the presence of ≈150 different proteins, most of which are known tumor supportive factors such as PDGFR-β, TIMP-1, and TIMP-2. Lipidomic assays verified presence of bioactive lipids such as sphingomyelin. Furthermore, metabolite assays identified the presence of lactic acid and glutamic acid in EVs. The co-injection xenograft assays using MCF-7 breast cancer cells demonstrated the tumor supportive function of these EVs. To our knowledge this is the first comprehensive -omics based study that characterized the complex cargo of extracellular vesicles secreted by hMSCs and their role in supporting breast cancers.
Collapse
Affiliation(s)
| | - Patrice Penfornis
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Santosh Dhule
- Department of Chemical and Biomolecular Engineering, New Orleans, LA, USA
| | - Francois Guillonneau
- 3P5 Proteomic Platform of the Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kristen V Adams
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yin Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rui Xu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | - Yiming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | - Kounosuke Watabe
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mohan C Vemuri
- Stem Cell Biology, Thermo Fisher Scientific, Frederick, MD, USA
| | - Radhika Pochampally
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
74
|
Rožman M. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:91-98. [PMID: 26297186 DOI: 10.1007/s13361-015-1247-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.
Collapse
Affiliation(s)
- Marko Rožman
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10002, Zagreb, Croatia.
| |
Collapse
|
75
|
Evaluation of the change in sphingolipids in the human multiple myeloma cell line U266 and gastric cancer cell line MGC-803 treated with arsenic trioxide. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1004:98-107. [DOI: 10.1016/j.jchromb.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/09/2015] [Accepted: 09/13/2015] [Indexed: 01/05/2023]
|
76
|
Fröhlich F, Petit C, Kory N, Christiano R, Hannibal-Bach HK, Graham M, Liu X, Ejsing CS, Farese RV, Walther TC. The GARP complex is required for cellular sphingolipid homeostasis. eLife 2015; 4. [PMID: 26357016 PMCID: PMC4600884 DOI: 10.7554/elife.08712] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2. DOI:http://dx.doi.org/10.7554/eLife.08712.001 Every cell is enveloped by a membrane that forms a barrier between the cell and its environment. This membrane contains fat molecules called ‘sphingolipids’, which help to maintain the structure of the membrane and enable it to work correctly. These molecules are also used as signals to send information around the interior of the cell and are required for the cell to grow and divide normally. The levels of sphingolipids in the membrane have to be tightly controlled because any imbalance can cause stress to the cell and can lead to serious diseases. Sphingolipids are made inside the cell and are then sent to a compartment called the Golgi before being delivered to the membrane. To regulate the amount of sphingolipids in the membrane, these molecules are routinely returned to the interior of the cell in small structures called endosomes. From here, they can either be broken down or recycled back to the membrane via the Golgi. A group of proteins known as the Golgi-associated retrograde protein complex (or GARP) is involved in the movement of endosomes from the membrane to the Golgi. People that have a mutation in the gene that encodes GARP suffer from a severe neurodegenerative disease known as ‘progressive cerebello-cerebral atrophy type 2’ (PCCA2) in which brain cells die prematurely. Researchers have assumed that the most important role of GARP is to sort proteins, and that the missorting of proteins leads to PCCA2. Here, Frohlich et al. used a combination of genetic analysis and biochemical techniques to study GARP in yeast cells. The experiments show that GARP is critical for sphingolipid recycling, and that a lack of GARP leads to more sphingolipids being degraded, which results in a build-up of toxic molecules. Frohlich et al. generated yeast cells that have the same mutations in the gene that encodes GARP as those in human patients with PCCA2. These cells grew much slower than normal yeast and were less able to transport sphingolipids from the endosome to the Golgi. Like the yeast cells, human cells in which the gene that encodes GARP was less active also accumulated toxic molecules. Together, these findings suggest that a build-up of toxic fat molecules may be responsible for the symptoms observed in PCCA2 patients. A future challenge is to find out whether this also applies to patients with Alzheimer's disease and other conditions that also affect endosomes. DOI:http://dx.doi.org/10.7554/eLife.08712.002
Collapse
Affiliation(s)
- Florian Fröhlich
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Constance Petit
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Nora Kory
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Romain Christiano
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Hans-Kristian Hannibal-Bach
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Morven Graham
- Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States
| | - Xinran Liu
- Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States.,Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States.,Broad Institute, Cambridge, United States
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States.,Broad Institute, Cambridge, United States.,Howard Hughes Medical Institute, Harvard T.H. Chan School of Public Health, Boston, United States
| |
Collapse
|
77
|
Park WJ, Brenner O, Kogot-Levin A, Saada A, Merrill AH, Pewzner-Jung Y, Futerman AH. Development of pheochromocytoma in ceramide synthase 2 null mice. Endocr Relat Cancer 2015; 22:623-32. [PMID: 26113602 PMCID: PMC5586043 DOI: 10.1530/erc-15-0058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
Abstract
Pheochromocytoma (PCC) and paraganglioma are rare neuroendocrine tumors of the adrenal medulla and sympathetic and parasympathetic paraganglia, for which mutations in ∼15 disease-associated genes have been identified. We now document the role of an additional gene in mice, the ceramide synthase 2 (CerS2) gene. CerS2, one of six mammalian CerS, synthesizes ceramides with very-long (C22-C24) chains. The CerS2 null mouse has been well characterized and displays lesions in several organs including the liver, lung and the brain. We now demonstrate that changes in the sphingolipid acyl chain profile of the adrenal gland lead to the generation of adrenal medullary tumors. Histological analyses revealed that about half of the CerS2 null mice developed PCC by ∼13 months, and the rest showed signs of medullary hyperplasia. Norepinephrine and normetanephrine levels in the urine were elevated at 7 months of age consistent with the morphological abnormalities found at later ages. Accumulation of ceroid in the X-zone was observed as early as 2 months of age and as a consequence, older mice displayed elevated levels of lysosomal cathepsins, reduced proteasome activity and reduced activity of mitochondrial complex IV by 6 months of age. Together, these findings implicate an additional pathway that can lead to PCC formation, which involves alterations in the sphingolipid acyl chain length. Analysis of the role of sphingolipids in PCC may lead to further understanding of the mechanism by which PCC develops, and might implicate the sphingolipid pathway as a possible novel therapeutic target for this rare tumor.