51
|
de Sousa PMB, Silva EA, Campos MAG, Lages JS, Corrêa RDGCF, Silva GEB. Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report and Differential Diagnosis Review. Vaccines (Basel) 2024; 12:194. [PMID: 38400177 PMCID: PMC10891853 DOI: 10.3390/vaccines12020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Carditis in childhood is a rare disease with several etiologies. We report a case of infant death due to pericarditis and myocarditis after the mRNA vaccine against COVID-19 (COVIDmRNAV). A 7-year-old male child received the first dose of the COVIDmRNAV and presented with monoarthritis and a fever non-responsive to oral antibiotics. The laboratory investigation showed signs of infection (leukocytosis, high levels of c-reactive protein). His condition rapidly deteriorated, and the patient died. The autopsy identified pericardial fibrin deposits, hemorrhagic areas in the myocardium, and normal valves. A diffuse intermyocardial inflammatory infiltrate composed of T CD8+ lymphocytes and histiocytes was identified. An antistreptolysin O (ASO) dosage showed high titers. The presence of arthritis, elevated ASO, and carditis fulfills the criteria for rheumatic fever. However, valve disease and Aschoff's nodules, present in 90% of rheumatic carditis cases, were absent in this case. The temporal correlation with mRNA vaccination prompted its inclusion as one of the etiologies. In cases of myocardial damage related to COVID-19mRNAV, it appears to be related to the expression of exosomes and lipid nanoparticles, leading to a cytokine storm. The potential effects of the COVID-19mRNAV must be considered in the pathogenesis of this disease, whether as an etiology or a contributing factor to a previously initiated myocardial injury.
Collapse
Affiliation(s)
- Pedro Manuel Barros de Sousa
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | - Elon Almeida Silva
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | - Marcos Adriano Garcia Campos
- Clinical Hospital of Botucatu Medical School, São Paulo State University, Professor Mário Rubens Guimarães Montenegro Avenue, Botucatu 18618-687, SP, Brazil
| | - Joyce Santos Lages
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | | | - Gyl Eanes Barros Silva
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
52
|
Teragaki M, Tanaka M, Yamamoto H, Watanabe T, Takeoka J, Fukumi A, Maeda K, Takami Y, Saita H, Iwanari S, Ikeda M, Takeoka H. Relapse of minimal change disease following the third mRNA COVID-19 vaccination: a case report and literature review. CEN Case Rep 2024; 13:53-58. [PMID: 37244881 PMCID: PMC10224756 DOI: 10.1007/s13730-023-00798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Mass vaccination is the most important strategy to terminate the coronavirus disease 2019 (COVID-19) pandemic. Reports suggest the potential risk of the development of new-onset or relapse of minimal change disease (MCD) following COVID-19 vaccination; however, details on vaccine-associated MCD remain unclear. A 43-year-old man with MCD, who had been in remission for 29 years, developed nephrotic syndrome 4 days after receiving the third dose of the Pfizer-BioNTech vaccine. His kidney biopsy revealed relapsing MCD. Intravenous methylprednisolone pulse therapy followed by oral prednisolone therapy was administered, and his proteinuria resolved within 3 weeks. This report highlights the importance of careful monitoring of proteinuria after COVID-19 vaccination in patients with MCD, even if the disease is stable and no adverse events occurred during previous vaccinations. Our case report and literature review of COVID-19 vaccine-associated MCD indicated that MCD relapse tends to occur later after vaccination and slightly more often following the second and subsequent vaccine doses than new-onset MCD.
Collapse
Affiliation(s)
- Mariko Teragaki
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan.
| | - Mari Tanaka
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Hiroko Yamamoto
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Tomoka Watanabe
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Jun Takeoka
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Awaisshafig Fukumi
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Kotaro Maeda
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Yohtaro Takami
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Hirona Saita
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Sachio Iwanari
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Masaki Ikeda
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Hiroya Takeoka
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| |
Collapse
|
53
|
Lenart K, Arcoverde Cerveira R, Hellgren F, Ols S, Sheward DJ, Kim C, Cagigi A, Gagne M, Davis B, Germosen D, Roy V, Alter G, Letscher H, Van Wassenhove J, Gros W, Gallouët AS, Le Grand R, Kleanthous H, Guebre-Xabier M, Murrell B, Patel N, Glenn G, Smith G, Loré K. Three immunizations with Novavax's protein vaccines increase antibody breadth and provide durable protection from SARS-CoV-2. NPJ Vaccines 2024; 9:17. [PMID: 38245545 PMCID: PMC10799869 DOI: 10.1038/s41541-024-00806-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Jérôme Van Wassenhove
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Harry Kleanthous
- Bill & Melinda Gates Foundation, Seattle, WA, USA
- SK Biosciences, Boston, MA, USA
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
54
|
Martinez-Murillo PA, Huttner A, Lemeille S, Medaglini D, Ottenhoff THM, Harandi AM, Didierlaurent AM, Siegrist CA. Refined innate plasma signature after rVSVΔG-ZEBOV-GP immunization is shared among adult cohorts in Europe and North America. Front Immunol 2024; 14:1279003. [PMID: 38235127 PMCID: PMC10791923 DOI: 10.3389/fimmu.2023.1279003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Background During the last decade Ebola virus has caused several outbreaks in Africa. The recombinant vesicular stomatitis virus-vectored Zaire Ebola (rVSVΔG-ZEBOV-GP) vaccine has proved safe and immunogenic but is reactogenic. We previously identified the first innate plasma signature response after vaccination in Geneva as composed of five monocyte-related biomarkers peaking at day 1 post-immunization that correlates with adverse events, biological outcomes (haematological changes and viremia) and antibody titers. In this follow-up study, we sought to identify additional biomarkers in the same Geneva cohort and validate those identified markers in a US cohort. Methods Additional biomarkers were identified using multiplexed protein biomarker platform O-link and confirmed by Luminex. Principal component analysis (PCA) evaluated if these markers could explain a higher variability of the vaccine response (and thereby refined the initial signature). Multivariable and linear regression models evaluated the correlations of the main components with adverse events, biological outcomes, and antibody titers. External validation of the refined signature was conducted in a second cohort of US vaccinees (n=142). Results Eleven additional biomarkers peaked at day 1 post-immunization: MCP2, MCP3, MCP4, CXCL10, OSM, CX3CL1, MCSF, CXCL11, TRAIL, RANKL and IL15. PCA analysis retained three principal components (PC) that accounted for 79% of the vaccine response variability. PC1 and PC2 were very robust and had different biomarkers that contributed to their variability. PC1 better discriminated different doses, better defined the risk of fever and myalgia, while PC2 better defined the risk of headache. We also found new biomarkers that correlated with reactogenicity, including transient arthritis (MCP-2, CXCL10, CXCL11, CX3CL1, MCSF, IL-15, OSM). Several innate biomarkers are associated with antibody levels one and six months after vaccination. Refined PC1 correlated strongly in both data sets (Geneva: r = 0.97, P < 0.001; US: r = 0.99, P< 0.001). Conclusion Eleven additional biomarkers refined the previously found 5-biomarker Geneva signature. The refined signature better discriminated between different doses, was strongly associated with the risk of adverse events and with antibody responses and was validated in a separate cohort.
Collapse
Affiliation(s)
- Paola Andrea Martinez-Murillo
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Clinical Research, Geneva University Hospitals, Geneva, Switzerland
| | - Sylvain Lemeille
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Centre, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud M. Didierlaurent
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
55
|
Enssle JC, Campe J, Moter A, Voit I, Gessner A, Yu W, Wolf S, Steffen B, Serve H, Bremm M, Huenecke S, Lohoff M, Vehreschild M, Rabenau HF, Widera M, Ciesek S, Oellerich T, Imkeller K, Rieger MA, von Metzler I, Ullrich E. Cytokine-responsive T- and NK-cells portray SARS-CoV-2 vaccine-responders and infection in multiple myeloma patients. Leukemia 2024; 38:168-180. [PMID: 38049509 PMCID: PMC10776400 DOI: 10.1038/s41375-023-02070-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Abstract
Patients with multiple myeloma (MM) routinely receive mRNA-based vaccines to reduce COVID-19-related mortality. However, whether disease- and therapy-related alterations in immune cells and cytokine-responsiveness contribute to the observed heterogeneous vaccination responses is unclear. Thus, we analyzed peripheral blood mononuclear cells from patients with MM during and after SARS-CoV-2 vaccination and breakthrough infection (BTI) using combined whole-transcriptome and surface proteome single-cell profiling with functional serological and T-cell validation in 58 MM patients. Our results demonstrate that vaccine-responders showed a significant overrepresentation of cytotoxic CD4+ T- and mature CD38+ NK-cells expressing FAS+/TIM3+ with a robust cytokine-responsiveness, such as type-I-interferon-, IL-12- and TNF-α-mediated signaling. Patients with MM experiencing BTI developed strong serological and cellular responses and exhibited similar cytokine-responsive immune cell patterns as vaccine-responders. This study can expand our understanding of molecular and cellular patterns associated with immunization responses and may benefit the design of improved vaccination strategies in immunocompromised patients.
Collapse
Affiliation(s)
- Julius C Enssle
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Julia Campe
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alina Moter
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Isabel Voit
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alec Gessner
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Weijia Yu
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Björn Steffen
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
| | - Hubert Serve
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Melanie Bremm
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Michael Lohoff
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Maria Vehreschild
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Infectious Diseases, Frankfurt am Main, Germany
| | - Holger F Rabenau
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
- German Centre for Infection Research, external partner site, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katharina Imkeller
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Edinger Institute (Neurological Institute), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, MSNZ Group of Computational Immunology, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Michael A Rieger
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Ivana von Metzler
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany.
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany.
- University Cancer Center (UCT), Frankfurt am Main, Germany.
| |
Collapse
|
56
|
Odak I, Riemann L, Sandrock I, Cossmann A, Ramos GM, Hammerschmidt SI, Ritter C, Friedrichsen M, Hassan A, Dopfer-Jablonka A, Stankov MV, Weskamm LM, Addo MM, Ravens I, Willenzon S, Schimrock A, Ristenpart J, Janssen A, Barros-Martins J, Hansen G, Falk C, Behrens GMN, Förster R. Systems biology analysis reveals distinct molecular signatures associated with immune responsiveness to the BNT162b COVID-19 vaccine. EBioMedicine 2024; 99:104947. [PMID: 38160529 PMCID: PMC10792461 DOI: 10.1016/j.ebiom.2023.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Human immune responses to COVID-19 vaccines display a large heterogeneity of induced immunity and the underlying immune mechanisms for this remain largely unknown. METHODS Using a systems biology approach, we longitudinally profiled a unique cohort of female high and low responders to the BNT162b vaccine, who were known from previous COVID-19 vaccinations to develop maximum and minimum immune responses to the vaccine. We utilized high dimensional flow cytometry, bulk and single cell mRNA sequencing and 48-plex serum cytokine analyses. FINDINGS We revealed early, transient immunological and molecular signatures that distinguished high from low responders and correlated with B and T cell responses measured 14 days later. High responders featured a distinct transcriptional activity of interferon-driven genes and genes connected to enhanced antigen presentation. This was accompanied by a robust cytokine response related to Th1 differentiation. Both transcriptome and serum cytokine signatures were confirmed in two independent confirmatory cohorts. INTERPRETATION Collectively, our data contribute to a better understanding of the immunogenicity of mRNA-based COVID-19 vaccines, which might lead to the optimization of vaccine designs for individuals with poor vaccine responses. FUNDING German Center for Infection Research, German Center for Lung Research, German Research Foundation, Excellence Strategy EXC 2155 "RESIST" and European Regional Development Fund.
Collapse
Affiliation(s)
- Ivan Odak
- Institute of Immunology, Hannover Medical School, Germany
| | - Lennart Riemann
- Institute of Immunology, Hannover Medical School, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany; Clinician Scientist Program TITUS, Else-Kröner-Fresenius Foundation, Hannover Medical School, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Germany
| | - Anne Cossmann
- Department for Rheumatology and Immunology, Hannover Medical School, Germany
| | - Gema Morillas Ramos
- Department for Rheumatology and Immunology, Hannover Medical School, Germany
| | | | | | | | - Ahmed Hassan
- Institute of Immunology, Hannover Medical School, Germany
| | - Alexandra Dopfer-Jablonka
- Department for Rheumatology and Immunology, Hannover Medical School, Germany; German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Germany
| | - Metodi V Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Germany
| | - Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Germany
| | | | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, Germany
| | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Germany
| | | | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany; Clinician Scientist Program TITUS, Else-Kröner-Fresenius Foundation, Hannover Medical School, Germany; German Center of Lung Research (DZL), BREATH, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Germany
| | - Christine Falk
- Institute for Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Georg M N Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Germany; German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Germany; Centre for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Germany; Clinician Scientist Program TITUS, Else-Kröner-Fresenius Foundation, Hannover Medical School, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany; German Center of Lung Research (DZL), BREATH, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Germany.
| |
Collapse
|
57
|
Ivanova EN, Shwetar J, Devlin JC, Buus TB, Gray-Gaillard S, Koide A, Cornelius A, Samanovic MI, Herrera A, Mimitou EP, Zhang C, Karmacharya T, Desvignes L, Ødum N, Smibert P, Ulrich RJ, Mulligan MJ, Koide S, Ruggles KV, Herati RS, Koralov SB. mRNA COVID-19 vaccine elicits potent adaptive immune response without the acute inflammation of SARS-CoV-2 infection. iScience 2023; 26:108572. [PMID: 38213787 PMCID: PMC10783604 DOI: 10.1016/j.isci.2023.108572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.
