51
|
Blaise SA, Alberto JM, Audonnet-Blaise S, Guéant JL, Daval JL. Influence of preconditioning-like hypoxia on the liver of developing methyl-deficient rats. Am J Physiol Endocrinol Metab 2007; 293:E1492-502. [PMID: 17726145 DOI: 10.1152/ajpendo.00255.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deficiency in nutritional determinants of homocysteine (HCY) metabolism, such as vitamin B(12) and folate, during pregnancy is known to influence HCY levels in the progeny, which in turn may exert adverse effects during development, including liver defects. Since short hypoxia has been shown to induce tolerance to subsequent stress in various cells including hepatocytes, and as vitamins B deficiency and hypoxic episodes may simultaneously occur in neonates, we aimed to investigate the influence of brief postnatal hypoxia (100% N(2) for 5 min) on the liver of rat pups born from dams fed a deficient regimen, i.e., depleted in vitamins B(12), B(2), folate, and choline. Four experimental groups were studied: control, hypoxia, deficiency, and hypoxia + deficiency. Although hypoxia transiently stimulated HCY catabolic pathways, it was associated with a progressive increase of hyperhomocysteinemia in deficient pups, with a fall of cystathionine beta-synthase activity at 21 days. At this stage, inducible NO synthase activity was dramatically increased and glutathione reductase decreased, specifically in the group combining hypoxia and deficiency. Also, hypoxia enhanced the deficiency-induced drop of the S-adenosylmethionine/S-adenosylhomocysteine ratio. In parallel, early exposure to the methyl-deficient regimen induced oxidative stress and led to hepatic steatosis, which was found to be more severe in pups additionally exposed to hypoxia. In conclusion, brief neonatal hypoxia may accentuate the long-term adverse effects of impaired HCY metabolism in the liver resulting from an inadequate nutritional regimen during pregnancy, and our data emphasize the importance of early factors on adult disease.
Collapse
Affiliation(s)
- Sébastien A Blaise
- INSERM U724, Faculté de Médecine, 9 Ave. de la Forêt de Haye, BP 184, F-54500 Vandoeuvre-lès-Nancy, France
| | | | | | | | | |
Collapse
|
52
|
Lanci MP, Smirnov VV, Cramer CJ, Gauchenova EV, Sundermeyer J, Roth JP. Isotopic probing of molecular oxygen activation at copper(I) sites. J Am Chem Soc 2007; 129:14697-709. [PMID: 17960903 DOI: 10.1021/ja074620c] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper-dioxygen (CuO2) adducts are frequently proposed as intermediates in enzymes, yet their electronic and vibrational structures have not always been understood. [Cu(eta1-O2)TMG3tren]+ (TMG3tren = 1,1,1-tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine) features end-on (eta1) O2 coordination in the solid state. Described here is an investigation of the compound's solution properties by nuclear magnetic resonance spectroscopy, density functional calculations, and oxygen isotope effects. The study yields two major findings. First, [Cu(eta1-O2)TMG3tren]+ is paramagnetic due to a triplet electronic structure; this is in contrast to other copper compounds where O2 is bound in a side-on manner. Second, the oxygen equilibrium isotope effect upon O2 binding to copper(I) (18O EIE [triple bond] K(16O16O)/K(16O18O) = 1.0148 +/- 0.0012) is significantly larger than those determined for iron and cobalt eta1-O2 adducts. This result is suggested to reflect greater ionic (CuII-O2-I) character within the valence bond description. A revised interpretation of the physical origins of the 18O EIEs upon O2 binding to redox metals is also advanced along with experimental data that should be used as benchmarks for interpreting 18O kinetic isotope effects upon enzyme reactions.
Collapse
Affiliation(s)
- Michael P Lanci
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
53
|
Chung JH, Choi SY, Kim JY, Kim DH, Lee JW, Choi JS, Chung HY. 3-methyl-1,2-cyclopentanedione down-regulates age-related NF-kappaB signaling cascade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6787-92. [PMID: 17629301 DOI: 10.1021/jf070952p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Activation of the redox-sensitive transcription factor, nuclear factor-kappa B (NF-kappaB), plays a central role in inflammation and aging processes by inducing pro-inflammatory genes. The present study was designed to unravel the molecular mechanisms underlying the anti-inflammation effects of 3-methyl-1,2-cyclopentanedione (3-MCP) in coffee extracts. In particular, we investigated the effects of 3-MCP on the modulation of NF-kappaB signaling pathways and its target genes in the kidneys of aged animal rats: young (6 months old), old (21 months old), and old 3-MCP-fed (4 and 8 mg/kg/day for 10 days). The results strongly show that 3-MCP exerted potent anti-inflammatory effects, significantly reducing (i) the phosphorylation of inhibitor kappaB (IkappaB) and other NF-kappaB upstream events; (ii) the translocation of NF-kappaB into the nucleus; (iii) the expression of iNOS and COX-2; and (iv) pro-inflammatory genes such as VCAM-1, MCP-1, and IL-6. Furthermore, 3-MCP suppressed reactive oxygen species levels. Taken together, our results clearly demonstrate that 3-MCP modulated the age-related NF-kappaB signaling cascade and its pro-inflammatory genes. Therefore, 3-MCP is proposed to be an effective anti-inflammatory agent that can be a novel approach for the therapy of inflammation.
Collapse
Affiliation(s)
- Jae Heun Chung
- College of Pharmacy, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | |
Collapse
|
54
|
Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem 2007; 18:357-71. [PMID: 17156994 DOI: 10.1016/j.jnutbio.2006.10.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/05/2006] [Accepted: 10/04/2006] [Indexed: 02/07/2023]
Abstract
Interest in the relationship between inflammation and oxidative stress has increased dramatically in recent years, not only within the clinical setting but also in the fields of exercise biochemistry and immunology. Inflammation and oxidative stress share a common role in the etiology of a variety of chronic diseases. During exercise, inflammation and oxidative stress are linked via muscle metabolism and muscle damage. Because oxidative stress and inflammation have traditionally been associated with fatigue and impaired recovery from exercise, research has focused on nutritional strategies aimed at reducing these effects. In this review, we have evaluated the findings of studies involving antioxidant supplementation on alterations in markers of inflammation (e.g., cytokines, C-reactive protein and cortisol). This review focuses predominantly on the role of reactive oxygen and nitrogen species generated from muscle metabolism and muscle damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, we have analyzed the influence of factors such as the dose, timing, supplementation period and bioavailability of antioxidant nutrients.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Human Movement Studies, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
55
|
Abstract
Monomers are released from dental resin materials, and thus cause adverse biological effects in mammalian cells. Cytotoxicity and genotoxicity of some of these methacrylates have been identified in a vast number of investigations during the last decade. It has been well-established that the co-monomer triethylene glycol dimethacrylate (TEGDMA) causes gene mutations in vitro. The formation of micronuclei is indicative of chromosomal damage and the induction of DNA strand breaks detected with monomers like TEGDMA and 2-hydroxyethyl methacrylate (HEMA). As a consequence of DNA damage, the mammalian cell cycle was delayed in both G1 and G2/M phases, depending on the concentrations of the monomers. Yet, the mechanisms underlying the genetic and cellular toxicology of resin monomers have remained obscure until recently. New findings indicate that increased oxidative stress results in an impairment of the cellular pro- and anti-oxidant redox balance caused by monomers. It has been demonstrated that monomers reduced the levels of the natural radical scavenger glutathione (GSH), which protects cell structures from damage caused by reactive oxygen species (ROS). Depletion of the intracellular GSH pool may then significantly contribute to cytotoxicity, because a related increase in ROS levels can activate pathways leading to apoptosis. Complementary, cytotoxic, and genotoxic effects of TEGDMA and HEMA are inhibited in the presence of ROS scavengers like N-acetylcysteine (NAC), ascorbate, and Trolox (vitamin E). Elevated intracellular levels of ROS can also activate a complex network of redox-responsive macromolecules, including redox-sensitive transcription factors like nuclear factor kappaB (NF-kappaB). It has been shown that NF-kappaB is activated probably to counteract HEMA-induced apoptosis. The induction of apoptosis by TEGDMA in human pulp cells has been associated with an inhibition of the phosphatidylinositol 3-kinase (PI3-K) cell-survival signaling pathway. Although the details of the mechanisms leading to cell death, genotoxicity, and cell-cycle delay are not completely understood, resin monomers may be able to alter the functions of the cells of the oral cavity. Pathways regulating cellular homeostasis, dentinogenesis, or tissue repair may be modified by monomers at concentrations well below those which cause acute cytotoxicity.
