51
|
Obesity-mediated regulation of cardiac protein acetylation: parallel analysis of total and acetylated proteins via TMT-tagged mass spectrometry. Biosci Rep 2018; 38:BSR20180721. [PMID: 30061171 PMCID: PMC6127670 DOI: 10.1042/bsr20180721] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
Lysine residues undergo diverse and reversible post-translational modifications (PTMs). Lysine acetylation has traditionally been studied in the epigenetic regulation of nucleosomal histones that provides an important mechanism for regulating gene expression. Histone acetylation plays a key role in cardiac remodeling and function. However, recent studies have shown that thousands of proteins can be acetylated at multiple acetylation sites, suggesting the acetylome rivals the kinome as a PTM. Based on this, we examined the impact of obesity on protein lysine acetylation in the left ventricle (LV) of male c57BL/6J mice. We reported that obesity significantly increased heart enlargement and fibrosis. Moreover, immunoblot analysis demonstrated that lysine acetylation was markedly altered with obesity and that this phenomenon was cardiac tissue specific. Mass spectral analysis identified 2515 proteins, of which 65 were significantly impacted by obesity. Ingenuity Pathway Analysis® (IPA) further demonstrated that these proteins were involved in metabolic dysfunction and cardiac remodeling. In addition to total protein, 189 proteins were acetylated, 14 of which were significantly impacted by obesity. IPA identified the Cardiovascular Disease Pathway as significantly regulated by obesity. This network included aconitate hydratase 2 (ACO2), and dihydrolipoyl dehydrogenase (DLD), in which acetylation was significantly increased by obesity. These proteins are known to regulate cardiac function yet, the impact for ACO2 and DLD acetylation remains unclear. Combined, these findings suggest a critical role for cardiac acetylation in obesity-mediated remodeling; this has the potential to elucidate novel targets that regulate cardiac pathology.
Collapse
|
52
|
Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M, Llanos S, Chaib S, Muñoz-Martín M, Ucero AC, Garaulet G, Mulero F, Dann SG, VanArsdale T, Shields DJ, Bernardos A, Murguía JR, Martínez-Máñez R, Serrano M. A versatile drug delivery system targeting senescent cells. EMBO Mol Med 2018; 10:e9355. [PMID: 30012580 PMCID: PMC6127887 DOI: 10.15252/emmm.201809355] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022] Open
Abstract
Senescent cells accumulate in multiple aging-associated diseases, and eliminating these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high lysosomal β-galactosidase activity of senescent cells to design a drug delivery system based on the encapsulation of drugs with galacto-oligosaccharides. We show that gal-encapsulated fluorophores are preferentially released within senescent cells in mice. In a model of chemotherapy-induced senescence, gal-encapsulated cytotoxic drugs target senescent tumor cells and improve tumor xenograft regression in combination with palbociclib. Moreover, in a model of pulmonary fibrosis in mice, gal-encapsulated cytotoxics target senescent cells, reducing collagen deposition and restoring pulmonary function. Finally, gal-encapsulation reduces the toxic side effects of the cytotoxic drugs. Drug delivery into senescent cells opens new diagnostic and therapeutic applications for senescence-associated disorders.
Collapse
Affiliation(s)
- Daniel Muñoz-Espín
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Miguel Rovira
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Cristina Giménez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Beatriz Lozano-Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Marta Paez-Ribes
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Susana Llanos
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Selim Chaib
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maribel Muñoz-Martín
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alvaro C Ucero
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Stephen G Dann
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., La Jolla, CA, USA
| | - Todd VanArsdale
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., La Jolla, CA, USA
| | - David J Shields
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., La Jolla, CA, USA
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
53
|
Mohseni Z, Spaanderman MEA, Oben J, Calore M, Derksen E, Al-Nasiry S, de Windt LJ, Ghossein-Doha C. Cardiac remodeling and pre-eclampsia: an overview of microRNA expression patterns. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:310-317. [PMID: 28466998 DOI: 10.1002/uog.17516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Pre-eclampsia (PE) is strongly associated with heart failure (HF) later in life. During PE pregnancy, the left ventricle undergoes concentric remodeling which often persists after delivery. This aberrant remodeling can induce a molecular signature that can be evaluated in terms of microRNAs (miRNAs) and which may help to explain the associated increased risk of HF. For this review, we performed a literature search of PubMed (National Center for Biotechnology Information), identifying studies on miRNA expression in concentric remodeling and on miRNA expression in PE. The miRNA data were stratified based on origin (isolated from humans or animals and from tissue or the circulation) and both datasets compared in order to generate a list of miRNA expression patterns in concentric remodeling and in PE. The nine miRNAs identified in both concentric remodeling and PE-complicated pregnancy were: miR-1, miR-18, miR-21, miR-29b, miR-30, miR-125b, miR-181b, miR-195 and miR-499-5p. We found five of these miRNAs (miR-18, miR-21, miR-125b, miR-195 and miR-499-5p) to be upregulated in both PE pregnancy and cardiac remodeling and two (miR-1 and miR-30) to be downregulated in both; the remaining two miRNAs (miR-29b and miR-181b) showed upregulation during PE but downregulation in cardiac remodeling. This innovative approach may be a step towards finding relevant biomarkers for complicated pregnancy and elucidating their relationship with remote cardiovascular disease. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Z Mohseni
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - J Oben
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M Calore
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - E Derksen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - S Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - L J de Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - C Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
54
|
Cheng KC, Chang WT, Li Y, Cheng YZ, Cheng JT, Chen ZC. GW0742 activates peroxisome proliferator-activated receptor δ to reduce free radicals and alleviate cardiac hypertrophy induced by hyperglycemia in cultured H9c2 cells. J Cell Biochem 2018; 119:9532-9542. [PMID: 30129179 DOI: 10.1002/jcb.27270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/26/2018] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ), the predominant PPAR subtype in the heart, is known to regulate cardiac function. PPARδ activation may inhibit cardiac hypertrophy in H9c2 cells while the potential mechanism has not been elucidated. Then, H9c2 cells incubated with high glucose to induce hypertrophy were used to investigate using GW0742 to activate PPARδ. The fluorescence assays were applied to determine the changes in cell size, cellular calcium levels, and free radicals. Western blot analyses for hypertrophic signals and assays of messenger RNA (mRNA) levels for hypertrophic biomarkers were performed. In H9c2 cells, GW0742 inhibited cardiac hypertrophy. In addition, increases in cellular calcium and hypertrophic signals, including calcineurin and nuclear factor of activated T-cells, were reduced by GW0742. This reduction was parallel to the decrease in the mRNA levels of biomarkers, such as brain/B-type natriuretic peptides and β-myosin heavy chain. These effects of GW0742 were dose-dependently inhibited by GSK0660 indicating an activation of PPARδ by GW0742 to alleviate cardiac hypertrophy. Moreover, free radicals produced by hyperglycemia were also markedly inhibited by GW0742 and were later reversed by GSK0660. GW0742 promoted the expression of thioredoxin, an antioxidant enzyme. Direct inhibition of reactive oxygen species by GW0742 was also identified in the oxidant potassium bromate stimulated H9c2 cells. Taken together, these findings suggest that PPARδ agonists can inhibit free radicals, resulting in lower cellular calcium for reduction of hypertrophic signaling to alleviate cardiac hypertrophy in H9c2 cells. Therefore, PPARδ activation can be used to develop agent(s) for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Wei-Ting Chang
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yung-Ze Cheng
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan.,Graduate Institute of Medical Science, Chang Jung Christian University, Gueiren, Tainan, Taiwan
| | - Zhih-Cherng Chen
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Pharmacy, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| |
Collapse
|
55
|
Abstract
Alternative splicing is an important mechanism used by the cell to generate greater transcriptomic and proteomic diversity from the genome. In the heart, alternative splicing is increasingly being recognised as an important layer of post-transcriptional gene regulation. Driven by rapidly evolving technologies in next-generation sequencing, alternative splicing has emerged as a crucial process governing complex biological processes during cardiac development and disease. The recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and 24, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the factors controlling cardiac alternative splicing and their role in cardiomyopathies and subsequent heart failure.
Collapse
|
56
|
Ren W, Gao S, Zhang H, Ren Y, Yu X, Lin W, Guo S, Zhu R, Wang W. Decomposing the Mechanism of Qishen Granules in the Treatment of Heart Failure by a Quantitative Pathway Analysis Method. Molecules 2018; 23:molecules23071829. [PMID: 30041436 PMCID: PMC6100320 DOI: 10.3390/molecules23071829] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Qishen granules (QSG) have beneficial therapeutic effects for heart failure, but the effects of decomposed recipes, including Wenyang Yiqi Huoxue (WYH) and Qingre Jiedu (QJ), are not clear. In this study, the efficacy of WYH and QJ on heart failure is evaluated by using transverse aortic constriction (TAC) induced mice and the significantly changed genes in heart tissues were screened with a DNA array. Furthermore, a new quantitative pathway analysis tool is developed to evaluate the differences of pathways in different groups and to identify the pharmacological contributions of the decomposed recipes. Finally, the related genes in the significantly changed pathways are verified by a real-time polymerase chain reaction and a Western blot. Our data show that both QJ and WYH improve the left ventricular ejection fraction, which explain their contributions to protect against heart failure. In the energy metabolism, QJ achieves the therapeutic effects of QSG through nicotinamide nucleotide transhydrogenase (Nnt)-mediated mechanisms. In ventricular remodeling and inflammation reactions, QJ and WYH undertake the therapeutic effects through 5'-nucleotidase ecto (Nt5e)-mediated mechanisms. Together, QJ and WYH constitute the therapeutic effects of QSG and play important roles in myocardial energy metabolism and inflammation, which can exert therapeutic effects for heart failure.
