51
|
Yabuki Y, Matsuo K, Yu M, Xu J, Sakimura K, Shioda N, Fukunaga K. Cav3.1 t-type calcium channel is critical for cell proliferation and survival in newly generated cells of the adult hippocampus. Acta Physiol (Oxf) 2021; 232:e13613. [PMID: 33393208 DOI: 10.1111/apha.13613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/27/2022]
Abstract
AIMS Adult hippocampal neurogenesis plays an important role in neuronal plasticity and maintenance in mammals. Low-threshold voltage-gated T-type calcium channels produce calcium spikes that increase fast action potentials in newborn cells in the hippocampal dentate gyrus (DG); however, their role in adult hippocampal neurogenesis remains unclear. Here, we demonstrate impaired adult hippocampal neurogenesis in Cav3.1T-type calcium channel knockout mice. METHODS AND RESULTS Cav3.1T-type calcium channel was predominantly localized in neuronal progenitor cells of the mouse hippocampal DG. By counting the number of 5-bromo-2'-deoxyuridine-labeled cells, decreased proliferation and survival of newly generated cells were observed in the adult hippocampal DG in Cav3.1 knockout mice as compared to wild-type (WT) mice. Moreover, the degree of maturation of doublecortin-positive cells in Cav3.1 knockout mice was lower than that in WT mice, suggesting that Cav3.1 deletion may impair neuronal differentiation. Consistent with impaired hippocampal neurogenesis, Cav3.1 knockout mice showed decreased social interaction. Reduced phosphorylation levels of calcium/calmodulin-dependent protein kinase II and protein kinase B were closely associated with impaired hippocampal neurogenesis in Cav3.1 knockout mice. Moreover, the mRNA and protein expression levels of brain-derived neurotrophic factor, important for neurogenesis, were significantly decreased in Cav3.1 knockout mice. Finally, gene ontology analysis revealed alterations in genes related to the promotion of cell death/apoptosis and suppression of cell proliferation/neuronal differentiation pathways, including Bdnf. CONCLUSION These results suggest that the Cav3.1T-type calcium channel may be a key molecule required for cell proliferation, survival and neuronal differentiation in newly generated cells of the adult mouse hippocampus.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Genomic Neurology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Kazuya Matsuo
- Department of Pharmacology Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
| | - Mengze Yu
- Department of Pharmacology Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
| | - Jing Xu
- Department of Pharmacology Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology Brain Research InstituteNiigata University Niigata Japan
| | - Norifumi Shioda
- Department of Genomic Neurology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Kohji Fukunaga
- Department of Pharmacology Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
| |
Collapse
|
52
|
Aquaporins implicated in the cell proliferation and the signaling pathways of cell stemness. Biochimie 2021; 188:52-60. [PMID: 33894294 DOI: 10.1016/j.biochi.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating passive transport of water and other small molecules across biomembranes. Regulation of osmotic homeostasis via AQPs is accompanied by dynamic participation of various cellular signaling pathways. Recently emerging evidence reveals that functional roles of AQPs are further extended from the osmotic regulation via water permeation into the cell proliferation and differentiation. In particular, anomalous expression of AQPs has been demonstrated in various types of cancer cells and cancer stem-like cells and it has been proposed as markers for proliferation and progression of cancer cells. Thus, a more comprehensive view on AQPs could bring a great interest in the cell stemness accompanied by the expression of AQPs. AQPs are broadly expressed across tissues and cells in a cell type- and lineage-specific manner during development via spatiotemporal transcriptional regulation. Moreover, AQPs are expressed in various adult stem cells and cells associated with a stem cell niche as well as cancer stem-like cells. However, the expression and regulatory mechanisms of AQP expression in stem cells have not been well understood. This review highlighted the AQPs expression in stem cell niches/stem cells and the involvement of AQPs in the cell proliferation and signaling pathways associated with cell stemness.
Collapse
|
53
|
Latoszek E, Czeredys M. Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease. Front Cell Dev Biol 2021; 9:657337. [PMID: 33869222 PMCID: PMC8047111 DOI: 10.3389/fcell.2021.657337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the major Ca2+ signaling pathways is store-operated Ca2+ entry (SOCE), which is responsible for Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. SOCE and its molecular components, including stromal interaction molecule proteins, Orai Ca2+ channels, and transient receptor potential canonical channels, are involved in the physiology of neural stem cells and play a role in their proliferation, differentiation, and neurogenesis. This suggests that Ca2+ signaling is an important player in brain development. Huntington’s disease (HD) is an incurable neurodegenerative disorder that is caused by polyglutamine expansion in the huntingtin (HTT) protein, characterized by the loss of γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum. However, recent research has shown that HD is also a neurodevelopmental disorder and Ca2+ signaling is dysregulated in HD. The relationship between HD pathology and elevations of SOCE was demonstrated in different cellular and mouse models of HD and in induced pluripotent stem cell-based GABAergic MSNs from juvenile- and adult-onset HD patient fibroblasts. The present review discusses the role of SOCE in the physiology of neural stem cells and its dysregulation in HD pathology. It has been shown that elevated expression of STIM2 underlying the excessive Ca2+ entry through store-operated calcium channels in induced pluripotent stem cell-based MSNs from juvenile-onset HD. In the light of the latest findings regarding the role of Ca2+ signaling in HD pathology we also summarize recent progress in the in vitro differentiation of MSNs that derive from different cell sources. We discuss advances in the application of established protocols to obtain MSNs from fetal neural stem cells/progenitor cells, embryonic stem cells, induced pluripotent stem cells, and induced neural stem cells and the application of transdifferentiation. We also present recent progress in establishing HD brain organoids and their potential use for examining HD pathology and its treatment. Moreover, the significance of stem cell therapy to restore normal neural cell function, including Ca2+ signaling in the central nervous system in HD patients will be considered. The transplantation of MSNs or their precursors remains a promising treatment strategy for HD.
Collapse
Affiliation(s)
- Ewelina Latoszek
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
54
|
Challagundla N, Agrawal-Rajput R. microRNAs (miR 9, 124, 155 and 224) transdifferentiate mouse macrophages to neurons. Exp Cell Res 2021; 402:112563. [PMID: 33757809 DOI: 10.1016/j.yexcr.2021.112563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
Development is an irreversible process of differentiating the undifferentiated cells to functional cells. Brain development involves generation of cells with varied phenotype and functions, which is limited during adulthood, stress, damage/degeneration. Cellular reprogramming makes differentiation reversible process with reprogramming somatic/stem cells to alternative fate with/without stem cells. Exogenously expressed transcription factors or small molecule inhibitors have driven reprogramming of stem/somatic cells to neurons providing alternative approach for pre-clinical/clinical testing and therapeutics. Here in, we report a novel approach of microRNA (miR)- induced trans-differentiation of macrophages (CD11b high) to induced neuronal cells (iNCs) (neuronal markershigh- Nestin, Nurr1, Map2, NSE, Tubb3 and Mash1) without exogenous use of transcription factors. miR 9, 124, 155 and 224 successfully transdifferentiated macrophages to neurons with transient stem cell-like phenotype. We report trans differentiation efficacy 18% and 21% with miR 124 and miR 155. in silico(String 10.0, miR gator, mESAdb, TargetScan 7.0) and experimental analysis indicate that the reprogramming involves alteration of pluripotencygenes like Oct4, Sox2, Klf4, Nanog and pluripotency miR, miR 302. iNCs also shifted to G0 phase indicating manipulation of cell cycle by these miRs. Further, CD133+ intermediate cells obtained during current protocol could be differentiated to iNCs using miRs. The syanpsin+ neurons were functionally active and displayed intracellular Ca+2 evoke on activation. miRs could also transdifferentiate bone marrow-derived macrophages and peripheral blood mononuclear cells to neuronal cells. The current protocol could be employed for direct in vivo reprogramming of macrophages to neurons without teratoma formation for transplantation and clinical studies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab,Indian Institute of Advanced Research [IIAR], Gandhinagar, Gujarat, 382427, India.
| | - Reena Agrawal-Rajput
- Immunology Lab,Indian Institute of Advanced Research [IIAR], Gandhinagar, Gujarat, 382427, India.
| |
Collapse
|
55
|
Kitazawa T, Machlab D, Joshi O, Maiorano N, Kohler H, Ducret S, Kessler S, Gezelius H, Soneson C, Papasaikas P, López-Bendito G, Stadler MB, Rijli FM. A unique bipartite Polycomb signature regulates stimulus-response transcription during development. Nat Genet 2021; 53:379-391. [PMID: 33603234 PMCID: PMC7610396 DOI: 10.1038/s41588-021-00789-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Rapid cellular responses to environmental stimuli are fundamental for development and maturation. Immediate early genes can be transcriptionally induced within minutes in response to a variety of signals. How their induction levels are regulated and their untimely activation by spurious signals prevented during development is poorly understood. We found that in developing sensory neurons, before perinatal sensory-activity-dependent induction, immediate early genes are embedded into a unique bipartite Polycomb chromatin signature, carrying active H3K27ac on promoters but repressive Ezh2-dependent H3K27me3 on gene bodies. This bipartite signature is widely present in developing cell types, including embryonic stem cells. Polycomb marking of gene bodies inhibits mRNA elongation, dampening productive transcription, while still allowing for fast stimulus-dependent mark removal and bipartite gene induction. We reveal a developmental epigenetic mechanism regulating the rapidity and amplitude of the transcriptional response to relevant stimuli, while preventing inappropriate activation of stimulus-response genes.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dania Machlab
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Nicola Maiorano
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,University of Basel, Basel, Switzerland,Correspondence to:
| |
Collapse
|
56
|
Gagnon KB, Delpire E. Sodium Transporters in Human Health and Disease. Front Physiol 2021; 11:588664. [PMID: 33716756 PMCID: PMC7947867 DOI: 10.3389/fphys.2020.588664] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sodium (Na+) electrochemical gradients established by Na+/K+ ATPase activity drives the transport of ions, minerals, and sugars in both excitable and non-excitable cells. Na+-dependent transporters can move these solutes in the same direction (cotransport) or in opposite directions (exchanger) across both the apical and basolateral plasma membranes of polarized epithelia. In addition to maintaining physiological homeostasis of these solutes, increases and decreases in sodium may also initiate, directly or indirectly, signaling cascades that regulate a variety of intracellular post-translational events. In this review, we will describe how the Na+/K+ ATPase maintains a Na+ gradient utilized by multiple sodium-dependent transport mechanisms to regulate glucose uptake, excitatory neurotransmitters, calcium signaling, acid-base balance, salt-wasting disorders, fluid volume, and magnesium transport. We will discuss how several Na+-dependent cotransporters and Na+-dependent exchangers have significant roles in human health and disease. Finally, we will discuss how each of these Na+-dependent transport mechanisms have either been shown or have the potential to use Na+ in a secondary role as a signaling molecule.
