51
|
Fang Y, Li Z, Yang L, Li W, Wang Y, Kong Z, Miao J, Chen Y, Bian Y, Zeng L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun Signal 2024; 22:276. [PMID: 38755659 PMCID: PMC11097486 DOI: 10.1186/s12964-024-01624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/20/2024] [Indexed: 05/18/2024] Open
Abstract
Traditionally, lactate has been considered a 'waste product' of cellular metabolism. Recent findings have shown that lactate is a substance that plays an indispensable role in various physiological cellular functions and contributes to energy metabolism and signal transduction during immune and inflammatory responses. The discovery of lactylation further revealed the role of lactate in regulating inflammatory processes. In this review, we comprehensively summarize the paradoxical characteristics of lactate metabolism in the inflammatory microenvironment and highlight the pivotal roles of lactate homeostasis, the lactate shuttle, and lactylation ('lactate clock') in acute and chronic inflammatory responses from a molecular perspective. We especially focused on lactate and lactate receptors with either proinflammatory or anti-inflammatory effects on complex molecular biological signalling pathways and investigated the dynamic changes in inflammatory immune cells in the lactate-related inflammatory microenvironment. Moreover, we reviewed progress on the use of lactate as a therapeutic target for regulating the inflammatory response, which may provide a new perspective for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yunda Fang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengjun Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutong Wang
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyang Kong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Miao
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- TCM Rehabilitation Center, Jiangsu Second Chinese Medicine Hospital, Nanjing, 210023, China.
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
52
|
Benarroch E. What Is the Role of Lactate in Brain Metabolism, Plasticity, and Neurodegeneration? Neurology 2024; 102:e209378. [PMID: 38574305 DOI: 10.1212/wnl.0000000000209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
|
53
|
Borges K. The Benefits of "Spoilt Milk": Lactic Acid Can Limit Excitability via HCAR1. Epilepsy Curr 2024; 24:206-208. [PMID: 38898908 PMCID: PMC11185210 DOI: 10.1177/15357597241249037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Glycolysis Regulates Neuronal Excitability via Lactate Receptor, HCA1R Skwarzynska D, Sun H, Williamson J, Kasprzak I, Kapur J. Brain. 2023;146:1888-1902. doi: 10.1093/brain/awac419 Repetitively firing neurons during seizures accelerate glycolysis to meet energy demand, which leads to the accumulation of extracellular glycolytic by-product lactate. Here, we demonstrate that lactate rapidly modulates neuronal excitability in times of metabolic stress via the hydroxycarboxylic acid receptor type 1 (HCA1R) to modify seizure activity. The extracellular lactate concentration, measured by a biosensor, rose quickly during brief and prolonged seizures. In two epilepsy models, mice lacking HCA1R (lactate receptor) were more susceptible to developing seizures. Moreover, HCA1R deficient (knockout) mice developed longer and more severe seizures than wild-type littermates. Lactate perfusion decreased tonic and phasic activity of CA1 pyramidal neurons in genetically encoded calcium indicator 7 imaging experiments. HCA1R agonist 3-chloro-5-hydroxybenzoic acid (3CL-HBA) reduced the activity of CA1 neurons in HCA1R WT but not in knockout mice. In patch-clamp recordings, both lactate and 3CL-HBA hyperpolarized CA1 pyramidal neurons. HCA1R activation reduced the spontaneous excitatory postsynaptic current frequency and altered the paired-pulse ratio of evoked excitatory postsynaptic currents in HCA1R wild-type but not in knockout mice, suggesting it diminished presynaptic release of excitatory neurotransmitters. Overall, our studies demonstrate that excessive neuronal activity accelerates glycolysis to generate lactate, which translocates to the extracellular space to slow neuronal firing and inhibit excitatory transmission via HCA1R. These studies may identify novel anticonvulsant target and seizure termination mechanisms.
