51
|
Bahri S, Ben Ali R, Abidi A, Jameleddine S. The efficacy of plant extract and bioactive compounds approaches in the treatment of pulmonary fibrosis: A systematic review. Biomed Pharmacother 2017; 93:666-673. [PMID: 28688290 DOI: 10.1016/j.biopha.2017.06.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is a lethal, chronic and progressive respiratory disease leading to interstitial lung damage and serious breathing problems. The pathogenic mechanism involves activation, migration, proliferation and differentiation of fibroblasts into myofibroblats inducing extracellular matrix accumulation that destroy lung parenchyma. Available antifibrotic treatment options are limited to Pirfenidone and Nintedanib that prevent deterioration without an improvement of this disease. The use of plant extracts and natural bioactive compounds for the treatment of PF has been known for more than thirty years in China. Nowadays, phytotherapy has gained a considerable attention in the treatment of PF both in vivo and in vitro using bleomycin (BLM)-induced lung inflammation, oxidative stress and pulmonary fibrosis in rats. In this review, we aimed to focus on the protective effects and the mechanisms of action of several plant extracts described by various research works for the treatment of PF.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia; Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia.
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia
| | - Anouar Abidi
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia; Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia; Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|
52
|
Chan YY, Hwang TL, Kuo PC, Hung HY, Wu TS. Constituents of the Fruits of Citrus medica L. var. sarcodactylis and the Effect of 6,7-Dimethoxy-coumarin on Superoxide Anion Formation and Elastase Release. Molecules 2017; 22:molecules22091454. [PMID: 28862688 PMCID: PMC6151612 DOI: 10.3390/molecules22091454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/19/2023] Open
Abstract
Investigation of the chemical constituents from the fruits of Citrus medica L. var. sarcodactylis Swingle has led to the characterization of a new sesquiterpene 1 along with thirty-two known compounds. The structure of 1 was established on the basis of 2D NMR spectroscopic and mass spectrometric analyses, and the known compounds were identified by comparison of their physical and spectroscopic data with those reported in the literature. In addition, most of the isolated compounds were evaluated for the activity assayed by the in vitro inhibition of superoxide anion generation and elastase release by human neutrophils. The results showed that only 6,7-dimethoxycoumarin (5) exhibited significant inhibition of superoxide anion generation, with IC50 value of 3.8 ± 1.4 μM.
Collapse
Affiliation(s)
- Yu-Yi Chan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|
53
|
Paterniti I, Impellizzeri D, Cordaro M, Siracusa R, Bisignano C, Gugliandolo E, Carughi A, Esposito E, Mandalari G, Cuzzocrea S. The Anti-Inflammatory and Antioxidant Potential of Pistachios (Pistacia vera L.) In Vitro and In Vivo. Nutrients 2017; 9:nu9080915. [PMID: 28829406 PMCID: PMC5579708 DOI: 10.3390/nu9080915] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Several reports have demonstrated the effectiveness of pistachio against oxidative stress and inflammation. In this study, we investigate if polyphenols extracts from natural raw shelled pistachios (NP) or roasted salted pistachio (RP) kernels have anti-inflammatory and antioxidant properties at lower doses than reported previously, in both in vitro and in vivo models. The monocyte/macrophage cell line J774 was used to assess the extent of protection by NP and RP pistachios against lipopolysaccharide (LPS)-induced inflammation. Moreover, antioxidant activity of NP and RP was assessed in an in vivo model of paw edema in rats induced by carrageenan (CAR) injection in the paw. Results from the in vitro study demonstrated that pre-treatment with NP (0.01, 0.1 and 0.5 mg/mL) and RP (0.01 and 0.1 mg/mL) exerted a significant protection against LPS induced inflammation. Western blot analysis showed NP reduced the degradation of IκB-α, although not significantly, whereas both NP and RP decreased the TNF-α and IL-1β production in a dose-dependent way. A significant reduction of CAR-induced histological paw damage, neutrophil infiltration and nitrotyrosine formation was observed in the rats treated with NP. These data demonstrated that, at lower doses, polyphenols present in pistachios possess antioxidant and anti-inflammatory properties. This may contribute toward a better understanding of the beneficial health effects associated with consumption of pistachios.
Collapse
Affiliation(s)
- Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Carlo Bisignano
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Arianna Carughi
- American Pistachio Growers, 9 River Park Pl E, Fresno, CA 93720, USA.
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
54
|
Bergamot Polyphenolic Fraction Supplementation Improves Cognitive Functioning in Schizophrenia: Data From an 8-Week, Open-Label Pilot Study. J Clin Psychopharmacol 2017; 37:468-471. [PMID: 28591067 DOI: 10.1097/jcp.0000000000000730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Novel treatment strategies for cognitive dysfunctions may prevent long-term disability in patients with schizophrenia, and polyphenolic compounds might be a promising strategy. Bergamot (Citrus bergamia), a citrus fruit characterized by a high amount of flavonoids and flavonoid glycosides, may represent a potential nutraceutical approach to cognitive dysfunction. The present study was aimed to explore the efficacy of bergamot polyphenolic fraction (BPF) supplementation on cognitive/executive functioning in a sample of patients with schizophrenia receiving second-generation antipsychotics. METHODS Twenty outpatients treated with second-generation antipsychotics assumed BPF at an oral daily dose of 1000 mg/d for 8 weeks. Brief Psychiatric Rating Scale, Wisconsin Card Sorting Test (WCST), Verbal Fluency Task-Controlled Oral Word Association Test, and Stroop Color-Word Test were administered. RESULTS At end point, (week 8) BPF supplementation significantly improved WCST "perseverative errors" (P = 0.004) and semantic fluency test (P = 0.004). Moreover, a trend for other cognitive variable (WCST "categories," phonemic fluency, and Stroop Color-Word Test) improvement was observed. CONCLUSIONS The findings provide evidence that BPF administration may be proposed as a potential supplementation strategy to improve cognitive outcome in schizophrenia. Further clinical trials with adequately powered and well-designed methodology are needed to better explore the BPF effectiveness on cognitive impairments in patients with schizophrenia.