Collapse
Affiliation(s)
- Kenneth B. Gagnon
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
57
|
Lv X, Zhang W, Xia S, Huang Z, Shi P. Clioquinol inhibits cell growth in a SERCA2-dependent manner. J Biochem Mol Toxicol 2021; 35:e22727. [PMID: 33511738 DOI: 10.1002/jbt.22727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/06/2022]
Abstract
Clioquinol has been reported to act as a potential therapy for neurodegenerative diseases and cancer. However, the underlying mechanism is unclear. We have previously reported that clioquinol induces S-phase cell cycle arrest through the elevation of calcium levels in human neurotypic SH-SY5Y cells. In this study, different types of cells were observed to detect if the effect of clioquinol on intracellular calcium levels is cell type-specific. The Cell Counting Kit-8 assay showed that clioquinol exhibited varying degrees of concentration-dependent cytotoxicity in different cell lines, and that the growth inhibition caused by it was not related to cell source or carcinogenesis. In addition, the inhibition of cell growth by clioquinol was positively associated with its effect on intracellular calcium content ([Ca2+ ]i ). Furthermore, the elevation of [Ca2+ ]i induced by clioquinol led to S-phase cell cycle arrest. Similar to our previous studies, the increase in [Ca2+ ]i was attributed to changes in the expression levels of the calcium pump SERCA2. Comparison of expression levels of SERCA2 between cell lines showed that cells with high levels of SERCA2 were more sensitive to clioquinol. In addition, analysis using UALCAN and the Human Protein Atlas also showed that the expression of SERCA2 in the corresponding human tissues was similar to that of the cells tested in this study, suggesting potential in the application of clioquinol in the future. In summary, our results expand the understanding of the molecular mechanism of clioquinol and provide an important strategy for the rational use of clioquinol.
Collapse
Affiliation(s)
- Xiaoguang Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shengli Xia
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
58
|
Wang X, Li Z, Zhu Y, Yan J, Liu H, Huang G, Li W. Maternal folic acid impacts DNA methylation profile in male rat offspring implicated in neurodevelopment and learning/memory abilities. GENES AND NUTRITION 2021; 16:1. [PMID: 33430764 PMCID: PMC7802276 DOI: 10.1186/s12263-020-00681-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022]
Abstract
Background Periconceptional folic acid (FA) supplementation not only reduces the incidence of neural tube defects, but also improves cognitive performances in offspring. However, the genes or pathways that are epigenetically regulated by FA in neurodevelopment were rarely reported. Methods To elucidate the underlying mechanism, the effect of FA on the methylation profiles in brain tissue of male rat offspring was assessed by methylated DNA immunoprecipitation chip. Differentially methylated genes (DMGs) and gene network analysis were identified using DAVID and KEGG pathway analysis. Results Compared with the folate-normal diet group, 1939 DMGs were identified in the folate-deficient diet group, and 1498 DMGs were identified in the folate-supplemented diet group, among which 298 DMGs were overlapped. The pathways associated with neurodevelopment and learning/memory abilities were differentially methylated in response to maternal FA intake during pregnancy, and there were some identical and distinctive potential mechanisms under FA deficiency or FA-supplemented conditions. Conclusions In conclusion, genes and pathways associated with neurodevelopment and learning/memory abilities were differentially methylated in male rat offspring in response to maternal FA deficiency or supplementation during pregnancy.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.,Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
59
|
Hathy E, Szabó E, Varga N, Erdei Z, Tordai C, Czehlár B, Baradits M, Jezsó B, Koller J, Nagy L, Molnár MJ, Homolya L, Nemoda Z, Apáti Á, Réthelyi JM. Investigation of de novo mutations in a schizophrenia case-parent trio by induced pluripotent stem cell-based in vitro disease modeling: convergence of schizophrenia- and autism-related cellular phenotypes. Stem Cell Res Ther 2020; 11:504. [PMID: 33246498 PMCID: PMC7694414 DOI: 10.1186/s13287-020-01980-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background De novo mutations (DNMs) have been implicated in the etiology of schizophrenia (SZ), a chronic debilitating psychiatric disorder characterized by hallucinations, delusions, cognitive dysfunction, and decreased community functioning. Several DNMs have been identified by examining SZ cases and their unaffected parents; however, in most cases, the biological significance of these mutations remains elusive. To overcome this limitation, we have developed an approach of using induced pluripotent stem cell (iPSC) lines from each member of a SZ case-parent trio, in order to investigate the effects of DNMs in cellular progenies of interest, particularly in dentate gyrus neuronal progenitors. Methods We identified a male SZ patient characterized by early disease onset and negative symptoms, who is a carrier of 3 non-synonymous DNMs in genes LRRC7, KHSRP, and KIR2DL1. iPSC lines were generated from his and his parents’ peripheral blood mononuclear cells using Sendai virus-based reprogramming and differentiated into neuronal progenitor cells (NPCs) and hippocampal dentate gyrus granule cells. We used RNASeq to explore transcriptomic differences and calcium (Ca2+) imaging, cell proliferation, migration, oxidative stress, and mitochondrial assays to characterize the investigated NPC lines. Results NPCs derived from the SZ patient exhibited transcriptomic differences related to Wnt signaling, neuronal differentiation, axonal guidance and synaptic function, and decreased Ca2+ reactivity to glutamate. Moreover, we could observe increased cellular proliferation and alterations in mitochondrial quantity and morphology. Conclusions The approach of reprograming case-parent trios represents an opportunity for investigating the molecular effects of disease-causing mutations and comparing these in cell lines with reduced variation in genetic background. Our results are indicative of a partial overlap between schizophrenia and autism-related phenotypes in the investigated family. Limitations Our study investigated only one family; therefore, the generalizability of findings is limited. We could not derive iPSCs from two other siblings to test for possible genetic effects in the family that are not driven by DNMs. The transcriptomic and functional assays were limited to the NPC stage, although these variables should also be investigated at the mature neuronal stage.
Collapse
Affiliation(s)
- Edit Hathy
- National Brain Research Project (NAP) Molecular Psychiatry Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Eszter Szabó
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, 1117 Magyar tudósok körútja 2, Budapest, Hungary
| | - Nóra Varga
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, 1117 Magyar tudósok körútja 2, Budapest, Hungary
| | - Zsuzsa Erdei
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, 1117 Magyar tudósok körútja 2, Budapest, Hungary
| | - Csongor Tordai
- National Brain Research Project (NAP) Molecular Psychiatry Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Boróka Czehlár
- National Brain Research Project (NAP) Molecular Psychiatry Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Máté Baradits
- National Brain Research Project (NAP) Molecular Psychiatry Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Bálint Jezsó
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, 1117 Magyar tudósok körútja 2, Budapest, Hungary
| | - Júlia Koller
- Institute of Rare Disorders and Genomic Medicine, Semmelweis University, Budapest, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mária Judit Molnár
- Institute of Rare Disorders and Genomic Medicine, Semmelweis University, Budapest, Hungary
| | - László Homolya
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, 1117 Magyar tudósok körútja 2, Budapest, Hungary
| | - Zsófia Nemoda
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Ágota Apáti
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, 1117 Magyar tudósok körútja 2, Budapest, Hungary.
| | - János M Réthelyi
- National Brain Research Project (NAP) Molecular Psychiatry Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary. .,Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary.
| |
Collapse
|
60
|
Lisek M, Zylinska L, Boczek T. Ketamine and Calcium Signaling-A Crosstalk for Neuronal Physiology and Pathology. Int J Mol Sci 2020; 21:ijms21218410. [PMID: 33182497 PMCID: PMC7665128 DOI: 10.3390/ijms21218410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Ketamine is a non-competitive antagonist of NMDA (N-methyl-D-aspartate) receptor, which has been in clinical practice for over a half century. Despite recent data suggesting its harmful side effects, such as neuronal loss, synapse dysfunction or disturbed neural network formation, the drug is still applied in veterinary medicine and specialist anesthesia. Several lines of evidence indicate that structural and functional abnormalities in the nervous system caused by ketamine are crosslinked with the imbalanced activity of multiple Ca2+-regulated signaling pathways. Due to its ubiquitous nature, Ca2+ is also frequently located in the center of ketamine action, although the precise mechanisms underlying drug’s negative or therapeutic properties remain mysterious for the large part. This review seeks to delineate the relationship between ketamine-triggered imbalance in Ca2+ homeostasis and functional consequences for downstream processes regulating key aspects of neuronal function.