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biological ChemistryWeizmann Institute of Science, Rehovot 76100, IsraelDepartment of BiochemistrySchool of Medicine, Gachon University, Incheon 406-799, South KoreaDepartment of Veterinary ResourcesWeizmann Institute of Science, Rehovot 76100, IsraelMonique and Jacques Roboh Department of Genetic ResearchDepartment of Genetics and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, IsraelSchool of Biology and Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology, Atlanta, Georgia 30332-0230, USA Department of Biological ChemistryWeizmann Institute of Science, Rehovot 76100, IsraelDepartment of BiochemistrySchool of Medicine, Gachon University, Incheon 406-799, South KoreaDepartment of Veterinary ResourcesWeizmann Institute of Science, Rehovot 76100, IsraelMonique and Jacques Roboh Department of Genetic ResearchDepartment of Genetics and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, IsraelSchool of Biology and Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | - Ori Brenner
- Department of Biological ChemistryWeizmann Institute of Science, Rehovot 76100, IsraelDepartment of BiochemistrySchool of Medicine, Gachon University, Incheon 406-799, South KoreaDepartment of Veterinary ResourcesWeizmann Institute of Science, Rehovot 76100, IsraelMonique and Jacques Roboh Department of Genetic ResearchDepartment of Genetics and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, IsraelSchool of Biology and Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | - Aviram Kogot-Levin
- Department of Biological ChemistryWeizmann Institute of Science, Rehovot 76100, IsraelDepartment of BiochemistrySchool of Medicine, Gachon University, Incheon 406-799, South KoreaDepartment of Veterinary ResourcesWeizmann Institute of Science, Rehovot 76100, IsraelMonique and Jacques Roboh Department of Genetic ResearchDepartment of Genetics and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, IsraelSchool of Biology and Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology, Atlanta, Georgia 30332-0230, USA Department of Biological ChemistryWeizmann Institute of Science, Rehovot 76100, IsraelDepartment of BiochemistrySchool of Medicine, Gachon University, Incheon 406-799, South KoreaDepartment of Veterinary ResourcesWeizmann Institute of Science, Rehovot 76100, IsraelMonique and Jacques Roboh Department of Genetic ResearchDepartment of Genetics and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, IsraelSchool of Biology and Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | - Ann Saada
- Department of Biological ChemistryWeizmann Institute of Science, Rehovot 76100, IsraelDepartment of BiochemistrySchool of Medicine, Gachon University, Incheon 406-799, South KoreaDepartment of Veterinary ResourcesWeizmann Institute of Science, Rehovot 76100, IsraelMonique and Jacques Roboh Department of Genetic ResearchDepartment of Genetics and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, IsraelSchool of Biology and Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | - Alfred H Merrill
- Department of Biological ChemistryWeizmann Institute of Science, Rehovot 76100, IsraelDepartment of BiochemistrySchool of Medicine, Gachon University, Incheon 406-799, South KoreaDepartment of Veterinary ResourcesWeizmann Institute of Science, Rehovot 76100, IsraelMonique and Jacques Roboh Department of Genetic ResearchDepartment of Genetics and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, IsraelSchool of Biology and Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | - Yael Pewzner-Jung
- Department of Biological ChemistryWeizmann Institute of Science, Rehovot 76100, IsraelDepartment of BiochemistrySchool of Medicine, Gachon University, Incheon 406-799, South KoreaDepartment of Veterinary ResourcesWeizmann Institute of Science, Rehovot 76100, IsraelMonique and Jacques Roboh Department of Genetic ResearchDepartment of Genetics and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, IsraelSchool of Biology and Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | - Anthony H Futerman
- Department of Biological ChemistryWeizmann Institute of Science, Rehovot 76100, IsraelDepartment of BiochemistrySchool of Medicine, Gachon University, Incheon 406-799, South KoreaDepartment of Veterinary ResourcesWeizmann Institute of Science, Rehovot 76100, IsraelMonique and Jacques Roboh Department of Genetic ResearchDepartment of Genetics and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, IsraelSchool of Biology and Petit Institute for Bioengineering and BioscienceGeorgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| |
Collapse
|
78
|
Canela N, Herrero P, Mariné S, Nadal P, Ras MR, Rodríguez MÁ, Arola L. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis. J Chromatogr A 2015; 1428:16-38. [PMID: 26275862 DOI: 10.1016/j.chroma.2015.07.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR.
Collapse
Affiliation(s)
- Núria Canela
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pol Herrero
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Sílvia Mariné
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pedro Nadal
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Maria Rosa Ras
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | | | - Lluís Arola
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain.
| |
Collapse
|
79
|
Checa A, Xu N, Sar DG, Haeggström JZ, Ståhle M, Wheelock CE. Circulating levels of sphingosine-1-phosphate are elevated in severe, but not mild psoriasis and are unresponsive to anti-TNF-α treatment. Sci Rep 2015; 5:12017. [PMID: 26174087 PMCID: PMC4502512 DOI: 10.1038/srep12017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022] Open
Abstract
Sphingolipids are bioactive molecules with a putative role in inflammation. Alterations in sphingolipids, in particular ceramides, have been consistently observed in psoriatic skin. Herein, we quantified the circulating sphingolipid profile in individuals with mild or severe psoriasis as well as healthy controls. In addition, the effects of anti-TNF-α treatment were determined. Levels of sphingoid bases, including sphingosine-1-phosphate (S1P), increased in severe (P < 0.001; n = 32), but not in mild (n = 32), psoriasis relative to healthy controls (n = 32). These alterations were not reversed in severe patients (n = 16) after anti-TNF-α treatment despite significant improvement in psoriasis lesions. Circulating levels of sphingomyelins and ceramides shifted in a fatty acid chain length-dependent manner. These alterations were also observed in psoriasis skin lesions and were associated with changes in mRNA levels of ceramide synthases. The lack of S1P response to treatment may have pathobiological implications due to its close relation to the vascular and immune systems. In particular, increased levels of sphingolipids and especially S1P in severe psoriasis patients requiring biological treatment may potentially be associated with cardiovascular comorbidities. The fact that shifts in S1P levels were not ameliorated by anti-TNF-α treatment, despite improvements in the skin lesions, further supports targeting S1P receptors as therapy for severe psoriasis.