Collapse
Affiliation(s)
- H Schweikl
- Department of Operative Dentistry and Periodontology, University of Regensburg, D-93042 Regensburg, Germany.
| | | | | |
Collapse
|
56
|
McCarty MF, Block KI. Preadministration of high-dose salicylates, suppressors of NF-kappaB activation, may increase the chemosensitivity of many cancers: an example of proapoptotic signal modulation therapy. Integr Cancer Ther 2006; 5:252-68. [PMID: 16880431 DOI: 10.1177/1534735406291499] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NF-kappaB activity is elevated in a high proportion of cancers, particularly advanced cancers that have been treated previously. Cytotoxic treatment selects for such up-regulation inasmuch as NF-kappaB promotes transcription of a large number of proteins that inhibit both the intrinsic and extrinsic pathways of apoptosis; NF-kappaB also boosts expression of mdr1, which expels many drugs from cells. Indeed, high NF-kappaB activity appears to be largely responsible for the chemo- and radioresistance of many cancers. Thus, agents that suppress NF-kappaB activity should be useful as adjuvants to cytotoxic cancer therapy. Of the compounds that are known to be NF-kappaB antagonists, the most practical for current use may be the nonsteroidal anti-inflammatory drugs aspirin, salicylic acid, and sulindac, each of which binds to and inhibits Ikappa kinase- beta, a central mediator of NF-kappa activation; the low millimolar plasma concentrations of salicylate required for effective inhibition of this kinase in vivo can be achieved with high-dose regimens traditionally used to manage rheumatic disorders. The gastrointestinal toxicity of such regimens could be minimized by using salsalate or enteric-coated sodium salicy-late or by administering misoprostol in conjunction with aspirin therapy. Presumably, best results would be seen if these agents were administered for several days prior to a course of chemo- or radiotherapy, continuing throughout the course. This concept should first be tested in nude mice bearing xenografts of chemoresistant human tumors known to have elevated NF-kappa activity. Ultimately, more complex adjuvant regimens can be envisioned in which salicylates are used in conjunction with other NF-kappa antagonists and/or agents that target other mediators of down-regulated apoptosis in cancer, such as Stat3; coadministration of salicylate and organic selenium may have intriguing potential in this regard. These strategies may also have potential as adjuvants to metronomic chemotherapy, which seeks to suppress angio-genesis by targeting cycling endothelial cells in tumors.
Collapse
Affiliation(s)
- Mark F McCarty
- Block Center for Integrative Cancer Care, Evanston, Illinois 60201, USA
| | | |
Collapse
|
57
|
Magalang UJ, Rajappan R, Hunter MG, Kutala VK, Kuppusamy P, Wewers MD, Marsh CB, Parinandi NL. Adiponectin inhibits superoxide generation by human neutrophils. Antioxid Redox Signal 2006; 8:2179-86. [PMID: 17034361 DOI: 10.1089/ars.2006.8.2179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adiponectin (Ad), a member of the adipocytokine family, has been reported to possess antiinflammatory properties. We investigated the effects of full-length human Ad (hAd) on phorbol 12-myristate 13-acetate (PMA)-induced O2-* generation by human neutrophils. hAd, even at the lowest tested concentration of 0.001 microg/ml, after 30-min pretreatment of cells, significantly inhibited O2-* generation by neutrophils stimulated with PMA (100 nM). However, no relation between the dose of hAd and extent of inhibition of PMA-induced O2-* generation was observed with increasing the concentration of hAd up to 1 microg/ml. hAd also significantly inhibited neutrophil O2-* generation stimulated by N-formyl-methionyl-leucyl-phenylalanine (100 microM) and diacylglycerol (500 nM), as well as the PMA-induced neutrophil nitroblue tetrazolium reduction and H2O2 formation. Pretreatment of neutrophils with pronase-digested hAd failed to inhibit the PMA-induced O2-* generation. For the first time, this study revealed that Ad inhibited O2-* generation by neutrophils, possibly through regulation of NADPH oxidase.
Collapse
|
58
|
Aller MA, Arias JL, Arias JI, Sánchez-Patán F, Arias J. The inflammatory response recapitulates phylogeny through trophic mechanisms to the injured tissue. Med Hypotheses 2006; 68:202-9. [PMID: 16963191 DOI: 10.1016/j.mehy.2006.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/16/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
The post-traumatic local acute inflammatory response is described as a succession of three functional phases of possible trophic significance: 1. Nervous or immediate (ischemia-reperfusion); 2. Immune or intermediate (infiltration by inflammatory and bacterial cells) and 3. Endocrine or late (angiogenesis with regeneration and/or cicatrization). Each of these phases emphasizes the trophic role of the mechanisms in the damaged tissue. Hence, the nervous phase is predominated by nutrition by diffusion; in the immune phase trophism is mediated by inflammatory cells and bacteria and, finally, in the endocrine phase, the blood circulation and oxidative metabolism play the most significant nutritive role. Since these trophic mechanisms are of increasing complexity, progressing from anoxia to total specialization in the use of oxygen to obtain usable energy, it could be speculated that they represent the successive reappearance of the stages that take place during the evolution of life on Earth, from ancient times without oxygen. In this sense, the inflammatory response could recapitulate phylogeny through the successive expression of pathophysiologic mechanisms that have a trophic meaning to the injured tissue.
Collapse
Affiliation(s)
- M A Aller
- Surgery Department, School of Medicine, Complutense University of Madrid, Spain
| | | | | | | | | |
Collapse
|
59
|
Brookes PS, Freeman RS, Barone MC. A shortcut to mitochondrial signaling and pathology: a commentary on "Nonenzymatic formation of succinate in mitochondria under oxidative stress". Free Radic Biol Med 2006; 41:41-5. [PMID: 16781451 DOI: 10.1016/j.freeradbiomed.2006.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 03/22/2006] [Indexed: 01/06/2023]
Affiliation(s)
- Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Box 604, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
60
|
Henschke P, Vorum H, Honoré B, Rice GE. Protein profiling the effects of in vitro hyperoxic exposure on fetal rabbit lung. Proteomics 2006; 6:1957-62. [PMID: 16447161 DOI: 10.1002/pmic.200500245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to test the hypothesis that acute in vitro exposure of prematurely delivered fetal rabbit lungs to hyperoxic conditions will induce the expression of an adaptive cassette of proteins that mediates antioxidant and inflammatory processes. To test this hypothesis, ex situ fetal rabbit lung explants were prepared from New Zealand white rabbits delivered by cesarean section on day 29 of gestation and incubated under air (21% O2; 5% CO2) or hyperoxic (95% O2; 5% CO2) atmospheres. Total tissue protein was extracted following incubation and subjected to 2-DE. Using this technique, 1500-2000 protein spots were resolved per gel. Treatment-dependent, differentially expressed proteins were identified by image analysis (Melanie II) and MALDI-TOF MS and MALDI-MS/MS. The analysis identified 12 protein spots that were differentially expressed by 1.5-fold or more (p<0.05) by exposure to hyperoxic conditions. Six of these differentially expressed proteins were identified as vimentin, annexin I, inorganic pyrophosphatase, prohibitin, an N-terminal fragment of ATP synthase and heat shock protein 27. The data obtained are consistent with the roles of these proteins in mediating cellular response to oxidative stress and in regulating cell proliferation.