Collapse
|
55
|
Cirmi S, Maugeri A, Ferlazzo N, Gangemi S, Calapai G, Schumacher U, Navarra M. Anticancer Potential of Citrus Juices and Their Extracts: A Systematic Review of Both Preclinical and Clinical Studies. Front Pharmacol 2017; 8:420. [PMID: 28713272 PMCID: PMC5491624 DOI: 10.3389/fphar.2017.00420] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/14/2017] [Indexed: 01/16/2023] Open
Abstract
Background: During the last decades, a huge body of evidence has been accumulated suggesting that Citrus fruits and their juices might have a role in preventing many diseases including cancer. Objective: To summarize the numerous evidences on the potential of Citrus juices and their extracts as anticancer agents. Data sources: A systematic review of articles written in English using MEDLINE (1946-present), EMBASE (1974-present) and Web of Sciences (1970-present) was performed independently by two reviewers. Search terms included Citrus, Citrus aurantifolia, Citrus sinensis, Citrus paradisi, Citrus fruits, Citrus fruits extract, cancer, neoplasm, neoplasia, tumor, metastasis, carcinogenesis, proliferation. The last search was performed on March 16th, 2017. Study selection: Study selection and systematic review were carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Prior to the beginning of the review, Authors defined a checklist for inclusion criteria, thus including articles which meet the following: (i) published on peer-reviewed scientific journals; (ii) Citrus juice used alone; (iii) extracts derived from Citrus juice; (iii) for preclinical studies, an exposure time to Citrus juices and their extracts more than 24 h. Reviews, meta-analyses, conference abstracts and book chapters were excluded. Data extraction: Three reviewers independently performed the extraction of articles. Data synthesis: 22 papers met our inclusion criteria and were eligible for inclusion in the final review. According to the kind of study, the selected ones were further divided in preclinical (n = 20) and observational (n = 2) studies. Conclusion: The studies discussed in this review strongly corroborate the role of Citrus juices and their derivatives as potential resource against cancer.
Collapse
Affiliation(s)
- Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy.,Prof. Antonio Imbesi FoundationMessina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy.,Prof. Antonio Imbesi FoundationMessina, Italy
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy and Institute of Applied Sciences and Intelligent Systems, National Research CouncilPozzuoli, Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of MessinaMessina, Italy
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| |
Collapse
|
56
|
Macias-Ceja DC, Cosín-Roger J, Ortiz-Masiá D, Salvador P, Hernández C, Esplugues JV, Calatayud S, Barrachina MD. Stimulation of autophagy prevents intestinal mucosal inflammation and ameliorates murine colitis. Br J Pharmacol 2017; 174:2501-2511. [PMID: 28500644 DOI: 10.1111/bph.13860] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Defective autophagy contributes to the pathogenesis of inflammatory disorders such as inflammatory bowel disease and there are interactions between autophagy and inflammation. Here we have analysed the effects of autophagy stimulators on murine colitis. EXPERIMENTAL APPROACH Mice were treated with intrarectal administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) (3.5 mg·20 g-1 ) and body weight was measured daily. Histological damage was scored 2 or 4 days after treatment. Some mice received trehalose (3% in drinking water 3 weeks before TNBS administration) or a daily administration of rapamycin (1.25 mg·kg-1 , i.p.), betanin (1 g·kg-1 , i.p.) or betanin + 3-methyladenine (3MA) (10 mg·kg-1 , i.p.). Protein levels of p-mTOR, p62, LC3, BCL10, NFκB, IκBα and p-IκBα in mucosa were determined by Western blots and mRNA expression of TNFα, IL1β, IL6, IL10, COX2, CCR7, CD11c, inducible NOS and CD86 by qRT-PCR. KEY RESULTS Impaired autophagy associated with body weight loss and intestinal damage was detected in the mucosa of TNBS-treated mice. Administration of trehalose, rapamycin or betanin prevented the impaired autophagic flux induced by TNBS and decreased mucosal protein levels of BCL10, p-IκBα and NFκB-p65 and the expression of pro-inflammatory cytokines and M1 macrophage markers. Blockade of autophagosome formation by treatment with 3MA, prevented the reduction in protein levels of p62, BCL10, p-IκBα and NFκB-p65 induced by betanin in TNBS-treated mice and weakened the protective effects of betanin on murine colitis. CONCLUSIONS AND IMPLICATIONS Pharmacological stimulation of mucosal autophagy reduced intestinal inflammation and improved murine colitis.