Collapse
Affiliation(s)
- Antonio Checa
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Ning Xu
- Dermatology Unit, Department of Medicine, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Daniel G Sar
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Mona Ståhle
- Dermatology Unit, Department of Medicine, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institutet, SE-17177, Stockholm, Sweden
| |
Collapse
|
80
|
Hepatic fatty acid uptake is regulated by the sphingolipid acyl chain length. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1754-66. [PMID: 25241943 DOI: 10.1016/j.bbalip.2014.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022]
Abstract
Ceramide synthase 2 (CerS2) null mice cannot synthesize very-long acyl chain (C22-C24) ceramides resulting in significant alterations in the acyl chain composition of sphingolipids. We now demonstrate that hepatic triacylglycerol (TG) levels are reduced in the liver but not in the adipose tissue or skeletal muscle of the CerS2 null mouse, both before and after feeding with a high fat diet (HFD), where no weight gain was observed and large hepatic nodules appeared. Uptake of both BODIPY-palmitate and [VH]-palmitate was also abrogated in the hepa- tocytes and liver. The role of a number of key proteins involved in fatty acid uptake was examined, including FATP5, CD36/FAT, FABPpm and cytoplasmic FABP1. Levels of FATP5 and FABP1 were decreased in the CerS2 null mouse liver, whereas CD36/FAT levels were significantly elevated and CD36/FAT was also mislocalized upon insulin treatment. Moreover, treatment of hepatocytes with C22-C24-ceramides down-regulated CD36/FAT levels. Infection of CerS2 null mice with recombinant adeno-associated virus (rAAV)-CerS2 restored normal TG levels and corrected the mislocalization of CD36/FAT, but had no effect on the intracellular localization or levels of FATP5 or FABP1. Together, these results demonstrate that hepatic fatty acid uptake via CD36/FAT can be regulated by altering the acyl chain composition of sphingolipids.
Collapse
|
81
|
Boutin M, Auray-Blais C. Metabolomic discovery of novel urinary galabiosylceramide analogs as Fabry disease biomarkers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:499-510. [PMID: 25582508 DOI: 10.1007/s13361-014-1060-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Fabry disease is an X-linked, complex, multisystemic lysosomal storage disorder presenting marked phenotypic and genotypic variability among affected male and female patients. Glycosphingolipids, mainly globotriaosylceramide (Gb(3)) isoforms/analogs, globotriaosylsphingosine (lyso-Gb(3)) and analogs, as well as galabiosylceramide (Ga(2)) isoforms/analogs accumulate in the vascular endothelium, nerves, cardiomyocytes, renal glomerular and tubular epithelial cells, and biological fluids. The search for biomarkers reflecting disease severity and progression is still on-going. A metabolomic study using quadrupole time-of-flight mass spectrometry has revealed 22 galabiosylceramide isoforms/analogs in urine of untreated Fabry patients classified in seven groups according to their chemical structure: (1) Saturated fatty acid; (2) one extra double bond; (3) two extra double bonds; (4) hydroxylated saturated fatty acid; (5) hydroxylated fatty acid and one extra double bond; (6) hydrated sphingosine and hydroxylated fatty acid; (7) methylated amide linkage. Relative quantification of both Ga(2) and Gb(3) isoforms/analogs was performed. All these biomarkers are significantly more abundant in urine samples from untreated Fabry males compared with healthy male controls. A significant amount of Ga(2) isoforms/analogs, accounting for 18% of all glycosphingolipids analyzed (Ga(2) + Gb(3) and respective isoforms/analogs), were present in urine of Fabry patients. Gb(3) isoforms containing saturated fatty acids are the most abundant (60.9%) compared with 26.3% for Ga(2). A comparison between Ga(2) isoforms/analogs and their Gb(3) counterparts also showed that the proportion of analogs with hydroxylated fatty acids is significantly greater for Ga(2) (35.8%) compared with Gb(3) (1.9%). These results suggest different biological pathways involved in the synthesis and/or degradation of Gb(3) and Ga(2) metabolites.