Collapse
Affiliation(s)
- Phillip Henschke
- Department of Neonatology, The Royal Women's Hospital, Melbourne, Australia
| | | | | | | |
Collapse
|
61
|
Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 2006; 72:1493-505. [PMID: 16723122 DOI: 10.1016/j.bcp.2006.04.011] [Citation(s) in RCA: 1181] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/05/2006] [Accepted: 04/07/2006] [Indexed: 02/06/2023]
Abstract
The transcription factor NF-kappaB plays a major role in coordinating innate and adaptative immunity, cellular proliferation, apoptosis and development. Since the discovery in 1991 that NF-kappaB may be activated by H(2)O(2), several laboratories have put a considerable effort into dissecting the molecular mechanisms underlying this activation. Whereas early studies revealed an atypical mechanism of activation, leading to IkappaBalpha Y42 phosphorylation independently of IkappaB kinase (IKK), recent findings suggest that H(2)O(2) activates NF-kappaB mainly through the classical IKK-dependent pathway. The molecular mechanisms leading to IKK activation are, however, cell-type specific and will be presented here. In this review, we also describe the effect of other ROS (HOCl and (1)O(2)) and reactive nitrogen species on NF-kappaB activation. Finally, we critically review the recent data highlighting the role of ROS in NF-kappaB activation by proinflammatory cytokines (TNF-alpha and IL-1beta) and lipopolysaccharide (LPS), two major components of innate immunity.
Collapse
Affiliation(s)
- Geoffrey Gloire
- Center for Biomedical Integrated Genoproteomics (CBIG), Virology and Immunology Unit, University of Liège, 4000 Liège, Belgium
| | | | | |
Collapse
|
62
|
Ding Y, Hawkes N, Meredith J, Eggleston P, Hemingway J, Ranson H. Characterization of the promoters of Epsilon glutathione transferases in the mosquito Anopheles gambiae and their response to oxidative stress. Biochem J 2006; 387:879-88. [PMID: 15631620 PMCID: PMC1135021 DOI: 10.1042/bj20041850] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epsilon class GSTs (glutathione transferases) are expressed at higher levels in Anopheles gambiae mosquitoes that are resistant to DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] than in insecticide-susceptible individuals. At least one of the eight Epsilon GSTs in this species, GSTe2, efficiently metabolizes DDT to DDE [1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane]. In the present study, we investigated the factors regulating expression of this class of GSTs. The activity of the promoter regions of GSTe2 and GSTe3 were compared between resistant and susceptible strains by transfecting recombinant reporter constructs into an A. gambiae cell line. The GSTe2 promoter from the resistant strain exhibited 2.8-fold higher activity than that of the susceptible strain. Six polymorphic sites were identified in the 352 bp sequence immediately upstream of GSTe2. Among these, a 2 bp adenosine indel (insertion/deletion) was found to have the greatest effect on determining promoter activity. The activity of the GSTe3 promoter was elevated to a lesser degree in the DDT-resistant strain (1.3-fold). The role of putative transcription-factor-binding sites in controlling promoter activity was investigated by sequentially deleting the promoter constructs. Several putative transcription-factor-binding sites that are responsive to oxidative stress were present within the core promoters of these GSTs, hence the effect of H2O2 exposure on the transcription of the Epsilon GSTs was investigated. In the DDT-resistant strain, expression of GSTe1, GSTe2 and GSTe3 was significantly increased by a 1-h exposure to H2O2, whereas, in the susceptible strain, only GSTe3 expression responded to this treatment.
Collapse
Affiliation(s)
- Yunchuan Ding
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Nicola Hawkes
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Janet Meredith
- †Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, U.K
| | - Paul Eggleston
- †Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, U.K
| | - Janet Hemingway
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Hilary Ranson
- *Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
63
|
Katavetin P, Miyata T, Inagi R, Tanaka T, Sassa R, Ingelfinger JR, Fujita T, Nangaku M. High Glucose Blunts Vascular Endothelial Growth Factor Response to Hypoxiaviathe Oxidative Stress-Regulated Hypoxia-Inducible Factor/Hypoxia-Responsible Element Pathway. J Am Soc Nephrol 2006; 17:1405-13. [PMID: 16597689 DOI: 10.1681/asn.2005090918] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an important survival factor for endothelial cells in hypoxic environments. High glucose regulates certain aspects of VEGF expression in various cell types, including proximal tubular cells. Thus, ambient glucose levels may modulate the progression of chronic kidney disease, especially diabetic nephropathy. Immortalized rat proximal tubular cells (IRPTC) were cultured for 24 h under hypoxic conditions (1% O(2)), with or without high d-glucose (25 mM), or with or without high l-glucose (25 mM). Controls included culture in normoxic conditions and normal d-glucose (5.5 mM). VEGF mRNA expression was assessed by real-time quantitative PCR, and VEGF protein in the supernatant was assessed by ELISA. Hypoxia increased VEGF expression. This response was significantly blunted by high d-glucose (1.98 +/- 0.11- versus 2.65 +/- 0.27-fold increase for VEGF mRNA expression, 252.8 +/- 14.7 versus 324.0 +/- 11.5 pg/10(5) cells for VEGF protein; P < 0.05 both) but not by high l-glucose. It is interesting that hydrogen peroxide also blunted this response, whereas alpha-tocopherol restored the VEGF response to hypoxia in the presence of high d-glucose. For determination of involvement of the hypoxia-inducible factor (HIF)/hypoxia-responsible element (HRE) pathway, IRPTC that were stably transfected with HRE-luciferase were cultured under the previous conditions. High d-glucose also reduced luciferase activity under hypoxia, whereas alpha-tocopherol restored activity. In vivo experiments using streptozotocin-induced diabetic rats confirmed that hyperglycemia blunted HIF-HRE pathway activation. Insulin treatment restored activation of the HIF-HRE pathway in streptozotocin-induced diabetic rats. In conclusion, high glucose blunts VEGF response to hypoxia in IRPTC. This effect is mediated by the oxidative stress-regulated HIF-HRE pathway.
Collapse
Affiliation(s)
- Pisut Katavetin
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Kim SK, Abdelmegeed MA, Novak RF. The mitogen-activated protein kinase kinase (mek) inhibitor PD98059 elevates primary cultured rat hepatocyte glutathione levels independent of inhibiting mek. Drug Metab Dispos 2006; 34:683-9. [PMID: 16443668 DOI: 10.1124/dmd.105.007666] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antioxidant activity of flavonoids, directly through scavenging oxidizing species and indirectly through modulating drug-metabolizing enzyme activities, is associated with chemopreventive and chemotherapeutic effects. However, little published information is available concerning the effect of flavonoids on glutathione (GSH) homeostasis. We previously demonstrated that PD98059 (2'-amino-3'-methoxyflavone), a flavone derivative and selective mitogen-activated protein kinase kinase (MEK) 1 inhibitor, enhanced the insulin-mediated increase in GSH levels. To determine whether the PD98059-mediated increase in GSH levels was associated with MEK inhibition, primary cultured rat hepatocytes were treated with PD98059, the MEK inhibitor U0126, which is not a flavone derivative, or flavone. PD98059 increased GSH levels in a concentration-dependent manner in hepatocytes cultured in the presence or absence of insulin. In contrast, GSH levels were not affected by U0126 at concentrations sufficient to inhibit insulin-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Flavone, however, markedly increased GSH levels without inhibition of ERK1/2 phosphorylation. The concentration of GSH in the culture medium was also elevated by PD98059 or flavone, suggesting that the cellular GSH elevation could not be accounted for by the inhibition of GSH efflux into medium. Interestingly, PD98059 and flavone increased cellular cysteine levels, which may be responsible for the PD98059- and flavone-mediated elevation of GSH levels. These results provide evidence that PD98059 and flavone produce dramatic changes in GSH homeostasis in hepatocytes, through a mechanism(s) unrelated to MEK inhibition. Moreover, the current study implies that flavonoid-induced chemopreventive and chemotherapeutic effects may be mediated by regulation of redox state through the stimulation of GSH synthesis.