Collapse
|
61
|
Glaser T, Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Bonfim Marques L, Ye Q, Ren WJ, Semyanov A, Illes P, Tang Y, Ulrich H. Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington's and Parkinson's Disease. Neurosci Bull 2020; 36:1299-1314. [PMID: 33026587 PMCID: PMC7674528 DOI: 10.1007/s12264-020-00582-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022] Open
Abstract
Huntington's (HD) and Parkinson's diseases (PD) are neurodegenerative disorders caused by the death of GABAergic and dopaminergic neurons in the basal ganglia leading to hyperkinetic and hypokinetic symptoms, respectively. We review here the participation of purinergic receptors through intracellular Ca2+ signaling in these neurodegenerative diseases. The adenosine A2A receptor stimulates striatopallidal GABAergic neurons, resulting in inhibitory actions on GABAergic neurons of the globus pallidus. A2A and dopamine D2 receptors form functional heteromeric complexes inducing allosteric inhibition, and A2A receptor activation results in motor inhibition. Furthermore, the A2A receptor physically and functionally interacts with glutamate receptors, mainly with the mGlu5 receptor subtype. This interaction facilitates glutamate release, resulting in NMDA glutamate receptor activation and an increase of Ca2+ influx. P2X7 receptor activation also promotes glutamate release and neuronal damage. Thus, modulation of purinergic receptor activity, such as A2A and P2X7 receptors, and subsequent aberrant Ca2+ signaling, might present interesting therapeutic potential for HD and PD.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Qing Ye
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
| | - Wen-Jing Ren
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
62
|
Visualization and quantification of dynamic intercellular coupling in human embryonic stem cells using single cell sonoporation. Sci Rep 2020; 10:18253. [PMID: 33106521 PMCID: PMC7589565 DOI: 10.1038/s41598-020-75347-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Abstract
Gap junctions (GJs), which are proteinaceous channels, couple adjacent cells by permitting direct exchange of intracellular molecules with low molecular weights. GJ intercellular communication (GJIC) plays a critical role in regulating behaviors of human embryonic stem cells (hESCs), affecting their proliferation and differentiation. Here we report a novel use of sonoporation that enables single cell intracellular dye loading and dynamic visualization/quantification of GJIC in hESC colonies. By applying a short ultrasound pulse to excite single microbubbles tethered to cell membranes, a transient pore on the cell membrane (sonoporation) is generated which allows intracellular loading of dye molecules and influx of Ca2+ into single hESCs. We employ live imaging for continuous visualization of intercellular dye transfer and Ca2+ diffusion in hESC colonies. We quantify cell–cell permeability based on dye diffusion using mass transport models. Our results reveal heterogeneous intercellular connectivity and a variety of spatiotemporal characteristics of intercellular Ca2+ waves in hESC colonies induced by sonoporation of single cells.
Collapse
|
63
|
Kim JW, Oh HA, Kim SR, Ko MJ, Seung H, Lee SH, Shin CY. Epigenetically Upregulated T-Type Calcium Channels Contribute to Abnormal Proliferation of Embryonic Neural Progenitor Cells Exposed to Valproic Acid. Biomol Ther (Seoul) 2020; 28:389-396. [PMID: 32319264 PMCID: PMC7457173 DOI: 10.4062/biomolther.2020.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/05/2022] Open
Abstract
Valproic acid is a clinically used mood stabilizer and antiepileptic drug. Valproic acid has been suggested as a teratogen associated with the manifestation of neurodevelopmental disorders, such as fetal valproate syndrome and autism spectrum disorders, when taken during specific time window of pregnancy. Previous studies proposed that prenatal exposure to valproic acid induces abnormal proliferation and differentiation of neural progenitor cells, presumably by inhibiting histone deacetylase and releasing the condensed chromatin structure. Here, we found valproic acid up-regulates the transcription of T-type calcium channels by inhibiting histone deacetylase in neural progenitor cells. The pharmacological blockade of T-type calcium channels prevented the increased proliferation of neural progenitor cells induced by valproic acid. Differentiated neural cells from neural progenitor cells treated with valproic acid displayed increased levels of calcium influx in response to potassium chloride-induced depolarization. These results suggest that prenatal exposure to valproic acid up-regulates T-type calcium channels, which may contribute to increased proliferation of neural progenitor cells by inducing an abnormal calcium response and underlie the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Ah Oh
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mee Jung Ko
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hana Seung
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chan Young Shin
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
64
|
Tang J, Wu C, Chen S, Qiao Z, Borovskikh P, Shchegolkov A, Chen L, Wei D, Sun J, Fan H. Combining Electrospinning and Electrospraying to Prepare a Biomimetic Neural Scaffold with Synergistic Cues of Topography and Electrotransduction. ACS APPLIED BIO MATERIALS 2020; 3:5148-5159. [PMID: 35021691 DOI: 10.1021/acsabm.0c00595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nerve tissue consists of aligned fibrous nerve bundles, in which neurons communicate and transmit information through electrical signals. Hence, biocompatibility, oriented fibrous structure, and electrical conductivity are key factors for the biomimetic design of nerve scaffolds. Herein, we built a technical platform to combine electrospinning and electrospraying for preparing a biomimetic scaffold with conductivity and aligned fibrous structure. The highly aligned polycaprolactone (PCL) microfibrous scaffolds with co-sprayed collagen and conductive polypyrrole nanoparticles (PPy NPs) showed good bioactivity, supplying a platform for exploring the effects of topographical guidance, fiber conductivity, and its mediated external electrical signals on neurogenesis. The results revealed that collagen-coated highly aligned PCL microfibrous scaffold induced PC12 cells oriented and elongated along the direction of fibers. In addition, the improved conductivity of PPy-coated aligned fibers and its mediated external electrical stimulation collectively contributed to the functional expression, including elongation, gene expression, and protein expression, of PC12 cells. We further demonstrated the potential mechanism where the fiber conductivity and its mediated external electrical signals resulted in the upregulation of voltage-gated calcium channel, leading to the influx of Ca2+, thereby activating intracellular signaling cascades, ultimately enhancing neurogenesis. This approach provides a strategy to design aligned fibrillary scaffolds with bioactive adhesion domains and electroconductivity for neural regeneration.
Collapse
Affiliation(s)
- Jiajia Tang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Pavel Borovskikh
- School of Business, Economics and Law, Martin-Luther-University Halle-Wittenberg, Universitätsplatz 10, 06108 Halle (Saale), Germany
| | - Alexandr Shchegolkov
- Institute of Technology,Tambov State Technical University, 106 Sovetskaya Street, Tambov 392000, Russia Federation
| | - Lu Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
65
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
66
|
Zhou L, Wolfes AC, Li Y, Chan DCW, Ko H, Szele FG, Bayley H. Lipid-Bilayer-Supported 3D Printing of Human Cerebral Cortex Cells Reveals Developmental Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002183. [PMID: 32537827 DOI: 10.1002/adma.202002183] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Indexed: 05/07/2023]
Abstract
Current understanding of human brain development is rudimentary due to suboptimal in vitro and animal models. In particular, how initial cell positions impact subsequent human cortical development is unclear because experimental spatial control of cortical cell arrangement is technically challenging. 3D cell printing provides a rapid customized approach for patterning. However, it has relied on materials that do not represent the extracellular matrix (ECM) of brain tissue. Therefore, in the present work, a lipid-bilayer-supported printing technique is developed to 3D print human cortical cells in the soft, biocompatible ECM, Matrigel. Printed human neural stem cells (hNSCs) show high viability, neural differentiation, and the formation of functional, stimulus-responsive neural networks. By using prepatterned arrangements of neurons and astrocytes, it is found that hNSC process outgrowth and migration into cell-free matrix and into astrocyte-containing matrix are similar in extent. However, astrocytes enhance the later developmental event of axon bundling. Both young and mature neurons migrate into compartments containing astrocytes; in contrast, astrocytes do not migrate into neuronal domains signifying nonreciprocal chemorepulsion. Therefore, precise prepatterning by 3D printing allows the construction of natural and unnatural patterns that yield important insights into human cerebral cortex development.