Collapse
Affiliation(s)
- Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Quebec, J1H 5N4, Canada
| | | |
Collapse
|
82
|
Aureli M, Grassi S, Prioni S, Sonnino S, Prinetti A. Lipid membrane domains in the brain. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1006-16. [PMID: 25677824 DOI: 10.1016/j.bbalip.2015.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/28/2022]
Abstract
The brain is characterized by the presence of cell types with very different functional specialization, but with the common trait of a very high complexity of structures originated by their plasma membranes. Brain cells bear evident membrane polarization with the creation of different morphological and functional subcompartments, whose formation, stabilization and function require a very high level of lateral order within the membrane. In other words, the membrane specialization of brain cells implies the presence of distinct membrane domains. The brain is the organ with the highest enrichment in lipids like cholesterol, glycosphingolipids, and the most recently discovered brain membrane lipid, phosphatidylglucoside, whose collective behavior strongly favors segregation within the membrane leading to the formation of lipid-driven membrane domains. Lipid-driven membrane domains function as dynamic platforms for signal transduction, protein processing, and membrane turnover. Essential events involved in the development and in the maintenance of the functional integrity of the brain depend on the organization of lipid-driven membrane domains, and alterations in lipid homeostasis, leading to deranged lipid-driven membrane organization, are common in several major brain diseases. In this review, we summarize the forces behind the formation of lipid membrane domains and their biological roles in different brain cells. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| |
Collapse
|
83
|
Gorden DL, Myers DS, Ivanova PT, Fahy E, Maurya MR, Gupta S, Min J, Spann NJ, McDonald JG, Kelly SL, Duan J, Sullards MC, Leiker TJ, Barkley RM, Quehenberger O, Armando AM, Milne SB, Mathews TP, Armstrong MD, Li C, Melvin WV, Clements RH, Washington MK, Mendonsa AM, Witztum JL, Guan Z, Glass CK, Murphy RC, Dennis EA, Merrill AH, Russell DW, Subramaniam S, Brown HA. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J Lipid Res 2015; 56:722-736. [PMID: 25598080 DOI: 10.1194/jlr.p056002] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis. Recognition and timely diagnosis of these different stages, particularly NASH, is important for both potential reversibility and limitation of complications. Liver biopsy remains the clinical standard for definitive diagnosis. Diagnostic tools minimizing the need for invasive procedures or that add information to histologic data are important in novel management strategies for the growing epidemic of NAFLD. We describe an "omics" approach to detecting a reproducible signature of lipid metabolites, aqueous intracellular metabolites, SNPs, and mRNA transcripts in a double-blinded study of patients with different stages of NAFLD that involves profiling liver biopsies, plasma, and urine samples. Using linear discriminant analysis, a panel of 20 plasma metabolites that includes glycerophospholipids, sphingolipids, sterols, and various aqueous small molecular weight components involved in cellular metabolic pathways, can be used to differentiate between NASH and steatosis. This identification of differential biomolecular signatures has the potential to improve clinical diagnosis and facilitate therapeutic intervention of NAFLD.
Collapse
Affiliation(s)
- D Lee Gorden
- Departments of Surgery, Vanderbilt University Medical Center, Nashville, TN; Cancer Biology, Vanderbilt University Medical Center, Nashville, TN
| | - David S Myers
- Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Eoin Fahy
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA
| | - Mano R Maurya
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA
| | - Shakti Gupta
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA
| | - Jun Min
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA
| | - Nathanael J Spann
- Departments of Cellular and Molecular Medicine and Medicine, University of California, San Diego, La Jolla, CA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Samuel L Kelly
- Schools of Biology, Chemistry, and Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Jingjing Duan
- Schools of Biology, Chemistry, and Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - M Cameron Sullards
- Schools of Biology, Chemistry, and Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Thomas J Leiker
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO
| | - Robert M Barkley
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO
| | - Oswald Quehenberger
- Departments of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA; Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Aaron M Armando
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Stephen B Milne
- Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Thomas P Mathews
- Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Chijun Li
- Department of Biochemistry, Duke University Medical Center, Durham, NC
| | - Willie V Melvin
- Departments of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Ronald H Clements
- Departments of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - M Kay Washington
- Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Joseph L Witztum
- Departments of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC
| | - Christopher K Glass
- Departments of Cellular and Molecular Medicine and Medicine, University of California, San Diego, La Jolla, CA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO
| | - Edward A Dennis
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA; Chemistry and Biochemistry, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Alfred H Merrill
- Schools of Biology, Chemistry, and Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - David W Russell
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shankar Subramaniam
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA; Chemistry and Biochemistry, School of Medicine, University of California, San Diego, La Jolla, CA.
| | - H Alex Brown
- Pharmacology, Vanderbilt University Medical Center, Nashville, TN; Biochemistry, and the Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
84
|
Checa A, Khademi M, Sar DG, Haeggström JZ, Lundberg JO, Piehl F, Olsson T, Wheelock CE. Hexosylceramides as intrathecal markers of worsening disability in multiple sclerosis. Mult Scler 2014; 21:1271-9. [PMID: 25480867 DOI: 10.1177/1352458514561908] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sphingolipids are important components of neurons and the myelin sheath whose levels are altered in multiple sclerosis (MS). OBJECTIVES We aimed to determine if cerebrospinal fluid (CSF) sphingolipids can be used as markers of MS disease progression. METHODS Using liquid chromatography tandem mass spectrometry, we analysed sphingolipids in CSF from 134 individuals. The MS group included 65 patients divided into 41 relapsing-remitting MS (RRMS) and 24 progressive MS (ProgMS). In addition, a group of 13 early MS/clinically isolated syndrome (EarlyMS) and two control groups consisting of 38 individuals with other neurological diseases (OND) and 18 OND with signs of inflammation (iOND) were analysed. A follow-up study included 17 additional RRMS patients sampled at two time points 4.7±1.7 years apart. RESULTS Levels of sphingomyelin (SM)- and hexosylceramide (HexCer)-derived sphingolipids increased in the CSF of patients with MS independently of the fatty acid chain length in RRMS (p<0.05). Levels of palmitic acid (16:0)-containing HexCer (HexCer16:0) increased significantly in ProgMS compared with the OND (p<0.001), iOND (p<0.05) and EarlyMS (p<0.01) groups and correlated with Expanded Disability Status Scale in RRMS in both studies (p=0.048; p=0.027). CONCLUSION HexCer16:0 is a promising candidate marker of disease progression in MS, especially in RRMS.