Collapse
MESH Headings
- Animals
- Biomarkers
- Disease Models, Animal
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Echocardiography
- Energy Metabolism/drug effects
- Gene Expression Regulation/drug effects
- Heart Failure/diagnosis
- Heart Failure/drug therapy
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Hypertrophy, Left Ventricular/diagnosis
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/physiopathology
- Metabolic Networks and Pathways/drug effects
- Mice
- Transcriptome
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Remodeling
Collapse
Affiliation(s)
- Weiquan Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Sheng Gao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Huimin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yinglu Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Weili Lin
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ruixin Zhu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
57
|
Balatskyi VV, Macewicz LL, Gan AM, Goncharov SV, Pawelec P, Portnichenko GV, Lapikova-Bryginska TY, Navrulin VO, Dosenko VE, Olichwier A, Dobrzyn P, Piven OO. Cardiospecific deletion of αE-catenin leads to heart failure and lethality in mice. Pflugers Arch 2018; 470:1485-1499. [DOI: 10.1007/s00424-018-2168-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/26/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
|
58
|
Wasala NB, Shin JH, Lai Y, Yue Y, Montanaro F, Duan D. Cardiac-Specific Expression of ΔH2-R15 Mini-Dystrophin Normalized All Electrocardiogram Abnormalities and the End-Diastolic Volume in a 23-Month-Old Mouse Model of Duchenne Dilated Cardiomyopathy. Hum Gene Ther 2018; 29:737-748. [PMID: 29433343 DOI: 10.1089/hum.2017.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heart disease is a major health threat for Duchenne/Becker muscular dystrophy patients and carriers. Expression of a 6-8 kb mini-dystrophin gene in the heart holds promise to change the disease course dramatically. However, the mini-dystrophin gene cannot be easily studied with adeno-associated virus (AAV) gene delivery because the size of the minigene exceeds AAV packaging capacity. Cardiac protection of the ΔH2-R19 minigene was previously studied using the cardiac-specific transgenic approach. Although this minigene fully normalized skeletal muscle force, it only partially corrected electrocardiogram and heart hemodynamics in dystrophin-null mdx mice that had moderate cardiomyopathy. This study evaluated the ΔH2-R15 minigene using the same transgenic approach in mdx mice that had more severe cardiomyopathy. In contrast to the ΔH2-R19 minigene, the ΔH2-R15 minigene carries dystrophin spectrin-like repeats 16 to 19 (R16-19), a region that has been suggested to protect the heart in clinical studies. Cardiac expression of the ΔH2-R15 minigene normalized all aberrant electrocardiogram changes and improved hemodynamics. Importantly, it corrected the end-diastolic volume, an important diastolic parameter not rescued by ΔH2-R19 mini-dystrophin. It is concluded that that ΔH2-R15 mini-dystrophin is a superior candidate gene for heart protection. This finding has important implications in the design of the mini/micro-dystrophin gene for Duchenne cardiomyopathy therapy.
Collapse
Affiliation(s)
- Nalinda B Wasala
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Jin-Hong Shin
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Yi Lai
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Yongping Yue
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Federica Montanaro
- 2 Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health , London, United Kingdom
| | - Dongsheng Duan
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri.,3 Department of Neurology, School of Medicine, The University of Missouri , Columbia, Missouri.,4 Department of Bioengineering, The University of Missouri , Columbia, Missouri.,5 Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri , Columbia, Missouri
| |
Collapse
|
59
|
Wang L, Ye N, Lian X, Peng F, Zhang H, Gong H. MiR-208a-3p aggravates autophagy through the PDCD4-ATG5 pathway in Ang II-induced H9c2 cardiomyoblasts. Biomed Pharmacother 2018; 98:1-8. [DOI: 10.1016/j.biopha.2017.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022] Open
|
60
|
Balatskyi VV, Ruban TP, Macewicz LL, Piven OO. Cardiospecific knockout of αE-catenin leads to violation of the neonatal cardiomyocytes maturation via β-catenin and Yap signaling. ACTA ACUST UNITED AC 2018. [DOI: 10.7124/bc.00096a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - T. P. Ruban
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| | - L. L. Macewicz
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| | - O. O. Piven
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|
61
|
Bounihi A, Bitam A, Bouazza A, Yargui L, Koceir EA. Fruit vinegars attenuate cardiac injury via anti-inflammatory and anti-adiposity actions in high-fat diet-induced obese rats. PHARMACEUTICAL BIOLOGY 2017; 55:43-52. [PMID: 27595296 PMCID: PMC7011948 DOI: 10.1080/13880209.2016.1226369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 06/28/2016] [Accepted: 08/15/2016] [Indexed: 06/02/2023]
Abstract
CONTEXT Fruit vinegars (FVs) are used in Mediterranean folk medicine for their hypolipidemic and weight-reducing properties. OBJECTIVE To investigate the preventive effects of three types of FV, commonly available in Algeria, namely prickly pear [Opuntia ficus-indica (L.) Mill (Cectaceae)], pomegranate [Punica granatum L. (Punicaceae)], and apple [Malus domestica Borkh. (Rosaceae)], against obesity-induced cardiomyopathy and its underlying mechanisms. MATERIALS AND METHODS Seventy-two male Wistar rats were equally divided into 12 groups. The first group served as normal control (distilled water, 7 mL/kg bw), and the remaining groups were respectively treated with distilled water (7 mL/kg bw), acetic acid (0.5% w/v, 7 mL/kg bw) and vinegars of pomegranate, apple or prickly pear (at doses of 3.5, 7 and 14 mL/kg bw, acetic acid content as mentioned above) along with a high-fat diet (HFD). The effects of the oral administration of FV for 18 weeks on the body and visceral adipose tissue (VAT) weights, plasma inflammatory and cardiac enzymes biomarkers, and in heart tissue were evaluated. RESULTS Vinegars treatments significantly (p < .05) attenuated the HFD-induced increase in bw (0.2-0.5-fold) and VAT mass (0.7-1.8-fold), as well as increase in plasma levels of CRP (0.1-0.3-fold), fibrinogen (0.2-0.3-fold), leptin (1.7-3.7-fold), TNF-α (0.1-0.6-fold), AST (0.9-1.4-fold), CK-MB (0.3-1.4-fold) and LDH (2.7-6.7-fold). Moreover, vinegar treatments preserved myocardial architecture and attenuated cardiac fibrosis. DISCUSSION AND CONCLUSION These findings suggest that pomegranate, apple and prickly pear vinegars may prevent HFD-induced obesity and obesity-related cardiac complications, and that this prevention may result from the potent anti-inflammatory and anti-adiposity properties of these vinegars.
Collapse
Affiliation(s)
- Abdenour Bounihi
- Department of Biology and Physiology of Organisms, Bioenergetics and Intermediary Metabolism Team, FSB, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Arezki Bitam
- Department of Biology and Physiology of Organisms, Bioenergetics and Intermediary Metabolism Team, FSB, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
- Department of Food Technology and Human Nutrition, Ecole Nationale Supérieure Agronomique, El Harrach, Algiers, Algeria
| | - Asma Bouazza
- Department of Biology and Physiology of Organisms, Bioenergetics and Intermediary Metabolism Team, FSB, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Lyece Yargui
- Department of Medicine, Faculty of Health Sciences, Central Biochemistry Laboratory, Mustapha Bacha Hospital, Algiers, Algeria
| | - Elhadj Ahmed Koceir
- Department of Biology and Physiology of Organisms, Bioenergetics and Intermediary Metabolism Team, FSB, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
62
|
Dogan A, Parmaksız M, Elçin AE, Elçin YM. Extracellular Matrix and Regenerative Therapies from the Cardiac Perspective. Stem Cell Rev Rep 2017; 12:202-13. [PMID: 26668014 DOI: 10.1007/s12015-015-9641-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are the leading cause of death and a major cause of financial burden. Regenerative therapies for heart diseases bring the promise of alternative treatment modalities for myocardial infarction, ischemic heart disease, and congestive heart failure. Although, clinical trials attest to the safety of stem cell injection therapies, researchers need to overcome the underlying mechanisms that are limiting the success of future regenerative options. This article aims to review the basic scientific concepts in the field of mechanobiology and the effects of extracellular functions on stem cell fate.