Collapse
Affiliation(s)
- Karin Borges
- Department of Pharmacology, The University of Queensland
| |
Collapse
|
54
|
Li C, Szeto CC. Urinary podocyte markers in diabetic kidney disease. Kidney Res Clin Pract 2024; 43:274-286. [PMID: 38325865 PMCID: PMC11181047 DOI: 10.23876/j.krcp.23.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 02/09/2024] Open
Abstract
Podocytes are involved in maintaining kidney function and are a major focus of research on diabetic kidney disease (DKD). Urinary biomarkers derived from podocyte fragments and molecules have been proposed for the diagnosis and monitoring of DKD. Various methods have been used to detect intact podocytes and podocyte-derived microvesicles in urine, including centrifugation, visualization, and molecular quantification. Quantification of podocyte-specific protein targets and messenger RNA levels can be performed by Western blotting or enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. At present, many of these techniques are expensive and labor-intensive, all limiting their widespread use in routine clinical tests. While the potential of urinary podocyte markers for monitoring and risk stratification of DKD has been explored, systematic studies and external validation are lacking in the current literature. Standardization and automation of laboratory methods should be a priority for future research, and the added value of these methods to routine clinical tests should be defined.
Collapse
Affiliation(s)
- Chuanlei Li
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Cheuk-Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
55
|
Chen ZF, Zhang L, Fei SK. Role of lactic acid and lactylation in nonalcoholic fatty liver disease. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:243-247. [DOI: 10.11569/wcjd.v32.i4.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
|
56
|
Jang I, Kyun S, Hwang D, Kim T, Lim K, Park HY, Kim SW, Kim J. Chronic Administration of Exogenous Lactate Increases Energy Expenditure during Exercise through Activation of Skeletal Muscle Energy Utilization Capacity in Mice. Metabolites 2024; 14:220. [PMID: 38668348 PMCID: PMC11052295 DOI: 10.3390/metabo14040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
We compared the effects of chronic exogenous lactate and exercise training, which influence energy substrate utilization and body composition improvements at rest and during exercise, and investigated the availability of lactate as a metabolic regulator. The mice were divided into four groups: CON (sedentary + saline), LAC (sedentary + lactate), EXE (exercise + saline), and EXLA (exercise + lactate). The total experimental period was set at 4 weeks, the training intensity was set at 60-70% VO2max, and each exercise group was administered a solution immediately after exercise. Changes in the energy substrate utilization at rest and during exercise, the protein levels related to energy substrate utilization in skeletal muscles, and the body composition were measured. Lactate intake and exercise increased carbohydrate oxidation as a substrate during exercise, leading to an increased energy expenditure and increased protein levels of citrate synthase and malate dehydrogenase 2, key factors in the TCA(tricarboxylic acid) cycle of skeletal muscle. Exercise, but not lactate intake, induced the upregulation of the skeletal muscle glucose transport factor 4 and a reduction in body fat. Hence, chronic lactate administration, as a metabolic regulator, influenced energy substrate utilization by the skeletal muscle and increased energy expenditure during exercise through the activation of carbohydrate metabolism-related factors. Therefore, exogenous lactate holds potential as a metabolic regulator.
Collapse
Affiliation(s)
- Inkwon Jang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Sunghwan Kyun
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Deunsol Hwang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Taeho Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Kiwon Lim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Young Park
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Jisu Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (I.J.); (S.K.); (D.H.); (T.K.); (K.L.); (H.-Y.P.); (S.-W.K.)
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
57
|
Caffrey EB, Sonnenburg JL, Devkota S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab 2024; 36:684-701. [PMID: 38569469 DOI: 10.1016/j.cmet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA.
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
58
|
Jiang W, Yang L, Dang Y, Jiang X, Wu L, Tong X, Guo J, Bao Y. Metabolomic profiling of deep vein thrombosis. Phlebology 2024; 39:154-168. [PMID: 37992130 PMCID: PMC10938490 DOI: 10.1177/02683555231215199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Deep vein thrombosis (DVT) of the lower extremities is one of the most common peripheral vascular diseases, with significant complications and sequelae. Metabolomics aims to identify small molecules in biological samples. It can serve as a promising method for screening compounds that can be used for early disease detection, diagnosis, treatment response prediction, and prognosis. In addition, high-throughput metabolomics screening can yield significant insights into the pathophysiological pathways of DVT. Currently, the metabolomic profiles of DVT have yielded inconsistent expression patterns. This article examines the recent advancements in metabolomic studies of DVT and analyzes the factors that may influence the results.