Collapse
Affiliation(s)
| | - Jesús Cosín-Roger
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masiá
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Pedro Salvador
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Carlos Hernández
- FISABIO, Hospital Dr. Peset, Valencia, Spain.,Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Juan V Esplugues
- FISABIO, Hospital Dr. Peset, Valencia, Spain.,Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Sara Calatayud
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María D Barrachina
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
57
|
Kuo PC, Liao YR, Hung HY, Chuang CW, Hwang TL, Huang SC, Shiao YJ, Kuo DH, Wu TS. Anti-Inflammatory and Neuroprotective Constituents from the Peels of Citrus grandis. Molecules 2017; 22:molecules22060967. [PMID: 28598384 PMCID: PMC6152662 DOI: 10.3390/molecules22060967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
A series of chromatographic separations performed on the ethanol extracts of the peels of Citrus grandis has led to the characterization of forty compounds, including seventeen coumarins, eight flavonoids, two triterpenoids, four benzenoids, two steroids, one lignan, one amide, and five other compounds, respectively. The chemical structures of the purified constituents were identified on the basis of spectroscopic elucidation, including 1D- and 2D-NMR, UV, IR, and mass spectrometric analysis. Most of the isolated compounds were examined for their inhibition of superoxide anion generation and elastase release by human neutrophils. Among the isolates, isomeranzin (3), 17,18-dihydroxybergamottin (12), epoxybergamottin (13), rhoifolin (19), vitexicarpin (22) and 4-hydroxybenzaldehyde (29) displayed the most significant inhibition of superoxide anion generation and elastase release with IC50 values ranged from 0.54 to 7.57 μM, and 0.43 to 4.33 μM, respectively. In addition, 7-hydroxy-8-(2′-hydroxy-3′-methylbut-3′-enyl)coumarin (8) and 17,18-dihydroxybergamottin (12) also exhibited the protection of neurons against Aβ-mediated neurotoxicity at 50 μM.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yu-Ren Liao
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chia-Wei Chuang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Shiow-Chyn Huang
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Young-Ji Shiao
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan.
| | - Daih-Huang Kuo
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|
58
|
Direito R, Lima A, Rocha J, Ferreira RB, Mota J, Rebelo P, Fernandes A, Pinto R, Alves P, Bronze R, Sepodes B, Figueira ME. Dyospiros kaki phenolics inhibit colitis and colon cancer cell proliferation, but not gelatinase activities. J Nutr Biochem 2017; 46:100-108. [PMID: 28494341 DOI: 10.1016/j.jnutbio.2017.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/18/2017] [Accepted: 03/16/2017] [Indexed: 01/19/2023]
Abstract
Polyphenols from persimmon (Diospyros kaki) have demonstrated radical-scavenging and antiinflammatory activities; however, little is known about the effects of persimmon phenolics on inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Therefore, we aimed in this work to characterize the antiinflammatory and antiproliferative effects of a persimmon phenolic extract (80% acetone in water), using an in vivo model of experimental colitis and a model of cancer cell invasion. Our results show, for the first time, a beneficial effect of a persimmon phenolic extract in the attenuation of experimental colitis and a potential antiproliferative effect on cultured colon cancer cells. Administration of persimmon phenolic extract to mice with TNBS-induced colitis led to a reduction in several functional and histological markers of colon inflammation, namely: attenuation of colon length decrease, reduction of the extent of visible injury (ulcer formation), decrease in diarrhea severity, reduced mortality rate, reduction of mucosal hemorrhage and reduction of general histological features of colon inflammation. In vitro studies also showed that persimmon phenolic extract successfully impaired cell proliferation and invasion in HT-29 cells. Further investigation showed a decreased expression of COX-2 and iNOS in the colonic tissue of colitis mice, two important mediators of intestinal inflammation, but there was no inhibition of the gelatinase MMP-9 and MMP-2 activities. Given the role of inflammatory processes in the progression of CRC and the important link between inflammation and cancer, our results highlight the potential of persimmon polyphenols as a pharmacological tool in the treatment of patients with IBD.
Collapse
Affiliation(s)
- Rosa Direito
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Lima
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - João Rocha
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ricardo Boavida Ferreira
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Joana Mota
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Patrícia Rebelo
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Adelaide Fernandes
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui Pinto
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Paula Alves
- University of Coimbra, Faculty of Medicine and Instituto Português de Oncologia, Pólo Ciências da Saúde, Celas, 3000-354 Coimbra
| | - Rosário Bronze
- ITQB, Estação Agronómica Nacional, Av. da República, 2780-157 Oeiras, Portugal; IBET, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Bruno Sepodes
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria-Eduardo Figueira
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
59
|
Effectiveness of Citrus Fruits on Helicobacter pylori. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8379262. [PMID: 28408943 PMCID: PMC5376954 DOI: 10.1155/2017/8379262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
It is known that Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, and gastric carcinoma. Due to the increased side effects of the treatment regimens and the development of antimicrobial resistance, a number of natural compounds have been tested as potential alternatives. In this review, we will examine the current knowledge on the effect of Citrus fruits and their derivatives against H. pylori, highlighting the remaining outstanding questions on the development of novel therapeutic strategies.
Collapse
|
60
|
Fusco R, Cirmi S, Gugliandolo E, Di Paola R, Cuzzocrea S, Navarra M. A flavonoid-rich extract of orange juice reduced oxidative stress in an experimental model of inflammatory bowel disease. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
61
|
Khajah MA, Ananthalakshmi KV, Edafiogho I. Anti-Inflammatory Properties of the Enaminone E121 in the Dextran Sulfate Sodium (DSS) Colitis Model. PLoS One 2016; 11:e0168567. [PMID: 27997590 PMCID: PMC5173236 DOI: 10.1371/journal.pone.0168567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Enaminones are synthetic compounds with an established role in the prevention of various forms of seizures. Recent evidence suggests potent anti-tussive, bronchodilation and anti-inflammatory properties. Pre-treatment with particularly E121 compound resulted in a decrease in leukocyte recruitment in the ovalbumin induced-model of asthma, immune cell proliferation and cytokine release in vitro. We hypothesize that E121 might serve as a therapeutic potential in intestinal inflammation through modulating immune cell functions. METHODS Colitis was induced by daily dextran sulfate sodium (DSS) administration for 5 days, and its severity was determined by gross and histological assessments. The plasma level of various cytokines was measured using flow cytometry-based assay. The colonic expression/ phosphorylation level of various molecules was determined by immunofluorescence and western blotting. The effects of E121 treatment on in vitro neutrophil chemotaxis (under-agarose assay), superoxide release (luminol oxidation assay) and apoptosis (annexin V/7AAD) were also determined. RESULTS DSS-induced colitis in mice was significantly reduced by daily E121 treatment (30-100 mg/kg) at gross and histological levels. This effect was due to modulated plasma levels of interleukin (IL-2) and colonic expression levels of various signaling molecules and proteins involved in apoptosis. In vitro neutrophil survival, chemotaxis, and superoxide release were also reduced by E121 treatment. CONCLUSION Our results indicate important anti-inflammatory actions of E121 in the pathogenesis of IBD.