Collapse
Affiliation(s)
- Sang K Kim
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Ave., Room 4000, Detroit, MI 48201, USA
| | | | | |
Collapse
|
65
|
Postea O, Krotz F, Henger A, Keller C, Weiss N. Stereospecific and Redox-Sensitive Increase in Monocyte Adhesion to Endothelial Cells by Homocysteine. Arterioscler Thromb Vasc Biol 2006; 26:508-13. [PMID: 16373615 DOI: 10.1161/01.atv.0000201039.21705.dc] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Previous studies have shown that elevated homocysteine (Hcy) levels promote the development of atherosclerotic lesions in atherosclerosis-prone animal models. There is evidence that oxidant stress contributes to Hcy’s deleterious effects on the vasculature. The accumulation and adhesion of monocytes to the vascular endothelium is a critical event in the development of atherosclerosis. We investigated the effects of Hcy on the interaction between human endothelial cells (EC) (EC line EA.hy 926 and primary human umbilical vein EC [HUVEC]) and the monocytic cell line THP-1, and the impact of vascular oxidant stress and redox-sensitive signaling pathways on these events.
Methods and Results—
L-Hcy, but not D-Hcy, increases the production of reactive oxygen species inside EC, enhances nuclear factor(NF)-κB activation, and stimulates intercellular adhesion molecule-1 (ICAM-1) RNA transcription and cell surface expression. This leads to a time- and dose-dependent increase in monocyte adhesion to ECs. Pretreatment of ECs with superoxide scavengers (MnTBAP and Tiron) or with an inhibitor of NF-κB activation abolished Hcy-induced monocyte adhesion, ICAM-1 expression, and nuclear translocation of NF-κB.
Conclusions—
These findings suggest that reactive oxygen species produced under hyperhomocysteinemic conditions may induce a proinflammatory situation in the vessel wall that initiates and promotes atherosclerotic lesion development.
Collapse
Affiliation(s)
- Otilia Postea
- Medical Policlinic, Ludwig-Maximilians University Munich, Germany
| | | | | | | | | |
Collapse
|
66
|
dos Santos FDJN, Ximenes VF, da Fonseca LM, de Faria Oliveira OMM, Brunetti IL. Horseradish peroxidase-catalyzed oxidation of rifampicin: reaction rate enhancement by co-oxidation with anti-inflammatory drugs. Biol Pharm Bull 2006; 28:1822-6. [PMID: 16204929 DOI: 10.1248/bpb.28.1822] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tuberculostatic drug rifampicin has been described as a scavenger of reactive species. Additionally, the recent demonstration that oral therapy with a complex of rifampicin and horseradish peroxidase (HRP) was more effective than rifampicin alone, in an animal model of experimental leprosy, suggested the importance of redox reactions involving rifampicin and their relevance to the mechanism of action. Hence, we studied the oxidation of rifampicin catalyzed by HRP, since this enzyme may represent the prototype of peroxidation-mediated reactions. We found that the antibiotic is efficiently oxidized and that rifampicin-quinone is the product, in a reaction dependent on both HRP and hydrogen peroxide. The steady-state kinetic constants Km(app) (101+/-23 micromol/l), Vmax(app) (0.78+/-0.09 micromol/l.s(-1)) and kcat (5.1+/-0.6 s(-1)) were measured (n=4). The reaction rate was increased by the addition of co-substrates such as tetramethylbenzidine, salicylic acid, 5-aminosalicylic acid and paracetamol. This effect was explained by invoking an electron-transfer mechanism by which these drugs acted as mediators of rifampicin oxidation. We suggested that this drug interaction might be important at the inflammatory site.
Collapse
|
67
|
Aon MA, Cortassa S, Akar FG, O'Rourke B. Mitochondrial criticality: a new concept at the turning point of life or death. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1762:232-40. [PMID: 16242921 PMCID: PMC2692535 DOI: 10.1016/j.bbadis.2005.06.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Revised: 06/06/2005] [Accepted: 06/20/2005] [Indexed: 11/26/2022]
Abstract
A variety of stressors can cause the collapse of mitochondrial membrane potential (DeltaPsi(m)), but the events leading up to this catastrophic cellular event are not well understood at the mechanistic level. Based on our recent studies of oscillations in mitochondrial energetics, we have coined the term "mitochondrial criticality" to describe the state in which the mitochondrial network of cardiomyocytes becomes very sensitive to small perturbations in reactive oxygen species (ROS), resulting in the scaling of local mitochondrial uncoupling and DeltaPsi(m) loss to the whole cell, and the myocardial syncytium. At the point of criticality, the dynamics of the mitochondrial network bifurcate to oscillatory behavior. These energetic changes are translated into effects on the electrical excitability of the cell, inducing dramatic changes in the morphology and the threshold for activating an action potential. Emerging evidence suggests that this mechanism, by creating spatial and temporal heterogeneity of excitability in the heart during ischemia and reperfusion, underlies the genesis of potentially lethal cardiac arrhythmias.
Collapse
Affiliation(s)
- Miguel Antonio Aon
- The Johns Hopkins University, Institute of Molecular Cardiobiology, Division of Cardiology, 720 Rutland Ave 844 Ross Bldg., Baltimore, MD 21205-2195, USA
| | - Sonia Cortassa
- The Johns Hopkins University, Institute of Molecular Cardiobiology, Division of Cardiology, 720 Rutland Ave 844 Ross Bldg., Baltimore, MD 21205-2195, USA
| | - Fadi Gabriel Akar
- The Johns Hopkins University, Institute of Molecular Cardiobiology, Division of Cardiology, 720 Rutland Ave 844 Ross Bldg., Baltimore, MD 21205-2195, USA
| | - Brian O'Rourke
- The Johns Hopkins University, Institute of Molecular Cardiobiology, Division of Cardiology, 720 Rutland Ave 844 Ross Bldg., Baltimore, MD 21205-2195, USA
| |
Collapse
|
68
|
Wojciak-Stothard B, Tsang LYF, Paleolog E, Hall SM, Haworth SG. Rac1 and RhoA as regulators of endothelial phenotype and barrier function in hypoxia-induced neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1173-82. [PMID: 16428270 DOI: 10.1152/ajplung.00309.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia is a common cause of persistent pulmonary hypertension in the newborn (PPHN), a condition associated with endothelial dysfunction and abnormal pulmonary vascular remodeling. The GTPase RhoA has been implicated in the pathogenesis of PPHN, but its contribution to endothelial remodeling and function is not known. We studied pulmonary artery endothelial cells (PAECs) taken from piglets with chronic hypoxia-induced pulmonary hypertension and from healthy animals and analyzed the roles of Rho GTPases in the regulation of the endothelial phenotype and function under basal normoxic conditions, acute hypoxia, and reoxygenation. The activities of RhoA, Rac1, and Cdc42 were correlated with changes in the endothelial cytoskeleton, adherens junctions, permeability, ROS production, VEGF levels, and activities of transcription factors hypoxia-inducible factor (HIF)-1alpha and NF-kappaB. Adenoviral gene transfer was used to express dominant-negative GTPases, kinase-dead p21-activated kinase (PAK)-1, and constitutively activated Rac1 in cells. PAECs from pulmonary hypertensive piglets had a stable abnormal phenotype with a sustained reduction in Rac1 activity and an increase in RhoA activity, which correlated with an increase in actin stress fiber formation, increased permeability, and a decrease in VEGF and ROS production. Cells from pulmonary hypertensive animals were still able to respond to acute hypoxia. They also showed high activities of HIF-1alpha and NF-kappaB, likely to result from changes in the activities of Rho GTPases. Activation of Rac1 and its effector PAK-1 as well as inhibition of RhoA restored the abnormal phenotype and permeability of hypertensive PAECs to normal.