Collapse
Affiliation(s)
- Weiguang Jiang
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Liu Yang
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Yongkang Dang
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Xuechao Jiang
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Lan Wu
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Xiangyang Tong
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Jianquan Guo
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Yongtao Bao
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| |
Collapse
|
59
|
Liu X, Li S, Cui Q, Guo B, Ding W, Liu J, Quan L, Li X, Xie P, Jin L, Sheng Y, Chen W, Wang K, Zeng F, Qiu Y, Liu C, Zhang Y, Lv F, Hu X, Xiao RP. Activation of GPR81 by lactate drives tumour-induced cachexia. Nat Metab 2024; 6:708-723. [PMID: 38499763 PMCID: PMC11052724 DOI: 10.1038/s42255-024-01011-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Cachexia affects 50-80% of patients with cancer and accounts for 20% of cancer-related death, but the underlying mechanism driving cachexia remains elusive. Here we show that circulating lactate levels positively correlate with the degree of body weight loss in male and female patients suffering from cancer cachexia, as well as in clinically relevant mouse models. Lactate infusion per se is sufficient to trigger a cachectic phenotype in tumour-free mice in a dose-dependent manner. Furthermore, we demonstrate that adipose-specific G-protein-coupled receptor (GPR)81 ablation, similarly to global GPR81 deficiency, ameliorates lactate-induced or tumour-induced adipose and muscle wasting in male mice, revealing adipose GPR81 as the major mediator of the catabolic effects of lactate. Mechanistically, lactate/GPR81-induced cachexia occurs independently of the well-established protein kinase A catabolic pathway, but it is mediated by a signalling cascade sequentially activating Gi-Gβγ-RhoA/ROCK1-p38. These findings highlight the therapeutic potential of targeting GPR81 for the treatment of this life-threatening complication of cancer.
Collapse
Affiliation(s)
- Xidan Liu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Shijin Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qionghua Cui
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Bujing Guo
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Wanqiu Ding
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Liu
- Dazhou Central Hospital, Sichuan, China
| | - Li Quan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xiaochuan Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Peng Xie
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Li Jin
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ye Sheng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Wenxin Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Kai Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | - Yifu Qiu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Changlu Liu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yan Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fengxiang Lv
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinli Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China.
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China.
| |
Collapse
|
60
|
Pedersen MGB, Rittig N, Bangshaab M, Berg-Hansen K, Gopalasingam N, Gormsen LC, Søndergaard E, Møller N. Effects of exogenous lactate on lipid, protein, and glucose metabolism-a randomized crossover trial in healthy males. Am J Physiol Endocrinol Metab 2024; 326:E443-E453. [PMID: 38324259 PMCID: PMC11193511 DOI: 10.1152/ajpendo.00301.