Collapse
Affiliation(s)
| | | | - Ivan Edafiogho
- Department of Pharmaceutical Sciences, University of Saint Joseph School of Pharmacy, Hartford, Connecticut, United States of America
| |
Collapse
|
62
|
Cirmi S, Ferlazzo N, Lombardo GE, Maugeri A, Calapai G, Gangemi S, Navarra M. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives? Nutrients 2016; 8:E698. [PMID: 27827912 PMCID: PMC5133085 DOI: 10.3390/nu8110698] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology.
Collapse
Affiliation(s)
- Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Giovanni E Lombardo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro I-88100, Italy.
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina I-98125, Italy.
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina I-98125, Italy.
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Pozzuoli I-80078, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| |
Collapse
|
63
|
Cordaro M, Impellizzeri D, Gugliandolo E, Siracusa R, Crupi R, Esposito E, Cuzzocrea S. Adelmidrol, a Palmitoylethanolamide Analogue, as a New Pharmacological Treatment for the Management of Inflammatory Bowel Disease. Mol Pharmacol 2016; 90:549-561. [PMID: 27625036 DOI: 10.1124/mol.116.105668] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/01/2016] [Indexed: 08/30/2023] Open
Abstract
Leukocyte infiltration, improved levels of intercellular adhesion molecule 1 (ICAM-1), and oxidative stress in the colon are the principal factors in inflammatory bowel disease. The goal of the current study was to explore the effects of adelmidrol, an analog of the anti-inflammatory fatty acid amide signaling molecule palmitoylethanolamide, in mice subjected to experimental colitis. Additionally, to clarify whether the protective action of adelmidrol is dependent on the activation of peroxisome proliferator-activated receptors (PPARs), we investigated the effects of a PPARγ antagonist, GW9662, on adelmidrol action. Adelmidrol (10 mg/kg daily, o.s.) was tested in a murine experimental model of colitis induced by intracolonic administration of dinitrobenzene sulfonic acid. Nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase, as well as tumor necrosis factor-α and interleukin-1β, were significantly increased in colon tissues after dinitrobenzene sulfonic acid administration. Immunohistochemical staining for ICAM-1, P-selectin, nitrotyrosine, and poly(ADP)ribose showed a positive staining in the inflamed colon. Treatment with adelmidrol decreased diarrhea, body weight loss, and myeloperoxidase activity. Adelmidrol treatment, moreover, reduced nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase expression; proinflammatory cytokine release; and the incidence of nitrotyrosine and poly(ADP)ribose in the colon. It also decreased the upregulation of ICAM-1 and P-selectin. Adelmidrol treatment produced a reduction of Bax and an intensification of Bcl-2 expression. This study clearly demonstrates that adelmidrol exerts important anti-inflammatory effects that are partly dependent on PPARγ, suggesting that this molecule may represent a new pharmacologic approach for inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy (M.C., D.I., E.G., R.S., R.C., E.E.,S.C.); and Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (S.C.)
| |
Collapse
|
64
|
Mannucci C, Navarra M, Calapai F, Squeri R, Gangemi S, Calapai G. Clinical Pharmacology ofCitrus bergamia: A Systematic Review. Phytother Res 2016; 31:27-39. [DOI: 10.1002/ptr.5734] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging; University of Messina; Messina Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Fabrizio Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging; University of Messina; Messina Italy
| | - Raffaele Squeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging; University of Messina; Messina Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging; University of Messina; Messina Italy
| |
Collapse
|
65
|
Giglio RV, Patti AM, Nikolic D, Li Volti G, Al-Rasadi K, Katsiki N, Mikhailidis DP, Montalto G, Ivanova E, Orekhov AN, Rizzo M. The effect of bergamot on dyslipidemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1175-1181. [PMID: 26851838 DOI: 10.1016/j.phymed.2015.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Statins are the most common used lipid lowering drugs but they may cause adverse effects and despite their well-established therapeutic benefits residual cardiovascular (CV) risk remains. The use of other lipid lowering drugs and nutraceuticals alone or as add-on lipid-modifying therapy can be an option in such cases. Several studies have reported health-related properties of the Citrus fruits, among which bergamot (Citrus bergamia Risso) differs from others by particularly high content of certain compounds. PURPOSE This narrative review summarizes the current evidence on the effects of bergamot on lipid parameters based on studies involving animals and humans. MAIN EVIDENCE This natural supplement may lead to effective lipid-lowering treatment. Its lipid-lowering activity is attributed to different flavonoids. However, the exact mechanisms involved remain unclear. CONCLUSION It is expected that ongoing and future studies will confirm the benefit of bergamot in dyslipidemic and other cardiometabolic disorders, potentially leading to reduced overall CV risk.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Angelo Maria Patti
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Dragana Nikolic
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giovanni Li Volti
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Khalid Al-Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free campus, University College London Medical School, University College London (UCL), Pond Street, London, UK
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Ekaterina Ivanova
- Department of Development and Regeneration, Group of Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute for Atherosclerosis Research (Skolkovo), Moscow, Russia
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| |
Collapse
|
66
|
Neurodegenerative Diseases: Might Citrus Flavonoids Play a Protective Role? Molecules 2016; 21:molecules21101312. [PMID: 27706034 PMCID: PMC6274333 DOI: 10.3390/molecules21101312] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (ND) result from the gradual and progressive degeneration of the structure and function of the central nervous system or the peripheral nervous system or both. They are characterized by deterioration of neurons and/or myelin sheath, disruption of sensory information transmission and loss of movement control. There is no effective treatment for ND, and the drugs currently marketed are symptom-oriented, albeit with several side effects. Within the past decades, several natural remedies have gained attention as potential neuroprotective drugs. Moreover, an increasing number of studies have suggested that dietary intake of vegetables and fruits can prevent or delay the onset of ND. These properties are mainly due to the presence of polyphenols, an important group of phytochemicals that are abundantly present in fruits, vegetables, cereals and beverages. The main class of polyphenols is flavonoids, abundant in Citrus fruits. Our review is an overview on the scientific literature concerning the neuroprotective effects of the Citrus flavonoids in the prevention or treatment of ND. This review may be used as scientific basis for the development of nutraceuticals, food supplements or complementary and alternative drugs to maintain and improve the neurophysiological status.