Collapse
Affiliation(s)
- Linna Zhou
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Anne C Wolfes
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Yichen Li
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Danny C W Chan
- Division of Neurology, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
67
|
Lei S, Lu P, Lu Y, Zheng J, Li W, Wang N, Zhang H, Li R, Wang K, Wen J, Wei H, Zhang Y, Qiu Z, Xu J, Lv H, Chen X, Liu Y, Zhang P. Dexmedetomidine Alleviates Neurogenesis Damage Following Neonatal Midazolam Exposure in Rats through JNK and P38 MAPK Pathways. ACS Chem Neurosci 2020; 11:579-591. [PMID: 31999428 DOI: 10.1021/acschemneuro.9b00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Midazolam, a widely used anesthetic, inhibits proliferation of neural stem cells (NSCs) and induces neuroapoptosis in neonates. Dexmedetomidine, an effective auxiliary medicine in clinical anesthesia, protects the developing brain against volatile anesthetic-induced neuroapoptosis. Whether dexmedetomidine protects against neurogenesis damage induced by midazolam remains unknown. This study aims to clarify the protective effect of dexmedetomidine on midazolam-induced neurogenesis damage and explore its potential mechanism. Postnatal 7-day-old Sprague-Dawley (SD) rats and cultured NSCs were treated with either normal saline, midazolam, or dexmedetomidine combined with midazolam. The rats were sacrificed at 1, 3, and 7 days after treatment. Cell proliferation was assessed by 5-bromodeoxyurdine (BrdU) incorporation. Cell viability was determined using MTT assay. Cell differentiation and apoptosis were detected by immunofluorescent staining and terminal dUTP nick-end labeling (TUNEL), respectively. The protein levels of p-JNK, p-P38, and cleaved caspase-3 were quantified using Western blotting. Midazolam decreased cell proliferation and increased cell apoptosis in the subventricular zone (SVZ), the subgranular zone (SGZ) of the hippocampus, and cultured NSCs. Moreover, midazolam decreased cell viability and increased the expression of p-JNK and p-P38 in cultured NSCs. Co-treatment with dexmedetomidine attenuated midazolam-induced changes in cell proliferation, viability, apoptosis, and protein expression of p-JNK and p-P38 in cultured NSCs. Midazolam and dexmedetomidine did not affect the differentiation of the cultured NSCs. These results indicate that dexmedetomidine alleviated midazolam-induced neurogenesis damage via JNK and P38 MAPK pathways.
Collapse
Affiliation(s)
- Shan Lei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Juan Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Weisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Hong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jieqiong Wen
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jing Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Haixia Lv
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi’an Jiaotong University, Xi’an 710016, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi’an Jiaotong University, Xi’an 710016, China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi’an Jiaotong University, Xi’an 710016, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
68
|
Spencer SA, Suárez-Pozos E, Escalante M, Myo YP, Fuss B. Sodium-Calcium Exchangers of the SLC8 Family in Oligodendrocytes: Functional Properties in Health and Disease. Neurochem Res 2020; 45:1287-1297. [PMID: 31927687 DOI: 10.1007/s11064-019-02949-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
The solute carrier 8 (SLC8) family of sodium-calcium exchangers (NCXs) functions as an essential regulatory system that couples opposite fluxes of sodium and calcium ions across plasmalemmal membranes. NCXs, thereby, play key roles in maintaining an ion homeostasis that preserves cellular integrity. Hence, alterations in NCX expression and regulation have been found to lead to ionic imbalances that are often associated with intracellular calcium overload and cell death. On the other hand, intracellular calcium has been identified as a key driver for a multitude of downstream signaling events that are crucial for proper functioning of biological systems, thus highlighting the need for a tightly controlled balance. In the CNS, NCXs have been primarily characterized in the context of synaptic transmission and ischemic brain damage. However, a much broader picture is emerging. NCXs are expressed by virtually all cells of the CNS including oligodendrocytes (OLGs), the cells that generate the myelin sheath. With a growing appreciation of dynamic calcium signals in OLGs, NCXs are becoming increasingly recognized for their crucial roles in shaping OLG function under both physiological and pathophysiological conditions. In order to provide a current update, this review focuses on the importance of NCXs in cells of the OLG lineage. More specifically, it provides a brief introduction into plasmalemmal NCXs and their modes of activity, and it discusses the roles of OLG expressed NCXs in regulating CNS myelination and in contributing to CNS pathologies associated with detrimental effects on OLG lineage cells.
Collapse
Affiliation(s)
- Samantha A Spencer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Yu Par Myo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
69
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
70
|
Li Y, Jiao J. Deficiency of TRPM2 leads to embryonic neurogenesis defects in hyperthermia. SCIENCE ADVANCES 2020; 6:eaay6350. [PMID: 31911949 PMCID: PMC6938698 DOI: 10.1126/sciadv.aay6350] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/04/2019] [Indexed: 05/05/2023]
Abstract
Temperature homeostasis is critical for fetal development. The heat sensor protein TRPM2 (transient receptor potential channel M2) plays crucial roles in the heat response, but its function and specific mechanism in brain development remain largely unclear. Here, we observe that TRPM2 is expressed in neural stem cells. In hyperthermia, TRPM2 knockdown and knockout reduce the proliferation of neural progenitor cells (NPCs) and, accordingly, increase premature cortical neuron differentiation. In terms of the mechanism, TRPM2 regulates neural progenitor self-renewal by targeting SP5 (specificity protein 5) via inhibiting the phosphorylation of β-catenin and increasing β-catenin expression. Furthermore, the constitutive expression of TRPM2 or SP5 partly rescues defective NPC proliferation in the TRPM2-deficient embryonic brain. Together, the data suggest that TRPM2 has a critical function in maintaining the NPC pool during heat stress, and the findings provide a framework for understanding how the disruption of the TRPM2 gene may contribute to neurological disorders.
Collapse
Affiliation(s)
- Yanxin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author.
| |
Collapse
|
71
|
Glaser T, Arnaud Sampaio VF, Lameu C, Ulrich H. Calcium signalling: A common target in neurological disorders and neurogenesis. Semin Cell Dev Biol 2019; 95:25-33. [DOI: 10.1016/j.semcdb.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
|
72
|
Atsuta Y, Tomizawa RR, Levin M, Tabin CJ. L-type voltage-gated Ca 2+ channel Ca V1.2 regulates chondrogenesis during limb development. Proc Natl Acad Sci U S A 2019; 116:21592-21601. [PMID: 31591237 PMCID: PMC6815189 DOI: 10.1073/pnas.1908981116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
All cells, including nonexcitable cells, maintain a discrete transmembrane potential (Vmem), and have the capacity to modulate Vmem and respond to their own and neighbors' changes in Vmem Spatiotemporal variations have been described in developing embryonic tissues and in some cases have been implicated in influencing developmental processes. Yet, how such changes in Vmem are converted into intracellular inputs that in turn regulate developmental gene expression and coordinate patterned tissue formation, has remained elusive. Here we document that the Vmem of limb mesenchyme switches from a hyperpolarized to depolarized state during early chondrocyte differentiation. This change in Vmem increases intracellular Ca2+ signaling through Ca2+ influx, via CaV1.2, 1 of L-type voltage-gated Ca2+ channels (VGCCs). We find that CaV1.2 activity is essential for chondrogenesis in the developing limbs. Pharmacological inhibition by an L-type VGCC specific blocker, or limb-specific deletion of CaV1.2, down-regulates expression of genes essential for chondrocyte differentiation, including Sox9, Col2a1, and Agc1, and thus disturbs proper cartilage formation. The Ca2+-dependent transcription factor NFATc1, which is a known major transducer of intracellular Ca2+ signaling, partly rescues Sox9 expression. These data reveal instructive roles of CaV1.2 in limb development, and more generally expand our understanding of how modulation of membrane potential is used as a mechanism of developmental regulation.
Collapse
Affiliation(s)
- Yuji Atsuta
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Allen Discovery Center at Tufts University, Tufts University, Medford, MA 02155
| | - Reiko R Tomizawa
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Allen Discovery Center at Tufts University, Tufts University, Medford, MA 02155
| | - Michael Levin
- Allen Discovery Center at Tufts University, Tufts University, Medford, MA 02155
- Department of Biology, Tufts University, Medford, MA 02155
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Allen Discovery Center at Tufts University, Tufts University, Medford, MA 02155
| |
Collapse
|
73
|
Cui Y, Li X, Zeljic K, Shan S, Qiu Z, Wang Z. Effect of PEGylated Magnetic PLGA-PEI Nanoparticles on Primary Hippocampal Neurons: Reduced Nanoneurotoxicity and Enhanced Transfection Efficiency with Magnetofection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38190-38204. [PMID: 31550131 DOI: 10.1021/acsami.9b15014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Despite broad application of nanotechnology in neuroscience, the nanoneurotoxicity of magnetic nanoparticles in primary hippocampal neurons remains poorly characterized. In particular, understanding how magnetic nanoparticles perturb neuronal calcium homeostasis is critical when considering magnetic nanoparticles as a nonviral vector for effective gene therapy in neuronal diseases. Here, we address the pressing need to systematically investigate the neurotoxicity of magnetic nanoparticles with different surface charges in primary hippocampal neurons. We found that unlike negative and neutral nanoparticles, positively charged magnetic nanoparticles (magnetic poly(lactic-co-glycolic acid) (PLGA)-polyethylenimine (PEI) nanoparticles, MNP-PLGA-PEI NPs) rapidly elevated cytoplasmic calcium levels in primary hippocampal neurons, mainly via extracellular calcium influx regulated by voltage-gated calcium channels. We went on to show that this perturbation of intracellular calcium homeostasis elicited serious cytotoxicity in primary hippocampal neurons. However, our next experiment demonstrated that PEGylation on the surface of MNP-PLGA-PEI NPs shielded the surface charge, thereby preventing the perturbation of intracellular calcium homeostasis. That is, PEGylated MNP-PLGA-PEI NPs reduced nanoneurotoxicity. Importantly, biocompatible PEGylated MNP-PLGA-PEI NPs under an external magnetic field enhanced transfection efficiency (>7%) of plasmid DNA encoding GFP in primary hippocampal neurons compared to NPs without external magnetic field mediation. Moreover, under an external magnetic field, this system achieved gene transfection in the hippocampus of the C57 mouse. Overall, this study is the first to successfully employ biocompatible PEGylated MNP-PLGA-PEI NPs for transfection using a magnetofection strategy in primary hippocampal neurons, thereby providing a nanoplatform as a new perspective for treating neuronal diseases or modulating neuron activities.