Collapse
Affiliation(s)
- Arin Dogan
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Degol Caddesi, Tandogan, 06100, Ankara, Turkey
| | - Mahmut Parmaksız
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Degol Caddesi, Tandogan, 06100, Ankara, Turkey
| | - A Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Degol Caddesi, Tandogan, 06100, Ankara, Turkey
| | - Y Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Degol Caddesi, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
63
|
Rutin Attenuates Carfilzomib-Induced Cardiotoxicity Through Inhibition of NF-κB, Hypertrophic Gene Expression and Oxidative Stress. Cardiovasc Toxicol 2017; 17:58-66. [PMID: 26707720 DOI: 10.1007/s12012-015-9356-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carfilzomib is a proteasome inhibitor, commonly used in multiple myeloma, but its clinical use may be limited due to cardiotoxicity. This study was aimed to evaluate the influence of rutin in carfilzomib-induced cardiotoxicity in rats. Wistar albino male rats weighing 200-250 g (approximately 10 weeks old) were taken for this study. Animals were divided into four groups of six animals each. Group 1 served as normal control (NC), received normal saline; group 2 animals received carfilzomib (dissolved in 1 % DMSO) alone; group 3 animals received rutin (20 mg/kg) + carfilzomib; and group 4 animals received rutin (40 mg/kg) + carfilzomib. Hematological changes, biochemical changes, oxidative stress, hypertrophic gene expression, apoptotic gene expression, NFκB and IκB-α protein expression and histopathological evaluation were done to confirm the finding of carfilzomib-induced cardiotoxicity. Treatment with rutin decreased the carfilzomib-induced changes in cardiac enzymes such as lactate dehydrogenase, creatine kinase (CK) and CK-MB. For the assessment of cardiotoxicity, we further evaluated cardiac hypertrophic gene and apoptotic gene expression such as α-MHC, β-MHC and BNP and NF-κB and p53 gene expression, respectively, using RT-PCR. Western blot analysis showed that rutin treatment prevented the activation of NF-κB by increasing the expression of IκB-α. Rutin also attenuated the effects of carfilzomib on oxidant-antioxidant including malondialdehyde and reduced glutathione. Histopathological study clearly confirmed that rutin attenuated carfilzomib-induced cardiotoxicity in rats.
Collapse
|
64
|
Rüdebusch J, Benkner A, Poesch A, Dörr M, Völker U, Grube K, Hammer E, Felix SB. Dynamic adaptation of myocardial proteome during heart failure development. PLoS One 2017; 12:e0185915. [PMID: 28973020 PMCID: PMC5626523 DOI: 10.1371/journal.pone.0185915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022] Open
Abstract
Heart failure (HF) development is characterized by huge structural changes that are crucial for disease progression. Analysis of time dependent global proteomic adaptations during HF progression offers the potential to gain deeper insights in the disease development and identify new biomarker candidates. Therefore, hearts of TAC (transverse aortic constriction) and sham mice were examined by cardiac MRI on either day 4, 14, 21, 28, 42, and 56 after surgery (n = 6 per group/time point). At each time point, proteomes of the left (LV) and right ventricles (RV) of TAC and sham mice were analyzed by mass spectrometry (MS). In TAC mice, systolic LV heart function worsened from day 4 to day 14, remained on a stable level from day 14 to day 42, and showed a further pronounced decline at day 56. MS analysis identified in the LV 330 and in RV 246 proteins with altered abundance over time (TAC vs. sham, fc≥±2). Functional categorization of proteins disclosed the time-dependent alteration of different pathways. Heat shock protein beta-7 (HSPB7) displayed differences in abundance in tissue and serum at an early stage of HF. This study not only provides an overview of the time dependent molecular alterations during transition to HF, but also identified HSPB7 as a novel blood biomarker candidate for the onset of cardiac remodeling.
Collapse
Affiliation(s)
- Julia Rüdebusch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Alexander Benkner
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Axel Poesch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Karina Grube
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Elke Hammer
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- * E-mail: (SBF); (EH)
| | - Stephan B. Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
- * E-mail: (SBF); (EH)
| |
Collapse
|
65
|
Hu ZQ, Luo JF, Yu XJ, Zhu JN, Huang L, Yang J, Fu YH, Li T, Xue YM, Feng YQ, Shan ZX. Targeting myocyte-specific enhancer factor 2D contributes to the suppression of cardiac hypertrophic growth by miR-92b-3p in mice. Oncotarget 2017; 8:92079-92089. [PMID: 29190899 PMCID: PMC5696165 DOI: 10.18632/oncotarget.20759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/30/2017] [Indexed: 01/05/2023] Open
Abstract
The role of microRNA-92b-3p (miR-92b-3p) in cardiac hypertrophy was not well illustrated. The present study aimed to investigate the expression and potential target of miR-92b-3p in angiotensin II (Ang-II)-induced mouse cardiac hypertrophy. MiR-92b-3p was markedly decreased in the myocardium of Ang-II-infused mice and of patients with cardiac hypertrophy. However, miR-92b-3p expression was revealed increased in Ang-II-induced neonatal mouse cardiomyocytes. Cardiac hypertrophy was shown attenuated in Ang-II-infused mice received tail vein injection of miR-92b-3p mimic. Moreover, miR-92b-3p inhibited the expression of atrial natriuretic peptide (ANP), skeletal muscle α-actin (ACTA1) and β-myosin heavy chain (MHC) in Ang-II-induced mouse cardiomyocytes in vitro. Myocyte-specific enhancer factor 2D (MEF2D), which was increased in Ang-II-induced mouse hypertrophic myocardium and cardiomyocytes, was identified as a target gene of miR-92b-3p. Functionally, miR-92b-3p mimic, consistent with MEF2D siRNA, inhibited cell size increase and protein expression of ANP, ACTA1 and β-MHC in Ang-II-treated mouse cardiomyocytes. Taken together, we demonstrated that MEF2D is a novel target of miR-92b-3p, and attenuation of miR-92b-3p expression may contribute to the increase of MEF2D in cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhi-Qin Hu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Fang Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Ju Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Ning Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong-Heng Fu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tao Li
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying-Qing Feng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Xin Shan
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
66
|
Tsai CY, Kuo WW, Shibu MA, Lin YM, Liu CN, Chen YH, Day CH, Shen CY, Viswanadha VP, Huang CY. E2/ER β inhibit ISO-induced cardiac cellular hypertrophy by suppressing Ca2+-calcineurin signaling. PLoS One 2017; 12:e0184153. [PMID: 28863192 PMCID: PMC5580914 DOI: 10.1371/journal.pone.0184153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular incidences are markedly higher in men than in pre-menstrual women. However, this advantage in women declines with aging and therefore can be correlated with the sex hormone 17β-Estradiol (E2) which is reported to protect heart cells by acting though estrogen receptors (ERs). In this study we have determined the effect of E2/ERβ against ISO induced cellular hypertrophy in H9c2 cardiomyoblast cells. The results confirm that ISO induced cardiac-hypertrophy by elevating the levels of hypertrophy associated proteins, ANP and BNP and further by upregulating p-CaMKII, calcineurin, p-GATA4 and NFATc3 which was correlated with a significant enlargement of the H9c2 cardiomyoblast. However, overexpression of ERβ and/or administration of E2 inhibited ISO-induced hypertrophy in H9c2 cells. In addition, E2/ERβ also inhibited ISO-induced NFATc3 translocation, and reduced the protein level of downstream marker, BNP. Furthermore, by testing with the calcineurin inhibitor (CsA), it was confirmed that calcineurin acted as a key mediator for the anti-hypertrophic effect of E2/ERβ. In cells treated with calcium blocker (BATPA), the inhibitory effect of E2/ERβ on ISO-induced Ca2+ influx and hypertrophic effects were totally blocked suggesting that E2/ERβ inhibited calcineurin activity to activate I-1 protein and suppress PP1, then induce PLB protein phosphorylation and activation, resulting in Ca2+ reuptake into sarcoplasmic reticulum through SR Ca2+ cycling modification. In conclusion, E2/ERβ suppresses the Ca2+ influx and calcineurin activity induced by ISO to enhance the PLB protein activity and SR Ca2+ cycling.
Collapse
Affiliation(s)
- Cheng-Yen Tsai
- Department of Pediatrics, China Medical University Beigang Hospital, Yunlin, Taiwan, ROC
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, ROC
| | | | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chien-Nam Liu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yi-Hui Chen
- Department of M-Commerce and Multimedia Applications, Asia University, Taichung, Taiwan
| | | | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
67
|
Asokan Shibu M, Kuo WW, Kuo CH, Day CH, Shen CY, Chung LC, Lai CH, Pan LF, Vijaya Padma V, Huang CY. Potential phytoestrogen alternatives exert cardio-protective mechanisms via estrogen receptors. Biomedicine (Taipei) 2017; 7:11. [PMID: 28612709 PMCID: PMC5479424 DOI: 10.1051/bmdcn/2017070204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
The 17 beta-estradiol (E2) is a sex hormone that is most abundant and most active estrogen in premenopausal women. The importance of E2 in providing cardioprotection and reducing the occurrence of heart disease in women of reproductive age has been well recognized. There are three subtype of estrogen receptors (ERs), including ERα, ERβ and GPR30 have been identified and accumulating evidence reveal their roles on E2-mediated genomic and nongenomic pathway in cardiomyocytes against various cardiac insults. In this review, we focus on the estrogen and ERs mediated signaling pathways in cardiomyocytes that determines cardio-protection against various stresses and further discuss the clinical implication of ERs and phytoestrogens. Further we provide some insights on phytoeostrogens which may play as alternatives in estrogen replacement therapies.
