51
|
Prognostic Significance of SPARC Expression in Breast Cancer: A Meta-Analysis and Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8600419. [PMID: 35211625 PMCID: PMC8863438 DOI: 10.1155/2022/8600419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/04/2021] [Accepted: 01/22/2022] [Indexed: 01/19/2023]
Abstract
Secreted protein, acidic and rich in cysteine (SPARC, also known as osteonectin), is a small molecule glycoprotein associated with cell secretions. The purpose of our research is to clarify the clinicopathological and prognostic significance of SPARC expression in breast cancer. In this study, we performed a meta-analysis and bioinformatics analysis using the PubMed, Web of Science, Wanfang Data, and CNKI databases. The meta-analysis showed that SPARC expression was elevated in breast cancer tissue, compared with normal tissue, while SPARC expression in tumor stromal cells was higher than that of tumor cells. The expression of SPARC was positively correlated with histological grade and TNM staging. The Kaplan-Meier plotter showed that low SPARC expression was negatively correlated with the overall, postprogression, and distant metastasis survival rates of patients. According to Oncomine database, SPARC expression was upregulated in breast cancer than normal tissues. In TCGA database, univariate analysis showed that lymph node metastasis, distant metastasis, and TNM staging were negatively correlated with patient prognosis in breast cancers. Cox multivariate analysis showed that age, lymph node metastasis, distant metastasis, and TNM staging were important factors affecting the survival time of breast cancer patients. SPARC expression can be employed as a good indicator of prognosis of breast cancer patients, which will provide new methods and ideas of preventive treatment.
Collapse
|
52
|
Convergent losses of SCPP genes and ganoid scales among non-teleost actinopterygians. Gene 2022; 811:146091. [PMID: 34864098 DOI: 10.1016/j.gene.2021.146091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
Various secretory calcium-binding phosphoprotein (SCPP) genes are expressed in the skin and jaw during the formation of bone, teeth, and scales in osteichthyans (bony vertebrates). Among these mineralized skeletal units is the ganoid scale, found in many fossil actinopterygians (ray-finned fish) but confirmed only in Polypteriformes (bichirs, reedfish) and Lepisosteiformes (gars) among extant clades. Here, we examined SCPP genes in the genome of seven non-teleost actinopterygian species that possess or do not possess ganoid scales. As a result, 39-43 SCPP genes were identified in Polypteriformes and Lepisosteiformes, whereas 22-24 SCPP genes were found in Acipenseriformes (sturgeons, paddlefish) and Amiiformes (bowfin). Most of these genes form two clusters in the genome of Polypteriformes, Lepisosteiformes, and Amiiformes, and these two clusters are duplicated in Acipenseriformes. Despite their distant phylogenetic relationship, Polypteriformes and Lepisosteiformes retain many orthologous SCPP genes. These results imply that common ancestors of extant actinopterygians possessed a large repertoire of SCPP genes, and that many SCPP genes were lost independently in Acipenseriformes and Amiiformes. Notably, most SCPP genes originally located in one of the two SCPP gene clusters are retained in Polypteriformes and Lepisosteiformes but were secondarily lost in Acipenseriformes and Amiiformes. In Lepisosteiformes, orthologs of these lost genes show high or detectable expression levels in the skin but not in the jaw. We thus hypothesize that many SCPP genes located in this cluster are involved in the formation of ganoid scales in Polypteriformes and Lepisosteiformes, and that their orthologs and ganoid scales were convergently lost in Acipenseriformes and Amiiformes.
Collapse
|
53
|
Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, Griffiths HR, Gao D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:873699. [PMID: 35909571 PMCID: PMC9329830 DOI: 10.3389/fendo.2022.873699] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Collapse
Affiliation(s)
- Yakun Ren
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
| | - Hao Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Lan
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Litao Wu
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaojuan Du
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Dan Gao
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
- *Correspondence: Dan Gao,
| |
Collapse
|
54
|
SPARC-mediated long-term retention of nab-paclitaxel in pediatric sarcomas. J Control Release 2021; 342:81-92. [PMID: 34974029 DOI: 10.1016/j.jconrel.2021.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein overexpressed by several cancers. Because SPARC shows high binding affinity to albumin, we reasoned that pediatric sarcoma xenografts expressing SPARC would show enhanced uptake and accumulation of nanoparticle albumin-bound (nab)-paclitaxel, a potent anticancer drug formulation. We first evaluated the expression of SPARC in patient-derived xenografts (PDXs) of Ewing sarcoma, rhabdomyosarcoma and osteosarcoma, finding variable SPARC gene expression that correlated well with SPARC protein measured by immunoblotting. We revealed that the activity of the fusion gene chimera EWSR1-FLI1, the genetic driver of Ewing sarcoma, leads to lower expression of the gene SPARC in these tumors, likely due to enriched acetylation marks of the histone H3 lysine 27 at regions including the SPARC promoter and potential enhancers. Then, we used SPARC-edited Ewing sarcoma cells (A673 line) to demonstrate that SPARC knocked down (KD) cells accumulated significantly less amount of nab-paclitaxel in vitro than SPARC wild type (WT) cells. In vivo, SPARC KD and SPARC WT subcutaneous xenografts in mice achieved similar maximum intratumoral concentrations of nab-paclitaxel, though drug clearance from SPARC WT tumors was significantly slower. We confirmed such SPARC-mediated long-term intratumoral accumulation of nab-paclitaxel in Ewing sarcoma PDX with high expression of SPARC, which accumulated significantly more nab-paclitaxel than SPARC-low PDX. SPARC-high PDX responded better to nab-paclitaxel than SPARC-low tumors, although these results should be taken cautiously, given that the PDXs were established from different patients that could have specific determinants predisposing response to paclitaxel. In addition, SPARC KD Ewing sarcoma xenografts responded better to soluble docetaxel and paclitaxel than to nab-paclitaxel, while SPARC WT ones showed similar response to soluble and albumin-carried drugs. Overall, our results show that pediatric sarcomas expressing SPARC accumulate nab-paclitaxel for longer periods of time, which could have clinical implications for chemotherapy efficacy.
Collapse
|
55
|
SPOCK1 promotes metastasis in pancreatic cancer via NF-κB-dependent epithelial-mesenchymal transition by interacting with IκB-α. Cell Oncol (Dordr) 2021; 45:69-84. [PMID: 34855159 DOI: 10.1007/s13402-021-00652-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Sparc/osteonectin, cwcv and kazal-like domain proteoglycan 1 (SPOCK1) has been reported to function as an oncogene in a variety of cancer types. Increasing evidence suggests that SPOCK1 contributes to the metastatic cascade, including invasion, epithelial-mesenchymal transition (EMT) and micro-metastasis formation. As yet, however, the underlying mechanism is not clearly understood. Here, we evaluated the expression and clinicopathological significance of SPOCK1 in primary pancreatic cancer (PC) specimens and explored the mechanisms underlying SPOCK1-mediated PC cell growth and metastasis. METHODS The clinical relevance of SPOCK1 was evaluated in 81 patients with PC. The effect of SPOCK1 on proliferation, cell cycle progression, EMT and metastasis was examined in vitro and in vivo. The molecular mechanisms involved in SPOCK1-mediated regulation of NF-κB-dependent EMT were assessed in PC cell lines. RESULTS We found that SPOCK1 expression was increased in PC tissues and was associated with lymph node metastasis. Silencing or exogenous overexpression of SPOCK1 markedly altered the proliferation of PC cells through cell cycle transition. Overexpression of SPOCK1 promoted PC cell migration and invasion by regulating EMT progression. Moreover, we found that SPOCK1 contributes to EMT and metastasis by activating the NF-κB signalling pathway via direct interaction with IκBα. After NF-κB pathway inhibition by BAY11-7082, we found that PC cell motility and EMT induced by SPOCK1 were reversed. CONCLUSION From our data we conclude that SPOCK1 promotes PC metastasis via NF-κB-dependent EMT by interacting with IκBα. This newly identified mechanism may provide novel clues for the (targeted) treatment of PC patients.
Collapse
|
56
|
Ahmed M, Owens MJS, Toledo EM, Arenas E, Bradley M, ffrench-Constant C. Combinatorial ECM Arrays Identify Cooperative Roles for Matricellular Proteins in Enhancing the Generation of TH+ Neurons From Human Pluripotent Cells. Front Cell Dev Biol 2021; 9:755406. [PMID: 34926447 PMCID: PMC8672163 DOI: 10.3389/fcell.2021.755406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
The development of efficient cell culture strategies for the generation of dopaminergic neurons is an important goal for transplantation-based approaches to treat Parkinson's disease. To identify extracellular matrix molecules that enhance differentiation and might be used in these cell cultures we have used micro-contact printed arrays on glass slides presenting 190 combinations of 19 extracellular matrix molecules selected on the basis of their expression during embryonic development of the ventral midbrain. Using long-term neuroepithelial stem cells (Lt-NES), this approach identified a number of matricellular proteins that enhanced differentiation, with the combination of Sparc, Sparc-like (Sparc-l1) and Nell2 increasing the number of tyrosine hydroxylase+ neurons derived from Lt-NES cells and, critically for further translation, human pluripotent stem cells.