Collapse
Affiliation(s)
- Yanna Cui
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience , CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
| | - Xiao Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience , CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
- School of Basic Medical Science , Fudan University , 138 Yixueyuan Road , Shanghai 200032 , China
| | - Kristina Zeljic
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience , CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Shifang Shan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience , CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
| | - Zilong Qiu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience , CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience , CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China
- Kunming Institute of Zoology, Chinese Academy of Sciences , 32 Jiaochang East Road , Kunming , Yunnan 650223 , China
- Shanghai Research Center for Brain Science and Brain-inspired Intelligence Technology , 100 Haike Road , Shanghai 201210 , China
| |
Collapse
|
74
|
Li Puma DD, Piacentini R, Leone L, Gironi K, Marcocci ME, De Chiara G, Palamara AT, Grassi C. Herpes Simplex Virus Type-1 Infection Impairs Adult Hippocampal Neurogenesis via Amyloid-β Protein Accumulation. Stem Cells 2019; 37:1467-1480. [PMID: 31381841 DOI: 10.1002/stem.3072] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/21/2019] [Indexed: 12/14/2022]
Abstract
We previously reported that Herpes simplex virus type-1 (HSV-1) infection of cultured neurons triggered intracellular accumulation of amyloid-β protein (Aβ) markedly impinging on neuronal functions. Here, we demonstrated that HSV-1 affects in vitro and in vivo adult hippocampal neurogenesis by reducing neural stem/progenitor cell (NSC) proliferation and their neuronal differentiation via intracellular Aβ accumulation. Specifically, cultured NSCs were more permissive for HSV-1 replication than mature neurons and, once infected, they exhibited reduced proliferation (assessed by 5'-bromo-deoxyuridine incorporation, Ki67 immunoreactivity, and Sox2 mRNA expression) and impaired neuronal differentiation in favor of glial phenotype (evaluated by immunoreactivity for the neuronal marker MAP2, the glial marker glial fibrillary astrocyte protein, and the expression of the proneuronal genes Mash1 and NeuroD1). Similarly, impaired adult neurogenesis was observed in the subgranular zone of hippocampal dentate gyrus of an in vivo model of recurrent HSV-1 infections, that we recently set up and characterized, with respect to mock-infected mice. The effects of HSV-1 on neurogenesis did not depend on cell death and were due to Aβ accumulation in infected NSCs. Indeed, they were: (a) reverted, in vitro, by the presence of either β/γ-secretase inhibitors preventing Aβ production or the specific 4G8 antibody counteracting the action of intracellular Aβ; (b) not detectable, in vivo, in HSV-1-infected amyloid precursor protein knockout mice, unable to produce and accumulate Aβ. Given the critical role played by adult neurogenesis in hippocampal-dependent memory and learning, our results suggest that multiple virus reactivations in the brain may contribute to Alzheimer's disease phenotype by also targeting NSCs. Stem Cells 2019;37:1467-1480.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lucia Leone
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Katia Gironi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.,San Raffaele Pisana, IRCCS, Telematic University, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
75
|
Human Cytomegalovirus Disruption of Calcium Signaling in Neural Progenitor Cells and Organoids. J Virol 2019; 93:JVI.00954-19. [PMID: 31217241 DOI: 10.1128/jvi.00954-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The herpesvirus human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Infection can result in infants born with a variety of symptoms, including hepatosplenomegaly, microcephaly, and developmental disabilities. Microcephaly is associated with disruptions in the neural progenitor cell (NPC) population. Here, we defined the impact of HCMV infection on neural tissue development and calcium regulation, a critical activity in neural development. Regulation of intracellular calcium involves purinergic receptors and voltage-gated calcium channels (VGCC). HCMV infection compromised the ability of both pathways in NPCs as well as fibroblasts to respond to stimulation. We observed significant drops in basal calcium levels in infected NPCs which were accompanied by loss in VGCC activity and purinergic receptor responses. However, uninfected cells in the population retained responsiveness. Addition of the HCMV inhibitor maribavir reduced viral spread but failed to restore activity in infected cells. To study neural development, we infected three-dimensional cortical organoids with HCMV. Infection spread to a subset of cells over time and disrupted organoid structure, with alterations in developmental and neural layering markers. Organoid-derived infected neurons and astrocytes were unable to respond to stimulation whereas uninfected cells retained nearly normal responses. Maribavir partially restored structural features, including neural rosette formation, and dampened the impact of infection on neural cellular function. Using a tissue model system, we have demonstrated that HCMV alters cortical neural layering and disrupts calcium regulation in infected cells.IMPORTANCE Human cytomegalovirus (HCMV) replicates in several cell types throughout the body, causing disease in the absence of an effective immune response. Studies on HCMV require cultured human cells and tissues due to species specificity. In these studies, we investigated the impact of infection on developing three-dimensional cortical organoid tissues, with specific emphasis on cell-type-dependent calcium signaling. Calcium signaling is an essential function during neural differentiation and cortical development. We observed that HCMV infects and spreads within these tissues, ultimately disrupting cortical structure. Infected cells exhibited depleted calcium stores and loss of ATP- and KCl-stimulated calcium signaling while uninfected cells in the population maintained nearly normal responses. Some protection was provided by the viral inhibitor maribavir. Overall, our studies provide new insights into the impact of HCMV on cortical tissue development and function.
Collapse
|
76
|
Park SY, Yoo YM, Jung EM, Jeung EB. Distribution of and steroid hormone effects on calbindin-D 9k in the immature rat brain. Brain Res Bull 2019; 152:225-235. [PMID: 31357009 DOI: 10.1016/j.brainresbull.2019.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
Calbindin-D9k (CaBP-9k), one of the major calcium-binding and calcium-buffering proteins, is important in the physiological functioning of organs. The neuroanatomical localization of CaBP-9k in the rodent brain has not been reported; thus, this study investigated the neuroanatomical distribution of CaBP-9k and the regulation of CaBP-9k expression on steroid hormones in the immature rat brain. To confirm the influence of steroid hormones on CaBP-9k expression, immature female rats were injected for 5 days with estrogen (E2), progesterone (P4), dexamethasone (DEX), and their antagonists (ICI 182, 780 and RU 486). The localization and expression of the CaBP-9k protein in brain regions were identified by immunofluorescence and western blot assays, respectively. We observed that CaBP-9k expression was especially strong in hypothalamus, cerebellum, and brain stem. In addition, CaBP-9k was colocalized with mature-, GABAergic, dopaminergic, and oxytocinergic neurons. We also observed that the CaBP-9k protein level was significantly increased by P4 and reversed by antagonist RU 486 treatment in immature rat brain. In summary, CaBP-9k positive cells have a wide distribution in the immature rat brain, and CaBP-9k expression is regulated by P4. We suggest that CaBP-9k expression regulated by steroid hormone may serve as an important regulator of cytosolic calcium concentration in the brain.
Collapse
Affiliation(s)
- Seon Young Park
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea.
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea.
| |
Collapse
|
77
|
Luo H, Han L, Xu J. Apelin/APJ system: A novel promising target for neurodegenerative diseases. J Cell Physiol 2019; 235:638-657. [DOI: 10.1002/jcp.29001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Huaiqing Luo
- Department of Physiology Changsha Medical University Changsha Hunan China
- Department of Physiology, School of Basic Medical Science Central South University Changsha Hunan China
| | - Li Han
- Department of Physiology Changsha Medical University Changsha Hunan China
| | - Jin Xu
- School of Pharmaceutical Sciences Changsha Medical University Changsha Hunan China
| |
Collapse
|
78
|
O'Reilly D, Buchanan P. Calcium channels and cancer stem cells. Cell Calcium 2019; 81:21-28. [PMID: 31163289 DOI: 10.1016/j.ceca.2019.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSC's) have emerged as a key area of investigation due to associations with cancer development and treatment resistance, related to their ability to remain quiescent, self-renew and terminally differentiate. Targeting CSC's in addition to the tumour bulk could ensure complete removal of the cancer, lessening the risk of relapse and improving patient survival. Understanding the mechanisms supporting the functions of CSC's is essential to highlight targets for the development of therapeutic strategies. Changes in intracellular calcium through calcium channel activity is fundamental for integral cellular processes such as proliferation, migration, differentiation and survival in a range of cell types, under both normal and pathological conditions. Here in we highlight how calcium channels represent a key mechanism involved in CSC function. It is clear that expression and or function of a number of channels involved in calcium entry and intracellular store release are altered in CSC's. Correlating with aberrant proliferation, self-renewal and differentiation, which in turn promoted cancer progression and treatment resistance. Research outlined has demonstrated that targeting altered calcium channels in CSC populations can reduce their stem properties and induce terminal differentiation, sensitising them to existing cancer treatments. Overall this highlights calcium channels as emerging novel targets for CSC therapies.