Collapse
Affiliation(s)
- Beata Wojciak-Stothard
- British Heart Foundation Laboratories, Department of Medicine, University College London, 5 University St., London WC1E 6JJ, UK.
| | | | | | | | | |
Collapse
|
69
|
Wenger RH. Mitochondria: Oxygen sinks rather than sensors? Med Hypotheses 2006; 66:380-3. [PMID: 16229963 DOI: 10.1016/j.mehy.2005.08.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/15/2005] [Indexed: 01/03/2023]
Abstract
At the cellular level, oxygen partial pressure (pO2) is sensed by a family of protein hydroxylases. These enzymes transmit the information about the current pO2 directly to hypoxia-inducible transcription factors (HIFs) in the form of covalently attached hydroxy groups which regulate abundance and activity of the HIFs. In addition to this highly specific and direct mechanism of oxygen sensing, mitochondria were repeatedly proposed to sense oxygen and to transmit the signal in the form of a side product of the electron transport chain, i.e. the reactive oxygen species (ROS). However, the exact correlation between pO2 and ROS production, the precise downstream targets of ROS, and how ROS regulate these targets at the molecular level, are questions that remain unanswered. Supported by recent novel data, an alternative model is discussed which is based on the redirection of oxygen towards the protein hydroxylase oxygen sensors. Under conditions of changes in oxygen usage, e.g. following changes in mitochondrial function or cellular metabolism, oxygen redirection would provide an elegant explanation for HIF regulation under apparently constant external oxygen concentrations.
Collapse
Affiliation(s)
- Roland H Wenger
- Institute of Physiology and Center for Integrative Human Physiology (CIHP), University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
70
|
Haddad JJ, Harb HL. Cytokines and the regulation of hypoxia-inducible factor (HIF)-1alpha. Int Immunopharmacol 2005; 5:461-83. [PMID: 15683844 DOI: 10.1016/j.intimp.2004.11.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/27/2004] [Accepted: 11/11/2004] [Indexed: 01/25/2023]
Abstract
Hypoxia-inducible factor (HIF)--an oxygen sensor? The HIF-oxygen sensing association type of dogma is, unequivocally, well anchored. But this is only one face of, at least, a double-sided coin. Current concepts charge HIF of taking sides with a yet not well-founded identity--an immunologic sensor and/or regulator. Or, is it really a sensor, put it more correctly, a key player in sensing mechanisms? The evolving association between HIF and immunity emanates from an established linkage that bonds oxidative stress and inflammation--notably the 'biologic response modifiers', or cytokines. HIF is a redox(y)-sensitive transcription factor, and so are cytokines. Recently, cytokines emerged as major regulators of HIF, under physiologic conditions extending the realm of hypoxia. Alternatively, can HIF, like the so infamous inflammatory transcription factor NF-(kappa)B, prove itself as a key player in the regulation of cytokines and, subsequently, the inflammatory process. The targeting of HIF would be, at least theoretically, of therapeutic value, but does it make sense given its intricate role in hypoxia signaling? It is the theme of HIF being an immunologic sensor that will be explored therein--with special emphasis on the regulatory role of cytokines.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology and Biomedical Sciences [corrected] Faculty of Arts and Sciences, Lebanese International University [corrected] Beirut, Lebanon.
| | | |
Collapse
|
71
|
Fobert PR, Després C. Redox control of systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:378-82. [PMID: 15922650 DOI: 10.1016/j.pbi.2005.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/16/2005] [Indexed: 05/02/2023]
Abstract
Changes in gene expression during systemic acquired resistance (SAR) require the phenolic signaling molecule salicylic acid (SA) and are modulated by the interaction between the NON EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) protein and members of the TGA family of transcription factors. In the past two years, the activities of NPR1 and of the TGA factors TGA1 and TGA4 have been shown to be modulated by SA-induced oxidoreduction (redox) modifications of key cysteine residues. Reduction of two conserved cysteines in NPR1 leads to its monomerization and nuclear localization, which is required for the activation of PATHOGENESIS-RELATED(PR) genes. Reduction of conserved cysteines in TGA1 and TGA4 enables their interaction with NPR1, which acts as a redox-sensitive cofactor in stimulating TGA1 DNA-binding activity. The identity of the redox mediators that are involved in regulating NPR1 and TGA factors is unknown. However, a novel thioredoxin interacts with the disease resistance protein Cf-9 and modulates Cf-9-dependent signaling. These results begin to provide a mechanistic understanding of how SAR is regulated by redox conditions.
Collapse
Affiliation(s)
- Pierre R Fobert
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada.
| | | |
Collapse
|
72
|
Szászi K, Jones JJ, Nathens AB, Lo AY, Marsden PA, Kapus A, Rotstein OD. Glutathione depletion inhibits lipopolysaccharide-induced intercellular adhesion molecule 1 synthesis. Free Radic Biol Med 2005; 38:1333-43. [PMID: 15855051 DOI: 10.1016/j.freeradbiomed.2005.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 11/29/2004] [Accepted: 01/20/2005] [Indexed: 01/18/2023]
Abstract
Cellular redox status is known to regulate a number of biological processes, including the activation of inflammatory genes. Our previous studies demonstrated that thiol depletion using diethyl maleate (DEM) reduced neutrophil sequestration in animal models of inflammation, an effect primarily mediated by impaired upregulation of the adhesion molecule, ICAM-1. The present studies were performed to discern the mechanism whereby DEM prevents LPS-induced ICAM-1 expression in human umbilical vein endothelial cells. DEM caused a time- and concentration-dependent inhibition of ICAM-1 expression in LPS-stimulated HUVEC by blocking induction of gene transcription. Interestingly, DEM had little effect on the degradation of the inhibitory protein IkappaB-alpha, but rather appeared to prevent translocation of the transcription factor NF-kappaB into the nucleus. Readdition of glutathione following DEM treatment restored the ability of LPS to induce NF-kappaB translocation and ICAM-1 synthesis. DEM plus LPS caused synergistic induction of heme oxygenase-1 (HO-1), suggesting its role in the inhibitory effects of DEM. However, HO-1 was shown to be neither sufficient nor necessary for the anti-inflammatory effects of glutathione depletion. These studies illustrate that thiol depletion may represent a potential therapy for inflammation, exerting its effects via a distinct mechanism on cell signaling pathways.