Collapse
Affiliation(s)
- Ellie N. Ivanova
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jasmine Shwetar
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph C. Devlin
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Terkild B. Buus
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sophie Gray-Gaillard
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Akiko Koide
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Amber Cornelius
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Marie I. Samanovic
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alberto Herrera
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Chenzhen Zhang
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Trishala Karmacharya
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Ludovic Desvignes
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- High Containment Laboratories, Office of Science and Research, New York University Langone Health, New York, NY 10016, USA
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Robert J. Ulrich
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mark J. Mulligan
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V. Ruggles
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ramin S. Herati
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
58
|
Wang Z, Jacobus EJ, Stirling DC, Krumm S, Flight KE, Cunliffe RF, Mottl J, Singh C, Mosscrop LG, Santiago LA, Vogel AB, Kariko K, Sahin U, Erbar S, Tregoning JS. Reducing cell intrinsic immunity to mRNA vaccine alters adaptive immune responses in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102045. [PMID: 37876532 PMCID: PMC10591005 DOI: 10.1016/j.omtn.2023.102045] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The response to mRNA vaccines needs to be sufficient for immune cell activation and recruitment, but moderate enough to ensure efficacious antigen expression. The choice of the cap structure and use of N1-methylpseudouridine (m1Ψ) instead of uridine, which have been shown to reduce RNA sensing by the cellular innate immune system, has led to improved efficacy of mRNA vaccine platforms. Understanding how RNA modifications influence the cell intrinsic immune response may help in the development of more effective mRNA vaccines. In the current study, we compared mRNA vaccines in mice against influenza virus using three different mRNA formats: uridine-containing mRNA (D1-uRNA), m1Ψ-modified mRNA (D1-modRNA), and D1-modRNA with a cap1 structure (cC1-modRNA). D1-uRNA vaccine induced a significantly different gene expression profile to the modified mRNA vaccines, with an up-regulation of Stat1 and RnaseL, and increased systemic inflammation. This result correlated with significantly reduced antigen-specific antibody responses and reduced protection against influenza virus infection compared with D1-modRNA and cC1-modRNA. Incorporation of m1Ψ alone without cap1 improved antibodies, but both modifications were required for the optimum response. Therefore, the incorporation of m1Ψ and cap1 alters protective immunity from mRNA vaccines by altering the innate immune response to the vaccine material.
Collapse
Affiliation(s)
- Ziyin Wang
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - David C. Stirling
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Katie E. Flight
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Robert F. Cunliffe
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Charanjit Singh
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Lucy G. Mosscrop
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | | | | | - Ugur Sahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|
59
|
Schramm CA, Moon D, Peyton L, Lima NS, Wake C, Boswell KL, Henry AR, Laboune F, Ambrozak D, Darko SW, Teng IT, Foulds KE, Carfi A, Edwards DK, Kwong PD, Koup RA, Seder RA, Douek DC. Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates. Nat Commun 2023; 14:7961. [PMID: 38042809 PMCID: PMC10693617 DOI: 10.1038/s41467-023-43420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023] Open
Abstract
As SARS-CoV-2 variants continue evolving, testing updated vaccines in non-human primates remains important for guiding human clinical practice. To date, such studies have focused on antibody titers and antigen-specific B and T cell frequencies. Here, we extend our understanding by integrating innate and adaptive immune responses to mRNA-1273 vaccination in rhesus macaques. We sorted innate immune cells from a pre-vaccine time point, as well as innate immune cells and antigen-specific peripheral B and T cells two weeks after each of two vaccine doses and used single-cell sequencing to assess the transcriptomes and adaptive immune receptors of each cell. We show that a subset of S-specific T cells expresses cytokines critical for activating innate responses, with a concomitant increase in CCR5-expressing intermediate monocytes and a shift of natural killer cells to a more cytotoxic phenotype. The second vaccine dose, administered 4 weeks after the first, elicits an increase in circulating germinal center-like B cells 2 weeks later, which are more clonally expanded and enriched for epitopes in the receptor binding domain. Both doses stimulate inflammatory response genes associated with elevated antibody production. Overall, we provide a comprehensive picture of bidirectional signaling between innate and adaptive components of the immune system and suggest potential mechanisms for the enhanced response to secondary exposure.
Collapse
Affiliation(s)
- Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemia S Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christian Wake
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin L Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel W Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
60
|
Rosati M, Terpos E, Homan P, Bergamaschi C, Karaliota S, Ntanasis-Stathopoulos I, Devasundaram S, Bear J, Burns R, Bagratuni T, Trougakos IP, Dimopoulos MA, Pavlakis GN, Felber BK. Rapid transient and longer-lasting innate cytokine changes associated with adaptive immunity after repeated SARS-CoV-2 BNT162b2 mRNA vaccinations. Front Immunol 2023; 14:1292568. [PMID: 38090597 PMCID: PMC10711274 DOI: 10.3389/fimmu.2023.1292568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration Clinicaltrials.gov, identifier NCT04743388.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
61
|
Pencheva M, Bozhkova M, Kalchev Y, Petrov S, Baldzhieva A, Kalfova T, Dichev V, Keskinova D, Genova S, Atanasova M, Murdzheva M. The Serum ACE2, CTSL, AngII, and TNFα Levels after COVID-19 and mRNA Vaccines: The Molecular Basis. Biomedicines 2023; 11:3160. [PMID: 38137381 PMCID: PMC10741205 DOI: 10.3390/biomedicines11123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 virus as well as the COVID-19 mRNA vaccines cause an increased production of proinflammatory cytokines. AIM We investigated the relationship between ACE2, CTSL, AngII, TNFα and the serum levels of IL-6, IL-10, IL-33, IL-28A, CD40L, total IgM, IgG, IgA and absolute count of T- and B-lymphocytes in COVID-19 patients, vaccinees and healthy individuals. METHODS We measured the serum levels ACE2, AngII, CTSL, TNFα and humoral biomarkers (CD40L, IL-28A, IL-10, IL-33) by the ELISA method. Immunophenotyping of lymphocyte subpopulations was performed by flow cytometry. Total serum immunoglobulins were analyzed by the turbidimetry method. RESULTS The results established an increase in the total serum levels for ACE2, CTSL, AngII and TNFα by severely ill patients and vaccinated persons. The correlation analysis described a positive relationship between ACE2 and proinflammatory cytokines IL-33 (r = 0.539) and CD40L (r = 0.520), a positive relationship between AngII and CD40L (r = 0.504), as well as between AngII and IL-33 (r = 0.416), and a positive relationship between CTSL, total IgA (r = 0.437) and IL-28A (r = 0.592). Correlation analysis confirmed only two of the positive relationships between TNFα and IL-28A (r = 0.491) and CD40L (r = 0.458). CONCLUSIONS In summary, the findings presented in this study unveil a complex web of interactions within the immune system in response to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Martina Bozhkova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Yordan Kalchev
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Steliyan Petrov
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Teodora Kalfova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Valentin Dichev
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Donka Keskinova
- Department of Applied and Institutional Sociology, Faculty of Philosophy and History, University of Plovdiv “Paisii Hilendarski”, 4000 Plovdiv, Bulgaria;
| | - Silvia Genova
- Department of General and Clinical Pathology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mariya Atanasova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Laboratory of Virology, UMBAL “St. George” EAD, 4002 Plovdiv, Bulgaria
| | - Mariana Murdzheva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
62
|
Taylor JV, Callery EL, Rowbottom A. Optimisation of SARS-CoV-2 peptide stimulation and measurement of cytokine output by intracellular flow cytometry and bio-plex analysis. J Immunol Methods 2023; 522:113556. [PMID: 37683822 DOI: 10.1016/j.jim.2023.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Our study was conducted to optimise a peptide stimulation and an intracellular cytokine staining protocol, alongside Bio-Plex supernatant analysis, for use in patients who had previously contracted SARS-CoV-2 or received vaccination against this virus in a clinical laboratory setting. Peripheral Blood Mononuclear Cell extraction and cryopreservation allowed for cells to be stored long term and enhanced logistical processing of samples. Viability and functionality of cells were analysed by flow cytometric methodology using viability staining monoclonal antibodies conjugated to fluorochromes. Antibiotics and Benzonase Nuclease did not impact lymphocyte viability and so cell culture conditions were optimised in terms of retaining viability and functionality. Optimisation of peptide stimulation with Influenza and SARS-CoV-2 peptide pools was conducted through stimulation experiments assessing peptide concentration, peptide stimulation time and enrichment studies to increase precursor frequency. Cytokine output was measured by flow cytometry and Bio-Plex methodologies, with positive cytokine readings predominantly detected in the cell culture supernatant. Analysis of both intracellular and extracellular compartments allowed for detection of cytokines and established the retained cellular functionality post cryopreservation. These results also indicated that our peptide stimulation method can generate antigen-specific T lymphocytes upon exposure to SARS-CoV-2 peptide pools. Moreover, the measurement of specific cytokines could be applied to an array of conditions, such as chronic inflammatory diseases, but to also offer an alternative method of measuring vaccine responses. This platform is easily adaptable and can remain relevant alongside changing vaccine composition, thus ensuring its applicability to future vaccination programmes.
Collapse
Affiliation(s)
| | | | - Anthony Rowbottom
- Immunology Department at Lancashire Teaching Hospitals, United Kingdom
| |
Collapse
|
63
|
Chamboux M, Simon C, Beau-Salinas F, Maurier A, Agier MS, Thillard EM, Largeau B, Jonville-Bera AP. Peripheral facial palsy post SARS-CoV-2 vaccine: A regional pharmacovigilance cases series. Therapie 2023; 78:705-709. [PMID: 36849281 PMCID: PMC9933875 DOI: 10.1016/j.therap.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Peripheral facial palsy (PFP) is a rare adverse reaction identified from clinical trials of coronavirus disease 2019 (COVID-19) vaccines (messenger ribonucleic acid [mRNA] and viral vector). Few data are available on their onset patterns and risk of recurrence after re-injection of a COVID-19 vaccine; the objective of this study was to describe PFP cases attributed to COVID-19 vaccines. All cases of facial paralysis reported to the Regional Pharmacovigilance Center of Centre-Val de Loire area between January and October 2021, in which the role of a COVID-19 vaccine was suspected, were selected. Based on initial data and following additional information requested, each case was reviewed and analyzed to include only confirmed cases of PFP for which the role of the vaccine could be retained. From the 38 cases reported, 23 were included (15 excluded because of diagnosis not retained). They occurred in 12 men and 11 women (median age of 51 years). The first clinical manifestations occurred with a median time of 9 days after COVID-19 vaccine injection, and the paralysis was homolateral to the vaccinated arm in 70%. The etiological workup, always negative, included brain imaging (48%), infectious serologies (74%) and Covid-19 PCR (52%). Corticosteroid therapy was prescribed for 20 (87%) patients, combined with aciclovir in 12 (52%). At 4-month follow-up, clinical manifestations had regressed completely or partially in 20 (87%) of the 23 patients (median time of 30 days). From them 12 (60%) received another dose of COVID-19 vaccine and none had a recurrence and the PFP regressed despite the second dose in 2 of the 3 patients not fully recovered at 4 months. The potential mechanism of PFP after COVID-19 vaccine, which don't have a specific profile, is probably the interferon-γ. Moreover, the risk of recurrence after a new injection appears to be very low, which makes it possible to continue the vaccination.
Collapse
Affiliation(s)
- Morgane Chamboux
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Corinne Simon
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Frédérique Beau-Salinas
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Anaïs Maurier
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Marie Sara Agier
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Eve Marie Thillard
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Bérenger Largeau
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Annie Pierre Jonville-Bera
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France.
| |
Collapse
|
64
|
Nayyerabadi M, Fourcade L, Joshi SA, Chandrasekaran P, Chakravarti A, Massé C, Paul ML, Houle J, Boubekeur AM, DuSablon C, Boudreau V, Bovan D, Darbinian E, Coleman EA, Vinci S, Routy JP, Hétu PO, Poudrier J, Falcone EL. Vaccination after developing long COVID: Impact on clinical presentation, viral persistence, and immune responses. Int J Infect Dis 2023; 136:136-145. [PMID: 37717649 DOI: 10.1016/j.ijid.2023.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Vaccination protects against severe COVID-19 manifestations. For those with post-COVID-19 conditions (PCC) or long COVID, the impact of COVID-19 vaccination on the evolution of symptoms, immune responses, and viral persistence is unclear. METHODS In this prospective observational cohort study, we evaluated the number of PCC symptoms, affected organ systems, and psychological well-being scores before and after patients with PCC received COVID-19 vaccination. We simultaneously evaluated biomarkers of systemic inflammation and levels of plasma cytokines/chemokines. We measured plasma and intracellular levels of SARS-CoV-2 antigens, and immunoreactivity to SARS-CoV-2 antigens in blood. RESULTS COVID-19 vaccination was associated with decreases in number of PCC symptoms (pre-vaccination: 6.56 ± 3.1 vs post-vaccination: 3.92 ± 4.02; P <0.001) and affected organ systems (pre-vaccination: 3.19 ± 1.04 vs post-vaccination: 1.89 ± 1.12; P <0.001), and increases in World Health Organization (WHO)-5 Well-Being Index Scores (pre-vaccination: 42.67 ± 22.76 vs post-vaccination: 56.15 ± 22.83; P <0.001). Patients with PCC also had significantly decreased levels of several pro-inflammatory plasma cytokines/chemokines after COVID-19 vaccination including sCD40L, GRO-⍺, macrophage inflammatory protein (MIP)-1⍺, interleukin (IL)-12p40, G-colony stimulating factor (CSF), M-CSF, IL-1β, and stem cell factor (SCF). PCC participants presented a certain level of immunoreactivity toward SARS-CoV-2, that was boosted with vaccination. SARS-CoV-2 S1 antigen persisted in the blood of PCC participants, mostly in non-classical monocytes, regardless of participants receiving vaccination. CONCLUSIONS Our study shows higher pro-inflammatory responses associated with PCC symptoms and brings forward a possible role for vaccination in mitigating PCC symptoms by decreasing systemic inflammation. We also observed persistence of viral products independent of vaccination that could be involved in perpetuating inflammation through non-classical monocytes.