Collapse
Affiliation(s)
- Debbie O'Reilly
- National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland; School of Nursing and Human science, Dublin City University, Dublin, Ireland
| | - Paul Buchanan
- National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland; School of Nursing and Human science, Dublin City University, Dublin, Ireland.
| |
Collapse
|
79
|
Calcium Activity Dynamics Correlate with Neuronal Phenotype at a Single Cell Level and in a Threshold-Dependent Manner. Int J Mol Sci 2019; 20:ijms20081880. [PMID: 30995769 PMCID: PMC6515432 DOI: 10.3390/ijms20081880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Calcium is a ubiquitous signaling molecule that plays a vital role in many physiological processes. Recent work has shown that calcium activity is especially critical in vertebrate neural development. Here, we investigated if calcium activity and neuronal phenotype are correlated only on a population level or on the level of single cells. Using Xenopus primary cell culture in which individual cells can be unambiguously identified and associated with a molecular phenotype, we correlated calcium activity with neuronal phenotype on the single-cell level. This analysis revealed that, at the neural plate stage, a high frequency of low-amplitude spiking activity correlates with an excitatory, glutamatergic phenotype, while high-amplitude spiking activity correlates with an inhibitory, GABAergic phenotype. Surprisingly, we also found that high-frequency, low-amplitude spiking activity correlates with neural progenitor cells and that differentiating cells exhibit higher spike amplitude. Additional methods of analysis suggested that differentiating marker tubb2b-expressing cells exhibit relatively persistent and predictable calcium activity compared to the irregular activity of neural progenitor cells. Our study highlights the value of using a range of thresholds for analyzing calcium activity data and underscores the importance of employing multiple methods to characterize the often irregular, complex patterns of calcium activity during early neural development.
Collapse
|
80
|
Márquez-Valadez B, Aquino-Miranda G, Quintero-Romero MO, Papacostas-Quintanilla H, Bueno-Nava A, López-Rubalcava C, Díaz NF, Arias-Montaño JA, Molina-Hernández A. The Systemic Administration of the Histamine H 1 Receptor Antagonist/Inverse Agonist Chlorpheniramine to Pregnant Rats Impairs the Development of Nigro-Striatal Dopaminergic Neurons. Front Neurosci 2019; 13:360. [PMID: 31040765 PMCID: PMC6476962 DOI: 10.3389/fnins.2019.00360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
The dopaminergic and histaminergic systems are the first to appear during the development of the nervous system. Through the activation of H1 receptors (H1Rs), histamine increases neurogenesis of the cortical deep layers, while reducing the dopaminergic phenotype (cells immunoreactive to tyrosine hydroxylase, TH+) in embryo ventral mesencephalon. Although the function of histamine in neuronal differentiation has been studied, the role of H1Rs in neurogenesis has not been addressed. For this purpose, the H1R antagonist/inverse agonist chlorpheniramine was systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats (gestational days 12-14, E12-14), and control and experimental embryos (E14 and E16) and pups (21-day-old) were evaluated for changes in nigro-striatal development. Western blot and immunohistochemistry determinations showed a significant increase in the dopaminergic markers' TH and PITX3 in embryos from chlorpheniramine-treated rats at E16. Unexpectedly, 21-day-old pups from the chlorpheniramine-treated group, showed a significant reduction in TH immunoreactivity in the substantia nigra pars compacta and dorsal striatum. Furthermore, striatal dopamine content, evoked [3H]-dopamine release and methamphetamine-stimulated motor activity were significantly lower compared to the control group. These results indicate that H1R blockade at E14-E16 favors the differentiation of dopaminergic neurons, but hampers their migration, leading to a decrease in dopaminergic innervation of the striatum in post-natal life.
Collapse
Affiliation(s)
- Berenice Márquez-Valadez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Guillermo Aquino-Miranda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mijail-Oliver Quintero-Romero
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Helena Papacostas-Quintanilla
- Laboratorio de Psicofarmacología y Trastornos de la Alimentación, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados delInstituto Politécnico Nacional, Mexico City, Mexico
| | - Antonio Bueno-Nava
- División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Carolina López-Rubalcava
- Laboratorio de Psicofarmacología y Trastornos de la Alimentación, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados delInstituto Politécnico Nacional, Mexico City, Mexico
| | - Néstor Fabián Díaz
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
81
|
Kula B, Chen T, Kukley M. Glutamatergic signaling between neurons and oligodendrocyte lineage cells: Is it synaptic or non‐synaptic? Glia 2019; 67:2071-2091. [DOI: 10.1002/glia.23617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Bartosz Kula
- Group of Neuron Glia InteractionUniversity of Tübingen Tübingen Germany
- Graduate Training Centre for NeuroscienceUniversity of Tübingen Tübingen Germany
| | - Ting‐Jiun Chen
- Center for Neuroscience ResearchChildren's Research Institute, Children's National Medical Center Washington District of Columbia
| | - Maria Kukley
- Group of Neuron Glia InteractionUniversity of Tübingen Tübingen Germany
- Research Institute for OphthalmologyUniversity Hospital Tübingen Tübingen Germany
| |
Collapse
|
82
|
Dong H, Tang B, Jiang Y, Mittal RK. Na + /Ca 2+ exchanger 1 is a key mechanosensitive molecule of the esophageal myenteric neurons. Acta Physiol (Oxf) 2019; 225:e13223. [PMID: 30466198 DOI: 10.1111/apha.13223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022]
Abstract
AIM Our earlier studies showed that mechanical stretch activates inhibitory motor neurons of the oesophagus; however, the underlying molecular mechanisms are unclear. Here, we sought to examine if Na+ /Ca2+ exchanger 1 (NCX1) is responsible for the mechanosensitivity in the esophageal myenteric neurons (EMN) of rats and humans. METHODS The function of NCX1 in primary culture of neurons was determined using calcium imaging, and mechanosensitivity was tested using osmotic stretch and direct mechanical stretch. Axial stretch-induced relaxation of the lower esophageal sphincter (LES) was also studied in vivo in rats. RESULTS The expression and co-localization of NCX1 with nNOS were identified in the EMN from both rats and humans. The extracellular Ca2+ entry caused by ATP through purinergic signalling in the rat EMN was significantly inhibited by selective NCX blockers. Removal of extracellular Na+ to activate the Ca2+ entry mode of NCX1 induced an increase in the cytoplasmic calcium ([Ca2+ ]cyt ), which was attenuated by NCX blockers. Osmotic stretch and mechanical stretch-induced [Ca2+ ]cyt signalling in the rat and human EMN were attenuated by NCX blockers as well as specific NCX1 knockdown. Osmotic stretch and mechanical stretch also induced [Ca2+ ]cyt signalling in the Chinese hamster ovary (CHO) cells with NCX1 over-expression, which was attenuated by NCX blockers. Finally, NCX blockade inhibited axial stretch-activated LES relaxation in vivo experiments in the rats. CONCLUSIONS We demonstrate a novel NCX1/Ca2+ pathway in the mechanosensitive neurons of rat and human oesophagus, which may provide a potential therapeutic target for the treatment of oesophageal motility disorders.
Collapse
Affiliation(s)
- Hui Dong
- Department of Gastroenterology, Xinqiao Hospital Third Military Meical University Chongqing China
- Department of Medicine University of California San Diego California
- San Diego VA Healthcare System San Diego California
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital Third Military Meical University Chongqing China
- Department of Medicine University of California San Diego California
- San Diego VA Healthcare System San Diego California
| | - Yanfen Jiang
- Department of Medicine University of California San Diego California
- San Diego VA Healthcare System San Diego California
| | - Ravinder K. Mittal
- Department of Medicine University of California San Diego California
- San Diego VA Healthcare System San Diego California
| |
Collapse
|
83
|
Kim JY, Kim JY, Kim JH, Jung H, Lee WT, Lee JE. Restorative Mechanism of Neural Progenitor Cells Overexpressing Arginine Decarboxylase Genes Following Ischemic Injury. Exp Neurobiol 2019; 28:85-103. [PMID: 30853827 PMCID: PMC6401554 DOI: 10.5607/en.2019.28.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) following ischemic stroke is a promising potential therapeutic strategy, but lacks efficacy for human central nervous system (CNS) therapeutics. In a previous in vitro study, we reported that the overexpression of human arginine decarboxylase (ADC) genes by a retroviral plasmid vector promoted the neuronal differentiation of mouse NPCs. In the present study, we focused on the cellular mechanism underlying cell proliferation and differentiation following ischemic injury, and the therapeutic feasibility of NPCs overexpressing ADC genes (ADC-NPCs) following ischemic stroke. To mimic cerebral ischemia in vitro , we subjected the NPCs to oxygen-glucose deprivation (OGD). The overexpressing ADC-NPCs were differentiated by neural lineage, which was related to excessive intracellular calcium-mediated cell cycle arrest and phosphorylation in the ERK1/2, CREB, and STAT1 signaling cascade following ischemic injury. Moreover, the ADC-NPCs were able to resist mitochondrial membrane potential collapse in the increasingly excessive intracellular calcium environment. Subsequently, transplanted ADC-NPCs suppressed infarct volume, and promoted neural differentiation, synapse formation, and motor behavior performance in an in vivo tMCAO rat model. The results suggest that ADC-NPCs are potentially useful for cell replacement therapy following ischemic stroke.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
84
|
Measurement of Store-Operated Calcium Entry in Human Neural Cells: From Precursors to Differentiated Neurons. Methods Mol Biol 2019; 2029:257-271. [PMID: 31273748 DOI: 10.1007/978-1-4939-9631-5_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium imaging in an ex-vivo setup is used to understand the calcium status of isolated cells or tissue. In this chapter we explain the use of the ratiometric chemical indicator Fura-2 which can be loaded into isolated cells in the form of lipophilic acetomethyl (AM) esters. Fura-2 is a combination of calcium chelator and fluorophore, and can be used with dual wavelength excitation (340/380 nm) for quantitative calcium concentrations. The cells can then be viewed using a fluorescence microscope and captured by a CCD camera. We specifically discuss the technique involved in understanding the endoplasmic reticulum (ER)-driven store-operated calcium entry (SOCE) in human neural precursors (NPCs) and spontaneously differentiated neurons derived from a pluripotent human embryonic stem cell (hESC) line. The derivation of neural precursors from stem cells and their subsequent spontaneous neural differentiation is also explained. The method can be used for various non-excitable and excitable cell types including neurons, be it freshly isolated, from frozen vials, or derived from different stem cell lines.