Collapse
Affiliation(s)
- Antonio Checa
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Daniel G Sar
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
85
|
Lahey R, Wang X, Carley AN, Lewandowski ED. Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation 2014; 130:1790-9. [PMID: 25266948 PMCID: PMC4229424 DOI: 10.1161/circulationaha.114.011687] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Intramyocardial triglyceride (TG) turnover is reduced in pressure-overloaded, failing hearts, limiting the availability of this rich source of long-chain fatty acids for mitochondrial β-oxidation and nuclear receptor activation. This study explored 2 major dietary fats, palmitate and oleate, in supporting endogenous TG dynamics and peroxisome proliferator-activated receptor-α activation in sham-operated (SHAM) and hypertrophied (transverse aortic constriction [TAC]) rat hearts. METHODS AND RESULTS Isolated SHAM and TAC hearts were provided media containing carbohydrate with either (13)C-palmitate or (13)C-oleate for dynamic (13)C nuclear magnetic resonance spectroscopy and end point liquid chromatography/mass spectrometry of TG dynamics. With palmitate, TAC hearts contained 48% less TG versus SHAM (P=0.0003), whereas oleate maintained elevated TG in TAC, similar to SHAM. TG turnover in TAC was greatly reduced with palmitate (TAC, 46.7±12.2 nmol/g dry weight per min; SHAM, 84.3±4.9; P=0.0212), as was β-oxidation of TG. Oleate elevated TG turnover in both TAC (140.4±11.2) and SHAM (143.9±15.6), restoring TG oxidation in TAC. Peroxisome proliferator-activated receptor-α target gene transcripts were reduced by 70% in TAC with palmitate, whereas oleate induced normal transcript levels. Additionally, mRNA levels for peroxisome proliferator-activated receptor-γ-coactivator-1α and peroxisome proliferator-activated receptor-γ-coactivator-1β in TAC hearts were maintained by oleate. With these metabolic effects, oleate also supported a 25% improvement in contractility over palmitate with TAC (P=0.0202). CONCLUSIONS The findings link reduced intracellular lipid storage dynamics to impaired peroxisome proliferator-activated receptor-α signaling and contractility in diseased hearts, consistent with a rate-dependent lipolytic activation of peroxisome proliferator-activated receptor-α. In decompensated hearts, oleate may serve as a beneficial energy substrate versus palmitate by upregulating TG dynamics and nuclear receptor signaling.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Hypertrophic/complications
- Cardiomyopathy, Hypertrophic/metabolism
- Cell Nucleus/metabolism
- Ceramides/analysis
- Citric Acid Cycle
- Dietary Fats/pharmacokinetics
- Dietary Fats/pharmacology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Heart Failure/diet therapy
- Heart Failure/etiology
- Heart Failure/metabolism
- Hypertrophy, Left Ventricular/complications
- Hypertrophy, Left Ventricular/metabolism
- Lipolysis
- Male
- Mitochondria, Heart/metabolism
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Oleic Acid/administration & dosage
- Oleic Acid/pharmacokinetics
- Oleic Acid/pharmacology
- Oxidation-Reduction
- PPAR alpha/physiology
- Palmitates/administration & dosage
- Palmitates/pharmacokinetics
- Palmitates/pharmacology
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Transcription, Genetic
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Ryan Lahey
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Xuerong Wang
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Andrew N Carley
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - E Douglas Lewandowski
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL.
| |
Collapse
|
86
|
Sims KH, Tytler EM, Tipton J, Hill KL, Burgess SW, Shaw WA. Avanti lipid tools: connecting lipids, technology, and cell biology. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1038-48. [PMID: 24954118 DOI: 10.1016/j.bbalip.2014.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/15/2022]
Abstract
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Kacee H Sims
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Ewan M Tytler
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - John Tipton
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Kasey L Hill
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Stephen W Burgess
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Walter A Shaw
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| |
Collapse
|
87
|
Jones EE, Dworski S, Canals D, Casas J, Fabrias G, Schoenling D, Levade T, Denlinger C, Hannun YA, Medin JA, Drake RR. On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem 2014; 86:8303-11. [PMID: 25072097 PMCID: PMC4139181 DOI: 10.1021/ac501937d] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
A novel MALDI-FTICR imaging mass
spectrometry (MALDI-IMS) workflow
is described for on-tissue detection, spatial localization, and structural
confirmation of low abundance bioactive ceramides and other sphingolipids.
Increasingly, altered or elevated levels of sphingolipids, sphingolipid
metabolites, and sphingolipid metabolizing enzymes have been associated
with a variety of disorders such as diabetes, obesity, lysosomal storage
disorders, and cancer. Ceramide, which serves as a metabolic hub in
sphingolipid metabolism, has been linked to cancer signaling pathways
and to metabolic regulation with involvement in autophagy, cell-cycle
arrest, senescence, and apoptosis. Using kidney tissues from a new
Farber disease mouse model in which ceramides of all acyl chain lengths
and other sphingolipid metabolites accumulate in tissues, specific
ceramides and sphingomyelins were identified by on-tissue isolation
and fragmentation, coupled with an on-tissue digestion by ceramidase
or sphingomyelinase. Multiple glycosphingolipid species were also
detected. The newly generated library of sphingolipid ions was then
applied to MALDI-IMS of human lung cancer tissues. Multiple tumor
specific ceramide and sphingomyelin species were detected and confirmed
by on-tissue enzyme digests and structural confirmation. High-resolution
MALDI-IMS in combination with novel on-tissue ceramidase and sphingomyelinase
enzyme digestions makes it now possible to rapidly visualize the distribution
of bioactive ceramides and sphingomyelin in tissues.