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Lactate may inhibit lipolysis and thus enhance insulin sensitivity, but there is a lack of metabolic human studies. This study aimed to determine how hyperlactatemia affects lipolysis, glucose- and protein metabolism, and insulin sensitivity in healthy men. In a single-blind, randomized, crossover design, eight healthy men were studied after an overnight fast on two occasions: 1) during a sodium-lactate infusion (LAC) and 2) during a sodium-matched NaCl infusion (CTR). Both days consisted of a 3-h postabsorptive period followed by a 3-h hyperinsulinemic-euglycemic clamp (HEC). Lipolysis rate, endogenous glucose production (EGP), and delta glucose rate of disappearance (ΔRdglu) were evaluated using [9,10-3H]palmitate and [3-3H]glucose tracers. In addition, whole body- and forearm protein metabolism was assessed using [15N]phenylalanine, [2H4]tyrosine, [15N]tyrosine, and [13C]urea tracers. In the postabsorptive period, plasma lactate increased to 2.7 ± 0.5 mmol/L during LAC vs. 0.6 ± 0.3 mmol/L during CTR (P < 0.001). In the postabsorptive period, palmitate flux was 30% lower during LAC compared with CTR (84 ± 32 µmol/min vs. 120 ± 35 µmol/min, P = 0.003). During the HEC, palmitate flux was suppressed similarly during both interventions (P = 0.7). EGP, ΔRdglu, and M value were similar during LAC and CTR. During HEC, LAC increased whole body phenylalanine flux (P = 0.02) and protein synthesis (P = 0.03) compared with CTR; LAC did not affect forearm protein metabolism compared with CTR. Lactate infusion inhibited lipolysis by 30% under postabsorptive conditions but did not affect glucose metabolism or improve insulin sensitivity. In addition, whole body phenylalanine flux was increased. Clinical trial registrations: NCT04710875.NEW & NOTEWORTHY Lactate is a decisive intermediary metabolite, serving as an energy substrate and a signaling molecule. The present study examines the effects of lactate on substrate metabolism and insulin sensitivity in healthy males. Hyperlactatemia reduces lipolysis by 30% without affecting insulin sensitivity and glucose metabolism. In addition, hyperlactatemia increases whole body amino acid turnover rate.
Collapse
Affiliation(s)
- Mette G B Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Nikolaj Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Maj Bangshaab
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | | | | | - Lars C Gormsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| |
Collapse
|
61
|
Cai M, Li S, Cai K, Du X, Han J, Hu J. Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism 2024; 152:155787. [PMID: 38215964 DOI: 10.1016/j.metabol.2024.155787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
62
|
Marty-Lombardi S, Lu S, Ambroziak W, Schrenk-Siemens K, Wang J, DePaoli-Roach AA, Hagenston AM, Wende H, Tappe-Theodor A, Simonetti M, Bading H, Okun JG, Kuner R, Fleming T, Siemens J. Neuron-astrocyte metabolic coupling facilitates spinal plasticity and maintenance of inflammatory pain. Nat Metab 2024; 6:494-513. [PMID: 38443593 DOI: 10.1038/s42255-024-01001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Long-lasting pain stimuli can trigger maladaptive changes in the spinal cord, reminiscent of plasticity associated with memory formation. Metabolic coupling between astrocytes and neurons has been implicated in neuronal plasticity and memory formation in the central nervous system, but neither its involvement in pathological pain nor in spinal plasticity has been tested. Here we report a form of neuroglia signalling involving spinal astrocytic glycogen dynamics triggered by persistent noxious stimulation via upregulation of the Protein Targeting to Glycogen (PTG) in spinal astrocytes. PTG drove glycogen build-up in astrocytes, and blunting glycogen accumulation and turnover by Ptg gene deletion reduced pain-related behaviours and promoted faster recovery by shortening pain maintenance in mice. Furthermore, mechanistic analyses revealed that glycogen dynamics is a critically required process for maintenance of pain by facilitating neuronal plasticity in spinal lamina 1 neurons. In summary, our study describes a previously unappreciated mechanism of astrocyte-neuron metabolic communication through glycogen breakdown in the spinal cord that fuels spinal neuron hyperexcitability.