Collapse
Affiliation(s)
- Maryam Nayyerabadi
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Lyvia Fourcade
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Swarali A Joshi
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Center for Commercialization of Regenerative Medicine (CCRM), Toronto, ON, Canada
| | | | - Arpita Chakravarti
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada; Department of Infectious Diseases and Medical Microbiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Chantal Massé
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Marie-Lorna Paul
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada
| | - Joanie Houle
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Amina M Boubekeur
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Charlotte DuSablon
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Valérie Boudreau
- Center for Cardiometabolic Health, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Danijela Bovan
- Center for Cardiometabolic Health, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Emma Darbinian
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Emilia Aïsha Coleman
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Sandra Vinci
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Jean-Pierre Routy
- Department of Medicine, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Pierre-Olivier Hétu
- Department of Laboratory Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Johanne Poudrier
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Emilia Liana Falcone
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada; Department of Infectious Diseases and Medical Microbiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
65
|
Cao C, Jiang J, Liu M, Dai Y, Chang T, Ji T, Gong F. Longitudinal evaluation of innate immune responses to three doses of CoronaVac vaccine. Front Immunol 2023; 14:1277831. [PMID: 37849746 PMCID: PMC10577214 DOI: 10.3389/fimmu.2023.1277831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
The adaptive immune responses induced by inactivated COVID-19 vaccine has been extensively studied. However, few studies have analyzed the impact of COVID-19 vaccination on innate immune cells. Here in this study, we recruited 62 healthcare workers who received three doses of CoronaVac vaccine and longitudinally profiled the alterations of peripheral monocytes and NK cells during vaccination. The results showed that both the monocyte and NK cell subsets distribution were altered, although the frequencies of the total monocyte and NK cells remained stable during the vaccination. Additionally, we found that both the 2nd and 3rd dose of CoronaVac vaccination elicited robust IFN-γ-producing NK cell response. Our data provided necessary insights on innate immune responses in the context of three homologous CoronaVac dose vaccination, and supplied immunological basis for the future design of inactivated vaccines against SARS-CoV-2 or other viruses.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Department of Laboratory Medicine, Changzhou Jintan First People’s Hospital, Changzhou, Jiangsu, China
| | - Junfeng Jiang
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Tianzhi Chang
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Tuo Ji
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Fang Gong
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
66
|
Maddaloni L, Santinelli L, Bugani G, Cacciola EG, Lazzaro A, Lofaro CM, Caiazzo S, Frasca F, Fracella M, Ajassa C, Leanza C, Napoli A, Cinti L, Gaeta A, Antonelli G, Ceccarelli G, Mastroianni CM, Scagnolari C, d'Ettorre G. Differential expression of Type I interferon and inflammatory genes in SARS-CoV-2-infected patients treated with monoclonal antibodies. Immun Inflamm Dis 2023; 11:e968. [PMID: 37904704 PMCID: PMC10571496 DOI: 10.1002/iid3.968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Considering the reported efficacy of monoclonal antibodies (mAbs) directed against the Spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in reducing disease severity, the aim of this study was to investigate the innate immune response before and after mAbs treatment in 72 vaccinated and 31 unvaccinated SARS-CoV-2 patients. METHODS The mRNA levels of IFN-I, IFN-related genes and cytokines were evaluated using RT/real-time quantitative PCR. RESULTS Vaccinated patients showed increased rate of negative SARS-CoV-2 PCR tests on nasopharyngeal swab compared with unvaccinated ones after mAbs treatment (p = .002). Unvaccinated patients had lower IFN-α/ω and higher IFN-related genes (IFNAR1, IFNAR2, IRF9, ISG15, ISG56 and IFI27) and cytokines (IL-6, IL-10 and TGF-β) mRNA levels compared to vaccinated individuals before mAbs (p < .05 for all genes). Increased IFN-α/ω, IFNAR1, IFNAR2 and IRF9 levels were observed in unvaccinated patients after mAbs treatment, while the mRNA expression ISGs and IL-10 were reduced in all patients. CONCLUSION These data suggest that anti-S vaccinated patients have increased levels of innate immune genes compared to unvaccinated ones. Also, gene expression changes in IFN genes after mAbs administration are different according to the vaccination status of patients.
Collapse
Affiliation(s)
- Luca Maddaloni
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Letizia Santinelli
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Ginevra Bugani
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Elio G. Cacciola
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Alessandro Lazzaro
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Chiara M. Lofaro
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Sara Caiazzo
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Federica Frasca
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Matteo Fracella
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Camilla Ajassa
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Cristiana Leanza
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Anna Napoli
- Laboratory of Microbiology and Virology, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Lilia Cinti
- Laboratory of Microbiology and Virology, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Aurelia Gaeta
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Guido Antonelli
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
- Azienda Ospedaliero‐Universitaria Policlinico Umberto IRomeItaly
| | | | - Carolina Scagnolari
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| |
Collapse
|
67
|
Kim D, Biancon G, Bai Z, VanOudenhove J, Liu Y, Kothari S, Gowda L, Kwan JM, Buitrago-Pocasangre NC, Lele N, Asashima H, Racke MK, Wilson JE, Givens TS, Tomayko MM, Schulz WL, Longbrake EE, Hafler DA, Halene S, Fan R. Microfluidic Immuno-Serolomic Assay Reveals Systems Level Association with COVID-19 Pathology and Vaccine Protection. SMALL METHODS 2023; 7:e2300594. [PMID: 37312418 PMCID: PMC10592458 DOI: 10.1002/smtd.202300594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Indexed: 06/15/2023]
Abstract
How to develop highly informative serology assays to evaluate the quality of immune protection against coronavirus disease-19 (COVID-19) has been a global pursuit over the past years. Here, a microfluidic high-plex immuno-serolomic assay is developed to simultaneously measure50 plasma or serum samples for50 soluble markers including 35proteins, 11 anti-spike/receptor binding domian (RBD) IgG antibodies spanningmajor variants, and controls. This assay demonstrates the quintuplicate test in a single run with high throughput, low sample volume, high reproducibilityand accuracy. It is applied to the measurement of 1012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein analysis reveals distinct immune mediator modules that exhibit a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies or receiving B cell depletion therapy. Serological analysis identifies that COVID-infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which can be associated with limited clonotype diversity and functional deficiency in B cells. These findings underscore the importance to individualize immunization strategies for these high-risk patients and provide an informative tool to monitor their responses at the systems level.
Collapse
Affiliation(s)
- Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yuxin Liu
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shalin Kothari
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jennifer M Kwan
- Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Nikhil Lele
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
| | | | | | | | | | - Mary M Tomayko
- Departments of Dermatology, Yale University, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Wade L Schulz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Erin E Longbrake
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
| | - David A Hafler
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale University, New Haven, CT, 06520, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center and Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center and Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Human and Translational Immunology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
68
|
Kuan AS, Chen SP, Wang YF, Wang SJ. Prolonged headache with vaccine- and dose-specific headache pattern associated with vaccine against SARS-CoV-2 in patients with migraine. Cephalalgia 2023; 43:3331024231208110. [PMID: 37851648 DOI: 10.1177/03331024231208110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
OBJECTIVE To examine SARS-CoV-2 vaccine-related headache characteristics and risk factors in migraine patients. METHODS This retrospective cohort study included 732 migraine patients who had AstraZeneca Vaxzevria, Pfizer-BioNTech Comirnaty, or Moderna Spikevax vaccines. Participants provided information through questionnaires and headache diaries. Headache frequency before and after vaccination and factors associated with headache risk were examined. RESULTS Approximately a third of patients reported increased headache the day after having primary and booster doses, with mean increase ± SD of 1.9 ± 1.2 and 1.8 ± 1.1 days/week, respectively. Proportions of migraine patients with headache (after vaccination vs. before vaccination) increased after having primary-dose Vaxzevria (35.3% vs. 22.8%, p < 0.001) but not Spikevax (23.8% vs. 26.7%, p = 0.700) or Comirnaty (33.2% vs. 25.8%, p = 0.058). Headache proportion increased after having all three boosters (Vaxzevria 27.1% vs. 17.9% p = 0.003; Comirnaty 34.1% vs. 24.5% p = 0.009; Spikevax 35.2% vs. 24.8% p = 0.031). For primary dose with Vaxzevria and Comirnaty, headache risk increased on the vaccination day, peaked on the day after vaccination, and subsided within a week, while for Spikevax headache risk rose gradually after vaccination, peaked on the seventh post-vaccination day and subsided subsequently. For booster dose, headache risk generally increased on the vaccination day, peaked on the day after vaccination, and subsided gradually with fluctuating pattern within a month. Our study also showed that headache increased on the day before primary dose but not booster dose vaccination and it may be attributable to stress associated with having to undertake new vaccines. Multivariable analyses showed that depression was associated with headache. CONCLUSION Prolonged headache with vaccine- and dose-specific headache pattern was found. Patients with higher risks of vaccine-related headache must be informed of the potential worsening headache.
Collapse
Affiliation(s)
- Ai Seon Kuan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
69
|
Föhse K, Geckin B, Zoodsma M, Kilic G, Liu Z, Röring RJ, Overheul GJ, van de Maat J, Bulut O, Hoogerwerf JJ, Ten Oever J, Simonetti E, Schaal H, Adams O, Müller L, Ostermann PN, van de Veerdonk FL, Joosten LAB, Haagmans BL, van Crevel R, van Rij RP, GeurtsvanKessel C, de Jonge MI, Li Y, Domínguez-Andrés J, Netea MG. The impact of BNT162b2 mRNA vaccine on adaptive and innate immune responses. Clin Immunol 2023; 255:109762. [PMID: 37673225 DOI: 10.1016/j.clim.2023.109762] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The mRNA-based BNT162b2 protects against severe disease and mortality caused by SARS-CoV-2 via induction of specific antibody and T-cell responses. Much less is known about its broad effects on immune responses against other pathogens. Here, we investigated the adaptive immune responses induced by BNT162b2 vaccination against various SARS-CoV-2 variants and its effects on the responsiveness of immune cells upon stimulation with heterologous stimuli. BNT162b2 vaccination induced effective humoral and cellular immunity against SARS-CoV-2 that started to wane after six months. We also observed long-term transcriptional changes in immune cells after vaccination. Additionally, vaccination with BNT162b2 modulated innate immune responses as measured by inflammatory cytokine production after stimulation - higher IL-1/IL-6 release and decreased IFN-α production. Altogether, these data expand our knowledge regarding the overall immunological effects of this new class of vaccines and underline the need for additional studies to elucidate their effects on both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Konstantin Föhse
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Büsra Geckin
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn Zoodsma
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zhaoli Liu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Josephine van de Maat
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jacobien J Hoogerwerf
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Ten Oever
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elles Simonetti
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Philipp Niklas Ostermann
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
70
|
Zhu X, Gebo KA, Abraham AG, Habtehyimer F, Patel EU, Laeyendecker O, Gniadek TJ, Fernandez RE, Baker OR, Ram M, Cachay ER, Currier JS, Fukuta Y, Gerber JM, Heath SL, Meisenberg B, Huaman MA, Levine AC, Shenoy A, Anjan S, Blair JE, Cruser D, Forthal DN, Hammitt LL, Kassaye S, Mosnaim GS, Patel B, Paxton JH, Raval JS, Sutcliffe CG, Abinante M, Broderick P, Cluzet V, Cordisco ME, Greenblatt B, Petrini J, Rausch W, Shade D, Lane K, Gawad AL, Klein SL, Pekosz A, Shoham S, Casadevall A, Bloch EM, Hanley D, Sullivan DJ, Tobian AAR. Dynamics of inflammatory responses after SARS-CoV-2 infection by vaccination status in the USA: a prospective cohort study. THE LANCET. MICROBE 2023; 4:e692-e703. [PMID: 37659419 PMCID: PMC10475695 DOI: 10.1016/s2666-5247(23)00171-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Cytokines and chemokines play a critical role in the response to infection and vaccination. We aimed to assess the longitudinal association of COVID-19 vaccination with cytokine and chemokine concentrations and trajectories among people with SARS-CoV-2 infection. METHODS In this longitudinal, prospective cohort study, blood samples were used from participants enrolled in a multi-centre randomised trial assessing the efficacy of convalescent plasma therapy for ambulatory COVID-19. The trial was conducted in 23 outpatient sites in the USA. In this study, participants (aged ≥18 years) were restricted to those with COVID-19 before vaccination or with breakthrough infections who had blood samples and symptom data collected at screening (pre-transfusion), day 14, and day 90 visits. Associations between COVID-19 vaccination status and concentrations of 21 cytokines and chemokines (measured using multiplexed sandwich immunoassays) were examined using multivariate linear mixed-effects regression models, adjusted for age, sex, BMI, hypertension, diabetes, trial group, and COVID-19 waves (pre-alpha or alpha and delta). FINDINGS Between June 29, 2020, and Sept 30, 2021, 882 participants recently infected with SARS-CoV-2 were enrolled, of whom 506 (57%) were female and 376 (43%) were male. 688 (78%) of 882 participants were unvaccinated, 55 (6%) were partly vaccinated, and 139 (16%) were fully vaccinated at baseline. After adjusting for confounders, geometric mean concentrations of interleukin (IL)-2RA, IL-7, IL-8, IL-15, IL-29 (interferon-λ), inducible protein-10, monocyte chemoattractant protein-1, and tumour necrosis factor-α were significantly lower among the fully vaccinated group than in the unvaccinated group at screening. On day 90, fully vaccinated participants had approximately 20% lower geometric mean concentrations of IL-7, IL-8, and vascular endothelial growth factor-A than unvaccinated participants. Cytokine and chemokine concentrations decreased over time in the fully and partly vaccinated groups and unvaccinated group. Log10 cytokine and chemokine concentrations decreased faster among participants in the unvaccinated group than in other groups, but their geometric mean concentrations were generally higher than fully vaccinated participants at 90 days. Days since full vaccination and type of vaccine received were not correlated with cytokine and chemokine concentrations. INTERPRETATION Initially and during recovery from symptomatic COVID-19, fully vaccinated participants had lower concentrations of inflammatory markers than unvaccinated participants suggesting vaccination is associated with short-term and long-term reduction in inflammation, which could in part explain the reduced disease severity and mortality in vaccinated individuals. FUNDING US Department of Defense, National Institutes of Health, Bloomberg Philanthropies, State of Maryland, Mental Wellness Foundation, Moriah Fund, Octapharma, HealthNetwork Foundation, and the Shear Family Foundation.