Collapse
Affiliation(s)
- E Ellen Jones
- Department of Cell and Molecular Pharmacology and MUSC Proteomics Center, Medical University of South Carolina , 173 Ashley Avenue, Charleston, South Carolina 29425, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Yamane D, McGivern DR, Wauthier E, Yi M, Madden VJ, Welsch C, Antes I, Wen Y, Chugh PE, McGee CE, Widman DG, Misumi I, Bandyopadhyay S, Kim S, Shimakami T, Oikawa T, Whitmire JK, Heise MT, Dittmer DP, Kao CC, Pitson SM, Merrill AH, Reid LM, Lemon SM. Regulation of the hepatitis C virus RNA replicase by endogenous lipid peroxidation. Nat Med 2014; 20:927-35. [PMID: 25064127 PMCID: PMC4126843 DOI: 10.1038/nm.3610] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 02/07/2023]
Abstract
Although oxidative tissue injury often accompanies viral infection, there is little understanding of how it influences virus replication. We show that multiple hepatitis C virus (HCV) genotypes are exquisitely sensitive to oxidative membrane damage, a property distinguishing them from other pathogenic RNA viruses. Lipid peroxidation, regulated in part through sphingosine kinase 2, severely restricts HCV replication in Huh-7 cells and primary human hepatoblasts. Endogenous oxidative membrane damage lowers the 50% effective concentration of direct-acting antivirals, suggesting critical regulation of the conformation of the NS3/4A protease and NS5B polymerase, membrane-bound HCV replicase components. Resistance to lipid peroxidation maps genetically to trans-membrane and membrane-proximal residues within these proteins, and is essential for robust replication in cell culture, as exemplified by the atypical JFH1 strain. Thus, the typical, wild-type HCV replicase is uniquely regulated by lipid peroxidation, providing a novel mechanism for attenuating replication in stressed tissue and possibly facilitating long-term viral persistence.
Collapse
Affiliation(s)
- Daisuke Yamane
- 1] Department of Medicine, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David R McGivern
- 1] Department of Medicine, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eliane Wauthier
- 1] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Victoria J Madden
- Department of Pathology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christoph Welsch
- Department of Internal Medicine I, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Iris Antes
- Center for Integrated Protein Science Munich (CIPSM), Department of Life Sciences, Technical University Munich, Freising, Germany
| | - Yahong Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Pauline E Chugh
- 1] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles E McGee
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Douglas G Widman
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ichiro Misumi
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sibali Bandyopadhyay
- 1] School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA. [2] Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Seungtaek Kim
- 1] Department of Medicine, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tetsuro Shimakami
- 1] Department of Medicine, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tsunekazu Oikawa
- 1] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason K Whitmire
- 1] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T Heise
- 1] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P Dittmer
- 1] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Stuart M Pitson
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Alfred H Merrill
- 1] School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA. [2] Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lola M Reid
- 1] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stanley M Lemon
- 1] Department of Medicine, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
89
|
Rožman M, Fabris D, Mrla T, Vukelić Ž. Database and data analysis application for structural characterization of gangliosides and sulfated glycosphingolipids by negative ion mass spectrometry. Carbohydr Res 2014; 400:1-8. [PMID: 25299937 DOI: 10.1016/j.carres.2014.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 01/12/2023]
Abstract
Gangliosides and sulfated glycosphingolipids, as building and functional components of animal cell membranes, participate in cell-to-cell interactions and signaling, but also in changes of cell architecture due to different pathophysiological events. In order to enable higher throughput and to facilitate structural characterization of gangliosides/sulfo-glycosphingolipids (GSL) and their neutral GSL counterparts by negative ion mass spectrometry (MS) and tandem MS techniques, a database and data analysis application have been developed. In silico developed glycosphingolipid database considers a high diversity of ceramide compositions, several sialic acid types (N-acetylneuraminic acid, N-glycolylneuraminic acid and 2-keto-3-deoxynononic acid) as well as possible additional substitutions/modifications of glycosphingolipids, such as O-acetylation, de-N-acetylation, fucosylation, glucuronosylation, sulfation, attachment of repeating terminal hexose-N-acetylhexosamine- (Hex-HexNAc-)1-6 extension, and possible lactone forms. Data analysis application, named GSL-finder, enables correlation of negative ion MS and/or low-energy tandem MS spectra with the database structures. The GSL-database construction and the GSL-finder application searching rules are explained. Validation conducted on GD1a fraction as well as on complex mixtures of native gangliosides isolated from different mammalian brain tissues (human fetal and adult brain, and calf brain tissue) demonstrated agreement with previous studies. Plain, fast, and automated routine for structural characterization of gangliosides/sulfated glycosphingolipids and their neutral GSL counterparts described here could facilitate and improve mass spectrometric analysis of complex glycosphingolipid mixtures originating from variety of normal and pathological biomaterial, where it is known that distinctive changes in glycosphingolipid composition occur.
Collapse
Affiliation(s)
- Marko Rožman
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Dragana Fabris
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | - Tomislav Mrla
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Željka Vukelić
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| |
Collapse
|
90
|
Torretta E, Vasso M, Fania C, Capitanio D, Bergante S, Piccoli M, Tettamanti G, Anastasia L, Gelfi C. Application of direct HPTLC-MALDI for the qualitative and quantitative profiling of neutral and acidic glycosphingolipids: The case of NEU3 overexpressing C2C12 murine myoblasts. Electrophoresis 2014; 35:1319-28. [DOI: 10.1002/elps.201300474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/22/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Michele Vasso
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR; Cefalù (Palermo) Segrate Milan Italy
| | - Chiara Fania
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Sonia Bergante
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Marco Piccoli
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Guido Tettamanti
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Luigi Anastasia
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR; Cefalù (Palermo) Segrate Milan Italy
| |
Collapse
|
91
|
Sandvig K, Bergan J, Kavaliauskiene S, Skotland T. Lipid requirements for entry of protein toxins into cells. Prog Lipid Res 2014; 54:1-13. [PMID: 24462587 DOI: 10.1016/j.plipres.2014.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
92
|
Kouzel IU, Pirkl A, Pohlentz G, Soltwisch J, Dreisewerd K, Karch H, Müthing J. Progress in Detection and Structural Characterization of Glycosphingolipids in Crude Lipid Extracts by Enzymatic Phospholipid Disintegration Combined with Thin-Layer Chromatography Immunodetection and IR-MALDI Mass Spectrometry. Anal Chem 2014; 86:1215-22. [DOI: 10.1021/ac4035696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ivan U. Kouzel
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Alexander Pirkl
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Jens Soltwisch
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| |
Collapse
|
93
|
Xu C, Pinto EC, Armstrong DW. Separation and sensitive determination of sphingolipids at low femtomole level by using HPLC-PIESI-MS/MS. Analyst 2014; 139:4169-75. [DOI: 10.1039/c4an00775a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive paired ion electrospray ionization mass spectrometry (PIESI-MS) approach was developed for the trace determination of sphingolipids.