Collapse
Affiliation(s)
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Department of Sports Sciences, University of Taipei, Taipei 100, Taiwan
| | | | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung 912,Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan 717, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed-Force, Taichung General Hospital, Taichung 411, Taiwan
| | - Lung-Fa Pan
- Division of Cardiology, Department of Internal Medicine, Armed-Force, Taichung General Hospital, Taichung 411, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiyar University, Coimbatore, Tamil Nadu 641046, India
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan - School of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
68
|
Dong B, Xue R, Sun Y, Dong Y, Liu C. Sestrin 2 attenuates neonatal rat cardiomyocyte hypertrophy induced by phenylephrine via inhibiting ERK1/2. Mol Cell Biochem 2017; 433:113-123. [PMID: 28497371 DOI: 10.1007/s11010-017-3020-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/21/2017] [Indexed: 11/24/2022]
Abstract
Cardiac hypertrophy is an adaptive response triggered by many physiological and pathological conditions and will lead to heart failure eventually. Sestrin 2, which is a stress-responsive protein, was reported to protect heart from ischemia reperfusion injury. However, the role of Sestrin 2 in cardiac hypertrophy remains unknown. In our present study, we aimed to explore the effects of Sestrin 2 on cardiomyocyte hypertrophy. We found that knockdown of Sestrin 2 protein aggravated cardiomyocyte hypertrophy induced by phenylephrine (PE), featured by increased hypertrophic marker ANP and cell surface area. During this process, ERK1/2 cascade was further activated, while p38, JNK1/2, and mTOR signaling pathways were not affected by downregulation of Sestrin 2. Moreover, overexpression of Sestrin 2 protein protected cardiomyocytes from PE-induced hypertrophy and ERK1/2 cascade was suppressed correspondingly. Importantly, pharmacological inhibition of ERK1/2 eliminated the exacerbated hypertrophic phenotype due to Sestrin 2 protein knockdown. In conclusion, we discovered that Sestrin 2 protected against cardiomyocyte hypertrophy induced by PE via inhibiting ERK1/2 signaling.
Collapse
Affiliation(s)
- Bin Dong
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China
| | - Ruicong Xue
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China
| | - Yu Sun
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China
| | - Yugang Dong
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China.
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China.
| | - Chen Liu
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China.
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China.
| |
Collapse
|
69
|
Pressure-overload-induced angiotensin-mediated early remodeling in mouse heart. PLoS One 2017; 12:e0176713. [PMID: 28464037 PMCID: PMC5413013 DOI: 10.1371/journal.pone.0176713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/15/2017] [Indexed: 11/19/2022] Open
Abstract
Our previous work on angiotensin II-mediated electrical-remodeling in canine left ventricle, in connection with a long history of other studies, suggested the hypothesis: increases in mechanical load induce autocrine secretion of angiotensin II (A2), which coherently regulates a coterie of membrane ion transporters in a manner that increases contractility. However, the relation between load and A2 secretion was correlative. We subsequently showed a similar or identical system was present in murine heart. To investigate whether the relation between mechanical load and A2-mediated electrical remodeling was causal, we employed transverse aortic constriction in mice to subject the left ventricle to pressure overload for short-term (1 to 2 days) or long-term (1 to 2 weeks) periods. Heart-to-body weight ratios and cell capacitance measurements were used to determine hypertrophy. Whole-cell patch clamp recordings of the predominant repolarization currents Ito,fast and IK,slow were used to assess electrical remodeling. Hearts or myocytes subjected to long-term load displayed significant hypertrophy, which was not evident in short-term load. However, short-term load induced significant reductions in Ito,fast and IK,slow. Incubation of these myocytes with the angiotensin II type 1 receptor inhibitor saralasin for 2 hours restored Ito,fast and IK,slow to control levels. The number of Ito.fast or IK,slow channels did not change with A2 or long-term load, however the hypertrophic increase in membrane area reduced the current densities for both channels. For Ito,fast but not IK,slow there was an additional reduction that was reversed by inhibition of angiotensin receptors. These results suggest increased load activates an endogenous renin angiotensin system that initially reduces Ito,fast and IK,slow prior to the onset of hypertrophic growth. However, there are functional interactions between electrical and anatomical remodeling. First, hypertrophy tends to reduce all current densities. Second, the hypertrophic program can modify signaling between the angiotensin receptor and target current.
Collapse
|
70
|
Wang Y, Tang Y, Zou Y, Wang D, Zhu L, Tian T, Wang J, Bao J, Hui R, Kang L, Song L, Wang J. Plasma level of big endothelin-1 predicts the prognosis in patients with hypertrophic cardiomyopathy. Int J Cardiol 2017; 243:283-289. [PMID: 28587741 DOI: 10.1016/j.ijcard.2017.03.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cardiac remodeling is one of major pathological process in hypertrophic cardiomyopathy (HCM). Endothelin-1 has been linked to cardiac remodeling. Big endothelin-1 is the precursor of endothelin-1. METHODS A total of 245 patients with HCM were enrolled from 1999 to 2011 and partitioned to low, middle and high level groups according to their plasma big endothelin-1 levels. RESULTS At baseline, significant associations were found between high level of big endothelin-1 and left atrium size, heart function and atrial fibrillation. Big endothelin-1 was positively correlated with N-terminal B-type natriuretic peptide (r=0.291, p<0.001) and late gadolinium enhancement (LGE) on magnetic resonance imaging (r=0.222, p=0.016). During a follow-up of 3 (range, 2-5) years, big endothelin-1 level was positively associated with the risks of all-cause mortality, cardiovascular death and progression to NYHA class 3 or 4 (p=0.020, 0.044 and 0.032, respectively). The rate of above events in the highest tertile were 18.1%, 15.7%, 24.2%, respectively. After adjusting for multiple factors related to survival and cardiac function, the significance remained in the association of big endothelin-1 with the risk of all-cause mortality (hazard ratio (HR)=4.94, 95% confidence interval (CI) 1.07-22.88; p=0.041) and progression to NYHA class 3 or 4 (HR=4.10, 95%CI 1.32-12.75, p=0.015). CONCLUSION Our study showed that high level of plasma big endothelin-1 predicted prognosis for patients with HCM and it can be added to the marker panel in stratifying HCM patients for giving treatment priority to those at high risk.
Collapse
Affiliation(s)
- Yilu Wang
- Department of ICU, China Meitan General Hospital, Beijing, China
| | - Yida Tang
- State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yubao Zou
- State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Dong Wang
- State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ling Zhu
- Department of Cardiology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Tao Tian
- State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jizheng Wang
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingru Bao
- Center for Cardiovascular Diseases, PLA Navy General Hospital, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lianming Kang
- State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Ji Wang
- Department of ICU, China Meitan General Hospital, Beijing, China.
| |
Collapse
|
71
|
Inhibition of Cardiac Hypertrophy Effects in D-Galactose-Induced Senescent Hearts by Alpinate Oxyphyllae Fructus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2624384. [PMID: 28479925 PMCID: PMC5396449 DOI: 10.1155/2017/2624384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/14/2016] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
Abstract
Aging is a complex physiological phenomenon accelerated by ROS accumulation, with multisystem decline and increasing vulnerability to degenerative diseases and death. Cardiac hypertrophy is a key pathophysiological component that accompanies the aging process. Alpinate Oxyphyllae Fructus (Alpinia oxyphylla MIQ, AOF) is a traditional Chinese medicine, which provides cardioprotective activity against aging, hypertension, and cerebrovascular disorders. In this study, we found the protective effect of AOF against cardiac hypertrophy in D-galactose-induced aging rat model. The results showed that treating rats with D-galactose resulted in pathological hypertrophy as evident from the morphology change, increased left ventricular weight/whole heart weight, and expression of hypertrophy-related markers (MYH7 and BNP). Both concentric and eccentric cardiac hypertrophy signaling proteins were upregulated in aging rat model. However, these pathological changes were significantly improved in AOF treated group (AM and AH) in a dose-dependent manner. AOF negatively modulated D-galactose-induced cardiac hypertrophy signaling mechanism to attenuate ventricular hypertrophy. These enhanced cardioprotective activities following oral administration of AOF reflect the potential use of AOF for antiaging treatments.