Collapse
Affiliation(s)
- Xianming Zhu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alison G Abraham
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Feben Habtehyimer
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Eshan U Patel
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Washington, DC, USA
| | - Thomas J Gniadek
- Department of Pathology and Laboratory Medicine, Northshore University Health System, Evanston, IL, USA
| | - Reinaldo E Fernandez
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Owen R Baker
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Malathi Ram
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Edward R Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, San Diego, CA, USA
| | - Judith S Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, CA, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sonya L Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barry Meisenberg
- Department of Medicine and Research Institute of Luminis Health, Annapolis, MD, USA
| | - Moises A Huaman
- Department of Medicine, Division of Infectious Diseases University of Cincinnati, Cincinnati, OH, USA
| | - Adam C Levine
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Aarthi Shenoy
- Division of Hematology, Medstar DC Hospital, Washington, DC, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Janis E Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - Daniel Cruser
- Department of Pathology, Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Donald N Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA, USA
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seble Kassaye
- Division of Infectious Diseases, Georgetown University Medical Center, Washington, DC, USA
| | - Giselle S Mosnaim
- Division of Allergy and Immunology, Department of Medicine, Northshore University Health System, Evanston, IL, USA
| | - Bela Patel
- Department of Medicine, Divisions of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - James H Paxton
- Department of Emergency Medicine, Wayne State University, Detroit, MI, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | | | | | - Patrick Broderick
- Department of Emergency Medicine, Nuvance Health Danbury Hospital, Danbury, CT, USA
| | - Valerie Cluzet
- Department of Infectious Disease, Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Marie Elena Cordisco
- Department of Emergency Medicine, Nuvance Health Danbury Hospital, Danbury, CT, USA
| | - Benjamin Greenblatt
- Department of Emergency Medicine, Nuvance Health Norwalk Hospital, Norwark, CT, USA
| | - Joann Petrini
- Department of Emergency Medicine, Nuvance Health Danbury Hospital, Danbury, CT, USA
| | - William Rausch
- Department of Emergency Medicine, Nuvance Health Danbury Hospital, Danbury, CT, USA
| | - David Shade
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Karen Lane
- Department of Neurology, Brain Injury Outcomes Division, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Amy L Gawad
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Evan M Bloch
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Hanley
- Department of Neurology, Brain Injury Outcomes Division, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
71
|
Ghanbari Naeini L, Abbasi L, Karimi F, Kokabian P, Abdi Abyaneh F, Naderi D. The Important Role of Interleukin-2 in COVID-19. J Immunol Res 2023; 2023:7097329. [PMID: 37649897 PMCID: PMC10465260 DOI: 10.1155/2023/7097329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/04/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
There is controversial literature about the effects of the interleukin-2 (IL-2) cytokine family in COVID-19 pathogenesis and immunity. So we aimed to identify the potential in the role of the IL-2 family in COVID-19. A narrative review search was done through online databases, including PubMed, Scopus, and Web of Science. The search deadline was up to December 2022. We applied no time limits for the searching strategy. After retrieving articles from the databases, the authors summarized the data into two data extraction tables. The first data extraction table described the changes in the IL-2 cytokine family in COVID-19 and the second table described the therapeutic interventions targeting IL-2 family cytokines. The results of the literature on the role of the IL-2 cytokine family do not show a singular rule. IL-2 cytokine family can change during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some studies suggest that IL-2 cytokine family rise during the infection and cause severe inflammatory response and cytokine storm. These cytokines are shown to be increased in immunocompromised patients and worsen their prognosis. In individuals without underlying disease, the upregulation of the IL-2 family shows the clinical outcome of the disease and rises with disease severity. However, some other studies show that these cytokines do not significantly change. IL-2 cytokine family is mostly upregulated in healthy individuals who had vaccination, but immunocompromised patients did not show significant changes after a single dose of vaccines, which shows that these patients need booster doses for efficient immunity. IL-2 cytokine family can also be used as immunotherapy agents in COVID-19.
Collapse
Affiliation(s)
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
72
|
Skarke C, Lordan R, Barekat K, Naik A, Mathew D, Ohtani T, Greenplate AR, Grant GR, Lahens NF, Gouma S, Troisi E, Sengupta A, Weljie AM, Meng W, Luning Prak ET, Lundgreen K, Bates P, Meng H, FitzGerald GA. Modulation of the Immune Response to Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination by Nonsteroidal Anti-Inflammatory Drugs. J Pharmacol Exp Ther 2023; 386:198-204. [PMID: 37105582 PMCID: PMC10353078 DOI: 10.1124/jpet.122.001415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 04/29/2023] Open
Abstract
Evidence is scarce to guide the use of nonsteroidal anti-inflammatory drugs (NSAIDs) to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related adverse effects, given the possibility of blunting the desired immune response. In this pilot study, we deeply phenotyped a small number of volunteers who did or did not take NSAIDs concomitant with SARS-CoV-2 immunizations to seek initial information on the immune response. A SARS-CoV-2 vaccine-specific receptor binding domain (RBD) IgG antibody response and efficacy in the evoked neutralization titers were evident irrespective of concomitant NSAID consumption. Given the sample size, only a large and consistent signal of immunomodulation would have been detectable, and this was not apparent. However, the information gathered may inform the design of a definitive clinical trial. Here we report a series of divergent omics signals that invites additional hypotheses testing. SIGNIFICANCE STATEMENT: The impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on the immune response elicited by repeat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunizations was profiled by immunophenotypic, proteomic, and metabolomic approaches in a clinical pilot study of small sample size. A SARS-CoV-2 vaccine-specific immune response was evident irrespective of concomitant NSAID consumption. The information gathered may inform the design of a definitive clinical trial.
Collapse
Affiliation(s)
- Carsten Skarke
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kayla Barekat
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amruta Naik
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Divij Mathew
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Takuya Ohtani
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Allison R Greenplate
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sigrid Gouma
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth Troisi
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Arjun Sengupta
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Aalim M Weljie
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Wenzhao Meng
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Eline T Luning Prak
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kendall Lundgreen
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Paul Bates
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
73
|
Marzano P, Balin S, Terzoli S, Della Bella S, Cazzetta V, Piazza R, Sandrock I, Ravens S, Tan L, Prinz I, Calcaterra F, Di Vito C, Cancellara A, Calvi M, Carletti A, Franzese S, Frigo A, Darwish A, Voza A, Mikulak J, Mavilio D. Transcriptomic profile of TNFhigh MAIT cells is linked to B cell response following SARS-CoV-2 vaccination. Front Immunol 2023; 14:1208662. [PMID: 37564651 PMCID: PMC10410451 DOI: 10.3389/fimmu.2023.1208662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Higher frequencies of mucosal-associated invariant T (MAIT) cells were associated with an increased adaptive response to mRNA BNT162b2 SARS-CoV-2 vaccine, however, the mechanistic insights into this relationship are unknown. In the present study, we hypothesized that the TNF response of MAIT cells supports B cell activation following SARS-CoV-2 immunization. Methods To investigate the effects of repeated SARS-CoV-2 vaccinations on the peripheral blood mononuclear cells (PBMCs), we performed a longitudinal single cell (sc)RNA-seq and scTCR-seq analysis of SARS-CoV-2 vaccinated healthy adults with two doses of the Pfizer-BioNTech BNT162b2 mRNA vaccine. Collection of PBMCs was performed 1 day before, 3 and 17 days after prime vaccination, and 3 days and 3 months following vaccine boost. Based on scRNA/TCR-seq data related to regulatory signals induced by the vaccine, we used computational approaches for the functional pathway enrichment analysis (Reactome), dynamics of the effector cell-polarization (RNA Velocity and CellRank), and cell-cell communication (NicheNet). Results We identified MAIT cells as an important source of TNF across circulating lymphocytes in response to repeated SARS-CoV-2 BNT162b2 vaccination. The TNFhigh signature of MAIT cells was induced by the second administration of the vaccine. Notably, the increased TNF expression was associated with MAIT cell proliferation and efficient anti-SARS-CoV-2 antibody production. Finally, by decoding the ligand-receptor interactions and incorporating intracellular signaling, we predicted TNFhigh MAIT cell interplay with different B cell subsets. In specific, predicted TNF-mediated activation was selectively directed to conventional switched memory B cells, which are deputed to high-affinity long-term memory. Discussion Overall, our results indicate that SARS-CoV-2 BNT162b2 vaccination influences MAIT cell frequencies and their transcriptional effector profile with the potential to promote B cell activation. This research also provides a blueprint for the promising use of MAIT cells as cellular adjuvants in mRNA-based vaccines.
Collapse
Affiliation(s)
- Paolo Marzano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Valentina Cazzetta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Likai Tan
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Calcaterra
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Assunta Cancellara
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela Calvi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Carletti
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ahmed Darwish
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Biomedical Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
74
|
Muir R, Metcalf T, Fourati S, Bartsch Y, Kyosiimire-Lugemwa J, Canderan G, Alter G, Muyanja E, Okech B, Namatovu T, Namara I, Namuniina A, Ssetaala A, Mpendo J, Nanvubya A, Kitandwe PK, Bagaya BS, Kiwanuka N, Nassuna J, Biribawa VM, Elliott AM, de Dood CJ, Senyonga W, Balungi P, Kaleebu P, Mayanja Y, Odongo M, Connors J, Fast P, Price MA, Corstjens PLAM, van Dam GJ, Kamali A, Sekaly RP, Haddad EK. Schistosoma mansoni infection alters the host pre-vaccination environment resulting in blunted Hepatitis B vaccination immune responses. PLoS Negl Trop Dis 2023; 17:e0011089. [PMID: 37406029 PMCID: PMC10351710 DOI: 10.1371/journal.pntd.0011089] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/17/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Schistosomiasis is a disease caused by parasitic flatworms of the Schistosoma spp., and is increasingly recognized to alter the immune system, and the potential to respond to vaccines. The impact of endemic infections on protective immunity is critical to inform vaccination strategies globally. We assessed the influence of Schistosoma mansoni worm burden on multiple host vaccine-related immune parameters in a Ugandan fishing cohort (n = 75) given three doses of a Hepatitis B (HepB) vaccine at baseline and multiple timepoints post-vaccination. We observed distinct differences in immune responses in instances of higher worm burden, compared to low worm burden or non-infected. Concentrations of pre-vaccination serum schistosome-specific circulating anodic antigen (CAA), linked to worm burden, showed a significant bimodal distribution associated with HepB titers, which was lower in individuals with higher CAA values at month 7 post-vaccination (M7). Comparative chemokine/cytokine responses revealed significant upregulation of CCL19, CXCL9 and CCL17 known to be involved in T cell activation and recruitment, in higher CAA individuals, and CCL17 correlated negatively with HepB titers at month 12 post-vaccination. We show that HepB-specific CD4+ T cell memory responses correlated positively with HepB titers at M7. We further established that those participants with high CAA had significantly lower frequencies of circulating T follicular helper (cTfh) subpopulations pre- and post-vaccination, but higher regulatory T cells (Tregs) post-vaccination, suggesting changes in the immune microenvironment in high CAA could favor Treg recruitment and activation. Additionally, we found that changes in the levels of innate-related cytokines/chemokines CXCL10, IL-1β, and CCL26, involved in driving T helper responses, were associated with increasing CAA concentration. This study provides further insight on pre-vaccination host responses to Schistosoma worm burden which will support our understanding of vaccine responses altered by pathogenic host immune mechanisms and memory function and explain abrogated vaccine responses in communities with endemic infections.