Collapse
Affiliation(s)
| | - Shiying Lu
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Oliver Wyman GmbH, Munich, Germany
| | - Wojciech Ambroziak
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | | | - Jialin Wang
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Hagen Wende
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Taconic Biosciences, Leverkusen, Germany
| | | | - Manuela Simonetti
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Jürgen G Okun
- Dietmar-Hopp-Metabolic Center, Division of Neuropaediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Fleming
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Jan Siemens
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
63
|
Geiseler SJ, Hadzic A, Lambertus M, Forbord KM, Sajedi G, Liesz A, Morland C. L-Lactate Treatment at 24 h and 48 h after Acute Experimental Stroke Is Neuroprotective via Activation of the L-Lactate Receptor HCA 1. Int J Mol Sci 2024; 25:1232. [PMID: 38279234 PMCID: PMC10816130 DOI: 10.3390/ijms25021232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Stroke is the main cause for acquired disabilities. Pharmaceutical or mechanical removal of the thrombus is the cornerstone of stroke treatment but can only be administered to a subset of patients and within a narrow time window. Novel treatment options are therefore required. Here we induced stroke by permanent occlusion of the distal medial cerebral artery of wild-type mice and knockout mice for the lactate receptor hydroxycarboxylic acid receptor 1 (HCA1). At 24 h and 48 h after stroke induction, we injected L-lactate intraperitoneal. The resulting atrophy was measured in Nissl-stained brain sections, and capillary density and neurogenesis were measured after immunolabeling and confocal imaging. In wild-type mice, L-lactate treatment resulted in an HCA1-dependent reduction in the lesion volume accompanied by enhanced angiogenesis. In HCA1 knockout mice, on the other hand, there was no increase in angiogenesis and no reduction in lesion volume in response to L-lactate treatment. Nevertheless, the lesion volumes in HCA1 knockout mice-regardless of L-lactate treatment-were smaller than in control mice, indicating a multifactorial role of HCA1 in stroke. Our findings suggest that L-lactate administered 24 h and 48 h after stroke is protective in stroke. This represents a time window where no effective treatment options are currently available.
Collapse
Affiliation(s)
- Samuel J. Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Alena Hadzic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Marvin Lambertus
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Karl Martin Forbord
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Ghazal Sajedi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany;
- Graduate School of Systemic Neurosciences Munich, 82152 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| |
Collapse
|
64
|
Zhou C, Li W, Liang Z, Wu X, Cheng S, Peng J, Zeng K, Li W, Lan P, Yang X, Xiong L, Zeng Z, Zheng X, Huang L, Fan W, Liu Z, Xing Y, Kang L, Liu H. Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death. Nat Commun 2024; 15:499. [PMID: 38216551 PMCID: PMC10786880 DOI: 10.1038/s41467-024-44779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Mutant KRAS (KRASMUT) is often exploited by cancers to shape tumor immunity, but the underlying mechanisms are not fully understood. Here we report that tumor-specific cytotoxic T lymphocytes (CTLs) from KRASMUT cancers are sensitive to activation-induced cell death (AICD). circATXN7, an NF-κB-interacting circular RNA, governs T cell sensitivity to AICD by inactivating NF-κB. Mechanistically, histone lactylation derived from KRASMUT tumor cell-produced lactic acid directly activates transcription of circATXN7, which binds to NF-κB p65 subunit and masks the p65 nuclear localization signal motif, thereby sequestering it in the cytoplasm. Clinically, circATXN7 upregulation in tumor-specific CTLs correlates with adverse clinical outcomes and immunotherapeutic resistance. Genetic ablation of circAtxn7 in CD8+ T cells leads to mutant-selective tumor inhibition, while also increases anti-PD1 efficacy in multiple tumor models in female mice. Furthermore, targeting circATXN7 in adoptively transferred tumor-reactive CTLs improves their antitumor activities. These findings provide insight into how lymphocyte-expressed circRNAs contribute to T-cell fate decisions and anticancer immunotherapies.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianrui Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sijing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kaixuan Zeng
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, China
| | - Weihao Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xiong
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhua Fan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhanzhen Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
65
|
Gong H, Zhong H, Cheng L, Li LP, Zhang DK. Post-translational protein lactylation modification in health and diseases: a double-edged sword. J Transl Med 2024; 22:41. [PMID: 38200523 PMCID: PMC10777551 DOI: 10.1186/s12967-023-04842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
As more is learned about lactate, it acts as both a product and a substrate and functions as a shuttle system between different cell populations to provide the energy for sustaining tumor growth and proliferation. Recent discoveries of protein lactylation modification mediated by lactate play an increasingly significant role in human health (e.g., neural and osteogenic differentiation and maturation) and diseases (e.g., tumors, fibrosis and inflammation, etc.). These views are critically significant and first described in detail in this review. Hence, here, we focused on a new target, protein lactylation, which may be a "double-edged sword" of human health and diseases. The main purpose of this review was to describe how protein lactylation acts in multiple physiological and pathological processes and their potential mechanisms through an in-depth summary of preclinical in vitro and in vivo studies. Our work aims to provide new ideas for treating different diseases and accelerate translation from bench to bedside.