Collapse
Affiliation(s)
- Maqsood Ahmed
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew J. S. Owens
- School of Chemistry, EaStCHEM, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique M. Toledo
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles ffrench-Constant
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, England
| |
Collapse
|
57
|
Wang Y, Hong D, Yao J, Tan H, Wang S, Li J, Luo Y, Wang D, Liu S. Comparative transcriptome preliminary reveals the molecular mechanism of the growth rate of Procambarus clarkii. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
58
|
The Balance between Orthodontic Force and Radiation in the Jawbone: Microstructural, Histological, and Molecular Study in a Rat Model. BIOLOGY 2021; 10:biology10111203. [PMID: 34827196 PMCID: PMC8615105 DOI: 10.3390/biology10111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Patients with head and neck cancer are frequently treated by radiation, which results in a lifelong risk of damage (necrosis) to the jawbones. Some of the irradiated young patients at a later time in life may be interested in orthodontic treatment for esthetic or functional purposes. We undertook this study in order to investigate changes that occur in irradiated jawbones when mild orthodontic force is applied in a rat laboratory model. We found that one low dose of radiation had negatively affected the jawbones and that these changes were visible in X-ray images as well as in microscopic slides. The irradiated bones seemed to be denser in the X-rays and had fewer cells that usually regulate normal bone turnover, compared to non-irradiated bones. However, when orthodontic force was applied after radiation, the changes in the irradiated bones were largely, but not completely, reversed in both X-rays and microscopy to the point that bone properties were approaching those of non-irradiated, orthodontically treated, bones. The findings of this study indicate that orthodontic force may have a beneficial effect on the maintenance of jawbone vitality after radiation, but additional studies using different time-lags between radiation and orthodontic force and higher radiation doses are warranted to support these findings. Abstract Irradiation of facial bones is associated with a lifelong risk of osteonecrosis. In a rat model, maxillae were exposed to a single 5 Gy dose of external beam radiation and orthodontic force was applied for 2 weeks on the first maxillary molar; control rats were treated identically without radiation. Tooth movement in irradiated jaws was 30% less than in controls, representing radiation-related damage. Micro-CT, histological, and molecular outcomes of orthodontic tooth movement were studied. Microstructurally, bone parameters (trabecular thickness, bone volume fraction, bone mineral density) were significantly affected by orthodontic force but not by radiation. Histological parameters were influenced only by orthodontic force, especially by an increase in osteoclasts. A molecular study revealed a differential distribution of cells expressing pre-osteoclast markers (RANK+—majority, CD11b+, CD14+—minority), with changes being influenced by orthodontic force (increased CD11b+ and CD14+ cells) and also by radiation (decreased RANK+ cells). The activation status of osteoclasts (TRAP staining) showed an orthodontic-force-related increase, which probably could not fully compensate for the radiation-associated impairment. The overall balance showed that orthodontic force had elicited a substantial microstructural, histological, and functional normalization process in irradiated maxillae but a radiation-induced impact was still conspicuous. Additional studies are needed to validate these findings.
Collapse
|
59
|
Meling MT, Kiniwa Y, Ogawa E, Sato Y, Okuyama R. Increased expression of secreted protein acidic and rich in cysteine and tissue inhibitor of metalloproteinase-3 in epidermotropic melanoma metastasis. J Dermatol 2021; 48:1772-1779. [PMID: 34459016 DOI: 10.1111/1346-8138.16125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
Primary cutaneous melanoma generally arises in the epidermis, followed by invasion into the dermis. Although infrequent, invasive melanoma cells can, alternatively, migrate to the intraepidermal area and form epidermotropic melanoma metastasis (EMM). In this study, we focused on this unique manner of metastasis. To identify the key molecules which affect EMM, gene expression in EMM was compared with that in common skin metastasis (CSM). Polymerase chain reaction (PCR) analysis was performed for genes affecting the extracellular matrix, cellular adhesion, and tumor metastasis on three EMM and three CSM samples as an initial screening. For molecules showing altered expression in the EMM, expression levels were further verified using real-time quantitative PCR (qPCR) and immunohistochemistry. Five molecules showed an expression difference in the initial screening. Among these, secreted protein acidic and rich in cysteine (SPARC) was preferentially expressed in EMM (p = 0.01) by real-time qPCR. Another candidate molecule, tissue inhibitor of metalloproteinase-3 (TIMP3), was not statistically significant (p = 0.07), but showed the tendency of higher expression. These results correlated negatively to expression of N-cadherin and β-catenin. The upregulation of SPARC and TIMP3 may disrupt the continuity of the canonical Wnt pathway. This pathway regulates adhesion activity of melanoma cells to localize within the dermis, which consequently promotes EMM. Our study highlights the potential role of SPARC and TIMP3 as key molecules in EMM, and analysis of EMM may contribute for understanding melanoma invasion between the epidermis and the dermis.
Collapse
Affiliation(s)
- Maureen Tania Meling
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yukiko Kiniwa
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eisaku Ogawa
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Sato
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryuhei Okuyama
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
60
|
Secreted modular calcium-binding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes. Blood 2021; 137:1641-1651. [PMID: 33529332 DOI: 10.1182/blood.2020009405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Secreted modular calcium-binding protein 1 (SMOC1) is an osteonectin/SPARC-related matricellular protein, whose expression is regulated by microRNA-223 (miR-223). Given that platelets are rich in miR-223, this study investigated the expression of SMOC1 and its contribution to platelet function. Human and murine platelets expressed SMOC1, whereas platelets from SMOC1+/- mice did not present detectable mature SMOC1 protein. Platelets from SMOC1+/- mice demonstrated attenuated responsiveness to thrombin (platelet neutrophil aggregate formation, aggregation, clot formation, Ca2+ increase, and β3 integrin phosphorylation), whereas responses to other platelet agonists were unaffected. SMOC1 has been implicated in transforming growth factor-β signaling, but no link to this pathway was detected in platelets. Rather, the SMOC1 Kazal domain directly bound thrombin to potentiate its activity in vitro, as well as its actions on isolated platelets. The latter effects were prevented by monoclonal antibodies against SMOC1. Platelets from miR-223-deficient mice expressed high levels of SMOC1 and exhibited hyperreactivity to thrombin that was also reversed by preincubation with monoclonal antibodies against SMOC1. Similarly, SMOC1 levels were markedly upregulated in platelets from individuals with type 2 diabetes, and the SMOC1 antibody abrogated platelet hyperresponsiveness to thrombin. Taken together, we have identified SMOC1 as a novel thrombin-activating protein that makes a significant contribution to the pathophysiological changes in platelet function associated with type 2 diabetes. Thus, strategies that target SMOC1 or its interaction with thrombin may be attractive therapeutic approaches to normalize platelet function in diabetes.
Collapse
|
61
|
Regensburger D, Tenkerian C, Pürzer V, Schmid B, Wohlfahrt T, Stolzer I, López-Posadas R, Günther C, Waldner MJ, Becker C, Sticht H, Petter K, Flierl C, Gass T, Thoenissen T, Geppert CI, Britzen-Laurent N, Méniel VS, Ramming A, Stürzl M, Naschberger E. Matricellular Protein SPARCL1 Regulates Blood Vessel Integrity and Antagonizes Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1491-1502. [PMID: 33393634 PMCID: PMC8376124 DOI: 10.1093/ibd/izaa346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The understanding of vascular plasticity is key to defining the role of blood vessels in physiologic and pathogenic processes. In the present study, the impact of the vascular quiescence marker SPARCL1 on angiogenesis, capillary morphogenesis, and vessel integrity was evaluated. METHODS Angiogenesis was studied using the metatarsal test, an ex vivo model of sprouting angiogenesis. In addition, acute and chronic dextran sodium sulfate colitis models with SPARCL1 knockout mice were applied. RESULTS This approach indicated that SPARCL1 inhibits angiogenesis and supports vessel morphogenesis and integrity. Evidence was provided that SPARCL1-mediated stabilization of vessel integrity counteracts vessel permeability and inflammation in acute and chronic dextran sodium sulfate colitis models. Structure-function analyses of purified SPARCL1 identified the acidic domain of the protein necessary for its anti-angiogenic activity. CONCLUSIONS Our findings inaugurate SPARCL1 as a blood vessel-derived anti-angiogenic molecule required for vessel morphogenesis and integrity. SPARCL1 opens new perspectives as a vascular marker of susceptibility to colitis and as a therapeutic molecule to support blood vessel stability in this disease.
Collapse
Affiliation(s)
- Daniela Regensburger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Clara Tenkerian
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Victoria Pürzer
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Wohlfahrt
- Department of Internal Medicine 3, Rheumatology and Immunology, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Petter
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Flierl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Gass
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Thoenissen
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Valérie S Méniel
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Andreas Ramming
- Department of Internal Medicine 3, Rheumatology and Immunology, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
62
|
Follistatin-Like Proteins: Structure, Functions and Biomedical Importance. Biomedicines 2021; 9:biomedicines9080999. [PMID: 34440203 PMCID: PMC8391210 DOI: 10.3390/biomedicines9080999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Main forms of cellular signal transmission are known to be autocrine and paracrine signaling. Several cells secrete messengers called autocrine or paracrine agents that can bind the corresponding receptors on the surface of the cells themselves or their microenvironment. Follistatin and follistatin-like proteins can be called one of the most important bifunctional messengers capable of displaying both autocrine and paracrine activity. Whilst they are not as diverse as protein hormones or protein kinases, there are only five types of proteins. However, unlike protein kinases, there are no minor proteins among them; each follistatin-like protein performs an important physiological function. These proteins are involved in a variety of signaling pathways and biological processes, having the ability to bind to receptors such as DIP2A, TLR4, BMP and some others. The activation or experimentally induced knockout of the protein-coding genes often leads to fatal consequences for individual cells and the whole body as follistatin-like proteins indirectly regulate the cell cycle, tissue differentiation, metabolic pathways, and participate in the transmission chains of the pro-inflammatory intracellular signal. Abnormal course of these processes can cause the development of oncology or apoptosis, programmed cell death. There is still no comprehensive understanding of the spectrum of mechanisms of action of follistatin-like proteins, so the systematization and study of their cellular functions and regulation is an important direction of modern molecular and cell biology. Therefore, this review focuses on follistatin-related proteins that affect multiple targets and have direct or indirect effects on cellular signaling pathways, as well as to characterize the directions of their practical application in the field of biomedicine.