Collapse
|
85
|
Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation. Nat Commun 2018; 9:4015. [PMID: 30275467 PMCID: PMC6167318 DOI: 10.1038/s41467-018-06307-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
In the adult auditory organ, mechanoelectrical transducer (MET) channels are essential for transducing acoustic stimuli into electrical signals. In the absence of incoming sound, a fraction of the MET channels on top of the sensory hair cells are open, resulting in a sustained depolarizing current. By genetically manipulating the in vivo expression of molecular components of the MET apparatus, we show that during pre-hearing stages the MET current is essential for establishing the electrophysiological properties of mature inner hair cells (IHCs). If the MET current is abolished in adult IHCs, they revert into cells showing electrical and morphological features characteristic of pre-hearing IHCs, including the re-establishment of cholinergic efferent innervation. The MET current is thus critical for the maintenance of the functional properties of adult IHCs, implying a degree of plasticity in the mature auditory system in response to the absence of normal transduction of acoustic signals. Mechanoelectrical transducer (MET) channels on the tips of inner hair cells are essential for transducing auditory sensory information. Here, the authors show that disrupting MET channel function also prevents the preservation of normal inner hair cell identity in adult mice.
Collapse
|
86
|
Sachana M, Rolaki A, Bal-Price A. Development of the Adverse Outcome Pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children. Toxicol Appl Pharmacol 2018; 354:153-175. [PMID: 29524501 PMCID: PMC6095943 DOI: 10.1016/j.taap.2018.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/06/2023]
Abstract
The Adverse Outcome Pathways (AOPs) are designed to provide mechanistic understanding of complex biological systems and pathways of toxicity that result in adverse outcomes (AOs) relevant to regulatory endpoints. AOP concept captures in a structured way the causal relationships resulting from initial chemical interaction with biological target(s) (molecular initiating event) to an AO manifested in individual organisms and/or populations through a sequential series of key events (KEs), which are cellular, anatomical and/or functional changes in biological processes. An AOP provides the mechanistic detail required to support chemical safety assessment, the development of alternative methods and the implementation of an integrated testing strategy. An example of the AOP relevant to developmental neurotoxicity (DNT) is described here following the requirements of information defined by the OECD Users' Handbook Supplement to the Guidance Document for developing and assessing AOPs. In this AOP, the binding of an antagonist to glutamate receptor N-methyl-d-aspartate (NMDAR) receptor is defined as MIE. This MIE triggers a cascade of cellular KEs including reduction of intracellular calcium levels, reduction of brain derived neurotrophic factor release, neuronal cell death, decreased glutamate presynaptic release and aberrant dendritic morphology. At organ level, the above mentioned KEs lead to decreased synaptogenesis and decreased neuronal network formation and function causing learning and memory deficit at organism level, which is defined as the AO. There are in vitro, in vivo and epidemiological data that support the described KEs and their causative relationships rendering this AOP relevant to DNT evaluation in the context of regulatory purposes.
Collapse
Affiliation(s)
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
87
|
Wegierski T, Kuznicki J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 2018; 74:102-111. [DOI: 10.1016/j.ceca.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
|
88
|
Maslyukov A, Li K, Su X, Kovalchuk Y, Garaschuk O. Spontaneous calcium transients in the immature adult-born neurons of the olfactory bulb. Cell Calcium 2018; 74:43-52. [DOI: 10.1016/j.ceca.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
|
89
|
Sachana M, Rolaki A, Bal-Price A. Development of the Adverse Outcome Pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children. Toxicol Appl Pharmacol 2018; 354:153-175. [PMID: 29524501 DOI: 10.1787/5jlsqs5hcrmq-en] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 05/20/2023]
Abstract
The Adverse Outcome Pathways (AOPs) are designed to provide mechanistic understanding of complex biological systems and pathways of toxicity that result in adverse outcomes (AOs) relevant to regulatory endpoints. AOP concept captures in a structured way the causal relationships resulting from initial chemical interaction with biological target(s) (molecular initiating event) to an AO manifested in individual organisms and/or populations through a sequential series of key events (KEs), which are cellular, anatomical and/or functional changes in biological processes. An AOP provides the mechanistic detail required to support chemical safety assessment, the development of alternative methods and the implementation of an integrated testing strategy. An example of the AOP relevant to developmental neurotoxicity (DNT) is described here following the requirements of information defined by the OECD Users' Handbook Supplement to the Guidance Document for developing and assessing AOPs. In this AOP, the binding of an antagonist to glutamate receptor N-methyl-d-aspartate (NMDAR) receptor is defined as MIE. This MIE triggers a cascade of cellular KEs including reduction of intracellular calcium levels, reduction of brain derived neurotrophic factor release, neuronal cell death, decreased glutamate presynaptic release and aberrant dendritic morphology. At organ level, the above mentioned KEs lead to decreased synaptogenesis and decreased neuronal network formation and function causing learning and memory deficit at organism level, which is defined as the AO. There are in vitro, in vivo and epidemiological data that support the described KEs and their causative relationships rendering this AOP relevant to DNT evaluation in the context of regulatory purposes.
Collapse
Affiliation(s)
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
90
|
Riddell N, Faou P, Crewther SG. Short term optical defocus perturbs normal developmental shifts in retina/RPE protein abundance. BMC DEVELOPMENTAL BIOLOGY 2018; 18:18. [PMID: 30157773 PMCID: PMC6116556 DOI: 10.1186/s12861-018-0177-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Myopia (short-sightedness) affects approximately 1.4 billion people worldwide, and prevalence is increasing. Animal models induced by defocusing lenses show striking similarity with human myopia in terms of morphology and the implicated genetic pathways. Less is known about proteome changes in animals. Thus, the present study aimed to improve understanding of protein pathway responses to lens defocus, with an emphasis on relating expression changes to no lens control development and identifying bidirectional and/or distinct pathways across myopia and hyperopia (long-sightedness) models. RESULTS Quantitative label-free proteomics and gene set enrichment analysis (GSEA) were used to examine protein pathway expression in the retina/RPE of chicks following 6 h and 48 h of myopia induction with - 10 dioptre (D) lenses, hyperopia induction with +10D lenses, or normal no lens rearing. Seventy-one pathways linked to cell development and neuronal maturation were differentially enriched between 6 and 48 h in no lens chicks. The majority of these normal developmental changes were disrupted by lens-wear (47 of 71 pathways), however, only 11 pathways displayed distinct expression profiles across the lens conditions. Most notably, negative lens-wear induced up-regulation of proteins involved in ATP-driven ion transport, calcium homeostasis, and GABA signalling between 6 and 48 h, while the same proteins were down-regulated over time in normally developing chicks. Glutamate and bicarbonate/chloride transporters were also down-regulated over time in normally developing chicks, and positive lens-wear inhibited this down-regulation. CONCLUSIONS The chick retina/RPE proteome undergoes extensive pathway expression shifts during normal development. Most of these pathways are further disrupted by lens-wear. The identified expression patterns suggest close interactions between neurotransmission (as exemplified by increased GABA receptor and synaptic protein expression), cellular ion homeostasis, and associated energy resources during myopia induction. We have also provided novel evidence for changes to SLC-mediated transmembrane transport during hyperopia induction, with potential implications for signalling at the photoreceptor-bipolar synapse. These findings reflect a key role for perturbed neurotransmission and ionic homeostasis in optically-induced refractive errors, and are predicted by our Retinal Ion Driven Efflux (RIDE) model.
Collapse
Affiliation(s)
- Nina Riddell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Plenty Rd., Bundoora, Melbourne, VIC, 3083, Australia.
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Plenty Rd., Bundoora, Melbourne, VIC, 3083, Australia
| |
Collapse
|
91
|
STIM1 deficiency is linked to Alzheimer's disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca 2+ entry. J Mol Med (Berl) 2018; 96:1061-1079. [PMID: 30088035 PMCID: PMC6133163 DOI: 10.1007/s00109-018-1677-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
Abstract STIM1 is an endoplasmic reticulum protein with a role in Ca2+ mobilization and signaling. As a sensor of intraluminal Ca2+ levels, STIM1 modulates plasma membrane Ca2+ channels to regulate Ca2+ entry. In neuroblastoma SH-SY5Y cells and in familial Alzheimer’s disease patient skin fibroblasts, STIM1 is cleaved at the transmembrane domain by the presenilin-1-associated γ-secretase, leading to dysregulation of Ca2+ homeostasis. In this report, we investigated expression levels of STIM1 in brain tissues (medium frontal gyrus) of pathologically confirmed Alzheimer’s disease patients, and observed that STIM1 protein expression level decreased with the progression of neurodegeneration. To study the role of STIM1 in neurodegeneration, a strategy was designed to knock-out the expression of STIM1 gene in the SH-SY5Y neuroblastoma cell line by CRISPR/Cas9-mediated genome editing, as an in vitro model to examine the phenotype of STIM1-deficient neuronal cells. It was proved that, while STIM1 is not required for the differentiation of SH-SY5Y cells, it is absolutely essential for cell survival in differentiating cells. Differentiated STIM1-KO cells showed a significant decrease of mitochondrial respiratory chain complex I activity, mitochondrial inner membrane depolarization, reduced mitochondrial free Ca2+ concentration, and higher levels of senescence as compared with wild-type cells. In parallel, STIM1-KO cells showed a potentiated Ca2+ entry in response to depolarization, which was sensitive to nifedipine, pointing to L-type voltage-operated Ca2+ channels as mediators of the upregulated Ca2+ entry. The stable knocking-down of CACNA1C transcripts restored mitochondrial function, increased mitochondrial Ca2+ levels, and dropped senescence to basal levels, demonstrating the essential role of the upregulation of voltage-operated Ca2+ entry through Cav1.2 channels in STIM1-deficient SH-SY5Y cell death. Key messages STIM1 protein expression decreases with the progression of neurodegeneration in Alzheimer’s disease. STIM1 is essential for cell viability in differentiated SH-SY5Y cells. STIM1 deficiency triggers voltage-regulated Ca2+ entry-dependent cell death. Mitochondrial dysfunction and senescence are features of STIM1-deficient differentiated cells.