Collapse
|
67
|
Anti-Inflammatory Activity of Citrus bergamia Derivatives: Where Do We Stand? Molecules 2016; 21:molecules21101273. [PMID: 27669206 PMCID: PMC6274179 DOI: 10.3390/molecules21101273] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/11/2023] Open
Abstract
Inflammatory diseases affect a large portion of the worldwide population, and chronic inflammation is a major risk factor for several dangerous pathologies. To limit the side effects of both synthetic and biological anti-inflammatory drugs, the use of herbal medicines, nutraceuticals and food supplements has increased tremendously as alternative and/or complementary medicine to treat several pathologies, including inflammation. During the last decades, the biological properties of Citrus bergamia (bergamot) derivatives have obtained important scientific achievements, and it has been suggested their use in a context of a multitarget pharmacological strategy. Here, we present an overview of the anti-inflammatory properties of bergamot extracts that could represent the scientific basis for develop novel and alternative strategies to improve health status and attenuate inflammatory conditions.
Collapse
|
68
|
The Anticonvulsant Activity of a Flavonoid-Rich Extract from Orange Juice Involves both NMDA and GABA-Benzodiazepine Receptor Complexes. Molecules 2016; 21:molecules21091261. [PMID: 27657037 PMCID: PMC6273133 DOI: 10.3390/molecules21091261] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 12/27/2022] Open
Abstract
The usage of dietary supplements and other natural products to treat neurological diseases has been growing over time, and accumulating evidence suggests that flavonoids possess anticonvulsant properties. The aim of this study was to examine the effects of a flavonoid-rich extract from orange juice (OJe) in some rodent models of epilepsy and to explore its possible mechanism of action. The genetically audiogenic seizures (AGS)-susceptible DBA/2 mouse, the pentylenetetrazole (PTZ)-induced seizures in ICR-CD1 mice and the WAG/Rij rat as a genetic model of absence epilepsy with comorbidity of depression were used. Our results demonstrate that OJe was able to exert anticonvulsant effects on AGS-sensible DBA/2 mice and to inhibit PTZ-induced tonic seizures, increasing their latency. Conversely, it did not have anti-absence effects on WAG/Rij rats. Our experimental findings suggest that the anti-convulsant effects of OJe are likely mediated by both an inhibition of NMDA receptors at the glycine-binding site and an agonistic activity on benzodiazepine-binding site at GABAA receptors. This study provides evidences for the antiepileptic activity of OJe, and its results could be used as scientific basis for further researches aimed to develop novel complementary therapy for the treatment of epilepsy in a context of a multitarget pharmacological strategy.
Collapse
|
69
|
Impellizzeri D, Cordaro M, Campolo M, Gugliandolo E, Esposito E, Benedetto F, Cuzzocrea S, Navarra M. Anti-inflammatory and Antioxidant Effects of Flavonoid-Rich Fraction of Bergamot Juice (BJe) in a Mouse Model of Intestinal Ischemia/Reperfusion Injury. Front Pharmacol 2016; 7:203. [PMID: 27471464 PMCID: PMC4945634 DOI: 10.3389/fphar.2016.00203] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
The flavonoid-rich fraction of bergamot juice (BJe) has demonstrated anti-inflammatory and antioxidant activities. The aim of work was to test the beneficial effects of BJe on the modulation of the ileum inflammation caused by intestinal ischemia/reperfusion (I/R) injury in mice. To understand the cellular mechanisms by which BJe may decrease the development of intestinal I/R injury, we have evaluated the activation of signaling transduction pathways that can be induced by reactive oxygen species production. Superior mesenteric artery and celiac trunk were occluded for 30 min and reperfused for 1 h. The animals were sacrificed after 1 h of reperfusion, for both histological and molecular examinations of the ileum tissue. The experimental results demonstrated that BJe was able to reduce histological damage, cytokines production, adhesion molecules expression, neutrophil infiltration and oxidative stress by a mechanism involved both NF-κB and MAP kinases pathways. This study indicates that BJe could represent a new treatment against inflammatory events of intestinal I/R injury.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Filippo Benedetto
- Department of Vascular and Thoracic Surgery, University of MessinaMessina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
- Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, University of ManchesterManchester, UK
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| |
Collapse
|
70
|
Babish JG, Dahlberg CJ, Ou JJ, Keller WJ, Gao W, Kaadige MR, Brabazon H, Lamb J, Soudah HC, Kou X, Zhang Z, Pacioretty LM, Tripp ML. Synergistic in vitro antioxidant activity and observational clinical trial of F105, a phytochemical formulation including Citrus bergamia, in subjects with moderate cardiometabolic risk factors. Can J Physiol Pharmacol 2016; 94:1257-1266. [PMID: 27463949 DOI: 10.1139/cjpp-2016-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We examined the clinical safety and efficacy of F105 in 11 subjects with moderate dyslipidemia. F105 is a combination of bergamot fruit extract (Citrus bergamia, BFE) and 9 phytoextracts selected for their ability to improve the antioxidant and anti-inflammatory activity of BFE. In vitro F105 exhibited a synergistic inhibition of oxygen radical absorbing capacity, peroxynitrite formation, and myeloperoxidase activity. Following 12 weeks of F105 daily, no treatment-related adverse events or changes in body mass were seen. Statistically significant changes were noted in total cholesterol (-7.3%), LDL-cholesterol (-10%), non-HDL cholesterol (-7.1%), cholesterol/HDL (-26%), and apolipoprotein B (-2.8%). A post hoc analysis of 8 subjects with HbA1c > 5.4 and HOMA-IR score > 2 or elevated triglycerides revealed additional statistically significant changes in addition to those previously observed in all subjects including triglycerides (-27%), oxLDL (-19%), LDL/HDL (-25%), triglycerides/HDL (-27%), oxLDL/HDL (-25%), and PAI-1 (-37%). A follow-up case report of a 70-year-old female patient, nonresponsive to statin therapy and placed on F105 daily, demonstrated improved cardiometabolic variables over 12 weeks similar to the subgroup. In summary, F105 was clinically well-tolerated and effective for ameliorating dyslipidemia in subjects with moderate cardiometabolic risk factors, particularly in the individuals with HbA1c > 5.4%.