Collapse
|
72
|
Effects of histone deacetylase inhibitory prodrugs on epigenetic changes and DNA damage response in tumor and heart of glioblastoma xenograft. Invest New Drugs 2017; 35:412-426. [DOI: 10.1007/s10637-017-0448-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
|
73
|
The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem 2017; 429:151-165. [DOI: 10.1007/s11010-017-2943-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
74
|
Perspectivas moleculares en cardiopatía hipertrófica: abordaje epigenético desde la modificación de la cromatina. REVISTA COLOMBIANA DE CARDIOLOGÍA 2017. [DOI: 10.1016/j.rccar.2016.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
75
|
Zhou X, Sun F, Luo S, Zhao W, Yang T, Zhang G, Gao M, Lu R, Shu Y, Mu W, Zhuang Y, Ding F, Xu C, Lu Y. Let-7a Is an Antihypertrophic Regulator in the Heart via Targeting Calmodulin. Int J Biol Sci 2017; 13:22-31. [PMID: 28123343 PMCID: PMC5264258 DOI: 10.7150/ijbs.16298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/10/2016] [Indexed: 01/19/2023] Open
Abstract
Background: MicroRNAs (miRNAs) have been emerged as important regulator in a multiple of cardiovascular disease, including arrhythmia, cardiac hypertrophy and fibrosis, and myocardial infarction. The aim of this study was to investigate whether miRNA let-7a has antihypertrophic effects in angiotensin II (AngII)-induced cardiac hypertrophy. Methods: Neonatal rat ventricular myocytes (NRVMs) were exposed to AngII for 36 h as a cellular model of hypertrophy; subcutaneous injection of AngII for 2 weeks was used to establish a mouse model of cardiac hypertrophy in vivo study. Cell surface area (CSA) was measured by immunofluorescence cytochemistry; expression of hypertrophy-related genes ANP, BNP, β-MHC was detected by Real-time PCR; luciferase activity assay was performed to confirm the miRNA's binding site in the calmodulin (CaM) gene; CaM protein was detected by Western blot; the hypertrophy parameters were measured by echocardiographic assessment. Results: The expression of let-7a was decreased in AngII-induced cardiac hypertrophy in vitro and in vivo. Overexpression of let-7a attenuated AngII-induced increase of cell surface area and repressed the increased mRNA levels of ANP, BNP and β-MHC. Dual-luciferase reporter assay showed that let-7a could bind to the 3'UTR of CaM 1 gene. Let-7a downregulated the expression of CaM protein. In vivo, let-7a produced inhibitory effects on cardiac hypertrophy, including the downregulation of cross-sectional area of cardiomyocytes in mouse heart, the reduction of IVSD and LVPWD, the suppression of hypertrophy marker genes ANP, BNP, β-MHC mRNA level, and the downregulation of CaM protein level. Conclusions: let-7a possesses a prominent anti-hypertrophic property by targeting CaM genes. The findings provide new insight into molecular mechanism of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China.; Department of Cardiology (Key Laboratory of Myocardial Ischemia, Ministry of Education), The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Fei Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China.; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Shenjian Luo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Wei Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Ti Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Guiye Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Ming Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Renzhong Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - You Shu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Wei Mu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yanan Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Fengzhi Ding
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China.; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
76
|
Namdari M, Eatemadi A. Cardioprotective effects of curcumin-loaded magnetic hydrogel nanocomposite (nanocurcumin) against doxorubicin-induced cardiac toxicity in rat cardiomyocyte cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:731-739. [PMID: 27924631 DOI: 10.1080/21691401.2016.1261033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Curcumin, is a yellow substance extracted from Curcuma longa rhizomes, it is a crystalline compound that has been traditionally applied in culinary practices and medicines in India. The aim of our study is to demonstrate the efficacy of curcumin-loaded magnetic hydrogel nanocomposite in the treatment of heart hypertrophy. 10 rats weighing 150-200 g each were induced with heart failure using 2.5 mg/kg doxorubicin for 2 weeks. The test groups were treated with curcumin-loaded magnetic hydrogel nanocomposite while the control was treated with curcumin alone. malondialdehyde (MDA) levels, superoxide dismutase (SOD), and glutathione peroxidase (GPX) enzymes activities were monitored after two weeks of last the dose. In addition, the expression of three heart failure markers; atrial natriuretic peptide (ANP), B type natriuretic peptide (BNP), and beta major histocompatibility complex (β-MHC) were observed, it was found that the expression of these markers decreases with an increase in the concentration of curcumin (P < 0.05). Curcumin elevated the decreased level of GPX and SOD, and reduced the elevated level of MDA in cardiac tissue. We suggest this combination to be a potent therapy for heart failure and hypertension in the nearest future.
Collapse
Affiliation(s)
- Mehrdad Namdari
- a Department of Cardiology , Lorestan University of Medical Sciences , Khoramabad , Iran
| | - Ali Eatemadi
- b Department of Medical Biotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical sciences , Tehran , Iran
| |
Collapse
|
77
|
Dhar A, Udumula MP, Medapi B, Bhat A, Dhar I, Malapati P, Babu MS, Kalra J, Sriram D, Desai KM. Pharmacological evaluation of novel alagebrium analogs as methylglyoxal scavengers in vitro in cardiac myocytes and in vivo in SD rats. Int J Cardiol 2016; 223:581-589. [DOI: 10.1016/j.ijcard.2016.08.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/09/2016] [Accepted: 08/12/2016] [Indexed: 12/30/2022]
|
78
|
De Los Santos S, García-Pérez V, Hernández-Reséndiz S, Palma-Flores C, González-Gutiérrez CJ, Zazueta C, Canto P, Coral-Vázquez RM. (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Mol Nutr Food Res 2016; 61. [PMID: 27605464 DOI: 10.1002/mnfr.201600343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 11/08/2022]
Abstract
SCOPE The flavanol (-)-epicatechin (Epi) has cardioprotective effects and improves physical capacity in normal mice. In addition, Epi increases nitric oxide (NO) production by activation of both PI3K/Akt or Ca2+ /CaMI/CaMKII (where Akt is protein kinase B; PI3K is phosphoinositide 3-kinase; CaMI is calmodulin; CaMKII is Ca2+ /calmodulin-dependent protein kinase II) signaling pathways, which have been associated with physiological and pathological cardiac hypertrophy, respectively. Notwithstanding all this information, few studies have been carried out that aimed to determine the potential beneficial effects that Epi may have in normal heart. METHODS AND RESULTS Mice were treated by oral gavage with the flavanol Epi. The treatment induced a significant increase in heart weight, size of the free walls, and size of the cardiac fibers. Also, no evidence of cardiac fibrosis was revealed. Furthermore, the phosphorylation level of PI3K/Akt/mTOR/p70S6K (where mTOR is mammalian target of rapamycin; p70S6K is ribosomal protein S6 kinase beta-1) proteins was significantly higher in the heart of Epi-treated animals. In contrast, a significantly decreased level of pathological cardiac hypertrophy markers atrial natriuretic peptide and brain natriuretic peptide was observed along with no modification in the level of β myosin heavy chain beta, calmodulin, and Ca2+ /calmodulin-dependent protein kinase II proteins. Hemodynamic parameters indicated an improvement in mechanical heart performance after Epi treatment. Interestingly, morphometric parameters were similar between treated and untreated mice after 4 wk without treatment. CONCLUSION These findings indicate that Epi treatment induced physiological cardiac growth in healthy mice by activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Sergio De Los Santos
- Subdirección de Enseñanza e Investigación, División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, San Lorenzo 502, México City, México
| | - Viridiana García-Pérez
- Subdirección de Enseñanza e Investigación, División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, San Lorenzo 502, México City, México
| | - Sauri Hernández-Reséndiz
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, I. Ch. Juan Badiano No. 1, México City, México
| | - Carlos Palma-Flores
- Subdirección de Enseñanza e Investigación, División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, San Lorenzo 502, México City, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Delegación Miguel Hidalgo, México City, Mexico
| | - Carlos J González-Gutiérrez
- Subdirección de Enseñanza e Investigación, División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, San Lorenzo 502, México City, México
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, I. Ch. Juan Badiano No. 1, México City, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México.,Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán,", Vasco de Quiroga 15, México City, México
| | - Ramón M Coral-Vázquez
- Subdirección de Enseñanza e Investigación, División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, San Lorenzo 502, México City, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Delegación Miguel Hidalgo, México City, Mexico
| |
Collapse
|
79
|
Izquierdo I, Rosa I, Bravo SB, Guitián E, Pérez-Serra A, Campuzano O, Brugada R, Mangas A, García Á, Toro R. Proteomic identification of putative biomarkers for early detection of sudden cardiac death in a family with a LMNA gene mutation causing dilated cardiomyopathy. J Proteomics 2016; 148:75-84. [PMID: 27457270 DOI: 10.1016/j.jprot.2016.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 01/20/2023]
Abstract
UNLABELLED Dilated cardiomyopathy (DCM) is a severe heart disease characterized by progressive ventricular dilation and impaired systolic function of the left ventricle. We recently identified a novel pathogenic mutation in the LMNA gene in a family affected by DCM showing sudden death background. We now aimed to identify potential biomarkers of disease status, as well as sudden death predictors, in members of this family. We analysed plasma samples from 14 family members carrying the mutation, four of which (with relevant clinical symptoms) were chosen for the proteomic analysis. Plasma samples from these four patients and from four sex- and age-matched healthy controls were processed for their enrichment in low- and medium-abundance proteins (ProteoMiner™) prior to proteomic analysis by 2D-DIGE and MS. 111 spots were found to be differentially regulated between mutation carriers and control groups, 83 of which were successfully identified by MS, corresponding to 41 different ORFs. Some proteins of interest were validated either by turbidimetry or western blot in family members and healthy controls. Actin, alpha-1-antytripsin, clusterin, vitamin-D binding protein and antithrombin-III showed increased levels in plasma from the diseased group. We suggest following these proteins as putative biomarkers for the evaluation of DCM status in LMNA mutation carriers. BIOLOGICAL SIGNIFICANCE We developed a proteomic analysis of plasma samples from a family showing history of dilated cardiomyopathy caused by a LMNA mutation, which may lead to premature death or cardiac transplant. We identified a number of proteins augmented in mutation carriers that could be followed as potential biomarkers for dilated cardiomyopathy on these patients.