Collapse
Affiliation(s)
- Katalin Szászi
- Department of Surgery, University Health Network and University of Toronto, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | | | | | | | | | | | | |
Collapse
|
73
|
Ganfornina MD, Pérez-García MT, Gutiérrez G, Miguel-Velado E, López-López JR, Marín A, Sánchez D, González C. Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia. J Physiol 2005; 566:491-503. [PMID: 15890701 PMCID: PMC1464746 DOI: 10.1113/jphysiol.2005.088815] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The carotid body (CB) is an arterial chemoreceptor, bearing specialized type I cells that respond to hypoxia by closing specific K+ channels and releasing neurotransmitters to activate sensory axons. Despite having detailed information on the electrical and neurochemical changes triggered by hypoxia in CB, the knowledge of the molecular components involved in the signalling cascade of the hypoxic response is fragmentary. This study analyses the mouse CB transcriptional changes in response to low PO2 by hybridization to oligonucleotide microarrays. The transcripts were obtained from whole CBs after mice were exposed to either normoxia (21% O2), or physiological hypoxia (10% O2) for 24 h. The CB transcriptional profiles obtained under these environmental conditions were subtracted from the profile of control non-chemoreceptor adrenal medulla extracted from the same animals. Given the common developmental origin of these two organs, they share many properties but differ specifically in their response to O2. Our analysis revealed 751 probe sets regulated specifically in CB under hypoxia (388 up-regulated and 363 down-regulated). These results were corroborated by assessing the transcriptional changes of selected genes under physiological hypoxia with quantitative RT-PCR. Our microarray experiments revealed a number of CB-expressed genes (e.g. TH, ferritin and triosephosphate isomerase) that were known to change their expression under hypoxia. However, we also found novel genes that consistently changed their expression under physiological hypoxia. Among them, a group of ion channels show specific regulation in CB: the potassium channels Kir6.1 and Kcnn4 are up-regulated, while the modulatory subunit Kcnab1 is down-regulated by low PO2 levels.
Collapse
Affiliation(s)
- M D Ganfornina
- Departamento de Bioquímica y Fisiología y Genética Molecular-IBGM, Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Piccoli C, Ria R, Scrima R, Cela O, D'Aprile A, Boffoli D, Falzetti F, Tabilio A, Capitanio N. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 2005; 280:26467-76. [PMID: 15883163 DOI: 10.1074/jbc.m500047200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was aimed to characterize the mitochondrial and extra-mitochondrial oxygen consuming reactions in human CD34+ hematopoietic stem cells. Cell samples were collected by apheresis following pre-conditioning by granulocyte colony-stimulating factor and isolated by anti-CD34 positive immunoselection. Polarographic analysis of the CN-sensitive endogenous cell respiration revealed a low mitochondrial oxygen consumption rate. Differential absorbance spectrometry on whole cell lysate and two-dimensional blue native-PAGE analysis of mitoplast proteins confirmed a low amount of mitochondrial respiratory chain complexes thus qualifying the hematopoietic stem cell as a poor oxidative phosphorylating cell type. Confocal microscopy imaging showed, however, that the intracellular content of mitochondria was not homogeneously distributed in the CD34+ hematopoietic stem cell sample displaying a clear inverse correlation of their density with the expression of the CD34 commitment marker. About half of the endogenous oxygen consumption was extra-mitochondrial and completely inhibitable by enzymatic scavengers of reactive oxygen species and by diphenylene iodinium. By spectral analysis, flow cytometry, reverse transcriptase-PCR, immunocytochemistry, and immunoprecipitation it was shown that the extra-mitochondrial oxygen consumption was contributed by the NOX2 and NOX4 isoforms of the O2-*. producer plasma membrane NAD(P)H oxidase with low constitutive activity. A model is proposed suggesting for the NAD(P)H oxidase a role of O2 sensor and/or ROS source serving as redox messengers in the activation of intracellular signaling pathways leading (or contributing) to mitochondriogenesis, cell survival, and differentiation in hematopoietic stem cells.
Collapse
MESH Headings
- Antigens, CD34/biosynthesis
- Cell Line
- Cells, Cultured
- Electron Transport
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Flow Cytometry
- Granulocyte-Macrophage Colony-Stimulating Factor
- Hematopoietic Stem Cells/cytology
- Humans
- Image Processing, Computer-Assisted
- Immunoblotting
- Immunohistochemistry
- Immunoprecipitation
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Models, Biological
- NADPH Oxidases/metabolism
- Oxidation-Reduction
- Oxygen/chemistry
- Oxygen/metabolism
- Oxygen Consumption
- Phosphorylation
- Protein Binding
- Protein Structure, Quaternary
- Reactive Oxygen Species
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Spectrophotometry
Collapse
Affiliation(s)
- Claudia Piccoli
- Department of Biomedical Science, University of Foggia, Foggia, Italy 71100
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Laderoute KR. The interaction between HIF-1 and AP-1 transcription factors in response to low oxygen. Semin Cell Dev Biol 2005; 16:502-13. [PMID: 16144688 DOI: 10.1016/j.semcdb.2005.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a critical regulator of the transcriptional response to low oxygen conditions (hypoxia/anoxia) experienced by mammalian cells in both physiological and pathophysiological circumstances. As our understanding of the biology and biochemistry of HIF-1 has grown, it has become apparent that cells adapt to signals generated by low oxygen through a network of stress responsive transcription factors or complexes, which are influenced by HIF-1 activity. This review summarizes our current understanding of the interaction of HIF-1 with AP-1, a classic example of a family of pleiotropic transcription factors that impact on diverse cellular processes and phenotypes, including the adaptation to low oxygen stress. The review focuses on experimental studies involving cultured cells exposed to hypoxia/anoxia, and describes both established and possible interactions between HIF-1 and AP-1 at different levels of cellular organization.
Collapse
Affiliation(s)
- Keith R Laderoute
- Biosciences Division, SRI International, Bldg. L, Rm. A258, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
77
|
Sanz MJ, Cortijo J, Morcillo EJ. PDE4 inhibitors as new anti-inflammatory drugs: effects on cell trafficking and cell adhesion molecules expression. Pharmacol Ther 2005; 106:269-97. [PMID: 15922015 DOI: 10.1016/j.pharmthera.2004.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2004] [Indexed: 01/15/2023]
Abstract
Phosphodiesterase 4 (PDE4) is a major cyclic AMP-hydrolyzing enzyme in inflammatory and immunomodulatory cells. The wide range of inflammatory mechanisms under control by PDE4 points to this isoenzyme as an attractive target for new anti-inflammatory drugs. Selective inhibitors of PDE4 have demonstrated a broad spectrum of anti-inflammatory activities including the inhibition of cellular trafficking and microvascular leakage, cytokine and chemokine release from inflammatory cells, reactive oxygen species production, and cell adhesion molecule expression in a variety of in vitro and in vivo experimental models. The initially detected side effects, mainly nausea and emesis, appear at least partially overcome by the 'second generation' PDE4 inhibitors, some of which like roflumilast and cilomilast are in the later stages of clinical development for treatment of chronic obstructive pulmonary disease. These new drugs may also offer opportunities for treatment of other inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez 15, E-46010 Valencia, Spain
| | | | | |
Collapse
|
78
|
Haddad JJ. Hypoxia and the regulation of mitogen-activated protein kinases: gene transcription and the assessment of potential pharmacologic therapeutic interventions. Int Immunopharmacol 2005; 4:1249-85. [PMID: 15313426 DOI: 10.1016/j.intimp.2004.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 06/09/2004] [Accepted: 06/15/2004] [Indexed: 12/20/2022]
Abstract
Oxygen is an environmental/developmental signal that regulates cellular energetics, growth, and differentiation processes. Despite its central role in nearly all higher life processes, the molecular mechanisms for sensing oxygen levels and the pathways involved in transducing this information are still being elucidated. Altering gene expression is the most fundamental and effective way for a cell to respond to extracellular signals and/or changes in its microenvironment. During development, the expression of specific sets of genes is regulated spatially (by position/morphogenetic gradients) and temporally, presumably via the sensing of molecular oxygen available within the microenvironment. Regulation of signaling responses is governed by transcription factors that bind to control regions (consensus sequences) of target genes and alter their expression in response to specific signals. Complex signal transduction during hypoxia (deficiency of oxygen in inspired gases or in arterial blood and/or in tissues) involves the coupling of ligand-receptor interactions to many intracellular events. These events basically include phosphorylations by tyrosine kinases and/or serine/threonine kinases, such as those of mitogen-activated protein kinases (MAPKs), a superfamily of kinases responsive to stress nonhomeostatic conditions. Protein phosphorylations imposed during hypoxia change enzyme activities and protein conformations, and the eventual outcome is rather complex, comprising of an alteration in cellular activity and changes in the programming of genes expressed within the responding cells. These molecular changes serve as signals that are crucial for cell survival under contingent conditions imposed during hypoxia. This review correlates current concepts of hypoxic sensing pathways with hypoxia-related phosphorylation mechanisms mediated by MAPKs via the genetic and pharmacologic regulation/manipulation of specific transcription factors and related cofactors.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
79
|
Brahimi-Horn MC, Pouysségur J. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. ACTA ACUST UNITED AC 2005; 242:157-213. [PMID: 15598469 DOI: 10.1016/s0074-7696(04)42004-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hypoxia-inducible factor (HIF) is a transcription factor that plays a key role in the response of cells to oxygen levels. HIF is a heterodimer of alpha- and beta-subunits where the alpha-subunit is translated constitutively but has a very short half-life under normal oxygen concentrations. Negative regulation of the half-life and activity of the alpha-subunit is dependent on its posttranslational hydroxylation by hydroxylases that are dependent on oxygen for activity. Thus under low oxygen (hypoxic) conditions the hydroxylases are inactive and the alpha-subunit is stable and able to interact with the beta-subunit to bind and induce transcription of target genes. Hypoxic conditions are encountered in development and in disease states such as cancer. Tumors that have outstripped their blood supply become hypoxic and express high levels of HIF. HIF in turn targets genes that induce survival, glycolysis, and angiogenesis, a form of neovascularization, which ensures the tumor with a continued supply of oxygen and nutrients for further growth.