Collapse
|
63
|
Navidi G, Allahvirdinesbat M, Al-Molki SMM, Davaran S, Panahi PN, Aghazadeh M, Akbarzadeh A, Eftekhari A, Safa KD. Design and fabrication of M-SAPO-34/chitosan scaffolds and evaluation of their effects on dental tissue engineering. Int J Biol Macromol 2021; 187:281-295. [PMID: 34314794 DOI: 10.1016/j.ijbiomac.2021.07.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
This research aimed to design innovative therapeutic bio-composites that enhance odontogenic and osteogenic differentiation of human dental pulp-derived mesenchymal stem cells (h-DPSCs) in-vitro regeneration. Herein, we report the fabrication of scaffolds containing chitosan, Ca-SAPO-34 monometallic and/or Fe-Ca-SAPO-34 bimetallic nanoparticles by freeze-drying technique. The scaffolds and nanoparticles were characterized using ICP-AES, FT-IR, XRD, TGA, TEM, BET, SEM, and EDS methods. The effects of SAPO-34 and nanoparticles were investigated by changes on the physicochemical properties of scaffolds including swelling ratio, density, porosity, bio-degradation, mechanical behavior, and biomineralization. Cell viability, cell adhesion and cytotoxicity of Ca-SAPO-34/CS and Fe-Ca-SAPO-34 scaffolds were investigated by MTT assay and SEM on h-DPSCs which revealed cell proliferation no toxicity on scaffolds. Cell tests demonstrated that Ca-SAPO-34/CS scaffold clearly displayed a positive effect on differentiation of hDPSCs into osteogenic/odontogenic cells and moderate effect on cell proliferation. Moreover, the incorporation of Fe2O3 to Ca-SAPO-34/CS scaffold promoted the proliferation of hDPSCs and osteogenic differentiation. Alizarin red, Alkaline phosphatase and QRT-PCR results showed that Fe-Ca-loaded SAPO-34/CS can lead to osteoblast/odontoblast differentiation in DPSCs through the up-regulation of related genes, thus indicating that Fe-Ca-SAPO-34/CS has remarkable prospects as a biomaterial for hard tissue engineering.
Collapse
Affiliation(s)
- Golnaz Navidi
- Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Maryam Allahvirdinesbat
- Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51666-15953, Iran.
| | | | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51666-15953, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 51664-14766, Iran.
| | | | - Marziyeh Aghazadeh
- Stem Cell Research Center and Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Abolfazl Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 51664-14766, Iran
| | - Aziz Eftekhari
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya Street, Moscow 119991, Russian Federation
| | - Kazem Dindar Safa
- Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| |
Collapse
|
64
|
Wang J, Gong M, Xiong Z, Zhao Y, Xing D. Bioinformatics integrated analysis to investigate candidate biomarkers and associated metabolites in osteosarcoma. J Orthop Surg Res 2021; 16:432. [PMID: 34225733 PMCID: PMC8256509 DOI: 10.1186/s13018-021-02578-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND This study hoped to explore the potential biomarkers and associated metabolites during osteosarcoma (OS) progression based on bioinformatics integrated analysis. METHODS Gene expression profiles of GSE28424, including 19 human OS cell lines (OS group) and 4 human normal long bone tissue samples (control group), were downloaded. The differentially expressed genes (DEGs) in OS vs. control were investigated. The enrichment investigation was performed based on DEGs, followed by protein-protein interaction network analysis. Then, the feature genes associated with OS were explored, followed by survival analysis to reveal prognostic genes. The qRT-PCR assay was performed to test the expression of these genes. Finally, the OS-associated metabolites and disease-metabolic network were further investigated. RESULTS Totally, 357 DEGs were revealed between the OS vs. control groups. These DEGs, such as CXCL12, were mainly involved in functions like leukocyte migration. Then, totally, 38 feature genes were explored, of which 8 genes showed significant associations with the survival of patients. High expression of CXCL12, CEBPA, SPARCL1, CAT, TUBA1A, and ALDH1A1 was associated with longer survival time, while high expression of CFLAR and STC2 was associated with poor survival. Finally, a disease-metabolic network was constructed with 25 nodes including two disease-associated metabolites cyclophosphamide and bisphenol A (BPA). BPA showed interactions with multiple prognosis-related genes, such as CXCL12 and STC2. CONCLUSION We identified 8 prognosis-related genes in OS. CXCL12 might participate in OS progression via leukocyte migration function. BPA might be an important metabolite interacting with multiple prognosis-related genes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| | - Mingzhi Gong
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| | - Zhenggang Xiong
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| | - Yangyang Zhao
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| | - Deguo Xing
- Department of Orthopedics and Trauma, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033 China
| |
Collapse
|
65
|
Han J, Rong Y, Gao X. Multiomic analysis of the function of SPOCK1 across cancers: an integrated bioinformatics approach. J Int Med Res 2021; 49:300060520962659. [PMID: 34156309 PMCID: PMC8236807 DOI: 10.1177/0300060520962659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate SPARC (osteonectin), cwcv and kazal like domains proteoglycan 1 (SPOCK1) gene expression across The Cancer Genome Atlas (TCGA) cancers, both in cancer versus normal tissues and in different stages across the cancer types. Methods This integrated bioinformatics study used data from several bioinformatics databases (Cancer Cell Line Encyclopedia, Genotype-Tissue Expression, TCGA, Tumor Immune Estimation Resource [TIMER]) to define the expression pattern of the SPOCK1 gene. A survival analysis was undertaken across the cancers. The search tool for retrieval of interacting genes (STRING) database was used to identify proteins that interacted with SPOCK1. Gene Set Enrichment Analysis was conducted to determine pathway enrichment. The TIMER database was used to explore the correlation between SPOCK1 and immune cell infiltration. Results This multiomic analysis showed that the SPOCK1 gene was expressed differently between normal tissues and tumours in several cancers and that it was involved in cancer progression. The overexpression of the SPOCK1 gene was associated with poor clinical outcomes. Analysis of gene expression and tumour-infiltrating immune cells showed that SPOCK1 correlated with several immune cells across cancers. Conclusions This research showed that SPOCK1 might serve as a new target for several cancer therapies in the future.
Collapse
Affiliation(s)
- Jie Han
- Department of Hepatology, Qilu Hospital, Shandong University, Shandong, China
| | - Yihui Rong
- Infection Disease Center of Peking University International Hospital, Beijing, China
| | - Xudong Gao
- Infection Disease Center of Peking University International Hospital, Beijing, China
| |
Collapse
|
66
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
67
|
Bai Z, Xu L, Dai Y, Yuan Q, Zhou Z. ECM2 and GLT8D2 in human pulmonary artery hypertension: fruits from weighted gene co-expression network analysis. J Thorac Dis 2021; 13:2242-2254. [PMID: 34012575 PMCID: PMC8107565 DOI: 10.21037/jtd-20-3069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Pulmonary artery hypertension (PAH) is an incurable disease with a high mortality rate. Current medications ameliorate symptoms but cannot target adverse vascular remodeling. New therapeutic strategies for PAH need to be established. Methods Using the weighted gene coexpression network analysis (WGCNA) algorithm, we constructed a coexpression network of dataset GSE117261 from the Gene Expression Omnibus (GEO) database. Key modules were identified by the relationship between module eigengenes and clinical traits. Hub genes were screened out based on gene significance (GS), module membership (MM), and mean pulmonary artery pressure (mPAP). External validations were conducted in GSE48149 and GSE113439. Functional enrichment and immune cell infiltration were analyzed using Metascape and CIBERSORTx. Results The WGCNA analysis revealed 13 coexpression modules. The pink module had the highest correlation with PAH in terms of module eigengene (r=0.79; P=2e-18) and module significance (MS =0.43). Functional enrichment indicated genes in the pink module contributed to the immune system process and extracellular matrix (ECM). In the pink module, ECM2 (GS =0.65, MM =0.86, ρ=0.407, P=0.0019) and GLT8D2 (GS =0.63, MM =0.85, ρ=0.443, P=0.006) were identified as hub genes. For immune cells infiltration in PAH lung tissue, hub genes were positively correlated with M2 macrophages and resting mast cells, and were negatively correlated with monocytes, neutrophils, and CD4-naïve T cells. Conclusions Our research identified 2 hub genes ECM2 and GLT8D2 related to PAH. The functions of these hub genes were involved in the immune process and ECM, indicating that they might serve as candidate therapeutic targets for PAH.