Collapse
Affiliation(s)
- Chengdong Xu
- Department of Chemistry and Biochemistry
- University of Texas at Arlington
- Arlington, USA
| | - Eduardo Costa Pinto
- Department of Pharmaceutics
- Faculty of Pharmacy
- Federal University of Rio de Janeiro
- Rio de Janeiro, Brazil
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry
- University of Texas at Arlington
- Arlington, USA
| |
Collapse
|
94
|
Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A. Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol 2013; 50:130-48. [DOI: 10.1007/s12035-013-8614-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
|
95
|
Fischer R, Bowness P, Kessler BM. Two birds with one stone: doing metabolomics with your proteomics kit. Proteomics 2013; 13:3371-86. [PMID: 24155035 PMCID: PMC4265265 DOI: 10.1002/pmic.201300192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/13/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022]
Abstract
Proteomic research facilities and laboratories are facing increasing demands for the integration of biological data from multiple ‘-OMICS’ approaches. The aim to fully understand biological processes requires the integrated study of genomes, proteomes and metabolomes. While genomic and proteomic workflows are different, the study of the metabolome overlaps significantly with the latter, both in instrumentation and methodology. However, chemical diversity complicates an easy and direct access to the metabolome by mass spectrometry (MS). The present review provides an introduction into metabolomics workflows from the viewpoint of proteomic researchers. We compare the physicochemical properties of proteins and peptides with metabolites/small molecules to establish principle differences between these analyte classes based on human data. We highlight the implications this may have on sample preparation, separation, ionisation, detection and data analysis. We argue that a typical proteomic workflow (nLC-MS) can be exploited for the detection of a number of aliphatic and aromatic metabolites, including fatty acids, lipids, prostaglandins, di/tripeptides, steroids and vitamins, thereby providing a straightforward entry point for metabolomics-based studies. Limitations and requirements are discussed as well as extensions to the LC-MS workflow to expand the range of detectable molecular classes without investing in dedicated instrumentation such as GC-MS, CE-MS or NMR.
Collapse
Affiliation(s)
- Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
96
|
Park WJ, Park JW, Erez-Roman R, Kogot-Levin A, Bame JR, Tirosh B, Saada A, Merrill AH, Pewzner-Jung Y, Futerman AH. Protection of a ceramide synthase 2 null mouse from drug-induced liver injury: role of gap junction dysfunction and connexin 32 mislocalization. J Biol Chem 2013; 288:30904-16. [PMID: 24019516 PMCID: PMC3829405 DOI: 10.1074/jbc.m112.448852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/08/2013] [Indexed: 12/18/2022] Open
Abstract
Very long chain (C22-C24) ceramides are synthesized by ceramide synthase 2 (CerS2). A CerS2 null mouse displays hepatopathy because of depletion of C22-C24 ceramides, elevation of C16-ceramide, and/or elevation of sphinganine. Unexpectedly, CerS2 null mice were resistant to acetaminophen-induced hepatotoxicity. Although there were a number of biochemical changes in the liver, such as increased levels of glutathione and multiple drug-resistant protein 4, these effects are unlikely to account for the lack of acetaminophen toxicity. A number of other hepatotoxic agents, such as d-galactosamine, CCl4, and thioacetamide, were also ineffective in inducing liver damage. All of these drugs and chemicals require connexin (Cx) 32, a key gap junction protein, to induce hepatotoxicity. Cx32 was mislocalized to an intracellular location in hepatocytes from CerS2 null mice, which resulted in accelerated rates of its lysosomal degradation. This mislocalization resulted from the altered membrane properties of the CerS2 null mice, which was exemplified by the disruption of detergent-resistant membranes. The lack of acetaminophen toxicity and Cx32 mislocalization were reversed upon infection with recombinant adeno-associated virus expressing CerS2. We establish that Gap junction function is compromised upon altering the sphingolipid acyl chain length composition, which is of relevance for understanding the regulation of drug-induced liver injury.
Collapse
Affiliation(s)
- Woo-Jae Park
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- the Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-799, South Korea
| | - Joo-Won Park
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- the Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Racheli Erez-Roman
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aviram Kogot-Levin
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- the Monique and Jacques Roboh Department of Genetic Research, Department of Genetics and Metabolic Diseases, Hadassah, and Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jessica R. Bame
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Boaz Tirosh
- the Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel, and
| | - Ann Saada
- the Monique and Jacques Roboh Department of Genetic Research, Department of Genetics and Metabolic Diseases, Hadassah, and Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Alfred H. Merrill
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Yael Pewzner-Jung
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H. Futerman
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
97
|
Lee H, German JB, Kjelden R, Lebrilla CB, Barile D. Quantitative analysis of gangliosides in bovine milk and colostrum-based dairy products by ultrahigh performance liquid chromatography-tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9689-9696. [PMID: 24024650 DOI: 10.1021/jf402255g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Milk gangliosides have gained considerable attention because they participate in diverse biological processes, including neural development, pathogen binding, and activation of the immune system. Herein, we present a quantitative measurement of the gangliosides present in bovine milk and other dairy products and byproducts. Ultrahigh performance liquid chromatography separation was used for high-throughput analysis and achieved a short running time without sacrificing chromatographic resolution. Dynamic multiple reaction monitoring was conducted for 12 transitions for GM3 and 12 transitions for GD3. Transitions to sialic acid fragments (m/z 290.1) were chosen for the quantitation. There was a considerable amount of gangliosides in day 2 milk (GM3, 0.98 mg/L; GD3, 15.2 mg/L) which dramatically decreased at day 15 and day 90. GM3 and GD3 were also analyzed in pooled colostrum, colostrum cream, colostrum butter, and colostrum buttermilk. The separation and analytical approaches here proposed could be integrated into the dairy industry processing adding value to side-streams.