Collapse
Affiliation(s)
- M Christiane Brahimi-Horn
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 06189 Nice, France
| | | |
Collapse
|
80
|
Frei C, Galloni M, Hafen E, Edgar BA. The Drosophila mitochondrial ribosomal protein mRpL12 is required for Cyclin D/Cdk4-driven growth. EMBO J 2005; 24:623-34. [PMID: 15692573 PMCID: PMC548645 DOI: 10.1038/sj.emboj.7600523] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 11/25/2004] [Indexed: 11/08/2022] Open
Abstract
The Drosophila melanogaster cyclin-dependent protein kinase complex CycD/Cdk4 stimulates both cell cycle progression and cell growth (accumulation of mass). CycD/Cdk4 promotes cell cycle progression via the well-characterized RBF/E2F pathway, but our understanding of how growth is stimulated is still limited. To identify growth regulatory targets of CycD/Cdk4, we performed a loss-of-function screen for modifiers of CycD/Cdk4-induced overgrowth of the Drosophila eye. One mutation that suppressed CycD/Cdk4 was in a gene encoding the mitochondrial ribosomal protein, mRpL12. We show here that mRpL12 is required for CycD/Cdk4-induced cell growth. Cells homozygous mutant for mRpL12 have reduced mitochondrial activity, and exhibit growth defects that are very similar to those of cdk4 null cells. CycD/Cdk4 stimulates mitochondrial activity, and this is mRpL12 dependent. Hif-1 prolyl hydroxylase (Hph), another effector of CycD/Cdk4, regulates growth and is required for inhibition of the hypoxia-inducible transcription factor 1 (Hif-1). Both functions depend on mRpL12 dosage, suggesting that CycD/Cdk4, mRpL12 and Hph function together in a common pathway that controls cell growth via affecting mitochondrial activity.
Collapse
Affiliation(s)
- Christian Frei
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Zoologisches Institut, Universität Zürich, Zürich, Switzerland
- Institute of Cell Biology, HPM F39, ETH Hönggerberg, 8093 Zürich, Switzerland. Tel.: +41 1 633 3447; Fax: +41 1 633 1286; E-mail:
| | - Mireille Galloni
- INSERM-UM2 E343, Université de Montpellier 2, Montpellier, France
| | - Ernst Hafen
- Zoologisches Institut, Universität Zürich, Zürich, Switzerland
| | - Bruce A Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Tel.: +1 206 667 4185; Fax: +1 206 3308; E-mail:
| |
Collapse
|
81
|
Riggs PK, Angel JM, Abel EL, DiGiovanni J. Differential gene expression in epidermis of mice sensitive and resistant to phorbol ester skin tumor promotion. Mol Carcinog 2005; 44:122-36. [PMID: 16044405 DOI: 10.1002/mc.20127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous data from two-stage carcinogenesis studies in mouse skin demonstrated that genetic control of susceptibility to skin tumor promotion by the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), in crosses between susceptible DBA/2J and resistant C57BL/6J mice is a multigenic trait. Utilizing a cDNA microarray approach, we compared global gene expression profiles in the epidermis of these two mouse strains treated with TPA or vehicle (acetone). Gene expression in the epidermis was analyzed after the treatment to identify global effects of TPA, as well as potential candidate genes that modify susceptibility to skin tumor promotion. DBA/2J and C57BL/6J mice were treated topically four times with 3.4 nmol TPA or acetone over a 2-wk period, and RNA was extracted from epidermis 6 h after the final treatment. Labeled cDNA generated from each group was hybridized to commercial cDNA microarrays (Agilent) containing more than 8000 targets. More than 450 genes were significantly influenced, directly or indirectly, by TPA treatment in the epidermis of either strain. Notably, 44 genes exhibited differential expression between the tumor promotion sensitive and resistant mouse strains. Several genes that were differentially expressed in DBA/2J versus C57BL/6J epidermis after TPA treatment were located in chromosomal regions linked to TPA promotion susceptibility. Three genes, Gsta4, Nmes1 (MGC58382), and Serpinb2, located within promotion susceptibility loci Psl1 (chr 9), Psl2 (chr 2), and Psl3 (chr 1), respectively, were identified in this analysis as potential candidates for modifiers of susceptibility to skin tumor promotion by TPA.