Collapse
Affiliation(s)
- Irene Izquierdo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Departament of Pharmacology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isaac Rosa
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Esteban Guitián
- Mass Spectrometry and Proteomic Unit, Rede de Infraestructuras de Apoio á Investigación e ao Desenvolvemento Tecnolóxico (RIAIDT), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Oscar Campuzano
- Cardiovascular Genetics Center, IDIBGI, University of Girona, Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, IDIBGI, University of Girona, Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Cardiac Genetics Unit, Hospital Josep Trueta, University of Girona, Girona, Spain
| | - Alipio Mangas
- Medicine Department, School of Medicine, Universidad de Cádiz, Spain
| | - Ángel García
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Departament of Pharmacology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rocio Toro
- Medicine Department, School of Medicine, Universidad de Cádiz, Spain.
| |
Collapse
|
80
|
Li J, Wu N, Dai W, Jiang L, Li Y, Li S, Wen Z. Association of serum calcium and heart failure with preserved ejection fraction in patients with type 2 diabetes. Cardiovasc Diabetol 2016; 15:140. [PMID: 27716206 PMCID: PMC5048602 DOI: 10.1186/s12933-016-0458-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/24/2016] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a recognized trigger factor for heart failure with preserved ejection fraction (HFpEF). Recent studies show that higher serum calcium level is associated with greater risk of both T2DM and heart failure. We speculate that increased serum calcium is related to HFpEF prevalence in patients with T2DM. METHODS In this cross-sectional echocardiographic study, 807 normocalcemia and normophosphatemia patients with T2DM participated, of whom 106 had HFpEF. Multinomial logistic regression was carried out to determine the variables associated with HFpEF. The associations between serum calcium and metabolic parameters, as well as the rate of HFpEF were examined using bivariate linear correlation and binary logistic regression, respectively. The predictive performance of serum calcium for HFpEF was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS Patients with HFpEF have significantly higher serum calcium than those without HFpEF. Serum calcium was positively associated with total cholesterol, triglycerides, low-density lipoprotein cholesterol, serum uric acid, HOMA-IR and fasting plasma glucose. Compared with patients in the lowest serum calcium quartile, the odds ratio (OR) for HFpEF in patients in the highest quartile was 2.331 (95 % CI 1.088-4.994, p = 0.029). When calcium was analyzed as a continuous variable, per 1 mg/dL increase, the OR (95 % CI) for HFpEF was [2.712 (1.471-5.002), p = 0.001]. Serum calcium can predict HFpEF [AUC = 0.673, 95 % CI (0.620-0.726), p < 0.001]. CONCLUSIONS An increase in serum calcium level is associated with an increased risk of HFpEF in patients with T2DM.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Nan Wu
- Department of Geriatrics, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Wenling Dai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liu Jiang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yintao Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong University School of Medicine, Jinan, 250012, China
| | - Shibao Li
- Department of Medical Laboratory, The Affiliated Hospital of Xuzhou Medical College, No. 99 Huaihai West Road, Xuzhou, 221000, China.
| | - Zhongyuan Wen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
81
|
Pasipoularides A. Calcific Aortic Valve Disease: Part 2-Morphomechanical Abnormalities, Gene Reexpression, and Gender Effects on Ventricular Hypertrophy and Its Reversibility. J Cardiovasc Transl Res 2016; 9:374-99. [PMID: 27184804 PMCID: PMC4992466 DOI: 10.1007/s12265-016-9695-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
In part 1, we considered cytomolecular mechanisms underlying calcific aortic valve disease (CAVD), hemodynamics, and adaptive feedbacks controlling pathological left ventricular hypertrophy provoked by ensuing aortic valvular stenosis (AVS). In part 2, we survey diverse signal transduction pathways that precede cellular/molecular mechanisms controlling hypertrophic gene expression by activation of specific transcription factors that induce sarcomere replication in-parallel. Such signaling pathways represent potential targets for therapeutic intervention and prevention of decompensation/failure. Hypertrophy provoking signals, in the form of dynamic stresses and ligand/effector molecules that bind to specific receptors to initiate the hypertrophy, are transcribed across the sarcolemma by several second messengers. They comprise intricate feedback mechanisms involving gene network cascades, specific signaling molecules encompassing G protein-coupled receptors and mechanotransducers, and myocardial stresses. Future multidisciplinary studies will characterize the adaptive/maladaptive nature of the AVS-induced hypertrophy, its gender- and individual patient-dependent peculiarities, and its response to surgical/medical interventions. They will herald more effective, precision medicine treatments.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke University School of Medicine, Durham, NC, USA.
- Duke/NSF Research Center for Emerging Cardiovascular Technologies, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
82
|
Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes. J Mol Cell Cardiol 2016; 97:70-81. [DOI: 10.1016/j.yjmcc.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 11/19/2022]
|
83
|
Maayah ZH, Abdelhamid G, El-Kadi AOS. Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-κB. Cell Biol Toxicol 2016; 31:241-59. [PMID: 26493311 DOI: 10.1007/s10565-015-9308-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/14/2015] [Indexed: 01/17/2023]
Abstract
Recent studies have established the role of mid-chain hydroxyeicosatetraenoic acids (mid-chain HETEs) in the development of cardiovascular disease. Among these mid-chains, 8-HETE has been reported to have a proliferator and proinflammatory action. However, whether 8-HETE can induce cardiac hypertrophy has never been investigated before. Therefore, the overall objectives of the present study are to elucidate the potential hypertrophic effect of 8-HETE in the human ventricular cardiomyocytes, RL-14 cells, and to explore the mechanism(s) involved. Our results showed that 8-HETE induced cellular hypertrophy in RL-14 cells as evidenced by the induction of cardiac hypertrophy markers ANP, BNP, α-MHC, and β-MHC in a concentration- and time-dependent manner as well as the increase in cell surface area. Mechanistically, 8-HETE was able to induce the NF-κB activity as well as it significantly induced the phosphorylation of ERK1/2. The induction of cellular hypertrophy was associated with a proportional increase in the formation of dihydroxyeicosatrienoic acids (DHETs) parallel to the increase of soluble epoxide hydrolase (sEH) enzyme activity. Blocking the induction of NF-κB, ERK1/2, and sEH signaling pathways significantly inhibited 8-HETE-induced cellular hypertrophy. Our study provides the first evidence that 8-HETE induces cellular hypertrophy in RL-14 cells through MAPK- and NF-κB-dependent mechanism
Collapse
|
84
|
High fructose diet suppresses exercise-induced increase in AQP7 expression in the in vivo rat heart. Anatol J Cardiol 2016; 16:916-922. [PMID: 27182614 PMCID: PMC5324910 DOI: 10.14744/anatoljcardiol.2016.6958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Cardiac uptake of fructose is thought to be mediated by glucose transporter 5 (GLUT5), whereas the uptake of glycerol is facilitated by aquaporin 7 (AQP7). We aimed to investigate the effect of a high-fructose diet (HFD) on GLUT5 and AQP7 levels in the rat heart subjected to exercise. Methods: Male Sprague–Dawley rats were allocated to control (C; n=11), exercise (E; n=10), HFD (n=12), and HFD plus exercise (HFD-E; n=12) groups. HFD was started 28 days before euthanasia. From day 24 to 27, rats were subjected to moderate exercise, followed by vigorous exercise on day 28 (groups E and HFD-E). Cardiac GLUT5 and AQP7 mRNA levels were determined using RT-PCR. The protein contents of GLUT5 and AQP7 were immunohistochemically assessed. Paired-t, ANOVA with Bonferroni, Kruskal–Wallis, and Bonferroni-corrected Mann–Whitney U tests were used for statistical analysis. Results: GLUT5 mRNA expression and protein content did not differ between the groups. AQP7 mRNA levels significantly increased (4.8-fold) in group E compared with in group C (p<0.001). Compared with group C, no significant change was observed in AQP7 mRNA levels in groups HFD and HFD-E. The AQP7 staining score in group E was significantly higher than that in groups C (p<0.001), E (p<0.001), and HFD-E (p<0.001). Conclusion: Our study indicates that exercise enhances cardiac AQP7 mRNA expression and protein content. However, HFD prevents the exercise-induced increase in cardiac AQP7 expression. This inhibitory effect may be related to the competition between fructose and glycerol as energy substrates in the rat heart subjected to 5 days of physical exercise. (Anatol J Cardiol 2016; 16: 916-22)
Collapse
|
85
|
Korashy HM, Attafi IM, Ansari MA, Assiri MA, Belali OM, Ahmad SF, Al-Alallah IA, Anazi FEA, Alhaider AA. Molecular mechanisms of cardiotoxicity of gefitinib in vivo and in vitro rat cardiomyocyte: Role of apoptosis and oxidative stress. Toxicol Lett 2016; 252:50-61. [PMID: 27084042 DOI: 10.1016/j.toxlet.2016.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 02/05/2023]
Abstract
Gefitinib (GEF) is a multi-targeted tyrosine kinase inhibitor with anti-cancer properties, yet few cases of cardiotoxicity has been reported as a significant side effect associated with GEF treatment. The main purpose of this study was to investigate the potential cardiotoxic effect of GEF and the possible mechanisms involved using in vivo and in vitro rat cardiomyocyte model. Treatment of rat cardiomyocyte H9c2 cell line with GEF (0, 1, 5, and 10μM) caused cardiomyocyte death and upregulation of hypertrophic gene markers, such as brain natriuretic peptides (BNP) and Beta-myosin heavy chain (β-MHC) in a concentration-dependent manner at the mRNA and protein levels associated with an increase in the percentage of hypertrophied cardiac cells. Mechanistically, GEF treatment caused proportional and concentration-dependent increases in the mRNA and protein expression levels of apoptotic markers caspase-3 and p53 which was accompanied with marked increases in the percentage of H9c2 cells underwent apoptosis/necrosis as compared to control. In addition, oxidative stress marker (heme oxygenase-1, HO-1) and the formation of reactive oxygen species were increased in response to GEF treatment. At the in vivo level, treatment of Wistar albino rats for 21days with GEF (20 and 30mg/kg) significantly increased the cardiac enzymes (CK, CKmb, and LDH) levels associated with histopathological changes indicative of cardiotoxicity. Similarly, in vivo GEF treatment increased the mRNA and protein levels of BNP and β-MHC whereas inhibited the antihypertrophoic gene (α-MHC) associated with increased the percentage of hypertrophied cells. Furthermore, the mRNA and protein expression levels of caspase-3, p53, and HO-1 genes and the percentage of apoptotic cells were significantly increased by GEF treatment, which was more pronounced at the 30mg/kg dose. In conclusion, GEF induces cardiotoxicity and cardiac hypertrophy in vivo and in vitro rat model through cardiac apoptotic cell death and oxidative stress pathways.