Collapse
Affiliation(s)
- Roshell Muir
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Talibah Metcalf
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Slim Fourati
- PATRU, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Yannic Bartsch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Glenda Canderan
- Department of Medicine, Allergy and Immunology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Enoch Muyanja
- PATRU, School of Medicine, Emory University, Atlanta, Georgia, United States of America
- UVRI-IAVI HIV Vaccine Program, Entebbe, Uganda
| | | | | | | | | | | | | | | | | | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Noah Kiwanuka
- Department of Epidemiology and Biostatistics, School of Public Health, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Jacent Nassuna
- Department of Epidemiology and Biostatistics, School of Public Health, Makerere University, College of Health Sciences, Kampala, Uganda
| | | | - Alison M. Elliott
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Claudia J. de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Yunia Mayanja
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Matthew Odongo
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Jennifer Connors
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Pat Fast
- International AIDS Vaccine Initiative, New York, New York, United States of America
- Pediatric Infectious Diseases, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Matt A. Price
- International AIDS Vaccine Initiative, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Govert J. van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anatoli Kamali
- UVRI-IAVI HIV Vaccine Program, Entebbe, Uganda
- International AIDS Vaccine Initiative, New York, New York, United States of America
- IAVI, New York, New York, United States of America, and Nairobi, Kenya
| | - Rafick Pierre Sekaly
- PATRU, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Elias K. Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
75
|
Xue VW, Wong SCC, Li B, Cho WCS. The discovery and development of mRNA vaccines for the prevention of SARS-CoV-2 infection. Expert Opin Drug Discov 2023; 18:769-780. [PMID: 37237360 DOI: 10.1080/17460441.2023.2218083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
INTRODUCTION COVID-19 pandemic is one of the most serious public health events of this century. There have been more than 670 million confirmed cases and more than 6 million deaths worldwide. From the emergence of the Alpha variant to the later rampant Omicron variant, the high transmissibility and pathogenicity of SARS-CoV-2 accelerate the research and development of effective vaccines. Against this background, mRNA vaccines stepped onto the historical stage and became an important tool for COVID-19 prevention. AREAS COVERED This article introduces the characteristics of different mRNA vaccines in the prevention of COVID-19, including antigen selection, therapeutic mRNA design and modification, and different delivery systems of mRNA molecules. It also summarizes and discusses the mechanisms, safety, effectiveness, side effects, and limitations of current COVID-19 mRNA vaccines. EXPERT OPINION Therapeutic mRNA molecules have plenty of advantages, including flexible design, rapid production, sufficient immune activation, safety without the risk of genome insertion in the host cells, and no viral vectors or particles involved, making them an important tool to fight diseases in the future. However, the application of COVID-19 mRNA vaccines also faces many challenges, such as storage and transportation, mass production, and nonspecific immunity.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Li
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, China
| | | |
Collapse
|
76
|
Abdul-Wahab Kadhum A, Rushdi Abdullah A, Mujahid A. Increasing Levels of Serum Anti-Spike S1-RBD IgG after 120 Days of the Pfizer-BioNTech-mRNA Second Dose Vaccination. ARCHIVES OF RAZI INSTITUTE 2023; 78:1071-1075. [PMID: 38028836 PMCID: PMC10657966 DOI: 10.22092/ari.2022.359934.2517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/26/2022] [Indexed: 12/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines, such as Pfizer-BioNTech, have demonstrated high efficacy; however, there is limited data on the duration of immune responses besides their relationships with age, gender, body mass index (BMI), and the presence of previous coronavirus disease-2019 (COVID-19) infection. This study aimed to evaluate SARS-COVID-19 Anti-Spike IgG levels after 30 days (one month) and 120 days (four months) of the 2nd dose of Pfizer-BioNTech vaccine given to medical students at Al-Iraqi University, Baghdad, Iraq. This study was performed after the obtainment of the acceptance and approval of the Medical College of Al-Iraqi University and the Iraqi Ministry of Health. Two groups of students were randomly picked up from the Medical College of Al-Iraqi University. They were completely vaccinated by administering two doses of Pfizer-BioNTech/0.5 ml for each dose. After taking their permission, 5 ml of their blood (one group after one month and the second group after four months of vaccination) was drawn in the Higher Education lab inside the Medical College of Al-Iraqi University. It took approximately four months to collect the samples (from October 2021 until February 2022). Following that, serological analysis was done for measuring the SARS-CoV-2 spike protein IgG by using Elabscience/SARS-CoV-2 spike protein IgG ELISA Kit (USA) (+ve <0.06) that was performed in the Higher Education lab of Medical College of Al-Iraqi University. Demographic data were also collected from participants, including age, gender, BMI, blood group, and the presence of previous COVID-19 infection. For statistical analysis, SPSS (version 26) and STATISTICA (version 12) were used to input, check, and analyze data. Standard approaches of frequencies and percentages were used for qualitative variables, while for quantitative variables, mean±standard deviation was used. A P-value of <0.05 was considered a significant plasma level of the SARS-COVID-19 Anti-Spike IgG. The study results showed that in group 1 (after one month of the 2nd dose), the male-female ratio was 62.2: 37.8, the mean age of the vaccinated students was 28.2000 years old, and the BMI was 25.5454 kg/m2 with 33.3% previously COVID-19 infected individuals. In group 2 (after four months of the 2nd dose), the male-female ratio was 44.4: 55.6, the mean age of the vaccinated students was 25.8444 years old , and the BMI was 24.7584 kg/m2 with 24.4% previously COVID-19 infected individuals. The plasma levels of SARS-COVID-19 Anti-Spike IgG after the 2nd dose of the Pfizer-BioNTech vaccine in group 1 (one month) and group 2 (four months) were statistically non-parametric. Once the independent two samples Mann-Whitney test was used, a significant difference (P<0.05) was observed in SARS-COVID-19 Anti-Spike IgG plasma levels after 30 days of the 2nd dose of the Pfizer-BioNTech vaccine administration, compared to the 120 days of administration. In conclusion, SARS-COVID-19 Anti-Spike IgG levels significantly increased in group 2 (four months after the 2nd dose of the Pfizer-BioNTech vaccine), compared to group 1 (one month after the 2nd dose of the Pfizer-BioNTech vaccine).
Collapse
Affiliation(s)
- A Abdul-Wahab Kadhum
- Medical Microbiology Department, Medical College, AL-Iraqia University, Baghdad, Iraq
| | - A Rushdi Abdullah
- Medical Microbiology Department, Medical College, AL-Iraqia University, Baghdad, Iraq
| | - A Mujahid
- Medical Microbiology Department, Medical College, AL-Nahrain University, Baghdad, Iraq
| |
Collapse
|
77
|
Barmada A, Klein J, Ramaswamy A, Brodsky NN, Jaycox JR, Sheikha H, Jones KM, Habet V, Campbell M, Sumida TS, Kontorovich A, Bogunovic D, Oliveira CR, Steele J, Hall EK, Pena-Hernandez M, Monteiro V, Lucas C, Ring AM, Omer SB, Iwasaki A, Yildirim I, Lucas CL. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Sci Immunol 2023; 8:eadh3455. [PMID: 37146127 PMCID: PMC10468758 DOI: 10.1126/sciimmunol.adh3455] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1β, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.
Collapse
Affiliation(s)
- Anis Barmada
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Ramaswamy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nina N. Brodsky
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Jillian R. Jaycox
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Hassan Sheikha
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Kate M. Jones
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Victoria Habet
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Tomokazu S. Sumida
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Amy Kontorovich
- The Zena and Michael A. Wiener Cardiovascular Institute; Mindich Child Health and Development Institute; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- The Zena and Michael A. Wiener Cardiovascular Institute; Mindich Child Health and Development Institute; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Inborn Errors of Immunity; Precision Immunology Institute; Mindich Child Health and Development Institute; Department of Pediatrics; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos R. Oliveira
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Jeremy Steele
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - E. Kevin Hall
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Pena-Hernandez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Valter Monteiro
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Saad B. Omer
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Inci Yildirim
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Carrie L. Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
78
|
Lucane Z, Slisere B, Gersone G, Papirte S, Gailite L, Tretjakovs P, Kurjane N. Cytokine Response Following SARS-CoV-2 Antigen Stimulation in Patients with Predominantly Antibody Deficiencies. Viruses 2023; 15:v15051146. [PMID: 37243231 DOI: 10.3390/v15051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Predominantly antibody deficiencies (PADs) are inborn disorders characterized by immune dysregulation and increased susceptibility to infections. Response to vaccination, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may be impaired in these patients, and studies on responsiveness correlates, including cytokine signatures to antigen stimulation, are sparse. In this study, we aimed to describe the spike-specific cytokine response following whole-blood stimulation with SARS-CoV-2 spike peptides in patients with PAD (n = 16 with common variable immunodeficiency and n = 15 with selective IgA deficiency) and its relationship with the occurrence of coronavirus disease 2019 (COVID-19) during up to 10-month follow-up period. Spike-induced antibody and cytokine production was measured using ELISA (anti-spike IgG, IFN-γ) and xMAP technology (interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-15, IL-17A, IL-21, TNF-α, TGF-β1). No difference was found in the production of cytokines between patients with PAD and controls. Anti-spike IgG and cytokine levels did not predict contraction of COVID-19. The only cytokine that distinguished between vaccinated and naturally infected unvaccinated PAD patients was IFN-γ (median 0.64 (IQR = 1.08) in vaccinated vs. 0.10 (IQR = 0.28) in unvaccinated). This study describes the spike-specific cytokine response to SARS-CoV-2 antigens, which is not predictive of contracting COVID-19 during the follow-up.
Collapse
Affiliation(s)
- Zane Lucane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Baiba Slisere
- The Joint Laboratory, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, LV-1007 Riga, Latvia
| | - Gita Gersone
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sindija Papirte
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia
| | - Peteris Tretjakovs
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Natalja Kurjane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
- Outpatient Clinic, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Outpatient Clinic, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|
79
|
Moyles IR, Korosec CS, Heffernan JM. Determination of significant immunological timescales from mRNA-LNP-based vaccines in humans. J Math Biol 2023; 86:86. [PMID: 37121986 PMCID: PMC10149047 DOI: 10.1007/s00285-023-01919-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/10/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
A compartment model for an in-host liquid nanoparticle delivered mRNA vaccine is presented. Through non-dimensionalisation, five timescales are identified that dictate the lifetime of the vaccine in-host: decay of interferon gamma, antibody priming, autocatalytic growth, antibody peak and decay, and interleukin cessation. Through asymptotic analysis we are able to obtain semi-analytical solutions in each of the time regimes which allows us to predict maximal concentrations and better understand parameter dependence in the model. We compare our model to 22 data sets for the BNT162b2 and mRNA-1273 mRNA vaccines demonstrating good agreement. Using our analysis, we estimate the values for each of the five timescales in each data set and predict maximal concentrations of plasma B-cells, antibody, and interleukin. Through our comparison, we do not observe any discernible differences between vaccine candidates and sex. However, we do identify an age dependence, specifically that vaccine activation takes longer and that peak antibody occurs sooner in patients aged 55 and greater.
Collapse
Affiliation(s)
- Iain R Moyles
- Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J1P3, Canada.
| | - Chapin S Korosec
- Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J1P3, Canada
| | - Jane M Heffernan
- Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J1P3, Canada
| |
Collapse
|
80
|
Zelini P, d'Angelo P, Zavaglio F, Soleymaninejadian E, Mariani L, Perotti F, Dominoni M, Tonello S, Sainaghi P, Minisini R, Apostolo D, Lilleri D, Spinillo A, Baldanti F. Inflammatory and Immune Responses during SARS-CoV-2 Infection in Vaccinated and Non-Vaccinated Pregnant Women and Their Newborns. Pathogens 2023; 12:pathogens12050664. [PMID: 37242334 DOI: 10.3390/pathogens12050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Pregnant women are more susceptible to severe disease associated with SARS-CoV-2 infection. We performed a prospective study to analyze the inflammatory and immune profile after SARS-CoV-2 infection occurring in vaccinated or non-vaccinated pregnant women and their newborns. METHODS Twenty-five pregnant women with SARS-CoV-2 infection were enrolled, and sixteen cord blood samples were obtained at delivery. RESULTS We observed that IL-1β, TNF-α, Eotaxin, MIB-1β, VEGF, IL-15, IL-2, IL-5, IL-9, IL-10 and IL-1ra levels were significantly higher in vaccinated than non-vaccinated mothers. Furthermore, the newborns of the vaccinated mothers produced higher levels of IL-7, IL-5 and IL-12 compared to the newborns of non-vaccinated mothers. Anti-Spike (S) IgG levels were significantly higher in all vaccinated mothers and their newborns compared to the non-vaccinated group. We found that 87.5% of vaccinated women and 66.6% of non-vaccinated women mounted an S-specific T-cell response quantified by ELISpot assay. Moreover, 75.0% of vaccinated mothers and 38.4% of non-vaccinated mothers showed S-specific CD4+ T-cell proliferative response. The T-helper subset response was restricted to CD4+ Th1 in both vaccinated and non-vaccinated women. CONCLUSION A higher level of cytokines, IgG antibodies and memory T cells was noted in the vaccinated women. Furthermore, the maternal IgG antibody trans-placental transfer occurred more frequently in vaccinated mothers and may protect the newborn.
Collapse
Affiliation(s)
- Paola Zelini
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Piera d'Angelo
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Obstetrics and Gynecology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Federica Zavaglio
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ehsan Soleymaninejadian
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Liliana Mariani
- Obstetrics and Gynecology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca Perotti
- Obstetrics and Gynecology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mattia Dominoni
- Obstetrics and Gynecology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stelvio Tonello
- Immunoreumatology Laboratory, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Laboratory, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Pierpaolo Sainaghi
- Immunoreumatology Laboratory, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Laboratory, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosalba Minisini
- Internal Medicine Laboratory, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daria Apostolo
- Immunoreumatology Laboratory, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Laboratory, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniele Lilleri
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Arsenio Spinillo
- Obstetrics and Gynecology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
81
|
Tsai TF, Ng CY. COVID-19 vaccine-associated vitiligo: A cross-sectional study in a tertiary referral center and systematic review. J Dermatol 2023. [PMID: 37186102 DOI: 10.1111/1346-8138.16799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to infect patients globally, vaccination remains one of the primary methods to combat this prolonged pandemic. However, there are growing reports of coronavirus disease 2019 (COVID-19) vaccines possibly triggering autoimmunity, irrespective of the vaccine's design. This phenomenon has been observed in patients with vitiligo, with a rising number of cases reporting new-onset or worsening vitiligo following COVID-19 vaccinations. In this study, the authors present the most extensive case series of COVID-19 vaccine-associated vitiligo to date, along with a systematic review of the literature. The aim is to assist physicians in the clinical evaluation of patients with vitiligo with regard to future vaccinations.
Collapse
Affiliation(s)
- Tsung-Fu Tsai
- Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
- Vitiligo Clinic and Pigment Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chau Yee Ng
- Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
- Vitiligo Clinic and Pigment Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology and Aesthetic Medicine Center, Jen Ai Hospital, Taichung, Taiwan
| |
Collapse
|
82
|
Visvabharathy L, Zhu C, Orban ZS, Yarnoff K, Palacio N, Jimenez M, Lim PH, Penaloza-MacMaster P, Koralnik IJ. Autoantibody production is enhanced after mild SARS-CoV-2 infection despite vaccination in individuals with and without long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288243. [PMID: 37090595 PMCID: PMC10120795 DOI: 10.1101/2023.04.07.23288243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Long COVID patients who experienced severe acute SARS-CoV-2 infection can present with humoral autoimmunity. However, whether mild SARS-CoV-2 infection increases autoantibody responses and whether vaccination can decrease autoimmunity in long COVID patients is unknown. Here, we demonstrate that mild SARS-CoV-2 infection increases autoantibodies associated with systemic lupus erythematosus (SLE) and inflammatory myopathies in long COVID patients with persistent neurologic symptoms to a greater extent than COVID convalescent controls at 8 months post-infection. Furthermore, high titers of SLE-associated autoantibodies in long COVID patients are associated with impaired cognitive performance and greater symptom severity, and subsequent vaccination/booster does not decrease autoantibody titers. In summary, we found that mild SARS-CoV-2 infection can induce persistent humoral autoimmunity in both long COVID patients and healthy COVID convalescents, suggesting that a reappraisal of vaccination and mitigation strategies is warranted.