Collapse
Affiliation(s)
- Penny K Riggs
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957-0389, USA
| | | | | | | |
Collapse
|
82
|
Haddad JJ, Harb HL. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 2004; 42:987-1014. [PMID: 15829290 DOI: 10.1016/j.molimm.2004.09.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/29/2004] [Indexed: 12/17/2022]
Abstract
Of the antioxidant/prooxidant mechanisms mediating the regulation of inflammatory mediators, particularly cytokines, oxidative stress-related pathways remain a cornerstone. It is conspicuous that there is a strong association between free radical accumulation (ROS/RNS; oxidative stress) and the evolution of inflammation and inflammatory-related responses. The scenario that upholds a consensus on the aforementioned is still evolving to unravel, from an immunologic perspective, the molecular mechanisms associated with ROS/RNS-dependent inflammation. Cytokines are keynote players when it comes to defining an intimate relationship among reduction-oxidation (redox) signals, oxidative stress and inflammation. How close we are to identifying the molecular basis of this intricate association should be weighed against the involvement of specific signaling molecules and, potentially, transcription factors. L-gamma-Glutamyl-L-cysteinyl-glycine, or glutathione (GSH), an antioxidant thiol, has shaped, and still is refining, the face of oxidative signaling in terms of regulating the milieu of inflammatory mediators, ostensibly via the modulation (expression/repression) of oxygen- and redox-responsive transcription factors, hence termed redox(y)-sensitive cofactors. When it comes to the arena of oxygen sensing, oxidative stress and inflammation, nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha) are key players that determine antioxidant/prooxidant responses with oxidative challenge. It is the theme therein to underlie current understanding of the molecular association hanging between oxidative stress and the evolution of inflammation, walked through an elaborate discussion on the role of transcription factors and cofactors. Would that classify glutathione and other redox signaling cofactors as potential anti-inflammatory molecules emphatically remains of particular interest, especially in the light of identifying upstream and downstream molecular pathways for conceiving therapeutic, alleviating strategy for oxidant-mediated, inflammatory-related disease conditions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
83
|
Haddad JJ. Mitogen-activated protein kinases and the evolution of Alzheimer's: a revolutionary neurogenetic axis for therapeutic intervention? Prog Neurobiol 2004; 73:359-77. [PMID: 15312913 DOI: 10.1016/j.pneurobio.2004.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Accepted: 06/16/2004] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is a neurogenetic condition that affects the processes via which the brain functions. Major observable hallmarks of AD are accumulated clusters of proteins in the brain. These clusters, termed neurofibrillary tangles (NFT), resemble pairs of threads wound around each other in a helix fashion accumulating within neurons. These tangles consist of a protein called Tau, which binds to tubulin, thus forming microtubules. Unlike NFTs, deposits of amyloid precursor protein (beta-APP) gather in the spaces between nerve cells. The nearby neurons often look swollen and deformed, and the clusters of protein are usually accompanied by reactive inflammatory cells, microglia, which are part of the brain's immune system responsible for degrading and removing damaged neurons or plaques. Since phosphorylation/dephosphorylation mechanisms are crucial in the regulation of Tau and beta-APP, a superfamily of mitogen-activated protein kinases (MAPKs) has recently emerged as key regulators of the formation of plagues, eventually leading to dementia and AD. The complex molecular interactions between MAPKs and proteins (plagues) associated with the evolution of AD form a cornerstone in the knowledge of a still burgeoning field of neurodegenerative diseases and ageing. This review overviews current understanding of the molecular pathways related to MAPKs and their role in the development of AD and, possibly, dementia. MAPKs, therefore, may constitute a neurogenetic, therapeutic target for the diagnosis and evolution of a preventative medical strategy for early detection, and likely treatment, of Alzheimer's.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
84
|
Panopoulos A, Harraz M, Engelhardt JF, Zandi E. Iron-mediated H2O2 production as a mechanism for cell type-specific inhibition of tumor necrosis factor alpha-induced but not interleukin-1beta-induced IkappaB kinase complex/nuclear factor-kappaB activation. J Biol Chem 2004; 280:2912-23. [PMID: 15550384 DOI: 10.1074/jbc.m409524200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coordinated and specific regulation of tumor necrosis factor (TNF) and interleukin (IL)-1 signaling pathways and how and whether they are modified by different agents are key events for proper immune responses. The IkappaB kinase complex (IKK)/NF-kappaB and JNK/AP-1 pathways are central mediators of TNF and IL-1 during inflammatory responses. Here we show that l-mimosine, a toxic non-protein amino acid that has been shown to reduce serum TNFalpha levels and affect inflammatory responses, specifically inhibits TNF-induced IKK but not JNK in a cell type-specific manner. l-Mimosine did not affect IKK and NF-kappaB activation by IL-1beta. l-Mimosine caused cell cycle arrest at G(1)-S phase, but inhibition of IKK was found to be independent of cell cycle arrest. Treatment of cells with l-mimosine resulted in production of H(2)O(2). Addition of FeSO(4) restored IKK activation by TNFalpha as did ectopic expression of catalase or pretreatment of cells with N-aceltyl-l-cysteine, indicating a role for intracellular H(2)O(2) as a mediator of inhibition. Cleavage and degradation of TNF pathway components TNFR1, RIP, and Hsp90 were observed in l-mimosine and H(2)O(2) treated cells indicating a putative mechanism for selective inhibition of TNF but not IL-1beta-induced IKK activation.
Collapse
Affiliation(s)
- Andreas Panopoulos
- Department of Molecular Microbiology and Immunology, University of Southern California/Norris Comprehensive Cancer Center, Keck School of Medicine at USC, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
85
|
Hamilton KL, Quindry JC, French JP, Staib J, Hughes J, Mehta JL, Powers SK. MnSOD antisense treatment and exercise-induced protection against arrhythmias. Free Radic Biol Med 2004; 37:1360-8. [PMID: 15454275 DOI: 10.1016/j.freeradbiomed.2004.07.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 07/08/2004] [Accepted: 07/22/2004] [Indexed: 11/26/2022]
Abstract
Exercise provides protection against ischemia-reperfusion (I-R)-induced arrhythmias, myocardial stunning, and infarction. An exercise-induced increase in myocardial manganese superoxide dismutase (MnSOD) activity has been reported to be vital for protection against infarction. However, whether MnSOD is essential for exercise-induced protection against ventricular arrhythmias is unknown. We determined the effects of preventing the exercise-induced increase in MnSOD activity on arrhythmias during I-R resulting in myocardial stunning. Male rats remained sedentary or were subjected to successive bouts of endurance exercise. During in vivo myocardial I-R, the incidence of arrhythmias was significantly lower in the exercise-trained rats than in the sedentary rats as evidenced by the arrhythmia. When exercised rats were pretreated with antisense oligonucleotides directed against MnSOD, protection from arrhythmias was attenuated. Moreover, I-R resulted in significant increases in nitro-tyrosine (NT) in the sedentary group. Exercise abolished this I-R-induced NT formation but this protection was unchanged by antisense treatment. Protein carbonyls were increased by I-R, but neither exercise nor antisense treatment impacted carbonyl formation. These data demonstrate that an exercise-induced increase in MnSOD activity is important for protection against arrhythmias. The mechanism by which MnSOD provides protection does not appear to be linked to protein nitrosylation or oxidation.
Collapse
Affiliation(s)
- Karyn L Hamilton
- Department of Exercise and Sport Sciences, Center for Exercise Science, University of Florida Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Haddad JJ. On the antioxidant mechanisms of Bcl-2: a retrospective of NF-kappaB signaling and oxidative stress. Biochem Biophys Res Commun 2004; 322:355-63. [PMID: 15325238 DOI: 10.1016/j.bbrc.2004.07.138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Indexed: 11/22/2022]
Abstract
Antioxidant and prooxidant signaling pathways are emanating as major players in, and regulators of, cell death and apoptosis. Redox conception of the critical role of oxidative stress in determining cell fate is being established-a foundation that craves deeper than the basic understanding of physiochemical interactions to extend beyond that into the realms of deciphering the molecular codes implicated with apoptosis. The proto-oncogene Bcl-2 is no stranger being a major player and decoder in controlling apoptosis, ostensibly via the regulation of redox equilibrium and disequilibrium. One of those potential mechanisms exhibited by Bcl-2 is its ability to counteract the detrimental effects of cell damage caused by free radicals, thereby gaining its well-known property of being an antioxidant. But the question is: what are the molecular mechanisms involved with the antioxidant role of Bcl-2 in the face of cell damage and apoptosis? Currently, a stance is being upheld in that the Bcl-2 antioxidant efficacy should be weighed against its ability to manipulate transcriptional control, through the regulation of specific transcription factors. NF-kappaB is no doubt one of the best candidates when it comes to the arena of oxidative stress, inflammation, and apoptosis. Therein, current themes in the burgeoning antioxidant role of Bcl-2 are exposed within the context of transcriptional control of NF-kappaB, thereby holding potential avenues for alleviating therapeutic approaches in the regulation of apoptosis.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|