Collapse
Affiliation(s)
- Zeyang Bai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianyan Xu
- Department of Radiology, Peking Union Medical College Hospital, PUMC & CAMS, Beijing, China
| | - Yong Dai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchen Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
68
|
Xiong X, Lai X, Li A, Liu Z, Ma N. Diversity roles of CHD1L in normal cell function and tumorigenesis. Biomark Res 2021; 9:16. [PMID: 33663617 PMCID: PMC7934534 DOI: 10.1186/s40364-021-00269-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a multifunctional protein participated in diverse cellular processes, including chromosome remodeling, cell differentiation and development. CHD1L is a regulator of chromosomal integrity maintenance, DNA repair and transcriptional regulation through its bindings to DNA. By regulating kinds of complex networks, CHD1L has been identified as a potent anti-apoptotic and pro-proliferative factor. CHD1L is also an oncoprotein since its overexpression leads to dysregulation of related downstream targets in various cancers. The latest advances in the functional molecular basis of CHD1L in normal cells will be described in this review. As the same time, we will describe the current understanding of CHD1L in terms of structure, characteristics, function and the molecular mechanisms underlying CHD1L in tumorigenesis. We inference that the role of CHD1L which involve in multiple cellular processes and oncogenesis is well worth further studying in basic biology and clinical relevance.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Xudong Lai
- Departement of infectious disease, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| | - Ningfang Ma
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Department of Histology and Embryology, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
69
|
Wang LY, Zhang YT, Du LQ, Wu XY, Zhu J. The Effect of SPARC on the Proliferation and Migration of Limbal Epithelial Stem Cells During the Corneal Epithelial Wound Healing. Stem Cells Dev 2021; 30:301-308. [PMID: 33487117 DOI: 10.1089/scd.2020.0196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) shows a specific colocalization with limbal epithelial stem cells (LESCs) in vivo; however, the inherent relationship between SPARC and LESCs is still unclear. This study investigated the effects of SPARC on the maintenance of LESC stemness and corneal wound healing. To test the influence of different concentration of exogenous SPARC on the proliferation of LESCs, cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine staining were performed and the results indicated that 1 μg/mL SPARC was the optimum concentration for enhanced LESC proliferation. Compared with a control group, SPARC-treated group showed a higher expression of LESC-positive markers p63α, ABCG-2, and Bmi-1, and a lower level of differentiation marker cytokeratin-3 (CK3), thereby suggesting that SPARC could maintain LESC characteristic phenotype and suppress spontaneous epithelial differentiation in vitro. In vivo, exogenous SPARC accelerated the wound-healing process by both the enhancement of LESC proliferation and promoting the migration of the proliferating cells. However, the intact epithelium impaired this function of SPARC by contact inhibition.
Collapse
Affiliation(s)
- Le-Yi Wang
- Department of Ophthalmology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Yu-Ting Zhang
- Department of Ophthalmology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Li-Qun Du
- Department of Ophthalmology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Xin-Yi Wu
- Department of Ophthalmology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Jing Zhu
- Department of Ophthalmology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, P.R. China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
70
|
Zhu X, Jiang S, Wu Z, Liu T, Zhang W, Wu L, Xu L, Shao M. Long non-coding RNA TTN antisense RNA 1 facilitates hepatocellular carcinoma progression via regulating miR-139-5p/SPOCK1 axis. Bioengineered 2021; 12:578-588. [PMID: 33517826 PMCID: PMC8291788 DOI: 10.1080/21655979.2021.1882133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reportedly, long non-coding RNAs (lncRNAs) are implicated in hepatocellular carcinoma (HCC) progression, yet little is known concerning the biological functions of TTN antisense RNA 1 (TTN-AS1) in HCC. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting TTN-AS1, SPOCK1 mRNA, and miR-139-5p expressions in HCC cells and tissues. After TTN-AS1 was overexpressed or knocked down in HCC cells, CCK-8 and 5-Ethynyl-2ʹ-deoxyuridine (EdU) assays were carried out for examining cell multiplication. Transwell assays were conducted for evaluating HCC cell migration and invasion. Dual-luciferase reporter assay was employed for verifying the binding relationships between miR-139-5p and TTN-AS1, and between SPOCK1 3ʹUTR and miR-139-5p. Western blot was employed to measure SPOCK1, E-cadherin, N-cadherin, and Vimentin protein expressions. We demonstrated that, TTN-AS1 and SPOCK1 expression levels were remarkably enhanced in HCC cells and tissues, whereas miR-139-5p expression was observably reduced. Functional experiments suggested that TTN-AS1 knockdown markedly repressed HCC cell multiplication, migration, epithelial-mesenchymal transition (EMT), and invasion. In addition, TTN-AS1 interacted with miR-139-5p and decreased its expression. Moreover, SPOCK1 was a miR-139-5p target, and miR-139-5p inhibitors were able to reverse TTN-AS1 knockdown-induced inhibitory effect on SPOCK1 expression. SPOCK1 overexpression plasmid could counteract TTN-AS1 knockdown-induced inhibiting impact on HCC cell multiplication, migration, invasion, and EMT. In conclusion, TTN-AS1 expression level is remarkably enhanced in HCC, and TTN-AS1 can promote the multiplication, migration, invasion, and EMT of HCC cells via regulating miR-139-5p/SPOCK1 axis.
Collapse
Affiliation(s)
- Xinghao Zhu
- Department of Internal Medicine of Chinese Medicine, Henan University of Chinese Medicine , Zhengzhou, Henan, China
| | - Shiqing Jiang
- The First Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, Henan, China
| | - Zongyao Wu
- Institute of Tibetan Medicine, Tibet University of Tibetan Medicine , Lhasa, Xizang, China
| | - Tonghua Liu
- Beijing University of Chinese Medicine , Beijing, China
| | - Wei Zhang
- Institute of Liver Diseases, Shijiazhuang Fifth Hospital , Shijiazhuang, Hebei, China
| | - Lili Wu
- Beijing University of Chinese Medicine , Beijing, China
| | - Lijun Xu
- Institute of Tibetan Medicine, Tibet University of Tibetan Medicine , Lhasa, Xizang, China
| | - Mingliang Shao
- Department of Oncology, Shijiazhuang Fifth Hospital , Shijiazhuang, Hebei, China
| |
Collapse
|
71
|
Interplay between hevin, SPARC, and MDGAs: Modulators of neurexin-neuroligin transsynaptic bridges. Structure 2021; 29:664-678.e6. [PMID: 33535026 DOI: 10.1016/j.str.2021.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Hevin is secreted by astrocytes and its synaptogenic effects are antagonized by the related protein, SPARC. Hevin stabilizes neurexin-neuroligin transsynaptic bridges in vivo. A third protein, membrane-tethered MDGA, blocks these bridges. Here, we reveal the molecular underpinnings of a regulatory network formed by this trio of proteins. The hevin FS-EC structure differs from SPARC, in that the EC domain appears rearranged around a conserved core. The FS domain is structurally conserved and it houses nanomolar affinity binding sites for neurexin and neuroligin. SPARC also binds neurexin and neuroligin, competing with hevin, so its antagonist action is rooted in its shortened N-terminal region. Strikingly, the hevin FS domain competes with MDGA for an overlapping binding site on neuroligin, while the hevin EC domain binds the extracellular matrix protein collagen (like SPARC), so that this trio of proteins can regulate neurexin-neuroligin transsynaptic bridges and also extracellular matrix interactions, impacting synapse formation and ultimately neural circuits.
Collapse
|
72
|
Riley HJ, Kelly RR, Van Laer AO, Neff LS, Dasgupta S, Baicu CF, McDonald LT, LaRue AC, Zile MR, Bradshaw AD. SPARC production by bone marrow-derived cells contributes to myocardial fibrosis in pressure overload. Am J Physiol Heart Circ Physiol 2021; 320:H604-H612. [PMID: 33306449 PMCID: PMC8082795 DOI: 10.1152/ajpheart.00552.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
In human heart failure and in murine hearts with left-ventricular pressure overload (LVPO), increases in fibrosis are associated with increases in myocardial stiffness. Secreted protein acidic and rich in cysteine (SPARC) is shown to be necessary for both cardiac fibrosis and increases in myocardial stiffness in response to LVPO; however, cellular sources of cardiac SPARC are incompletely defined. Irradiation and bone marrow transfer were undertaken to test the hypothesis that SPARC expression by bone marrow-derived cells is an important mediator of fibrosis in LVPO. In recipient SPARC-null mice transplanted with donor wild-type (WT) bone marrow and subjected to LVPO, levels of fibrosis similar to that of WT mice were found despite the lack of SPARC expression by resident cells. In recipient WT mice with donor SPARC-null bone marrow, significantly less fibrosis versus that of WT mice was found despite the expression of SPARC by resident cells. Increases in myocardial stiffness followed a similar pattern to that of collagen deposition. Myocardial macrophages were significantly reduced in SPARC-null mice with LVPO versus that of WT mice. Recipient SPARC-null mice transplanted with donor WT bone marrow exhibited an increase in cardiac macrophages versus that of SPARC-null LVPO and donor WT mice with recipient SPARC-null bone marrow. Expression of vascular cellular adhesion molecule (VCAM), a previously identified binding partner of SPARC, was assessed in all groups and with the exception of WT mice, increases in VCAM immunoreactivity with LVPO were observed. However, no differences in VCAM expression between bone marrow transplant groups were noted. In conclusion, SPARC expression by bone marrow-derived cells was critical for fibrotic deposition of collagen and influenced the expansion of myocardial macrophages in response to LVPO.NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in LV and myocardial stiffness represent pivotal consequences of chronic pressure overload (PO). In this study, a murine model of cardiac fibrosis induced by PO was used to demonstrate a critical function of SPARC in bone marrow-derived cells that drives cardiac fibrosis and increases in cardiac macrophages.