Collapse
Affiliation(s)
- L Visvabharathy
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University
| | - C Zhu
- Genomics and Microarray Core Facility, University of Texas Southwestern Medical Center
| | - ZS Orban
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University
| | - K Yarnoff
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University
| | - N Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University
| | - M Jimenez
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University
| | - PH Lim
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University
| | - P Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University
| | - IJ Koralnik
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University
| |
Collapse
|
83
|
Gao F, Mallajosyula V, Arunachalam PS, van der Ploeg K, Manohar M, Röltgen K, Yang F, Wirz O, Hoh R, Haraguchi E, Lee JY, Willis R, Ramachandiran V, Li J, Kathuria KR, Li C, Lee AS, Shah MM, Sindher SB, Gonzalez J, Altman JD, Wang TT, Boyd SD, Pulendran B, Jagannathan P, Nadeau KC, Davis MM. Spheromers reveal robust T cell responses to the Pfizer/BioNTech vaccine and attenuated peripheral CD8 + T cell responses post SARS-CoV-2 infection. Immunity 2023; 56:864-878.e4. [PMID: 36996809 PMCID: PMC10017386 DOI: 10.1016/j.immuni.2023.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.
Collapse
Affiliation(s)
- Fei Gao
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Kattria van der Ploeg
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Katharina Röltgen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fan Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramona Hoh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily Haraguchi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Willis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Jiefu Li
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Karan Raj Kathuria
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra S Lee
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mihir M Shah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Gonzalez
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - John D Altman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard, MA, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
84
|
Giannotta G, Murrone A, Giannotta N. COVID-19 mRNA Vaccines: The Molecular Basis of Some Adverse Events. Vaccines (Basel) 2023; 11:747. [PMID: 37112659 PMCID: PMC10145134 DOI: 10.3390/vaccines11040747] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Each injection of any known vaccine results in a strong expression of pro-inflammatory cytokines. This is the result of the innate immune system activation, without which no adaptive response to the injection of vaccines is possible. Unfortunately, the degree of inflammation produced by COVID-19 mRNA vaccines is variable, probably depending on genetic background and previous immune experiences, which through epigenetic modifications could have made the innate immune system of each individual tolerant or reactive to subsequent immune stimulations.We hypothesize that we can move from a limited pro-inflammatory condition to conditions of increasing expression of pro-inflammatory cytokines that can culminate in multisystem hyperinflammatory syndromes following COVID-19 mRNA vaccines (MIS-V). We have graphically represented this idea in a hypothetical inflammatory pyramid (IP) and we have correlated the time factor to the degree of inflammation produced after the injection of vaccines. Furthermore, we have placed the clinical manifestations within this hypothetical IP, correlating them to the degree of inflammation produced. Surprisingly, excluding the possible presence of an early MIS-V, the time factor and the complexity of clinical manifestations are correlated to the increasing degree of inflammation: symptoms, heart disease and syndromes (MIS-V).
Collapse
Affiliation(s)
| | - Antonio Murrone
- Oncologia Territoriale, Hospice Cure Palliative ASUFC, 33030 Udine, Italy;
| | - Nicola Giannotta
- Medical and Surgery Sciences, Faculty of Medicine, Magna Græcia University, 88100 Catanzaro, Italy;
| |
Collapse
|
85
|
Yoon J, Park B, Kim H, Choi S, Jung D. Korean Red Ginseng Potentially Improves Maintaining Antibodies after COVID-19 Vaccination: A 24-Week Longitudinal Study. Nutrients 2023; 15:nu15071584. [PMID: 37049424 PMCID: PMC10097014 DOI: 10.3390/nu15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Despite the effectiveness and safety of COVID-19 vaccines, vaccine-induced responses decline over time; thus, booster vaccines have been approved globally. In addition, interest in natural compounds capable of improving host immunity has increased. This study aimed to examine the effect of Korean Red Ginseng (KRG) on virus-specific antibodies after COVID-19 vaccination. We conducted a 24 week clinical pilot study of 350 healthy subjects who received two doses of the COVID-19 vaccine and a booster vaccination (third dose). These subjects were randomized 1:2 to the KRG and control groups. We evaluated antibody response five times: just before the second dose (baseline), 2 weeks, 4 weeks, 12 weeks after the second dose, and 4 weeks after the third dose. The primary endpoints were changes in COVID-19 spike antibody titers and neutralizing antibody titers. The antibody formation rate of the KRG group was sustained higher than that of the control group for 12 weeks after the second dose. This trend was prominently observed in those above 50 years old. We found that KRG can help to increase and maintain vaccine response, highlighting that KRG could potentially be used as an immunomodulator with COVID-19 vaccines.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heejung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seungjun Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Laboratory Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Donghyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
86
|
Severa M, Rizzo F, Sinigaglia A, Ricci D, Etna MP, Cola G, Landi D, Buscarinu MC, Valdarchi C, Ristori G, Riccetti S, Piubelli C, Palmerini P, Rosato A, Gobbi F, Balducci S, Marfia GA, Salvetti M, Barzon L, Coccia EM. A specific anti‐COVID‐19 BNT162b2 vaccine‐induced early innate immune signature positively correlates with the humoral protective response in healthy and multiple sclerosis vaccine recipients. Clin Transl Immunology 2023; 12:e1434. [PMID: 36969367 PMCID: PMC10036198 DOI: 10.1002/cti2.1434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 03/25/2023] Open
Abstract
Objectives The very rapidly approved mRNA‐based vaccines against SARS‐CoV‐2 spike glycoprotein, including Pfizer‐BioNTech BNT162b2, are effective in protecting from severe coronavirus disease 2019 (COVID‐19) in immunocompetent population. However, establishing the duration and identifying correlates of vaccine‐induced protection will be crucial to optimise future immunisation strategies. Here, we studied in healthy vaccine recipients and people with multiple sclerosis (pwMS), undergoing different therapies, the regulation of innate immune response by mRNA vaccination in order to correlate it with the magnitude of vaccine‐induced protective humoral responses. Methods Healthy subjects (n = 20) and matched pwMS (n = 22) were longitudinally sampled before and after mRNA vaccination. Peripheral blood mononuclear cell (PBMC)‐associated type I and II interferon (IFN)‐inducible gene expression, serum innate cytokine/chemokine profile as well as binding and neutralising anti‐SARS‐COV‐2 antibodies (Abs) were measured. Results We identified an early immune module composed of the IFN‐inducible genes Mx1, OAS1 and IRF1, the serum cytokines IL‐15, IL‐6, TNF‐α and IFN‐γ and the chemokines IP‐10, MCP‐1 and MIG, induced 1 day post second and third BNT162b2 vaccine doses, strongly correlating with magnitude of humoral response to vaccination in healthy and MS vaccinees. Moreover, induction of the early immune module was dramatically affected in pwMS treated with fingolimod and ocrelizumab, both groups unable to induce a protective humoral response to COVID‐19 vaccine. Conclusion Overall, this study suggests that the vaccine‐induced early regulation of innate immunity is mediated by IFN signalling, impacts on the magnitude of adaptive responses and it might be indicative of vaccine‐induced humoral protection.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious DiseaseIstituto Superiore di SanitàRomeItaly
| | - Fabiana Rizzo
- Department of Infectious DiseaseIstituto Superiore di SanitàRomeItaly
| | | | - Daniela Ricci
- Department of Infectious DiseaseIstituto Superiore di SanitàRomeItaly
| | | | - Gaia Cola
- Department of Systems MedicineMS center Tor Vergata UniversityRomeItaly
| | - Doriana Landi
- Department of Systems MedicineMS center Tor Vergata UniversityRomeItaly
| | | | - Catia Valdarchi
- Department of Infectious DiseaseIstituto Superiore di SanitàRomeItaly
| | - Giovanni Ristori
- Center for Experimental Neurological TherapiesSant'Andrea HospitalRomeItaly
- Neuroimmunology UnitIRCCS Fondazione Santa LuciaRomeItaly
| | - Silvia Riccetti
- Department of Molecular MedicineUniversity of PadovaPaduaItaly
| | - Chiara Piubelli
- Department of Infectious‐Tropical Diseases and MicrobiologyIRCCS Sacro Cuore Don Calabria HospitalNegrar di ValpolicellaItaly
| | - Pierangela Palmerini
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology SectionUniversity of PadovaPaduaItaly
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology SectionUniversity of PadovaPaduaItaly
- Veneto Institute of Oncology IOV – IRCCSPaduaItaly
| | - Federico Gobbi
- Department of Infectious‐Tropical Diseases and MicrobiologyIRCCS Sacro Cuore Don Calabria HospitalNegrar di ValpolicellaItaly
| | | | | | - Marco Salvetti
- Center for Experimental Neurological TherapiesSant'Andrea HospitalRomeItaly
- IRCCS Istituto Neurologico Mediterraneo NeuromedPozzilliItaly
| | - Luisa Barzon
- Department of Molecular MedicineUniversity of PadovaPaduaItaly
| | | |
Collapse
|
87
|
Kim J, Rosenberger MG, Chen S, IP CKM, Bahmani A, Chen Q, Shen J, Tang Y, Wang A, Kenna E, Son M, Tay S, Ferguson AL, Esser-Kahn AP. Discovery of New States of Immunomodulation for Vaccine Adjuvants via High Throughput Screening: Expanding Innate Responses to PRRs. ACS CENTRAL SCIENCE 2023; 9:427-439. [PMID: 36968540 PMCID: PMC10037445 DOI: 10.1021/acscentsci.2c01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 06/18/2023]
Abstract
Stimulation of the innate immune system is crucial in both effective vaccinations and immunotherapies. This is often achieved through adjuvants, molecules that usually activate pattern recognition receptors (PRRs) and stimulate two innate immune signaling pathways: the nuclear factor kappa-light-chain-enhancer of activated B-cells pathway (NF-κB) and the interferon regulatory factors pathway (IRF). Here, we demonstrate the ability to alter and improve adjuvant activity via the addition of small molecule "immunomodulators". By modulating signaling activity instead of receptor binding, these molecules allow the customization of select innate responses. We demonstrate both inhibition and enhancement of the products of the NF-κB and IRF pathways by several orders of magnitude. Some modulators apply generally across many receptors, while others focus specifically on individual receptors. Modulators boost correlates of a protective immune responses in a commercial flu vaccine model and reduced correlates of reactogenicity in a typhoid vaccine model. These modulators have a range of applications: from adjuvanticity in prophylactics to enhancement of immunotherapy.
Collapse
Affiliation(s)
| | | | - Siquan Chen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Carman KM IP
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Azadeh Bahmani
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jinjing Shen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yifeng Tang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew Wang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
88
|
Ryan FJ, Norton TS, McCafferty C, Blake SJ, Stevens NE, James J, Eden GL, Tee YC, Benson SC, Masavuli MG, Yeow AEL, Abayasingam A, Agapiou D, Stevens H, Zecha J, Messina NL, Curtis N, Ignjatovic V, Monagle P, Tran H, McFadyen JD, Bull RA, Grubor-Bauk B, Lynn MA, Botten R, Barry SE, Lynn DJ. A systems immunology study comparing innate and adaptive immune responses in adults to COVID-19 mRNA and adenovirus vectored vaccines. Cell Rep Med 2023; 4:100971. [PMID: 36871558 PMCID: PMC9935276 DOI: 10.1016/j.xcrm.2023.100971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Identifying the molecular mechanisms that promote optimal immune responses to coronavirus disease 2019 (COVID-19) vaccination is critical for future rational vaccine design. Here, we longitudinally profile innate and adaptive immune responses in 102 adults after the first, second, and third doses of mRNA or adenovirus-vectored COVID-19 vaccines. Using a multi-omics approach, we identify key differences in the immune responses induced by ChAdOx1-S and BNT162b2 that correlate with antigen-specific antibody and T cell responses or vaccine reactogenicity. Unexpectedly, we observe that vaccination with ChAdOx1-S, but not BNT162b2, induces an adenoviral vector-specific memory response after the first dose, which correlates with the expression of proteins with roles in thrombosis with potential implications for thrombosis with thrombocytopenia syndrome (TTS), a rare but serious adverse event linked to adenovirus-vectored vaccines. The COVID-19 Vaccine Immune Responses Study thus represents a major resource that can be used to understand the immunogenicity and reactogenicity of these COVID-19 vaccines.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Todd S Norton
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Conor McCafferty
- Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephen J Blake
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Natalie E Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Jane James
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Georgina L Eden
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Yee C Tee
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Saoirse C Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Arthur E L Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Arunasingam Abayasingam
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia; The Kirby Institute, Sydney, NSW 2052, Australia
| | | | - Hannah Stevens
- Clinical Haematology Department, Alfred Hospital, Melbourne, VIC 3004, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3800, Australia
| | - Jana Zecha
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Nicole L Messina
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Nigel Curtis
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Huyen Tran
- Clinical Haematology Department, Alfred Hospital, Melbourne, VIC 3004, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3800, Australia
| | - James D McFadyen
- Clinical Haematology Department, Alfred Hospital, Melbourne, VIC 3004, Australia; Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia; The Kirby Institute, Sydney, NSW 2052, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Rochelle Botten
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Simone E Barry
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
89
|
Yavuz A, Coiffier C, Garapon C, Gurcan S, Monge C, Exposito JY, Arruda DC, Verrier B. DLin-MC3-Containing mRNA Lipid Nanoparticles Induce an Antibody Th2-Biased Immune Response Polarization in a Delivery Route-Dependent Manner in Mice. Pharmaceutics 2023; 15:pharmaceutics15031009. [PMID: 36986871 PMCID: PMC10058601 DOI: 10.3390/pharmaceutics15031009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
mRNA-based vaccines have made a leap forward since the SARS-CoV-2 pandemic and are currently used to develop anti-infectious therapies. If the selection of a delivery system and an optimized mRNA sequence are two key factors to reach in vivo efficacy, the optimal administration route for those vaccines remains unclear. We investigated the influence of lipid components and immunization route regarding the intensity and quality of humoral immune responses in mice. The immunogenicity of HIV-p55Gag encoded mRNA encapsulated into D-Lin-MC3-DMA or GenVoy-ionizable lipid-based LNPs was compared after intramuscular or subcutaneous routes. Three sequential mRNA vaccines were administrated followed by a heterologous boost composed of p24-HIV protein antigen. Despite equivalent IgG kinetic profiles of general humoral responses, IgG1/IgG2a ratio analysis showed a Th2/Th1 balance toward a Th1-biased cellular immune response when both LNPs were administrated via the intramuscular route. Surprisingly, a Th2-biased antibody immunity was observed when DLin-containing vaccine was injected subcutaneously. A protein-based vaccine boost appeared to reverse this balance to a cellular-biased response correlated to an increase in antibody avidity. Our finding suggests that the intrinsic adjuvant effect of ionizable lipids appears to be dependent on the delivery route used, which could be relevant to reach potent and long-lasting immunity after mRNA-based immunization.