Collapse
Affiliation(s)
- John G Babish
- a Bionexus, Ltd., 53 Brown Road, Suite B, Ithaca, NY 14850, USA
| | - Clinton J Dahlberg
- b Hughes Center for Research and Innovation, Nature's Sunshine Products, 2500 Executive Parkway, Lehi, UT 84043, USA
| | - Joseph J Ou
- b Hughes Center for Research and Innovation, Nature's Sunshine Products, 2500 Executive Parkway, Lehi, UT 84043, USA
| | - William J Keller
- b Hughes Center for Research and Innovation, Nature's Sunshine Products, 2500 Executive Parkway, Lehi, UT 84043, USA
| | - Wei Gao
- b Hughes Center for Research and Innovation, Nature's Sunshine Products, 2500 Executive Parkway, Lehi, UT 84043, USA
| | - Mohan R Kaadige
- b Hughes Center for Research and Innovation, Nature's Sunshine Products, 2500 Executive Parkway, Lehi, UT 84043, USA
| | - Holly Brabazon
- b Hughes Center for Research and Innovation, Nature's Sunshine Products, 2500 Executive Parkway, Lehi, UT 84043, USA
| | - Joseph Lamb
- b Hughes Center for Research and Innovation, Nature's Sunshine Products, 2500 Executive Parkway, Lehi, UT 84043, USA
| | - Hani C Soudah
- d Premier Medical Specialists, Stella Maris Obesity Medicine, Tenet Healthcare System, 2315 Dougherty Ferry Rd., Suite 109, St. Louis, MO 63122, USA.,e Washington University School of Medicine, St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Xiaolan Kou
- c Nature's Sunshine Products, 1655 North Main St., Spanish Fork, UT 84660, USA
| | - Zhe Zhang
- c Nature's Sunshine Products, 1655 North Main St., Spanish Fork, UT 84660, USA
| | | | - Matthew L Tripp
- b Hughes Center for Research and Innovation, Nature's Sunshine Products, 2500 Executive Parkway, Lehi, UT 84043, USA
| |
Collapse
|
71
|
Sicari V, Loizzo MR, Branca V, Pellicanò TM. Bioactive and Antioxidant Activity fromCitrus bergamiaRisso (Bergamot) Juice Collected in Different Areas of Reggio Calabria Province, Italy. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1089893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vincenzo Sicari
- Department of Agraria, University “Mediterranea” of Reggio Calabria, Reggio Calabria, Italy
| | - Monica R. Loizzo
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Valentino Branca
- Department of Agraria, University “Mediterranea” of Reggio Calabria, Reggio Calabria, Italy
| | - Teresa M. Pellicanò
- Department of Agraria, University “Mediterranea” of Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
72
|
Cirmi S, Bisignano C, Mandalari G, Navarra M. Anti-infective potential of Citrus bergamia Risso et Poiteau (bergamot) derivatives: a systematic review. Phytother Res 2016; 30:1404-11. [PMID: 27218799 DOI: 10.1002/ptr.5646] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022]
Abstract
Infectious diseases remain among the leading causes of morbidity and mortality worldwide, mainly because of the increase of resistance to chemotherapeutic drugs. Nature is the major source of anti-infective drugs and could represent a font of medicines that may help overcome antibiotic resistance. Recently, the potential antimicrobial effect of certain plant extracts has attracted attention within the scientific community as alternatives to synthetic drugs. Here, we present a systematic review on the anti-infective properties of bergamot derivatives that highlight the activity of bergamot essential oil against bacteria, mycetes and larvae, as well as the anti-Helicobacter pylori effect of bergamot juice and the antimicrobial properties of extracts from bergamot peel. Findings presented herein could be used to develop novel and alternative preventive and therapeutic strategies aimed to overcome antibiotic resistance. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168, Messina, Italy
| | - Carlo Bisignano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168, Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168, Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168, Messina, Italy
| |
Collapse
|
73
|
Ferlazzo N, Visalli G, Cirmi S, Lombardo GE, Laganà P, Di Pietro A, Navarra M. Natural iron chelators: Protective role in A549 cells of flavonoids-rich extracts of Citrus juices in Fe(3+)-induced oxidative stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:248-256. [PMID: 27037654 DOI: 10.1016/j.etap.2016.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Exogenous iron in particulate matter and imbalanced iron homeostasis cause deleterious effects on health. Natural and synthetic iron chelators may be of therapeutic benefit, therefore we evaluated the protective effect of Citrus flavonoids-rich extracts from bergamot and orange juices in iron overloaded human lung epithelial cells. Cytofluorimetric, biochemical and genotoxic analyses were performed in Fe2(SO4)3 exposed A549, pretreated with each extract whose chemical composition was previously detected. Chelating activity was assessed in cells by a calcein ester. Both extracts reduced the generation of reactive oxygen species and membrane lipid peroxidation, improved mitochondrial functionality, and prevented DNA-oxidative damage in iron-exposed cells. Antioxidant effects were attributed to the chelating property, blocking upstream the redox activity of iron. Flavonoid-rich extracts also induced antioxidant catalase. The bergamot and orange juice extracts had a broad-spectrum protective effect. Their use prevents iron oxidative injury and these natural iron chelators could be used as therapeutic agents.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy.