Collapse
Affiliation(s)
- Hannah J Riley
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Ryan R Kelly
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - An O Van Laer
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Lily S Neff
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Shaoni Dasgupta
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Catalin F Baicu
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Lindsay T McDonald
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
73
|
Chen S, Zou Q, Guo Q, Chen Y, Kuang X, Zhang Y, Liu Y, Wu W, Li G, Tu L, Tong J, Li S, Ma L, Li Q. SPARC Knockdown Reduces Glutamate-Induced HT22 Hippocampal Nerve Cell Damage by Regulating Autophagy. Front Neurosci 2021; 14:581441. [PMID: 33584170 PMCID: PMC7874057 DOI: 10.3389/fnins.2020.581441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein involved in the extracellular matrix and interactions between cells during neural development of the central nervous system (CNS). Oxidative glutamate toxicity is involved in CNS diseases, including epilepsy, Alzheimer’s disease, and ischemic stroke. However, the molecular mechanism of nerve injury is not fully understood in CNS diseases. Herein, the glutamate-induced nerve damage model was used to explore the molecular mechanisms affecting nerve damage. The levels of SPARC and autophagy were increased in glutamate-induced HT22 hippocampal nerve injury. In summary, the current study confirmed that SPARC regulates autophagy in HT22 hippocampal nerve cells, and its knockdown reduces the glutamate-induced HT22 hippocampal nerve injury by inhibiting autophagy. These findings suggested that SPARC plays a crucial role in nerve injury of CNS diseases.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Qin Zou
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qiang Guo
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Yongmin Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Xi Kuang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Hainan Health Vocational College, Haikou, China
| | - Yukang Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Wengang Wu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Ge Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Linzhi Tu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Jingyi Tong
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Songrong Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Lin Ma
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| |
Collapse
|
74
|
Carvalheiro T, Malvar Fernández B, Ottria A, Giovannone B, Marut W, Reedquist KA, Garcia S, Radstake TR. Extracellular SPARC cooperates with TGF-β signalling to induce pro-fibrotic activation of systemic sclerosis patient dermal fibroblasts. Rheumatology (Oxford) 2021; 59:2258-2263. [PMID: 31840182 PMCID: PMC7449812 DOI: 10.1093/rheumatology/kez583] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/29/2019] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target. This study aimed to analyse the potential role of exogenous SPARC as a regulator of fibrosis in SSc. METHODS Dermal fibroblasts from both healthy controls and SSc patients were stimulated with SPARC alone or in combination with TGF-β1, in the absence or presence of a TGF receptor 1 inhibitor. mRNA and protein expression of extracellular matrix components and other fibrosis-related mediators were measured by quantitative PCR and western blot. RESULTS Exogenous SPARC induced mRNA and protein expression of collagen I, collagen IV, fibronectin 1, TGF-β and SPARC by dermal fibroblasts from SSc patients, but not from healthy controls. Importantly, exogenous SPARC induced the activation of the tyrosine kinase SMAD2 and pro-fibrotic gene expression induced by SPARC in SSc fibroblasts was abrogated by inhibition of TGF-β signalling. CONCLUSION These results indicate that exogenous SPARC is an important pro-fibrotic mediator contributing to the pathology driving SSc but in a TGF-β dependent manner. Therefore, SPARC could be a promising therapeutic target for reducing fibrosis in SSc patients, even in late states of the disease.
Collapse
Affiliation(s)
- Tiago Carvalheiro
- Department of Rheumatology and Clinical Immunology.,Laboratory of Translational Immunology
| | | | - Andrea Ottria
- Department of Rheumatology and Clinical Immunology.,Laboratory of Translational Immunology
| | - Barbara Giovannone
- Department of Dermatology, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Wioleta Marut
- Department of Rheumatology and Clinical Immunology.,Laboratory of Translational Immunology
| | - Kris A Reedquist
- Department of Rheumatology and Clinical Immunology.,Laboratory of Translational Immunology
| | - Samuel Garcia
- Department of Rheumatology and Clinical Immunology.,Laboratory of Translational Immunology
| | - Timothy R Radstake
- Department of Rheumatology and Clinical Immunology.,Laboratory of Translational Immunology
| |
Collapse
|
75
|
Silva AC, Pereira C, Fonseca ACRG, Pinto-do-Ó P, Nascimento DS. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front Cell Dev Biol 2021; 8:621644. [PMID: 33511134 PMCID: PMC7835513 DOI: 10.3389/fcell.2020.621644] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is an essential component of the heart that imparts fundamental cellular processes during organ development and homeostasis. Most cardiovascular diseases involve severe remodeling of the ECM, culminating in the formation of fibrotic tissue that is deleterious to organ function. Treatment schemes effective at managing fibrosis and promoting physiological ECM repair are not yet in reach. Of note, the composition of the cardiac ECM changes significantly in a short period after birth, concurrent with the loss of the regenerative capacity of the heart. This highlights the importance of understanding ECM composition and function headed for the development of more efficient therapies. In this review, we explore the impact of ECM alterations, throughout heart ontogeny and disease, on cardiac cells and debate available approaches to deeper insights on cell–ECM interactions, toward the design of new regenerative therapies.
Collapse
Affiliation(s)
- Ana Catarina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Gladstone Institutes, San Francisco, CA, United States
| | - Cassilda Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Catarina R G Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
76
|
Zhang S, Zhang F, Feng L. The inhibition of HeLa cells proliferation through SPARCL1 mediated by SPP1. Cytotechnology 2021; 73:71-78. [PMID: 33505115 DOI: 10.1007/s10616-020-00443-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022] Open
Abstract
Secreted protein acidic and rich in cysteines-like 1 (SPARCL1) is implicated in tumor progression and considered as a tumor suppressor. Aim of the study is to investigate the role of SPARCL1 in the regulation of tumor biology. SPARCL1 expression in human cervical cells was determined through western blot and RT-PCR. The effects of SPARCL1 overexpression on cell proliferation, migration and invasion were evaluated through CCK8 assay, colony formation assay, Wound healing assay and Transwell assay, respectively. The gain function of Secreted phosphor protein 1 (SPP1) was also evaluated in these cell functions. We observed that SPARCL1 expression at protein levels and transcription levels was lower in HeLa cells than that in Ect1/E6E7 cells. When SPARCL1 was overexpressed in HeLa cells, cell proliferation, migration and invasion were greatly repressed. Additionally, SPARCL1 overexpression markedly downregulated SPP1 expression at transcription levels. Mechanistical study revealed that SPP1 overexpression could greatly counteract the effects of SPARCL1 overexpression on the aforementioned cell processes and inhibit the phosphorylation of focal adhesion kinase (FAK) and extracellular regulated protein kinases (ERK). Our findings indicated that HeLa cells overexpressing SPARCL1 showed weaker abilities of proliferation, migration and invasion, and its effects could be neutralized by SPP1 overexpression possibly via FAK/ERK pathway. The relationship of SPARCL1 and SPP1 could help us to further understand the pathogenesis of cervical cancer and SPARCL1/SPP1 could be beneficial therapeutic targets in cervical cancer.
Collapse
Affiliation(s)
- Shengpeng Zhang
- Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 P.R. China
| | - Fengge Zhang
- Department of Obstetrics and Gynecology, Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, 101300 P.R. China
| | - Limin Feng
- Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 P.R. China
| |
Collapse
|
77
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
78
|
Yang J, Zhang J, Fan R, Zhao W, Han T, Duan K, Li X, Zeng P, Deng J, Zhang J, Yang X. Identifying Potential Candidate Hub Genes and Functionally Enriched Pathways in the Immune Responses to Quadrivalent Inactivated Influenza Vaccines in the Elderly Through Co-Expression Network Analysis. Front Immunol 2020; 11:603337. [PMID: 33343577 PMCID: PMC7746648 DOI: 10.3389/fimmu.2020.603337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Insights into the potential candidate hub genes may facilitate the generation of safe and effective immunity against seasonal influenza as well as the development of personalized influenza vaccines for the elderly at high risk of influenza virus infection. This study aimed to identify the potential hub genes related to the immune induction process of the 2018/19 seasonal quadrivalent inactivated influenza vaccines (QIVs) in the elderly ≥60 years by using weighted gene co-expression network analysis (WGCNA). From 63 whole blood samples from16 elderly individuals, a total of 13,345 genes were obtained and divided into eight co-expression modules, with two modules being significantly correlated with vaccine-induced immune responses. After functional enrichment analysis, genes under GO terms of vaccine-associated immunity were used to construct the sub-network for identification and functional validation of hub genes. MCEMP1 and SPARC were confirmed as the hub genes with an obvious effect on QIVs-induced immunity. The MCEMP1 expression was shown to be negatively correlated with the QIVs-associated reactogenicity within 7 days after vaccination, which could be suppressed by the CXCL 8/IL-8 and exacerbated by the Granzyme-B cytotoxic mediator. Meanwhile, the SPARC expression was found to increase the immune responses to the QIVs and contribute to the persistence of protective humoral antibody titers. These two genes can be used to predict QIVs-induced adverse reaction, the intensity of immune responses, and the persistence of humoral antibody against influenza. This work has shed light on further research on the development of personalized QIVs with appropriate immune responses and long-lasting immunity against the forthcoming seasonal influenza.