Collapse
Affiliation(s)
- Altan Yavuz
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305, CNRS/Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Céline Coiffier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305, CNRS/Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Cynthia Garapon
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305, CNRS/Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Serra Gurcan
- Precision NanoSystems Inc., 655 West Kent Avenue North Unit 50, Vancouver, BC V6P 6T7, Canada
| | - Claire Monge
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305, CNRS/Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Jean-Yves Exposito
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305, CNRS/Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Danielle Campiol Arruda
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305, CNRS/Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305, CNRS/Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| |
Collapse
|
90
|
Takano T, Sato T, Kotaki R, Moriyama S, Fukushi S, Shinoda M, Kabasawa K, Shimada N, Kousaka M, Adachi Y, Onodera T, Terahara K, Isogawa M, Matsumura T, Shinkai M, Takahashi Y. Heterologous SARS-CoV-2 spike protein booster elicits durable and broad antibody responses against the receptor-binding domain. Nat Commun 2023; 14:1451. [PMID: 36922492 PMCID: PMC10016167 DOI: 10.1038/s41467-023-37128-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The immunogenicity of mRNA vaccines has not been well studied when compared to different vaccine modalities in the context of additional boosters. Here we show that longitudinal analysis reveals more sustained SARS-CoV-2 spike receptor-binding domain (RBD)-binding IgG titers with the breadth to antigenically distinct variants by the S-268019-b spike protein booster compared to the BNT162b2 mRNA homologous booster. The durability and breadth of RBD-angiotensin-converting enzyme 2 (ACE2) binding inhibitory antibodies are pronounced in the group without systemic adverse events (AEs) after the S-268019-b booster, leading to the elevated neutralizing activities against Omicron BA.1 and BA.5 variants in the stratified group. In contrast, BNT162b2 homologous booster elicited antibodies to spike N-terminal domain in proportion to the AE scores. High-dimensional immune profiling identifies early CD16+ natural killer cell dynamics with CCR3 upregulation, as one of the correlates for the distinct anti-RBD antibody responses by the S-268019-b booster. Our results illustrate the combinational effects of heterologous booster on the immune dynamics and the durability and breadth of recalled anti-RBD antibody responses against emerging virus variants.
Collapse
Affiliation(s)
- Tomohiro Takano
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takashi Sato
- Tokyo Shinagawa Hospital, Tokyo, 140-8522, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | | | | | | | - Mio Kousaka
- Tokyo Shinagawa Hospital, Tokyo, 140-8522, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | | | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
91
|
Tregoning JS, Stirling DC, Wang Z, Flight KE, Brown JC, Blakney AK, McKay PF, Cunliffe RF, Murugaiah V, Fox CB, Beattie M, Tam YK, Johansson C, Shattock RJ. Formulation, inflammation, and RNA sensing impact the immunogenicity of self-amplifying RNA vaccines. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:29-42. [PMID: 36589712 PMCID: PMC9794906 DOI: 10.1016/j.omtn.2022.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response.
Collapse
Affiliation(s)
- John S. Tregoning
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - David C. Stirling
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Ziyin Wang
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Katie E. Flight
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Jonathan C. Brown
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Anna K. Blakney
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Paul F. McKay
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Robert F. Cunliffe
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Valarmathy Murugaiah
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Christopher B. Fox
- IDRI, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Mitchell Beattie
- Acuitas Therapeutics, 6190 Agronomy Road, Ste 405, Vancouver, BC, Canada
| | - Ying K. Tam
- Acuitas Therapeutics, 6190 Agronomy Road, Ste 405, Vancouver, BC, Canada
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, St. Mary’s Campus, London, UK
| | - Robin J. Shattock
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| |
Collapse
|
92
|
Jaycox JR, Lucas C, Yildirim I, Dai Y, Wang EY, Monteiro V, Lord S, Carlin J, Kita M, Buckner JH, Ma S, Campbell M, Ko A, Omer S, Lucas CL, Speake C, Iwasaki A, Ring AM. SARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity. Nat Commun 2023; 14:1299. [PMID: 36894554 PMCID: PMC9996559 DOI: 10.1038/s41467-023-36686-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
mRNA-based vaccines dramatically reduce the occurrence and severity of COVID-19, but are associated with rare vaccine-related adverse effects. These toxicities, coupled with observations that SARS-CoV-2 infection is associated with autoantibody development, raise questions whether COVID-19 vaccines may also promote the development of autoantibodies, particularly in autoimmune patients. Here we used Rapid Extracellular Antigen Profiling to characterize self- and viral-directed humoral responses after SARS-CoV-2 mRNA vaccination in 145 healthy individuals, 38 patients with autoimmune diseases, and 8 patients with mRNA vaccine-associated myocarditis. We confirm that most individuals generated robust virus-specific antibody responses post vaccination, but that the quality of this response is impaired in autoimmune patients on certain modes of immunosuppression. Autoantibody dynamics are remarkably stable in all vaccinated patients compared to COVID-19 patients that exhibit an increased prevalence of new autoantibody reactivities. Patients with vaccine-associated myocarditis do not have increased autoantibody reactivities relative to controls. In summary, our findings indicate that mRNA vaccines decouple SARS-CoV-2 immunity from autoantibody responses observed during acute COVID-19.
Collapse
Affiliation(s)
- Jillian R Jaycox
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Inci Yildirim
- Department of Pediatrics, Section of Infectious Diseases and Global Health, Yale University School of Medicine, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Y Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Valter Monteiro
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sandra Lord
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Mariko Kita
- Virginia Mason Medical Center, Seattle, WA, USA
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Melissa Campbell
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Albert Ko
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Saad Omer
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
93
|
Sabharwal V, Demos R, Snyder-Cappione J, Parker SE, Shaik-Dasthagirisaheb Y, Hunnewell J, Boateng J, Clarke K, Yuen R, Barnett E, Yarrington C, Taglauer E, Wachman EM. Cytokine levels in maternal and infant blood after COVID-19 vaccination during pregnancy in comparison with unvaccinated controls. J Reprod Immunol 2023; 156:103821. [PMID: 36764228 PMCID: PMC9884398 DOI: 10.1016/j.jri.2023.103821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 01/30/2023]
Abstract
The objective of this study was to compare maternal and infant cytokine profiles at delivery among those vaccinated against SARS-CoV-2 during pregnancy to unvaccinated controls. Mother-infant dyads were enrolled in this prospective cohort study, and maternal blood and infant and/or cord blood collected. Samples were analyzed utilizing a LEGENDplex 13-plex human anti-viral response cytokine panel. Maternal IP-10 and IFN-λ2/3 were lower in the vaccinated cohort. In the infants, levels were lower for IL-1β, IFN-λ2/3, and GM-CSF, and higher for IFN-λ1 in the vaccinated cohort. Vaccination against SARS-CoV-2 during pregnancy did not lead to elevations in cytokines in mothers or infants.
Collapse
Affiliation(s)
- Vishakha Sabharwal
- Department of Pediatrics, Boston Medical Center, 670 Albany Street, Boston, MA 02118, United States of America.
| | - Riley Demos
- Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, United States of America.
| | - Jennifer Snyder-Cappione
- Department of Microbiology, Boston University School of Medicine, 650eAlbany Street, Boston, MA 02118, United States of America.
| | - Samantha E Parker
- Boston University School of Public Health, 715 Albany St, Boston, MA 02118, United States of America.
| | | | - Jessica Hunnewell
- Boston University School of Public Health, 715 Albany St, Boston, MA 02118, United States of America.
| | - Jeffery Boateng
- Department of Pediatrics, Boston Medical Center, 670 Albany Street, Boston, MA 02118, United States of America.
| | - Katherine Clarke
- Department of Microbiology, Boston University School of Medicine, 650eAlbany Street, Boston, MA 02118, United States of America.
| | - Rachel Yuen
- Department of Microbiology, Boston University School of Medicine, 650eAlbany Street, Boston, MA 02118, United States of America.
| | - Elizabeth Barnett
- Department of Pediatrics, Boston Medical Center, 670 Albany Street, Boston, MA 02118, United States of America.
| | - Christina Yarrington
- Department of Obstetrics and Gynecology, Boston Medical Center, Boston, MA 02118, United States of America.
| | - Elizabeth Taglauer
- Department of Pediatrics, Boston Medical Center, 670 Albany Street, Boston, MA 02118, United States of America.
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, 670 Albany Street, Boston, MA 02118, United States of America.
| |
Collapse
|
94
|
Muir R, Metcalf T, Fourati S, Bartsch Y, Lugemwa JK, Canderan G, Alter G, Muyanja E, Okech B, Namatovu T, Namara I, Namuniina A, Ssetaala A, Mpendo J, Nanvubya A, Kitandwe PK, Bagaya BS, Kiwanuka N, Nassuna J, Biribawa VM, Elliott AM, de Dood CJ, Senyonga W, Balungi P, Kaleebu P, Mayanja Y, Odongo M, Fast P, Price MA, Corstjens PLAM, van Dam GJ, Kamali A, Sekaly RP, Haddad EK. Schistosoma mansoni infection alters the host pre-vaccination environment resulting in blunted Hepatitis B vaccination immune responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.24.23284435. [PMID: 36865336 PMCID: PMC9980246 DOI: 10.1101/2023.02.24.23284435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The impact of endemic infections on protective immunity is critical to inform vaccination strategies. In this study, we assessed the influence of Schistosoma mansoni infection on host responses in a Ugandan fishing cohort given a Hepatitis B (HepB) vaccine. Concentrations of schistosome-specific circulating anodic antigen (CAA) pre-vaccination showed a significant bimodal distribution associated with HepB titers, which were lower in individuals with high CAA. We established that participants with high CAA had significantly lower frequencies of circulating T follicular helper (cTfh) subpopulations pre- and post-vaccination and higher regulatory T cells (Tregs) post-vaccination. Polarization towards higher frequencies of Tregs: cTfh cells can be mediated by changes in the cytokine environment favoring Treg differentiation. In fact, we observed higher levels of CCL17 and soluble IL-2R pre-vaccination (important for Treg recruitment and development), in individuals with high CAA that negatively associated with HepB titers. Additionally, alterations in pre-vaccination monocyte function correlated with HepB titers, and changes in innate-related cytokines/chemokine production were associated with increasing CAA concentration. We report, that by influencing the immune landscape, schistosomiasis has the potential to modulate immune responses to HepB vaccination. These findings highlight multiple Schistosoma -related immune associations that could explain abrogated vaccine responses in communities with endemic infections. Author Summary Schistosomiasis drives host immune responses for optimal pathogen survival, potentially altering host responses to vaccine-related antigen. Chronic schistosomiasis and co-infection with hepatotropic viruses are common in countries where schistosomiasis is endemic. We explored the impact of Schistosoma mansoni ( S. mansoni ) infection on Hepatitis B (HepB) vaccination of individuals from a fishing community in Uganda. We demonstrate that high schistosome-specific antigen (circulating anodic antigen, CAA) concentration pre-vaccination, is associated with lower HepB antibody titers post-vaccination. We show higher pre-vaccination levels of cellular and soluble factors in instances of high CAA that are negatively associated with HepB antibody titers post-vaccination, which coincided with lower frequencies of circulating T follicular helper cell populations (cTfh), proliferating antibody secreting cells (ASCs), and higher frequencies of regulatory T cells (Tregs). We also show that monocyte function is important in HepB vaccine responses, and that high CAA is associated with alterations in the early innate cytokine/chemokine microenvironment. Our findings suggest that in individuals with high CAA and likely high worm burden, schistosomiasis creates and sustains an environment that is polarized against optimal host immune responses to the vaccine, which puts many endemic communities at risk for infection against HepB and other diseases that are preventable by vaccines.