Collapse
Affiliation(s)
- Hyeyoung Lee
- Department of Food Science and Technology, ‡Department of Chemistry, and §Foods for Health Institute, University of California-Davis , Davis, California 95616, United States
| | | | | | | | | |
Collapse
|
98
|
Farfel-Becker T, Vitner EB, Kelly SL, Bame JR, Duan J, Shinder V, Merrill AH, Dobrenis K, Futerman AH. Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Hum Mol Genet 2013; 23:843-54. [PMID: 24064337 DOI: 10.1093/hmg/ddt468] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gaucher disease has recently received wide attention due to the unexpected discovery that it is a genetic risk factor for Parkinson's disease. Gaucher disease is caused by the defective activity of the lysosomal enzyme, glucocerebrosidase (GCase; GBA1), resulting in intracellular accumulation of the glycosphingolipids, glucosylceramide and psychosine. The rare neuronopathic forms of GD (nGD) are characterized by profound neurological impairment and neuronal cell death. We have previously described the progression of neuropathological changes in a mouse model of nGD. We now examine the relationship between glycosphingolipid accumulation and initiation of pathology at two pre-symptomatic stages of the disease in four different brain areas which display differential degrees of susceptibility to GCase deficiency. Liquid chromatography electrospray ionization tandem mass spectrometry demonstrated glucosylceramide and psychosine accumulation in nGD brains prior to the appearance of neuroinflammation, although only glucosylceramide accumulation correlated with neuroinflammation and neuron loss. Levels of other sphingolipids, including the pro-apoptotic lipid, ceramide, were mostly unaltered. Transmission electron microscopy revealed that glucosylceramide accumulation occurs in neurons, mostly in the form of membrane-delimited pseudo-tubules located near the nucleus. Highly disrupted glucosylceramide-storing cells, which are likely degenerating neurons containing massive inclusions, numerous autophagosomes and unique ultrastructural features, were also observed. Together, our results indicate that a certain level of neuronal glucosylceramide storage is required to trigger neuropathological changes in affected brain areas, while other brain areas containing similar glucosylceramide levels are unaltered, presumably because of intrinsic differences in neuronal properties, or in the neuronal environment, between various brain regions.
Collapse
|
99
|
Manwaring V, Boutin M, Auray-Blais C. A metabolomic study to identify new globotriaosylceramide-related biomarkers in the plasma of Fabry disease patients. Anal Chem 2013; 85:9039-48. [PMID: 23968398 DOI: 10.1021/ac401542k] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of the enzyme α-galactosidase A, which results in the progressive accumulation of glycosphingolipids. In addition to the two biomarkers, globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3), which are routinely used for detection and high-risk screening of Fabry disease patients, novel urinary Gb3-related isoforms/analogues as well as newly defined lyso-Gb3 analogues in plasma and urine from Fabry patients have recently been described by our group. The aim of this study was to extend our recent analyses to identify and evaluate new potential Gb3-related biomarkers in the plasma of untreated male Fabry disease patients using a mass spectrometry metabolomic approach. A multivariate statistical analysis revealed five Gb3-related novel biomarkers in the plasma of male Fabry patients. Three of these new biomarkers correspond to Gb3, which has an extra double bond on the sphingosine with C16:0, C18:0, and C22:1 fatty acid chains. The fourth biomarker corresponds to a mixture of two structural isomers, the first with a d16:1 sphingosine and a C16:0 fatty acid and the second with a d18:1 sphingosine and a C14:0 fatty acid. To our knowledge, it is the first time that a Gb3 analogue with a d16:1 sphingosine moiety has been reported. In addition, this Gb3 analogue was also present in its methylated form. These biomarkers are part of a metabolic profile that may provide insight into the pathophysiology of Fabry disease.
Collapse
Affiliation(s)
- Victoria Manwaring
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke , 3001, 12th Avenue North, Sherbrooke , Quebec, Canada J1H 5N4
| | | | | |
Collapse
|
100
|
Robciuc A, Hyötyläinen T, Jauhiainen M, Holopainen JM. Ceramides in the pathophysiology of the anterior segment of the eye. Curr Eye Res 2013; 38:1006-16. [PMID: 23885886 DOI: 10.3109/02713683.2013.810273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Sphingolipid (SL) research reached a peak in the past years. Yet this positive trend was not evident for eye research as the relative number of studies centered on SLs is decreasing. Our aim is to encourage the inclusion of SL metabolites in studies of ocular pathophysiology by summarizing recent findings and current awareness concerning ceramides in the anterior segment of the eye. METHODS Review of literature relating to ceramides as bioactive lipids and the extent to which their particular nature was investigated in ocular pathophysiology. RESULTS Ceramides are rare but indispensable lipids that influence cellular responses through their effects on membrane biophysical properties or direct interaction with target proteins. Their biological significance is increased by variability and adaptability as there are tens of enzymes designed to modulate their function. The eye offers a set of unique environments where ceramides or other SLs have not been extensively studied. Not surprisingly, ceramides were associated with apoptosis in the metabolically active tissues, while little is known about its effects on the biophysical properties of the tears or lens lipids. More so, there are still aspects of the ocular homeostasis control where SLs contribution has not been investigated to date (e.g. pathogen aggression). CONCLUSIONS Ceramides and SL metabolism still receive increasing attention and have proven to be a significant metabolite in many research fields (e.g. cancer, stress response and inflammation) and there are yet many questions that they will aid answer. With the present work, we seek to increase awareness of these lipids also in eye research and to highlight their importance as common regulators of various diseases.
Collapse
Affiliation(s)
- Alexandra Robciuc
- Department of Ophthalmology, University of Helsinki, Helsinki Eye Lab, Helsinki, Finland
| | | | | | | |
Collapse
|