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via C. Valeria, I-98100 Messina, Italy.
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy.
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy.
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via C. Valeria, I-98100 Messina, Italy.
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via C. Valeria, I-98100 Messina, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy.
| |
Collapse
|
74
|
Casili G, Cordaro M, Impellizzeri D, Bruschetta G, Paterniti I, Cuzzocrea S, Esposito E. Dimethyl Fumarate Reduces Inflammatory Responses in Experimental Colitis. J Crohns Colitis 2016; 10:472-83. [PMID: 26690241 PMCID: PMC4946754 DOI: 10.1093/ecco-jcc/jjv231] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Fumaric acid esters have been proven to be effective for the systemic treatment of psoriasis and multiple sclerosis. We aimed to develop a new treatment for colitis. METHODS We investigated the effect of dimethylfumarate [DMF, 10-30-100mg/kg] on an experimental model of colitis induced by dinitrobenzene sulphuric acid [DNBS]. We also evaluated the therapeutic activity of 7 weeks' treatment with DMF [30mg/kg] on 9-week-old IL-10KO mice that spontaneously develop a T helper-1 [Th1]-dependent chronic enterocolitis after birth, that is fully established at 8-10 weeks of age. The mechanism of this pharmacological potential of DMF [10 μM] was investigated in colonic epithelial cell monolayers [Caco-2] exposed to H2O2. The barrier function was evaluated by the tight junction proteins. RESULTS The treatment with DMF significantly reduced the degree of haemorrhagic diarrhoea and weight loss caused by administration of DNBS. DMF [30 and 100mg/kg] also caused a substantial reduction in the degree of colon injury, in the rise in myeloperoxidase [MPO] activity, and in the increase in tumour necrosis factor [TNF]-α expression, as well as in the up-regulation of ICAM-1 caused by DNBS in the colon. Molecular studies demonstrated that DMF impaired NF-κB signalling via reduced p65 nuclear translocalisation. DMF induced a stronger antioxidant response as evidenced by a higher expression of Mn-superoxide dismutase. Moreover, DMF protected human intestinal epithelial cells against H2O2-induced barrier dysfunction, restoring ZO-1 occludin expression, via the HO-1 pathway. CONCLUSIONS DMF treatment reduces the degree of colitis caused by DNBS. We propose that DMF treatment may be useful in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy,Department of Pharmacological and Physiological Science, St Louis University School of Medicine, St Louis, MO, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
75
|
The flesh ethanolic extract of Hylocereus polyrhizus exerts anti-inflammatory effects and prevents murine colitis. Clin Nutr 2016; 35:1333-1339. [PMID: 26948401 DOI: 10.1016/j.clnu.2016.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/02/2016] [Accepted: 02/14/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS IBD is a chronic disorder of the gastrointestinal tract characterized by mucosal inflammation and epithelial damage. Biologic therapy has significantly improved the course of the disease but there are still a high percentage of patients that do not respond to current therapies. We aim to determine the effects of the flesh ethanolic extract of Hylocereus polyrhizus (EH) in a mice model of colitis induced by TNBS. METHODS Balb/c mice received TNBS (175 mg/kg, 100 μl, i.r.) and six and thirty hours later were administered with EH (1 g/kg, i.p.). Mice were weighted daily and after sacrificing (2 and 4 days after TNBS) we analyzed mucosal histology, myeloperoxidase activity (MPO), the expression of pro-inflammatory molecules (qPCR) and NF-κB and Iκβ-α protein levels. The chemical characterization of the EH was determined by LC-MS/MS. RESULTS The administration of EH to TNBS-treated mice prevented (P < 0.05) the loss of body weight and significantly reduced in the colon: a) histological damage score, b) MPO enzymatic activity c) the expression of pro-inflammatory molecules and d) Iκβ-α degradation and nuclear NF-κβ protein levels. The LC-MS analysis detected metabolites such as polyphenols and fatty acids. CONCLUSION Systemic administration of the ethanolic extract of H. polyrhizus exerts an anti-inflammatory effect and prevents murine colitis induced by TNBS.