Collapse
|
95
|
Boley PA, Lee CM, Schrock J, Yadav KK, Patil V, Suresh R, Lu S, Feng MM, Hanson J, Channappanavar R, Kenney SP, Renukaradhya GJ. Enhanced mucosal immune responses and reduced viral load in the respiratory tract of ferrets to intranasal lipid nanoparticle-based SARS-CoV-2 proteins and mRNA vaccines. J Nanobiotechnology 2023; 21:60. [PMID: 36814238 PMCID: PMC9944789 DOI: 10.1186/s12951-023-01816-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Unlike the injectable vaccines, intranasal lipid nanoparticle (NP)-based adjuvanted vaccine is promising to protect against local infection and viral transmission. Infection of ferrets with SARS-CoV-2 results in typical respiratory disease and pathology akin to in humans, suggesting that the ferret model may be ideal for intranasal vaccine studies. RESULTS We developed SARS-CoV-2 subunit vaccine containing both Spike receptor binding domain (S-RBD) and Nucleocapsid (N) proteins (NP-COVID-Proteins) or their mRNA (NP-COVID-mRNA) and NP-monosodium urate adjuvant. Both the candidate vaccines in intranasal vaccinated aged ferrets substantially reduced the replicating virus in the entire respiratory tract. Specifically, the NP-COVID-Proteins vaccine did relatively better in clearing the virus from the nasal passage early post challenge infection. The immune gene expression in NP-COVID-Proteins vaccinates indicated increased levels of mRNA of IFNα, MCP1 and IL-4 in lungs and nasal turbinates, and IFNγ and IL-2 in lungs; while proinflammatory mediators IL-1β and IL-8 mRNA levels in lungs were downregulated. In NP-COVID-Proteins vaccinated ferrets S-RBD and N protein specific IgG antibodies in the serum were substantially increased at both day post challenge (DPC) 7 and DPC 14, while the virus neutralizing antibody titers were relatively better induced by mRNA versus the proteins-based vaccine. In conclusion, intranasal NP-COVID-Proteins vaccine induced balanced Th1 and Th2 immune responses in the respiratory tract, while NP-COVID-mRNA vaccine primarily elicited antibody responses. CONCLUSIONS Intranasal NP-COVID-Proteins vaccine may be an ideal candidate to elicit increased breadth of immunity against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Patricia A Boley
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Carolyn M Lee
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Songqing Lu
- Dynamic Entropy Technology LLC, Building B, 1028 W. Nixon St., Pasco, WA, 99301-5216, USA
| | - Maoqi Mark Feng
- Dynamic Entropy Technology LLC, Building B, 1028 W. Nixon St., Pasco, WA, 99301-5216, USA
| | - Juliette Hanson
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Rudra Channappanavar
- Department of Veterinary Pathobiology, Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| | - Gourapura J Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
96
|
Vascular Function, Systemic Inflammation, and Coagulation Activation 18 Months after COVID-19 Infection: An Observational Cohort Study. J Clin Med 2023; 12:jcm12041413. [PMID: 36835948 PMCID: PMC9965558 DOI: 10.3390/jcm12041413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Among its effect on virtually all other organs, COVID-19 affects the cardiovascular system, potentially jeopardizing the cardiovascular health of millions. Previous research has shown no indication of macrovascular dysfunction as reflected by carotid artery reactivity, but has shown sustained microvascular dysfunction, systemic inflammation, and coagulation activation at 3 months after acute COVID-19. The long-term effects of COVID-19 on vascular function remain unknown. MATERIALS AND METHODS This cohort study involved 167 patients who participated in the COVAS trial. At 3 months and 18 months after acute COVID-19, macrovascular dysfunction was evaluated by measuring the carotid artery diameter in response to cold pressor testing. Additionally, plasma endothelin-1, von Willebrand factor, Interleukin(IL)-1ra, IL-6, IL-18, and coagulation factor complexes were measured using ELISA techniques. RESULTS The prevalence of macrovascular dysfunction did not differ between 3 months (14.5%) and 18 months (11.7%) after COVID-19 infection (p = 0.585). However, there was a significant decrease in absolute carotid artery diameter change, 3.5% ± 4.7 vs. 2.7% ± 2.5, p-0.001, respectively. Additionally, levels of vWF:Ag were persistently high in 80% of COVID-19 survivors, reflecting endothelial cell damage and possibly attenuated endothelial function. Furthermore, while levels of the inflammatory cytokines interleukin(IL)-1RA and IL-18 were normalized and evidence of contact pathway activation was no longer present, the concentrations of IL-6 and thrombin:antithrombin complexes were further increased at 18 months versus 3 months (2.5 pg/mL ± 2.6 vs. 4.0 pg/mL ± 4.6, p = 0.006 and 4.9 μg/L ± 4.4 vs. 18.2 μg/L ± 11.4, p < 0.001, respectively). DISCUSSION This study shows that 18 months after COVID-19 infection, the incidence of macrovascular dysfunction as defined by a constrictive response during carotid artery reactivity testing is not increased. Nonetheless, plasma biomarkers indicate sustained endothelial cell activation (vWF), systemic inflammation (IL-6), and extrinsic/common pathway coagulation activation (FVII:AT, TAT) 18 months after COVID-19 infection.
Collapse
|
97
|
Yuan S, Xie G, Yang X, Chen Y, Zhang H. Portable paper-based electrochemiluminescence test incorporating lateral-flow immunosensors for detection of interferon-γ levels. Front Bioeng Biotechnol 2023; 11:1131840. [PMID: 36824352 PMCID: PMC9941175 DOI: 10.3389/fbioe.2023.1131840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Tuberculosis (TB) poses a serious threat to human health and social development. Accurate diagnosis of mycobacterium tuberculosis infection plays a critical role in the prevention and treatment of tuberculosis. Interferon-γ (INF-γ) release assay (IGRA) is currently the only quantitative tuberculosis infection diagnosis method. An accurate, fast, and easily handled INF-γ detection method is the key to obtaining accurate results. Herein, we report a novel paper-based electrochemiluminescence (ECL) method based on lateral flow immunosensors that combines the easy handling characteristics of immunochromatography and the high sensitivity of electrochemiluminescence to detect IFN-γ. To our knowledge this is the first INF-γ detection method that combines immunochromatography with electrochemiluminescence. The paper-based ECL-LFI test consists of a sample pad, conjugation pad (with binding antibody IFN-γ-Ab1 conjugated with ruthenium tripyridine), detection pad (with capture antibody IFN-γ-Ab2 immobilized on nanospheres), absorbent pad, and electrode for signal activation. The ECL signal is obtained by cyclic voltammetry scanning at a speed of 0.1 V/s in the detection area of the paper-based ECL-LFI test. In our experiments, the paper-based ECL-LFI test exhibited a minimum detection limit of 2.57 pg/mL within 12 min, and a broad detection range of 2.57-5,000 pg/mL, with repeatability of 8.10% and stability of 4.97%. With the advantage of high accuracy and sensitivity, easy handling, and low user training requirements, this ECL-LFI test might be used as point-of-care testing (POCT) in the IGRA for tuberculosis diagnosis.
Collapse
Affiliation(s)
- Shichao Yuan
- Department of Basic Medical Research, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Guihua Xie
- Guangzhou Leide Biotechnology Co, Ltd, Guangzhou, China
| | - Xiang Yang
- Guangzhou Leide Biotechnology Co, Ltd, Guangzhou, China
| | - Yu Chen
- Department of Basic Medical Research, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Hongbin Zhang
- Department of Basic Medical Research, General Hospital of Southern Theater Command of PLA, Guangzhou, China,*Correspondence: Hongbin Zhang,
| |
Collapse
|
98
|
Fujii M, Toba T, Fukuyama Y, Tjan LH, Mori Y, Hirata KI. Multidisciplinary diagnostic approach for fulminant myocarditis related to coronavirus disease 2019 messenger RNA vaccines: a case report. Eur Heart J Case Rep 2023; 7:ytad063. [PMID: 36819885 PMCID: PMC9933941 DOI: 10.1093/ehjcr/ytad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/14/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Background Recent reports have raised serious concerns regarding acute myocarditis related to coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccines. There are only a few reports of fulminant lymphocytic myocarditis that developed after vaccination. Although the diagnostic approach varied among them, no cases with multidisciplinary diagnostic approaches, including cytokine analysis, have been reported. Case summary A 59-year-old male with no medical history complained of chest pain a day after receiving the first dose of COVID-19 mRNA (BNT162b2) vaccination. On hospital Day 3, he developed a refractory cardiogenic shock and pulseless ventricular tachycardia, requiring mechanical circulatory support secondary to an exacerbation of myocarditis. Based on the clinical course and examination results, including histologic findings showing a diffuse lymphocytic inflammatory infiltrate with abundant T cells and macrophages in the myocardium, and cardiac magnetic resonance (CMR) findings showing a high-intensity signal on the T2-weighted image and late gadolinium enhancement, he was diagnosed with fulminant myocarditis related to COVID-19 mRNA vaccination. His haemodynamic status gradually improved without immunosuppressive or anti-inflammatory therapy, and he was discharged from hospital on Day 47. To investigate the pathogenesis, we performed cytokine analysis, which showed an increase in serum IP-10, MCP-3, and MIG concentrations, suggesting that Th1-type chemokines preferentially promote cellular immunity. Discussion In the present case of a patient with fulminant myocarditis following COVID-19 mRNA vaccination diagnosed through histopathological and CMR findings, additional cytokine analysis revealed that elevated levels of cytokines pertaining to Th1 immune response may be involved in disease pathogenesis. A multidisciplinary diagnostic approach is crucial not only to comprehend an individual patient's condition but also to clarify the disease pathogenesis.
Collapse
Affiliation(s)
- Masayoshi Fujii
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Takayoshi Toba
- Corresponding author. Tel: +81 78 382 5846, Fax: +81 78 382 5859,
| | - Yusuke Fukuyama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Lidya Handayani Tjan
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | |
Collapse
|
99
|
Rojas-Carabali W, Mejía-Salgado G, Cifuentes-González C, Villabona-Martínez V, Barraquer-López ND, Valdés-Arias D, de-la-Torre A. Clinical relationship between dry eye disease and uveitis: a scoping review. J Ophthalmic Inflamm Infect 2023; 13:2. [PMID: 36715869 PMCID: PMC9886213 DOI: 10.1186/s12348-022-00323-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/26/2022] [Indexed: 01/31/2023] Open
Abstract
This scoping review examined the relationship between Dry Eye Disease (DED) and Uveitis. We searched Pubmed, Embase, and LILACS databases for articles in which at least one patient had DED and uveitis concomitantly. The search produced 2381 records, and 24 studies were included in the qualitative synthesis. We concluded that DED and uveitis of any etiology could appear concomitantly in patients of any age. However, both diseases seem to coexist more frequently in middle-aged women and cases of anterior uveitis. Therefore, it is crucial that ophthalmologists actively look for the coexistence of ocular surface abnormalities, especially in patients with these characteristics. Future studies should establish and quantify the risk factors and pathophysiological mechanisms of this coexistence to achieve an early diagnosis of both etiologies and comprehensive management of these patients.
Collapse
Affiliation(s)
- William Rojas-Carabali
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Germán Mejía-Salgado
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Ophthalmology Interest Group, Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Cifuentes-González
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Ophthalmology Interest Group, Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Valeria Villabona-Martínez
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Doménico Barraquer-López
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Ophthalmology Interest Group, Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - David Valdés-Arias
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
100
|
Miyajima E, Imaizumi H, Oshida S, Igarashi K, Yoshida M, Yanase N. [Survey of spike-specific immunoglobulin G antibodies at approximately 3 months and 9 months after vaccination against coronavirus disease 2019 (severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2]) in health care workers]. SANGYO EISEIGAKU ZASSHI = JOURNAL OF OCCUPATIONAL HEALTH 2023; 65:18-27. [PMID: 35314567 DOI: 10.1539/sangyoeisei.2021-039-b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We investigated the antibody titer of spike-specific immunoglobulin G (IgG) antibodies after receiving coronavirus repair uridine ribonucleic acid (RNA) vaccine (BNT162b2, Pfizer) in health care workers. METHODS At one hospital, health care workers received the vaccination between February and May 2021. A survey using questionnaires and spike-specific IgG antibody tests (Abbott) was conducted in 293 participants who had been vaccinated at least once and consented to this study at the time of medical checkups between April and May 2021. We calculated the antibody titer in each age group and days post-vaccination. We examined whether antibody titers of 4,000 AU/mL or higher (probability of high titer: approximately 95%, Abbott) were associated with adverse reactions after vaccination. In addition (1), the antibody titers at approximately 100 days after the second vaccination in 11 participants were remeasured. Furthermore (2), the antibody titers at approximately 260 days after the second vaccination in 13 participants were remeasured and compared with the initial measurements. RESULTS Of the participants, 276 were post-2 doses (A), 14 were post-1 dose (B), and 3 discontinued the second vaccination (C) at the time of health checkup. The median antibody titer was 11,045.8 AU/mL (50.7-40,000) in group A, 122.7 AU/mL (2.6-1,127.0) in group B, 27,099.3 AU/mL in one of group C who had recovered from coronavirus disease 2019 (COVID-19), and 574.2 AU/mL (283.3 and 865.1) in the other two of group C. The median antibody titer was the highest in those in their 20s, and there was a significant difference between those under and above 40 years of age. The median titer was the highest in 2 weeks to 1 month after the second vaccination. After the second dose, fatigue (≥ moderate) was associated with antibody titers of 4,000 AU/mL or higher. The antibody titers of 11 and 13 participants at approximately 100 and 260 days after the second vaccination were significantly lower than those at the first measurement, with median values of 2,838.0 AU/mL (832.9-5,698.6) and 512.0 AU/mL (154.0-1,220.0), respectively. CONCLUSIONS Antibody titers were higher in participants under 40 years of age than those 40 years or older. In addition, the percentage of high antibody titer (≧ 4,000 AU/mL) was higher in those who had severe fatigue after the second vaccination. The peak of antibody titer after the second dose was approximately 1 month, and the titer may decline gradually.
Collapse
Affiliation(s)
- Eriko Miyajima
- Department of Health Care Center, Sagamino Hospital, Japan Community Health Care Organization Sagamino Hospital
| | - Hiroshi Imaizumi
- Department of Health Care Center, Sagamino Hospital, Japan Community Health Care Organization Sagamino Hospital
| | - Sayuri Oshida
- Department of Health Care Center, Sagamino Hospital, Japan Community Health Care Organization Sagamino Hospital
| | - Keiko Igarashi
- Department of Health Care Center, Sagamino Hospital, Japan Community Health Care Organization Sagamino Hospital
| | - Muneki Yoshida
- Department of Health Care Center, Sagamino Hospital, Japan Community Health Care Organization Sagamino Hospital
| | - Nobuo Yanase
- Department of Health Care Center, Sagamino Hospital, Japan Community Health Care Organization Sagamino Hospital
| |
Collapse
|