Collapse
Affiliation(s)
- Jing Yang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Jiayou Zhang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Renfeng Fan
- Guangdong Province Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Wei Zhao
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Tian Han
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Kai Duan
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Xinguo Li
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Peiyu Zeng
- Gaozhou Center for Disease Control and Prevention, Maoming City, China
| | - Jinglong Deng
- Gaozhou Center for Disease Control and Prevention, Maoming City, China
| | - Jikai Zhang
- Guangdong Province Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Xiaoming Yang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,China Biotechnology Co., Ltd., Peking, China
| |
Collapse
|
79
|
Krajnc A, Gaber A, Lenarčič B, Pavšič M. The Central Region of Testican-2 Forms a Compact Core and Promotes Cell Migration. Int J Mol Sci 2020; 21:ijms21249413. [PMID: 33321927 PMCID: PMC7763218 DOI: 10.3390/ijms21249413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023] Open
Abstract
Testicans are modular proteoglycans of the extracellular matrix of various tissues where they contribute to matrix integrity and exert cellular effects like neurite outgrowth and cell migration. Using testican-2 as a representative member of the family, we tackle the complete lack of general structural information and structure-function relationship. First, we show using isothermal titration calorimetry and modeling that extracellular calcium-binding domain (EC) has only one active calcium-binding site, while the other potential site is inactive, and that testican-2 is within extracellular matrix always in the calcium-loaded form. Next, we demonstrate using various prediction methods that N- and C-terminal regions plus interdomain connections are flexible. We support this by small-angle X-ray-scattering analysis of C-terminally truncated testican-2, which indicates that the triplet follistatin-EC-thyroglobulin domain forms a moderately compact core while the unique N-terminal is disordered. Finally, using cell exclusion zone assay, we show that it is this domain triplet that is responsible for promoting cell migration and not the N- and C-terminal regions.
Collapse
Affiliation(s)
- Anja Krajnc
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.K.); (A.G.); (B.L.)
| | - Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.K.); (A.G.); (B.L.)
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.K.); (A.G.); (B.L.)
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.K.); (A.G.); (B.L.)
- Correspondence: ; Tel.: +386-1-479-8550
| |
Collapse
|
80
|
Szenajch J, Szabelska-Beręsewicz A, Świercz A, Zyprych-Walczak J, Siatkowski I, Góralski M, Synowiec A, Handschuh L. Transcriptome Remodeling in Gradual Development of Inverse Resistance between Paclitaxel and Cisplatin in Ovarian Cancer Cells. Int J Mol Sci 2020; 21:E9218. [PMID: 33287223 PMCID: PMC7730278 DOI: 10.3390/ijms21239218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer drugs is the main challenge in oncology. In pre-clinical studies, established cancer cell lines are primary tools in deciphering molecular mechanisms of this phenomenon. In this study, we proposed a new, transcriptome-focused approach, utilizing a model of isogenic cancer cell lines with gradually changing resistance. We analyzed trends in gene expression in the aim to find out a scaffold of resistance development process. The ovarian cancer cell line A2780 was treated with stepwise increased concentrations of paclitaxel (PTX) to generate a series of drug resistant sublines. To monitor transcriptome changes we submitted them to mRNA-sequencing, followed by the identification of differentially expressed genes (DEGs), principal component analysis (PCA), and hierarchical clustering. Functional interactions of proteins, encoded by DEGs, were analyzed by building protein-protein interaction (PPI) networks. We obtained human ovarian cancer cell lines with gradually developed resistance to PTX and collateral sensitivity to cisplatin (CDDP) (inverse resistance). In their transcriptomes, we identified two groups of DEGs: (1) With fluctuations in expression in the course of resistance acquiring; and (2) with a consistently changed expression at each stage of resistance development, constituting a scaffold of the process. In the scaffold PPI network, the cell cycle regulator-polo-like kinase 2 (PLK2); proteins belonging to the tumor necrosis factor (TNF) ligand and receptor family, as well as to the ephrin receptor family were found, and moreover, proteins linked to osteo- and chondrogenesis and the nervous system development. Our cellular model of drug resistance allowed for keeping track of trends in gene expression and studying this phenomenon as a process of evolution, reflected by global transcriptome remodeling. This approach enabled us to explore novel candidate genes and surmise that abrogation of the osteomimic phenotype in ovarian cancer cells might occur during the development of inverse resistance between PTX and CDDP.
Collapse
Affiliation(s)
- Jolanta Szenajch
- Laboratory for Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Alicja Szabelska-Beręsewicz
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.S.-B.); (J.Z.-W.); (I.S.)
| | - Aleksandra Świercz
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland; (A.Ś.); (M.G.); (L.H.)
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland
| | - Joanna Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.S.-B.); (J.Z.-W.); (I.S.)
| | - Idzi Siatkowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.S.-B.); (J.Z.-W.); (I.S.)
| | - Michał Góralski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland; (A.Ś.); (M.G.); (L.H.)
| | - Agnieszka Synowiec
- Laboratory for Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Luiza Handschuh
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland; (A.Ś.); (M.G.); (L.H.)
| |
Collapse
|
81
|
Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Structural perspective of BMP ligands and signaling. Bone 2020; 140:115549. [PMID: 32730927 PMCID: PMC7502536 DOI: 10.1016/j.bone.2020.115549] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA.
| |
Collapse
|
82
|
Hu L, He F, Huang M, Zhao Q, Cheng L, Said N, Zhou Z, Liu F, Dai YS. SPARC promotes insulin secretion through down-regulation of RGS4 protein in pancreatic β cells. Sci Rep 2020; 10:17581. [PMID: 33067534 PMCID: PMC7567887 DOI: 10.1038/s41598-020-74593-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
SPARC-deficient mice have been shown to exhibit impaired glucose tolerance and insulin secretion, but the underlying mechanism remains unknown. Here, we showed that SPARC enhanced the promoting effect of Muscarinic receptor agonist oxotremorine-M on insulin secretion in cultured mouse islets. Overexpression of SPARC down-regulated RGS4, a negative regulator of β-cell M3 muscarinic receptors. Conversely, knockdown of SPARC up-regulated RGS4 in Min6 cells. RGS4 was up-regulated in islets from sparc -/- mice, which correlated with decreased glucose-stimulated insulin secretion (GSIS). Furthermore, inhibition of RGS4 restored GSIS in the islets from sparc -/- mice, and knockdown of RGS4 partially decreased the promoting effect of SPARC on oxotremorine-M-stimulated insulin secretion. Phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 abolished SPARC-induced down-regulation of RGS4. Taken together, our data revealed that SPARC promoted GSIS by inhibiting RGS4 in pancreatic β cells.
Collapse
Affiliation(s)
- Li Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengli He
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meifeng Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhao
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan-Shan Dai
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Bristol-Myers Squibb Company, Princeton, NJ, USA.
| |
Collapse
|
83
|
Chen S, Zou Q, Chen Y, Kuang X, Wu W, Guo M, Cai Y, Li Q. Regulation of SPARC family proteins in disorders of the central nervous system. Brain Res Bull 2020; 163:178-189. [DOI: 10.1016/j.brainresbull.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
|
84
|
Ye Z, Chen J, Hu X, Yang S, Xuan Z, Lu X, Zhao Q. SPOCK1: a multi-domain proteoglycan at the crossroads of extracellular matrix remodeling and cancer development. Am J Cancer Res 2020; 10:3127-3137. [PMID: 33163261 PMCID: PMC7642659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023] Open
Abstract
The SPARC/osteonectin, CWCV and Kazal-like domains proteoglycan 1 (SPOCK1) is a highly conserved, multi-domain proteoglycan that regulates the dynamic equilibrium of extracellular matrix (ECM). Besides, SPOCK1 is one of the key regulatory genes in the tumor ECM dynamic homeostasis process, which activates many molecular signaling pathways (such as EMT process, Wnt/β-catenin, PI3K/Akt, and mTOR/S6K signaling pathways). This activation leads to ECM remodeling and promotes cell proliferation and invasion, but inhibits cell apoptosis. Whereas there is immense information about SPOCK1's roles in different biological settings, there is need for further studies that interrogate this protein as a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Ziqi Ye
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| | - Jie Chen
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, China
| | - Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| | - Si Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| | - Zixue Xuan
- Department of Pharmacy, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical CollegeHangzhou, China
| | - Xiaoyang Lu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| |
Collapse
|
85
|
Du Z, Lin Z, Wang Z, Liu D, Tian D, Xia L. SPOCK1 overexpression induced by platelet-derived growth factor-BB promotes hepatic stellate cell activation and liver fibrosis through the integrin α5β1/PI3K/Akt signaling pathway. J Transl Med 2020; 100:1042-1056. [PMID: 32291390 DOI: 10.1038/s41374-020-0425-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Sparc/osteonectin, cwcv, and kazal-like domain proteoglycan 1 (SPOCK1) is a matricellular protein which regulates cell proliferation, invasion, and survival but the function of SPOCK1 in liver fibrosis is obscure. In this study, we found that SPOCK1 expression increased significantly in fibrotic liver tissues and activated primary rat hepatic stellate cells (R-HSCs). SPOCK1 co-localized with α-smooth muscle actin (α-SMA) in the cytoplasm. Mechanistically, we found platelet-derived growth factor-BB (PDGF-BB) induced SPOCK1 expression by activating the PI3K/Akt/forkhead box M1 (FoxM1) signaling pathway. Intracellular SPOCK1 downregulation decreased the HSC activation, proliferation, and migration induced by PDGF-BB. Furthermore, intracellular SPOCK1 overexpression or recombinant SPOCK1 treatment promoted HSC activation, proliferation, and migration by activating the PI3K/Akt signaling pathway. Co-immunoprecipitation, double immunofluorescence staining indicated that SPOCK1 interacted with integrin α5β1, and neutralization of integrin α5β1 significantly reduced the role of recombinant SPOCK1 in HSCs. In vivo HSC-specific SPOCK1 knockdown following lentivirus administration dramatically ameliorated thioacetamide (TAA)-induced collagen deposition in rat livers. Collectively, our study indicates that SPOCK1 is crucial for hepatic fibrosis and it might be a promising therapeutic target.