Electronic supplementary material The online version of this article (10.1007/s00109-018-1677-y) contains supplementary material, which is available to authorized users.
Collapse
|
92
|
Stanslowsky N, Tharmarasa S, Staege S, Kalmbach N, Klietz M, Schwarz SC, Leffler A, Wegner F. Calcium, Sodium, and Transient Receptor Potential Channel Expression in Human Fetal Midbrain-Derived Neural Progenitor Cells. Stem Cells Dev 2018; 27:976-984. [DOI: 10.1089/scd.2017.0281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
| | | | - Selma Staege
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sigrid C. Schwarz
- Department For Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Technical University Munich, Munich, Germany
| | - Andreas Leffler
- Department of Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
93
|
Tse MK, Hung TS, Chan CM, Wong T, Dorothea M, Leclerc C, Moreau M, Miller AL, Webb SE. Identification of Ca 2+ signaling components in neural stem/progenitor cells during differentiation into neurons and glia in intact and dissociated zebrafish neurospheres. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1352-1368. [PMID: 29931586 DOI: 10.1007/s11427-018-9315-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/03/2018] [Indexed: 01/30/2023]
Abstract
The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells (NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor (IP3R) type-1 and ryanodine receptor (RyR) type-2 are differentially expressed in cells with neuron- or radial glial-like properties. Furthermore, ATP but not caffeine (IP3R and RyR agonists, respectively), induced the generation of Ca2+ transients in cells exhibiting neuron- or glial-like morphology. These results indicate the differential expression of components of the Ca2+-signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca2+ signaling as a read-out.
Collapse
Affiliation(s)
- Man Kit Tse
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Ting Shing Hung
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Ching Man Chan
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Tiffany Wong
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Mike Dorothea
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
94
|
Gopurappilly R, Deb BK, Chakraborty P, Hasan G. Stable STIM1 Knockdown in Self-Renewing Human Neural Precursors Promotes Premature Neural Differentiation. Front Mol Neurosci 2018; 11:178. [PMID: 29942250 PMCID: PMC6004407 DOI: 10.3389/fnmol.2018.00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Ca2+ signaling plays a significant role in the development of the vertebrate nervous system where it regulates neurite growth as well as synapse and neurotransmitter specification. Elucidating the role of Ca2+ signaling in mammalian neuronal development has been largely restricted to either small animal models or primary cultures. Here we derived human neural precursor cells (NPCs) from human embryonic stem cells to understand the functional significance of a less understood arm of calcium signaling, Store-operated Ca2+ entry or SOCE, in neuronal development. Human NPCs exhibited robust SOCE, which was significantly attenuated by expression of a stable shRNA-miR targeted toward the SOCE molecule, STIM1. Along with the plasma membrane channel Orai, STIM is an essential component of SOCE in many cell types, where it regulates gene expression. Therefore, we measured global gene expression in human NPCs with and without STIM1 knockdown. Interestingly, pathways down-regulated through STIM1 knockdown were related to cell proliferation and DNA replication processes, whereas post-synaptic signaling was identified as an up-regulated process. To understand the functional significance of these gene expression changes we measured the self-renewal capacity of NPCs with STIM1 knockdown. The STIM1 knockdown NPCs demonstrated significantly reduced neurosphere size and number as well as precocious spontaneous differentiation toward the neuronal lineage, as compared to control cells. These findings demonstrate that STIM1 mediated SOCE in human NPCs regulates gene expression changes, that in vivo are likely to physiologically modulate the self-renewal and differentiation of NPCs.
Collapse
Affiliation(s)
- Renjitha Gopurappilly
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Bipan Kumar Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
95
|
Petrik D, Myoga MH, Grade S, Gerkau NJ, Pusch M, Rose CR, Grothe B, Götz M. Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner. Cell Stem Cell 2018; 22:865-878.e8. [DOI: 10.1016/j.stem.2018.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
|
96
|
Félix LM, Vidal AM, Serafim C, Valentim AM, Antunes LM, Monteiro SM, Matos M, Coimbra AM. Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2018; 201:730-739. [PMID: 29547861 DOI: 10.1016/j.chemosphere.2018.03.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Ketamine is a widely used pharmaceutical that has been detected in water sources worldwide. Zebrafish embryos were used in this study to investigate the oxidative stress and apoptotic signals following a 24h exposure to different ketamine concentrations (0, 50, 70 and 90 mg L-1). Early blastula embryos (∼2 h post fertilisation-hpf) were exposed for 24 h and analysed at 8 and 26 hpf. Reactive oxygen species and apoptotic cells were identified in vivo, at 26 hpf. Enzymatic activities (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), lactate dehydrogenase (LDH) and acetylcholinesterase (AChE)), glutathione levels (oxidised (GSSG) and reduced (GSH)), oxidative damage (lipid peroxidation (LPO) and protein carbonyls (CO)) as well as oxidative stress (gclc, gstp1, sod1 and cat), apoptosis (casp3a, casp6, casp8, casp9, aifm1 and tp53) and cell proliferation (pcna) related-genes were evaluated at 8 and 26 hpf. Caspase (3 and 9) activity was also determined at both time-points by colorimetric methods. Superoxide dismutase (SOD), catalase (CAT), glutathione levels (GSSG), caspase-9 and reactive oxygen species (ROS) were shown to be affected by ketamine exposure while in vivo analysis showed no difference in ROS. A significant up-regulation of superoxide dismutase (sod1) and catalase (cat) genes expression was also perceived. Ketamine-induced apoptosis was observed in vivo and confirmed by the apoptotic-related genes up-regulation. The overall results suggest that ketamine induced oxidative stress and apoptosis through the involvement of p53-dependent pathways in zebrafish embryos which could be important for the evaluation of the overall risk of ketamine in aquatic environments.
Collapse
Affiliation(s)
- Luís M Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Porto, Portugal; Laboratory Animal Science (LAS), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal.
| | - Ana M Vidal
- Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Cindy Serafim
- Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Valentim
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Porto, Portugal; Laboratory Animal Science (LAS), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Porto, Portugal; Laboratory Animal Science (LAS), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal; School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal; Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
97
|
Vőfély G, Berecz T, Szabó E, Szebényi K, Hathy E, Orbán TI, Sarkadi B, Homolya L, Marchetto MC, Réthelyi JM, Apáti Á. Characterization of calcium signals in human induced pluripotent stem cell-derived dentate gyrus neuronal progenitors and mature neurons, stably expressing an advanced calcium indicator protein. Mol Cell Neurosci 2018; 88:222-230. [DOI: 10.1016/j.mcn.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/08/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022] Open
|
98
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
99
|
Mammucari C, Raffaello A, Vecellio Reane D, Gherardi G, De Mario A, Rizzuto R. Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models. Pflugers Arch 2018. [PMID: 29541860 PMCID: PMC6060757 DOI: 10.1007/s00424-018-2123-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial Ca2+ is involved in heterogeneous functions, ranging from the control of metabolism and ATP production to the regulation of cell death. In addition, mitochondrial Ca2+ uptake contributes to cytosolic [Ca2+] shaping thus impinging on specific Ca2+-dependent events. Mitochondrial Ca2+ concentration is controlled by influx and efflux pathways: the former controlled by the activity of the mitochondrial Ca2+ uniporter (MCU), the latter by the Na+/Ca2+ exchanger (NCLX) and the H+/Ca2+ (mHCX) exchanger. The molecular identities of MCU and of NCLX have been recently unraveled, thus allowing genetic studies on their physiopathological relevance. After a general framework on the significance of mitochondrial Ca2+ uptake, this review discusses the structure of the MCU complex and the regulation of its activity, the importance of mitochondrial Ca2+ signaling in different physiological settings, and the consequences of MCU modulation on organ physiology.
Collapse
Affiliation(s)
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| |
Collapse
|
100
|
Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018; 70:87-94. [PMID: 28728834 PMCID: PMC5748019 DOI: 10.1016/j.ceca.2017.06.008] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that regulates various activities in eukaryotic cells. Especially important role calcium plays in excitable cells. Neurons require extremely precise spatial-temporal control of calcium-dependent processes because they regulate such vital functions as synaptic plasticity. Recent evidence indicates that neuronal calcium signaling is abnormal in many of neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD). These diseases represent a major medical, social, financial and scientific problem, but despite enormous research efforts, they are still incurable and only symptomatic relief drugs are available. Thus, new approaches and targets are needed. This review highlight neuronal calcium-signaling abnormalities in these diseases, with particular emphasis on the role of neuronal store-operated Ca2+ entry (SOCE) pathway and its potential relevance as a therapeutic target for treatment of neurodegeneration.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|