Collapse
Affiliation(s)
- Hesham M Korashy
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osamah M Belali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheik F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Al-Alallah
- Serology and Immunology department, PCLM, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Fawaz E Al Anazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulqader A Alhaider
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
86
|
Al-Harbi NO. Carfilzomib-induced cardiotoxicity mitigated by dexrazoxane through inhibition of hypertrophic gene expression and oxidative stress in rats. Toxicol Mech Methods 2016; 26:189-95. [PMID: 26899300 DOI: 10.3109/15376516.2016.1143071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carfilzomib (CFZ) is an inhibitor of proteasome that is generally used in the treatment of multiple myeloma but due to its cardiotoxicity clinical use may be limited. Dexrazoxane (DZR), an inhibitor of topoisomerase-II, prevents cardiac damage by reducing the formation of reactive oxygen species and hypertrophic gene expression. This study evaluated the protective effect of DZR on CFZ-induced cardiotoxicity. Thirty-two male Albino rats were randomly divided into four groups (n = 8). Group I received DMSO, Group II received CFZ (4 mg/kg, intraperitoneally [i.p.]) twice weekly up to day 16, Group III received DZR (20 mg/kg, i.p.) for 16 days and CFZ twice weekly for 16, Group IV received DZR (40 mg/kg, i.p.) for 16 days and CFZ twice weekly for 16. CFZ-induced cardiotoxicity was assessed by hematological, biochemical, mRNA expression, oxidative stress and histopathological studies. CFZ-induced significant changes have been observed in blood parameters including red blood cells, white blood cells, hemoglobin and hematocrit concentrations which were associated with increase in cardiac enzymes markers like creatine kinase (CK), CK-MB and lactate dehydrogenase. Treatment with DZR reversed the hematological statistics and the biochemical markers of CFZ-induced cardiotoxicity. Furthermore, DZR also attenuated the effects of CFZ-induced toxic effect on redox markers such as malondialdehyde and reduced glutathione. Above findings were further confirmed by beta-myosin heavy chain (β-MHC) and alpha-MHC (α-MHC) gene expression. Histopathological reports suggested that DZR ameliorates CFZ-induced changes in cardiac cellular architecture in rats. These results confirm that DZR protects heart from CFZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Naif O Al-Harbi
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA
| |
Collapse
|
87
|
Yang H, Schmidt LP, Wang Z, Yang X, Shao Y, Borg TK, Markwald R, Runyan R, Gao BZ. Dynamic Myofibrillar Remodeling in Live Cardiomyocytes under Static Stretch. Sci Rep 2016; 6:20674. [PMID: 26861590 PMCID: PMC4748238 DOI: 10.1038/srep20674] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
An increase in mechanical load in the heart causes cardiac hypertrophy, either physiologically (heart development, exercise and pregnancy) or pathologically (high blood pressure and heart-valve regurgitation). Understanding cardiac hypertrophy is critical to comprehending the mechanisms of heart development and treatment of heart disease. However, the major molecular event that occurs during physiological or pathological hypertrophy is the dynamic process of sarcomeric addition, and it has not been observed. In this study, a custom-built second harmonic generation (SHG) confocal microscope was used to study dynamic sarcomeric addition in single neonatal CMs in a 3D culture system under acute, uniaxial, static, sustained stretch. Here we report, for the first time, live-cell observations of various modes of dynamic sarcomeric addition (and how these real-time images compare to static images from hypertrophic hearts reported in the literature): 1) Insertion in the mid-region or addition at the end of a myofibril; 2) Sequential addition with an existing myofibril as a template; and 3) Longitudinal splitting of an existing myofibril. The 3D cell culture system developed on a deformable substrate affixed to a stretcher and the SHG live-cell imaging technique are unique tools for real-time analysis of cultured models of hypertrophy.
Collapse
Affiliation(s)
- Huaxiao Yang
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Lucas P Schmidt
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Zhonghai Wang
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Xiaoqi Yang
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Yonghong Shao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Thomas K Borg
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Roger Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Bruce Z Gao
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
88
|
Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 2016; 594:509-25. [PMID: 26537557 DOI: 10.1113/jp271301] [Citation(s) in RCA: 459] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/30/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. 'Mitochondrial dynamics', the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Ivonne García-Carvajal
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Sergio Lavandero
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
89
|
Zhang C, Wang F, Zhang Y, Kang Y, Wang H, Si M, Su L, Xin X, Xue F, Hao F, Yu L, Xu J, Liu Y, Xue M. Celecoxib prevents pressure overload-induced cardiac hypertrophy and dysfunction by inhibiting inflammation, apoptosis and oxidative stress. J Cell Mol Med 2016; 20:116-127. [PMID: 26512452 PMCID: PMC4717861 DOI: 10.1111/jcmm.12709] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022] Open
Abstract
To explore the effects of celecoxib on pressure overload-induced cardiac hypertrophy (CH), cardiac dysfunction and explore the possible protective mechanisms. We surgically created abdominal aortic constrictions (AAC) in rats to induce CH. Rats with CH symptoms at 4 weeks after surgery were treated with celecoxib [2 mg/100 g body-weight(BW)] daily for either 2 or 4 weeks. Survival rate, blood pressure and cardiac function were evaluated after celecoxib treatment. Animals were killed, and cardiac tissue was examined for morphological changes, cardiomyocyte apoptosis, fibrosis, inflammation and oxidative stress. Four weeks after AAC, rats had significantly higher systolic, diastolic and mean blood pressure, greater heart weight and enlarged cardiomyocytes, which were associated with cardiac dysfunction. Thus, the CH model was successfully established. Two weeks later, animals had impaired cardiac function and histopathological abnormalities including enlarged cardiomyocytes and cardiac fibrosis, which were exacerbated 2 weeks later. However, these pathological changes were remarkably prevented by the treatment of celecoxib, independent of preventing hypertension. Mechanistic studies revealed that celecoxib-induced cardiac protection against CH and cardiac dysfunction was due to inhibition of apoptosis via the murine double mimute 2/P53 pathway, inhibition of inflammation via the AKT/mTOR/NF-κB pathway and inhibition of oxidative stress via increases in nuclear factor E2-related factor-2-mediated gene expression of multiple antioxidants. Celecoxib suppresses pressure overload-induced CH by reducing apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Chi Zhang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Yingxia Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yimin Kang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Haisheng Wang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Mingming Si
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Liping Su
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xue Xin
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Feng Xue
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Fei Hao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lechu Yu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinzhong Xu
- The Affiliated Wenling Hospital of Wenzhou Medial University, Wenling, Zhejiang, China
| | - Yanlong Liu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingming Xue
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
90
|
Abstract
Tanshinones are lipophilic compounds derived fromSalvia miltiorrhiza(Danshen) that has been widely used to treat coronary heart diseases in China. The cardioprotective actions of tanshinones have been extensively studied in various models of myocardial infarction, cardiac ischemia reperfusion injury, cardiac hypertrophy, atherosclerosis, hypoxia, and cardiomyopathy. This review outlines the recent development in understanding the molecular mechanisms and signaling pathways involved in the cardioprotective actions of tanshinones, in particular on mitochondrial apoptosis, calcium, nitric oxide, ROS, TNF-α, PKC, PI3K/Akt, IKK/NF-κB, and TGF-β1/Smad mechanisms, which highlights the potential of these compounds as therapeutic agents for treating cardiovascular diseases.
Collapse
|
91
|
Cheng P, Zhang F, Yu L, Lin X, He L, Li X, Lu X, Yan X, Tan Y, Zhang C. Physiological and Pharmacological Roles of FGF21 in Cardiovascular Diseases. J Diabetes Res 2016; 2016:1540267. [PMID: 27247947 PMCID: PMC4876232 DOI: 10.1155/2016/1540267] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the most severe diseases in clinics. Fibroblast growth factor 21 (FGF21) is regarded as an important metabolic regulator playing a therapeutic role in diabetes and its complications. The heart is a key target as well as a source of FGF21 which is involved in heart development and also induces beneficial effects in CVDs. Our review is to clarify the roles of FGF21 in CVDs. Strong evidence showed that the development of CVDs including atherosclerosis, coronary heart disease, myocardial ischemia, cardiac hypertrophy, and diabetic cardiomyopathy is associated with serum FGF21 levels increase which was regarded as a compensatory response to induced cardiac protection. Furthermore, administration of FGF21 suppressed the above CVDs. Mechanistic studies revealed that FGF21 induced cardiac protection likely by preventing cardiac lipotoxicity and the associated oxidative stress, inflammation, and apoptosis. Normally, FGF21 induced therapeutic effects against CVDs via activation of the above kinases-mediated pathways by directly binding to the FGF receptors of the heart in the presence of β-klotho. However, recently, growing evidence showed that FGF21 induced beneficial effects on peripheral organs through an indirect way mediated by adiponectin. Therefore whether adiponectin is also involved in FGF21-induced cardiac protection still needs further investigation.