Collapse
|
76
|
Currò M, Risitano R, Ferlazzo N, Cirmi S, Gangemi C, Caccamo D, Ientile R, Navarra M. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways. Sci Rep 2016; 6:20809. [PMID: 26853104 PMCID: PMC4745106 DOI: 10.1038/srep20809] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Roberto Risitano
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
| | - Chiara Gangemi
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Daniela Caccamo
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Riccardo Ientile
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
| |
Collapse
|
77
|
Lv X, Zhao S, Ning Z, Zeng H, Shu Y, Tao O, Xiao C, Lu C, Liu Y. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J 2015; 9:68. [PMID: 26705419 PMCID: PMC4690266 DOI: 10.1186/s13065-015-0145-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
Citrus fruits, which are cultivated worldwide, have been recognized as some of the most high-consumption fruits in terms of energy, nutrients and health supplements. What is more, a number of these
fruits have been used as traditional medicinal herbs to cure diseases in several Asian countries. Numerous studies have focused on Citrus secondary metabolites as well as bioactivities and have been intended to develop new chemotherapeutic or complementary medicine in recent decades. Citrus-derived secondary metabolites, including flavonoids, alkaloids, limonoids, coumarins, carotenoids, phenolic acids and essential oils, are of vital importance to human health due to their active properties. These characteristics include anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects, neuroprotective effects, etc. This review summarizes the global distribution and taxonomy, numerous secondary metabolites and bioactivities of Citrus fruits to provide a reference for further study. Flavonoids as characteristic bioactive metabolites in Citrus fruits are mainly introduced.
Collapse
Affiliation(s)
- Xinmiao Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Siyu Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Zhangchi Ning
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Honglian Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yisong Shu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Ou Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 China ; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, 999077 China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
78
|
Celano M, Maggisano V, De Rose RF, Bulotta S, Maiuolo J, Navarra M, Russo D. Flavonoid Fraction of Citrus Reticulata Juice Reduces Proliferation and Migration of Anaplastic Thyroid Carcinoma Cells. Nutr Cancer 2015; 67:1183-90. [DOI: 10.1080/01635581.2015.1073760] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, University of Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University of Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Roberta Francesca De Rose
- Department of Health Sciences, University of Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University of Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, University of Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Michele Navarra
- Department of Drug Sciences and Products for Health, University of Messina, Messina, Italy
| | - Diego Russo
- Department of Health Sciences, University of Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Catanzaro, Italy
| |
Collapse
|
79
|
Filocamo A, Bisignano C, Ferlazzo N, Cirmi S, Mandalari G, Navarra M. In vitro effect of bergamot (Citrus bergamia) juice against cagA-positive and-negative clinical isolates of Helicobacter pylori. Altern Ther Health Med 2015. [PMID: 26220068 PMCID: PMC4518649 DOI: 10.1186/s12906-015-0769-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Helicobacter pylori infection has been associated with chronic gastritis, peptic ulcer and gastric carcinoma as over half of the world's population is colonized with this gram-negative bacterium. Due to the increasing antibiotic resistance, its eradication rates fails in a great portion of patients. A number of studies showed that molecules largely distributed in commonly consumed fruits and vegetables may have antimicrobial activity. The aim of the present study was to investigate the effect of bergamot juice (BJ) against Helicobacter pylori in vitro. The potential therapeutic combination between BJ and the antibiotics amoxicillin (AMX), clarithromycin (CLA) and metronidazole (MTZ) has also been evaluated. Methods The minimum inhibitory concentration (MIC) of BJ, AMX, CLA and MTZ against 2 ATCC and 32 clinical isolates of H. pylori was assayed according to CLSI. The checkerboard method was used to determine the efficacy of the association BJ with the three reference antibiotics. Killing curves were performed on the two cagA-positive ATCC strains of H. pylori (ATCC 43504 and ATCC 49503), on the clinical isolate cagA-positive HP6 strain of H. pylori and on the clinical isolate cagA-negative HP61 strain of H. pylori. Results BJ (2.5 %, v/v) inhibited the growth of 50 % of the H. pylori clinical isolates, whereas 5 % (v/v) inhibited 90 %. AMX was the most effective antibiotic against the reference strains and the clinical isolates, followed by CLA and MTZ. In the combination assays, synergism was observed between BJ and AMX and between BJ and MTZ against both the reference strains and the clinical isolates. Indifference was observed between BJ and CLA. Conclusions BJ was effective in vitro against H. pylori and the genotype status of the clinical strains may have an impact on its susceptibility. The synergistic combination of BJ and antibiotics could be used to prevent or treat resistance.
Collapse
|
80
|
Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26221182 PMCID: PMC4499611 DOI: 10.1155/2015/957031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders.
Collapse
|
81
|
Role of natural antioxidants and potential use of bergamot in treating rheumatoid arthritis. PHARMANUTRITION 2015. [DOI: 10.1016/j.phanu.2015.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
82
|
Navarra M, Mannucci C, Delbò M, Calapai G. Citrus bergamia essential oil: from basic research to clinical application. Front Pharmacol 2015; 6:36. [PMID: 25784877 PMCID: PMC4345801 DOI: 10.3389/fphar.2015.00036] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/11/2015] [Indexed: 11/13/2022] Open
Abstract
Citrus bergamia Risso et Poiteau, also known as "Bergamot," is a plant belonging to the Rutaceae family, defined as a hybrid of bitter orange and lemon. It is an endemic plant of the Calabria region (Italy). Bergamot fruit is primarily used for the extraction of its essential oil (bergamot essential oil: BEO), employed in perfume, cosmetics, food, and confections. The aim of this review was to collect recent data from the literature on C. bergamia essential oil and, through a critical analysis, focus on safety and the beneficial effects on human health. Clinical studies on the therapeutic applications of BEO exclusively focus on the field of aromatherapy, suggesting that its use can be useful for reducing anxiety and stress.
Collapse
Affiliation(s)
- Michele Navarra
- Department of Drug Sciences and Products for Health, University of MessinaMessina, Italy
| | - Carmen Mannucci
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | | | - Gioacchino Calapai
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| |
Collapse
|