Collapse
Affiliation(s)
- Zhipeng Du
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhuoying Lin
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhihui Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Danfei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Limin Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
86
|
Strunz M, Jarrell JT, Cohen DS, Rosin ER, Vanderburg CR, Huang X. Modulation of SPARC/Hevin Proteins in Alzheimer's Disease Brain Injury. J Alzheimers Dis 2020; 68:695-710. [PMID: 30883351 PMCID: PMC6481539 DOI: 10.3233/jad-181032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) is an age-related progressive form of dementia that features neuronal loss, intracellular tau, and extracellular amyloid-β (Aβ) protein deposition. Neurodegeneration is accompanied by neuroinflammation mainly involving microglia, the resident innate immune cell population of the brain. During AD progression, microglia shift their phenotype, and it has been suggested that they express matricellular proteins such as secreted protein acidic and rich in cysteine (SPARC) and Hevin protein, which facilitate the migration of other immune cells, such as blood-derived dendritic cells. We have detected both SPARC and Hevin in postmortem AD brain tissues and confirmed significant alterations in transcript expression using real-time qPCR. We suggest that an infiltration of myeloid-derived immune cells occurs in the areas of diseased tissue. SPARC is highly expressed in AD brain and collocates to Aβ protein deposits, thus contributing actively to cerebral inflammation and subsequent tissue repair, and Hevin may be downregulated in the diseased state. However, further research is needed to reveal the exact roles of SPARC and Hevin proteins and associated signaling pathways in AD-related neuroinflammation. Nevertheless, normalizing SPARC/Hevin protein expression such as interdicting heightened SPARC protein expression may confer a novel therapeutic opportunity for modulating AD progression.
Collapse
Affiliation(s)
- Maximilian Strunz
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Charles R Vanderburg
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
87
|
Abstract
Cancer is a complex disease with high incidence and mortality rates. The important role played by the tumor microenvironment in regulating oncogenesis, tumor growth, and metastasis is by now well accepted in the scientific community. SPARC is known to participate in tumor-stromal interactions and impact cancer growth in ambiguous ways, which either enhance or suppress cancer aggressiveness, in a context-dependent manner. p53 transcription factor, a well-established tumor suppressor, has been reported to promote tumor growth in certain situations, such as hypoxia, thus displaying a duality in its action. Although both proteins are being tested in clinical trials, the synergistic relation between them is yet to be explored in clinical practice. In this review, we address the controversial roles of SPARC and p53 as double agents in cancer, briefly summarizing the interaction found between these two molecules and its importance in cancer.
Collapse
|
88
|
Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci 2020; 21:E4776. [PMID: 32640520 PMCID: PMC7369781 DOI: 10.3390/ijms21134776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
89
|
Potential Prognostic Role of SPARC Methylation in Non-Small-Cell Lung Cancer. Cells 2020; 9:cells9061523. [PMID: 32580473 PMCID: PMC7349117 DOI: 10.3390/cells9061523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
The silencing of SPARC (secreted protein acid and rich in cysteine) gene through methylation of its promoter region represents a common event in many solid tumors and it is frequently associated with tumor progression and an aggressive clinical outcome. Anyhow, the data concerning the epigenetic mechanism of SPARC deregulation and its prognostic value in lung cancer are still incomplete. We explored the aberrant methylation of SPARC and its effects in 4 non-small cell lung cancer (NSCLC) cell lines and 59 NSCLC tissues and correlated the methylation levels with clinical-pathological features and disease outcome of patients. In 3 out of 4 tumor cell lines high SPARC methylation levels were observed. An inverse correlation between the epigenetic silencing and SPARC expression was confirmed by 5-Aza-2′-deoxycytidine ((5-Aza-CdR) treatment that also significantly induced a reduction in cell viability, proliferation and tumor cell migration. In tissues, the DNA methylation levels of the SPARC gene were significantly lower in paired non-neoplastic lungs (NLs) and normal lungs distant from tumor (NLDTs) than in NSCLCs (p = 0.002 and p = 0.0034 respectively). A promoter hypermethylation was detected in 68% of squamous cell carcinoma (SqCCs, 17/25) and 56% of adenocarcinoma (ADCs, 19/34), with SqCC showing the highest levels of methylation. Higher SPARC methylation levels were significantly associated with higher mortality risk both in all NSCLCs early stage patients (Hazard Ratio, HR = 1.97; 95% Confidence Interval, CI: 1.32–2.93; p = 0.001) and in those with SqCC (HR = 2.96; 95% CI: 1.43–6.12; p = 0.003). Promoter methylation of SPARC gene should represent an interesting prognostic biomarker in NSCLC, with potential application in the squamous early-stage context. Further research in this setting on larger independent cohorts of lung patients with different histologies and stages of disease are warranted.
Collapse
|
90
|
Byrling J, Sasor A, Nilsson J, Said Hilmersson K, Andersson R, Andersson B. Expression of peritumoral SPARC during distal cholangiocarcinoma progression and correlation with outcome. Scand J Gastroenterol 2020; 55:725-731. [PMID: 32543919 DOI: 10.1080/00365521.2020.1774923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/04/2023]
Abstract
Objectives: Distal cholangiocarcinoma (dCCA) is a malignancy with a dismal prognosis. One of the hallmarks is the presence of a rich desmoplastic stroma believed to contribute to tumor progression and treatment resistance. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein implicated in tumor-stroma interaction with prognostic correlation across several malignancies. The aim of the present study was to evaluate the expression pattern and prognostic significance of SPARC in resected dCCA and paired lymph node metastasis.Materials and methods: SPARC expression was evaluated in 59 resected dCCA samples and 25 paired lymph node metastases as well as 10 benign bile duct samples using immunohistochemistry. Stromal SPARC expression was scored semi quantitatively. Survival was estimated using the Kaplan-Meier method with associated log-rank test.Results: SPARC expression was absent in normal bile ducts. In dCCA, peritumoral stromal SPARC was detectable in 47/59 (80%) of samples with 40/59 (68%) classified as high stromal SPARC expression. There was a significantly lower proportion of SPARC positive stroma in paired lymph node metastasis 17/25 (68%) than the corresponding primary tumors 24/25 (96%) (p = .016). Stromal SPARC expression was associated with the presence of lymph node metastasis; high SPARC expression 31/40 (78%) versus low SPARC expression 9/19 (47%) (p = .013). In the present material there was no significant association between stromal SPARC expression and survival.Conclusions: Stromal SPARC expression occurs frequently in dCCA. Although significantly lower than in primary tumors stromal SPARC is frequently retained in paired lymph node metastasis suggesting a possible role in the metastatic process of dCCA.
Collapse
Affiliation(s)
- Johannes Byrling
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Agata Sasor
- Department of Clinical Sciences Lund, Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Johan Nilsson
- Department of Clinical Sciences Lund, Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Katarzyna Said Hilmersson
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Bodil Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
91
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
92
|
Klingler A, Regensburger D, Tenkerian C, Britzen-Laurent N, Hartmann A, Stürzl M, Naschberger E. Species-, organ- and cell-type-dependent expression of SPARCL1 in human and mouse tissues. PLoS One 2020; 15:e0233422. [PMID: 32437418 PMCID: PMC7241726 DOI: 10.1371/journal.pone.0233422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/05/2020] [Indexed: 12/30/2022] Open
Abstract
SPARCL1 is a matricellular protein with anti-adhesive, anti-proliferative and anti-tumorigenic functions and is frequently downregulated in tumors such as colorectal carcinoma or non-small cell lung cancer. Studies have identified SPARCL1 as an angiocrine tumor suppressor secreted by tumor vessel endothelial cells, thereby exerting inhibitory activity on angiogenesis and tumor growth, in colorectal carcinoma. It is unknown whether SPARCL1 may exert these homeostatic functions in all organs and in other species. Therefore, SPARCL1 expression was comparatively analysed between humans and mice in a systematic manner. Murine Sparcl1 (mSparcl1) is most strongly expressed in the lung; expressed at an intermediate level in most organs, including the large intestine; and absent in the liver. In human tissues, SPARCL1 (hSPARCL1) was detected in all organs, with the strongest expression in the stomach, large intestine and lung, mostly consistent with the murine expression pattern. A striking difference between human and murine tissues was the absence of mSparcl1 expression in murine livers, while human livers showed moderate expression. Furthermore, mSparcl1 was predominantly associated with mural cells, whereas hSPARCL1 was detected in both mural and endothelial cells. Human SPARCL1 expression was downregulated in different carcinomas, including lung and colon cancers. In conclusion, this study revealed species-, organ- and cell-type-dependent expression of SPARCL1, suggesting that its function may not be similar between humans and mice.