Collapse
Affiliation(s)
- Peng Cheng
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fangfang Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lechu Yu
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiufei Lin
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luqing He
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuemian Lu
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Tan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- *Yi Tan: and
| | - Chi Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- *Chi Zhang:
| |
Collapse
|
92
|
Berthiaume J, Kirk J, Ranek M, Lyon R, Sheikh F, Jensen B, Hoit B, Butany J, Tolend M, Rao V, Willis M. Pathophysiology of Heart Failure and an Overview of Therapies. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00008-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
93
|
Han Z, Luan Y, Zheng YG. Integration of Bioorthogonal Probes and Q-FRET for the Detection of Histone Acetyltransferase Activity. Chembiochem 2015; 16:2605-9. [PMID: 26455821 PMCID: PMC4804155 DOI: 10.1002/cbic.201500427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 11/06/2022]
Abstract
Histone acetyltransferases (HATs) are key players in the epigenetic regulation of gene function. The recent discovery of diverse HAT substrates implies a broad spectrum of cellular functions of HATs. Many pathological processes are also intimately associated with the dysregulation of HAT levels and activities. However, detecting the enzymatic activity of HATs has been challenging, and this has significantly impeded drug discovery. To advance the field, we developed a convenient one-pot, mix-and-read strategy that is capable of directly detecting the acylated histone product through a fluorescent readout. The strategy integrates three technological platforms-bioorthogonal HAT substrate labeling, alkyne-azide click chemistry, and quenching FRET-into one system for effective probing of HAT enzyme activity.
Collapse
Affiliation(s)
- Zhen Han
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 250 W Green Street, Athens, GA, 30602, USA
| | - Yepeng Luan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 250 W Green Street, Athens, GA, 30602, USA
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266000, China
| | - Yujun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 250 W Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
94
|
Cui H, Schlesinger J, Schoenhals S, Tönjes M, Dunkel I, Meierhofer D, Cano E, Schulz K, Berger MF, Haack T, Abdelilah-Seyfried S, Bulyk ML, Sauer S, Sperling SR. Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA. Nucleic Acids Res 2015; 44:2538-53. [PMID: 26582913 PMCID: PMC4824069 DOI: 10.1093/nar/gkv1244] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/01/2015] [Indexed: 01/09/2023] Open
Abstract
DPF3 (BAF45c) is a member of the BAF chromatin remodeling complex. Two isoforms have been described, namely DPF3a and DPF3b. The latter binds to acetylated and methylated lysine residues of histones. Here, we elaborate on the role of DPF3a and describe a novel pathway of cardiac gene transcription leading to pathological cardiac hypertrophy. Upon hypertrophic stimuli, casein kinase 2 phosphorylates DPF3a at serine 348. This initiates the interaction of DPF3a with the transcriptional repressors HEY, followed by the release of HEY from the DNA. Moreover, BRG1 is bound by DPF3a, and is thus recruited to HEY genomic targets upon interaction of the two components. Consequently, the transcription of downstream targets such as NPPA and GATA4 is initiated and pathological cardiac hypertrophy is established. In human, DPF3a is significantly up-regulated in hypertrophic hearts of patients with hypertrophic cardiomyopathy or aortic stenosis. Taken together, we show that activation of DPF3a upon hypertrophic stimuli switches cardiac fetal gene expression from being silenced by HEY to being activated by BRG1. Thus, we present a novel pathway for pathological cardiac hypertrophy, whose inhibition is a long-term therapeutic goal for the treatment of the course of heart failure.
Collapse
Affiliation(s)
- Huanhuan Cui
- Department of Cardiovascular Genetics, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany Group of Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jenny Schlesinger
- Department of Cardiovascular Genetics, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany Group of Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sophia Schoenhals
- Department of Cardiovascular Genetics, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Martje Tönjes
- Group of Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ilona Dunkel
- Group of Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Elena Cano
- Department of Cardiovascular Genetics, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Kerstin Schulz
- Department of Cardiovascular Genetics, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Michael F Berger
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Timm Haack
- Hannover Medical School, Institute of Molecular Biology, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Salim Abdelilah-Seyfried
- Hannover Medical School, Institute of Molecular Biology, Carl-Neuberg Str. 1, D-30625 Hannover, Germany Potsdam University, Institute of Biochemistry and Biology, Department of Animal Physiology, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sascha Sauer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany CU Systems Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Silke R Sperling
- Department of Cardiovascular Genetics, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany Group of Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
95
|
Korashy HM, Al-Suwayeh HA, Maayah ZH, Ansari MA, Ahmad SF, Bakheet SA. Mitogen-activated protein kinases pathways mediate the sunitinib-induced hypertrophy in rat cardiomyocyte H9c2 cells. Cardiovasc Toxicol 2015; 15:41-51. [PMID: 24984876 DOI: 10.1007/s12012-014-9266-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sunitinib (SUN) is a multi-targeted tyrosine kinase inhibitor used for the treatment of gastrointestinal stromal tumors and renal cell carcinoma. Cardiotoxicity has been reported as a significant side effect associated with the SUN treatment, yet the mechanism is poorly understood. The main purpose of this study was to investigate the potential effects of SUN on cardiac hypertrophic genes and the role of mitogen-activated protein kinases (MAPKs) signaling pathway in rat cardiomyocyte H9c2 cell line. In the present study, real-time quantitative polymerase chain reaction showed that the treatment of H9c2 cells with increasing concentrations of SUN (0, 1, 2.5, and 5 µM) significantly induced hypertrophic gene markers, such as brain natriuretic peptides (BNP) and myosin heavy chain (β-MHC and α-MHC) in concentration- and time-dependent manners. The onset of mRNA induction was observed as early as 9 h and remained elevated for at least 18 h after treatment with SUN 5 µM. At the protein level, Western blot analysis showed that SUN increased BNP and β-MHC, while it inhibited α-MHC protein levels in a concentration-dependent manner. These SUN-mediated effects were associated with increase in cell size and hypertrophy by approximately 70 % at the highest concentration, 5 µM. Importantly, inhibition of the MAPK signaling pathway using SB203580 (p38 MAPK inhibitor), U0126 (extracellular signal-regulated kinase inhibitor), and SP600125 (c-Jun NH2-terminal kinase inhibitor) significantly potentiated the SUN-induced BNP and β-MHC mRNA levels, but did alter the α-MHC level. Whereas at the protein level, MAPK inhibitors generally decreased the SUN-induced BNP, whereas only SB and U0 increased β-MHC protein levels with no effect on α-MHC, which were associated with a significant decrease in cell size. Together, these results indicate that SUN induced hypertrophic gene expression through MAPK-dependent mechanisms.
Collapse
Affiliation(s)
- Hesham Mohamed Korashy
- Department of Pharmacology and Toxicology, College of Pharmacology, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia,
| | | | | | | | | | | |
Collapse
|
96
|
Nogueira-Ferreira R, Moreira-Gonçalves D, Silva AF, Duarte JA, Leite-Moreira A, Ferreira R, Henriques-Coelho T. Exercise preconditioning prevents MCT-induced right ventricle remodeling through the regulation of TNF superfamily cytokines. Int J Cardiol 2015; 203:858-66. [PMID: 26599752 DOI: 10.1016/j.ijcard.2015.11.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Exercise training has been recognized as a non-pharmacological therapeutic approach in several chronic diseases; however it remains to be tested if exercise preconditioning can positively interfere with the natural history of pulmonary arterial hypertension (PAH). This is important since the majority of these patients are diagnosed at advanced stages of the disease, when right ventricle (RV) impairment is already present. OBJECTIVES In the current study, we evaluated the preventive effect of exercise preconditioning on RV failure secondary to PAH, with a focus on the signaling pathways modulated by pro-inflammatory cytokines from TNF superfamily. METHODS We analyzed the RV muscle from adult male Wistar rats exposed to a 4-week treadmill exercise training or sedentary regime, prior to the administration of monocrotaline (MCT) to induce PAH or with saline solution (controls). RESULTS Data indicate that exercise preconditioning prevented cardiac hypertrophy and RV diastolic dysfunction. At a molecular level, exercise modulated the TWEAK/NF-κB signaling axis and prevented the shift in MHC isoforms towards an increased expression of beta-MHC. Exercise preconditioning also prevented the increase of atrogin-1 expression, and induced a shift of MMP activity from MMP-9 to MMP-2 activity. CONCLUSIONS Altogether, data support exercise as a preventive strategy for the management of PAH, which is of particular relevance for the familial form of PAH that is manifested by greater severity or earlier onset.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal.
| | - Ana Filipa Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal; Department of Cardiothoracic Surgery, Hospital of São João, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tiago Henriques-Coelho
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
97
|
Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes. Cell Signal 2015; 28:725-32. [PMID: 26475678 PMCID: PMC4872538 DOI: 10.1016/j.cellsig.2015.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023]
Abstract
In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets.
Collapse
|
98
|
Trentin-Sonoda M, da Silva RC, Kmit FV, Abrahão MV, Monnerat Cahli G, Brasil GV, Muzi-Filho H, Silva PA, Tovar-Moll FF, Vieyra A, Medei E, Carneiro-Ramos MS. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice. PLoS One 2015; 10:e0139350. [PMID: 26448184 PMCID: PMC4598103 DOI: 10.1371/journal.pone.0139350] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022] Open
Abstract
We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation.
Collapse
Affiliation(s)
- Mayra Trentin-Sonoda
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Fernanda Vieira Kmit
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Gustavo Monnerat Cahli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Guilherme Visconde Brasil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Paulo André Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Fernanda Freire Tovar-Moll
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Emiliano Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | | |
Collapse
|
99
|
Koeck I, Burkhard FC, Monastyrskaya K. Activation of common signaling pathways during remodeling of the heart and the bladder. Biochem Pharmacol 2015; 102:7-19. [PMID: 26390804 DOI: 10.1016/j.bcp.2015.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.
Collapse
Affiliation(s)
- Ivonne Koeck
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | | | - Katia Monastyrskaya
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Department of Urology, University Hospital, Bern, Switzerland.
| |
Collapse
|
100
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|