Collapse
Affiliation(s)
- Anika Klingler
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Daniela Regensburger
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Clara Tenkerian
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
- * E-mail:
| |
Collapse
|
93
|
Sun LR, Li SY, Guo QS, Zhou W, Zhang HM. SPOCK1 Involvement in Epithelial-to-Mesenchymal Transition: A New Target in Cancer Therapy? Cancer Manag Res 2020; 12:3561-3569. [PMID: 32547193 PMCID: PMC7244346 DOI: 10.2147/cmar.s249754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cancer metastasis is the main obstacle to increasing the lifespan of cancer patients. Epithelial-to-mesenchymal transition (EMT) plays a significant role in oncogenic processes, including tumor invasion, intravasation, and micrometastasis formation, and is especially critical for cancer invasion and metastasis. The extracellular matrix (ECM) plays a crucial role in the occurrence of EMT corresponding to the change in adhesion between cells and matrices. Conclusion SPOCK1 is a critical regulator of the ECM and mediates EMT in cancer cells. This suggests an important role for SPOCK1 in tumorigenesis, migration and invasion. SPOCK1 is a critical regulator of some processes involved in cancer progression, including cancer cell proliferation, apoptosis and migration. Herein, the functions of SPOCK1 in cancer progression are expounded, revealing the association between SPOCK1 and EMT in cancer metastasis. SPOCK1 is a positive downstream regulator of transforming growth factor-β, and SPOCK1-mediated EMT regulates invasion and metastasis through the Wnt/β-catenin pathway and PI3K/Akt signaling pathway. It is of significance that SPOCK1 may be an attractive prognostic biomarker and therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Si-Yu Li
- Department of Pathology, Hangzhou Third Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Qiu-Shi Guo
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wei Zhou
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hong-Mei Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
94
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
95
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
96
|
Yao LW, Wu LL, Zhang LH, Zhou W, Wu L, He K, Ren JC, Deng YC, Yang DM, Wang J, Mu GG, Xu M, Zhou J, Xiang GA, Ding QS, Yang YN, Yu HG. MFAP2 is overexpressed in gastric cancer and promotes motility via the MFAP2/integrin α5β1/FAK/ERK pathway. Oncogenesis 2020; 9:17. [PMID: 32054827 PMCID: PMC7018958 DOI: 10.1038/s41389-020-0198-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/23/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies and its prognosis is extremely poor. This study identifies a novel oncogene, microfibrillar-associated protein 2 (MFAP2) in GC. With integrative reanalysis of transcriptomic data, we found MFAP2 as a GC prognosis-related gene. And the aberrant expression of MFAP2 was explored in GC samples. Subsequent experiments indicated that silencing and exogenous MFAP2 could affect motility of cancer cells. The inhibition of silencing MFAP2 could be rescued by another FAK activator, fibronectin. This process is probably through affecting the activation of focal adhesion process via modulating ITGB1 and ITGA5. MFAP2 regulated integrin expression through ERK1/2 activation. Silencing MFAP2 by shRNA inhibited tumorigenicity and metastasis in nude mice. We also revealed that MFAP2 is a novel target of microRNA-29, and miR-29/MFAP2/integrin α5β1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression. In conclusion, our data identified MFAP2 as a novel oncogene in GC and revealed that miR-29/MFAP2/integrin α5β1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression.
Collapse
Affiliation(s)
- Li-Wen Yao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Lian-Lian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Li-Hui Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Lu Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ke He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong, 510317, P.R. China
- Department of Biochemistry, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Cai Ren
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Yun-Chao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Dong-Mei Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Jing Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Gang-Gang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Jie Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Guo-An Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong, 510317, P.R. China
| | - Qian-Shan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| | - Yan-Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| | - Hong-Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
- Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
97
|
Zhu J, Wang LY, Li CY, Wu JY, Zhang YT, Pang KP, Wei Y, Du LQ, Liu M, Wu XY. SPARC promotes self-renewal of limbal epithelial stem cells and ocular surface restoration through JNK and p38-MAPK signaling pathways. Stem Cells 2019; 38:134-145. [PMID: 31644832 DOI: 10.1002/stem.3100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to investigate the effects of secreted protein acidic and rich in cysteine (SPARC) on the maintenance of limbal epithelial stem cell (LESC) stemness and restoration of ocular surface. To determine the suitable concentration of SPARC for LESC culture, the marker expression, mitogenic effect, and holoclone-forming capacity of LESCs treated with different concentrations of SPARC were analyzed. To investigate the mechanism of SPARC's action on the preservation of LESCs stemness, the phosphorylation of related signaling pathways was evaluated by Western blotting. A corneal wound model was established to verify the function of SPARC in ocular surface repair. Consecutive subculturing, colony-forming efficiency, immunofluorescence, and 5-ethynyl-2-deoxyuridine incorporation assays indicated that 1 μg/mL SPARC was a suitable concentration to stimulate LESC proliferation and preserve their proliferative potential. Compared with a control group, 1 μg/mL SPARC effectively increased the expression of ABCG-2, Bmi-1, and Ki67, while decreasing that of CK3/12. The mitogenic effect of SPARC on LESCs was found to be mediated by the phosphorylation of c-Jun N-terminal kinase (JNK) and p38-MAPK signaling pathways, whereas the inhibitors of JNK and p38 MAPK reduced the marker expression and mitogenic capacity of LESCs. In a corneal injury model, SPARC facilitated corneal epithelial wound healing and promoted the proliferation of p63α-positive cells both in the limbus and in the epithelial healing front. SPARC promotes proliferation while suppressing spontaneous differentiation of LESCs through JNK and p38-MAPK signaling pathways, suggesting that SPARC is a promising factor for the improvement of LESCs culture in vitro and in vivo.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Le-Yi Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Chong-Yun Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jia-Yin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yu-Ting Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Kun-Peng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yan Wei
- Department of First Operating Room, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Li-Qun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Mei Liu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xin-Yi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
98
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
99
|
Omi S, Yamanouchi K, Nakamura K, Matsuwaki T, Nishihara M. Reduced fibrillar collagen accumulation in skeletal muscle of secreted protein acidic and rich in cysteine (SPARC)-null mice. J Vet Med Sci 2019; 81:1649-1654. [PMID: 31582603 PMCID: PMC6895640 DOI: 10.1292/jvms.19-0485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have previously shown that secreted protein acidic and rich in cysteine (SPARC) promotes myogenic differentiation of rat skeletal muscle progenitor cells in vitro, and in vivo small interfering RNA (siRNA)-mediated transient suppression of SPARC expression in skeletal muscle of mice causes atrophic changes of myofibers, suggesting that SPARC plays a role in the maintenance of skeletal muscle function. In order to know the effect of long-term deficiency of SPARC on skeletal muscle, we performed phenotypic analyses of skeletal muscle of SPARC-null mice. Age-associated changes of myofiber diameters were comparable between wild type (WT) and SPARC-null mice at all ages examined, indicating that the growth of myofibers is unaffected by the absence of SPARC. On the other hand, accumulation of fibrillar collagen was significantly reduced in SPARC-null mice compared to WT mice after 5 months of age without significant changes of collagen I gene expression. The results obtained in the present study suggest that SPARC plays a role to maintain the stiffness of skeletal muscle by regulating collagen accumulation.
Collapse
Affiliation(s)
- Sanae Omi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
100
|
Zhu YS, Gu Y, Jiang C, Chen L. Osteonectin regulates the extracellular matrix mineralization of osteoblasts through P38 signaling pathway. J Cell Physiol 2019; 235:2220-2231. [PMID: 31489629 DOI: 10.1002/jcp.29131] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Osteonectin binds strongly to type I collagen and hydroxyapatite and plays a crucial role in extracellular matrix mineralization. Previous studies have also shown that p38 signaling pathway is an important regulator for osteoblast mineralization. This study focused on the role of osteonectin in regulating extracellular matrix mineralization via the p38 signaling pathway. Osteoblasts were isolated and cultured from parietal bones of neonatal Sprague-Dawley rats. The gene and protein expressions of noncollagen proteins (BSP, bone sialoprotein; OCN, osteocalcin; OPN, osteopontin), p38 mitogen-activated protein kinase, and SIBLINGs (Small Integrin-Binding LIgand N-linked Glycoproteins) members (DMP1, dentine matrix protein 1, DSPP, dentin sialophosphoprotein, and MEPE, matrix extracellular phosphoglycoprotein) were detected by reverse-transcription quantitative polymerase chain reaction and western blot analysis. Alizarin red staining, intracellular calcium assay, and transmission electron microscopy were used to detect mineralization. Initially, by adding osteonectin at different concentrations in osteoblasts and detecting the above mineralization indexes, 1 µg/ml was determined to be the optima osteonectin concentration, which significantly increased gene expressions of BSP, OPN, OCN, DMP1, MEPE, DSPP, and p38 in osteoblasts, p38 and p-p38 protein expressions were also significantly increased, mineralized nodules were significantly enhanced; when added with SB203580 (a specific inhibitor for p38) these effects were inhibited. Furthermore, osteoblasts transfected with Ad-p38 also significantly upregulated the protein and gene expressions of noncollagens and SIBLINGs members, whereas transfection of p38-rhRNA showed the opposite effect. Our data suggest that osteonectin regulates the extracellular matrix mineralization of osteoblasts through the P38 signaling pathway.
Collapse
Affiliation(s)
- Yun-Sen Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chang Jiang
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|