Collapse
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huang Zhong
- Department of Gastroenterology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Long Cheng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liang-Ping Li
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China.
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
66
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
67
|
Yan P, Liu J, Li Z, Wang J, Zhu Z, Wang L, Yu G. Glycolysis Reprogramming in Idiopathic Pulmonary Fibrosis: Unveiling the Mystery of Lactate in the Lung. Int J Mol Sci 2023; 25:315. [PMID: 38203486 PMCID: PMC10779333 DOI: 10.3390/ijms25010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive deposition of fibrotic connective tissue in the lungs. Emerging evidence suggests that metabolic alterations, particularly glycolysis reprogramming, play a crucial role in the pathogenesis of IPF. Lactate, once considered a metabolic waste product, is now recognized as a signaling molecule involved in various cellular processes. In the context of IPF, lactate has been shown to promote fibroblast activation, myofibroblast differentiation, and extracellular matrix remodeling. Furthermore, lactate can modulate immune responses and contribute to the pro-inflammatory microenvironment observed in IPF. In addition, lactate has been implicated in the crosstalk between different cell types involved in IPF; it can influence cell-cell communication, cytokine production, and the activation of profibrotic signaling pathways. This review aims to summarize the current research progress on the role of glycolytic reprogramming and lactate in IPF and its potential implications to clarify the role of lactate in IPF and to provide a reference and direction for future research. In conclusion, elucidating the intricate interplay between lactate metabolism and fibrotic processes may lead to the development of innovative therapeutic strategies for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| |
Collapse
|
68
|
Shang Q, Bian X, Zhu L, Liu J, Wu M, Lou S. Lactate Mediates High-Intensity Interval Training-Induced Promotion of Hippocampal Mitochondrial Function through the GPR81-ERK1/2 Pathway. Antioxidants (Basel) 2023; 12:2087. [PMID: 38136207 PMCID: PMC10740508 DOI: 10.3390/antiox12122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondrial biogenesis and fusion are essential for maintaining healthy mitochondria and ATP production. High-intensity interval training (HIIT) can enhance mitochondrial function in mouse hippocampi, but its underlying mechanism is not completely understood. Lactate generated during HIIT may mediate the beneficial effects of HIIT on neuroplasticity by activating the lactate receptor GPR81. Furthermore, growing evidence shows that lactate contributes to mitochondrial function. Given that mitochondrial function is crucial for cerebral physiological processes, the current study aimed to determine the mechanism of HIIT in hippocampal mitochondrial function. In vivo, GPR81 was knocked down in the hippocampi of mice via the injection of adeno-associated virus (AAV) vectors. The GPR81-knockdown mice were subjected to HIIT. The results demonstrated that HIIT increased mitochondria numbers, ATP production, and oxidative phosphorylation (OXPHOS) in the hippocampi of mice. In addition, HIIT induced mitochondrial biogenesis, fusion, synaptic plasticity, and ERK1/2 phosphorylation but not in GPR81-knockdown mice. In vitro, Neuro-2A cells were treated with L-lactate, a GPR81 agonist, and an ERK1/2 inhibitor. The results showed that both L-lactate and the GPR81 agonist increased mitochondrial biogenesis, fusion, ATP levels, OXPHOS, mitochondrial membrane potential, and synaptic plasticity. However, the inhibition of ERK1/2 phosphorylation blunted L-lactate or the GPR81 agonist-induced promotion of mitochondrial function and synaptic plasticity. In conclusion, our findings suggest that lactate mediates HIIT-induced promotion of mitochondrial function through the GPR81-ERK1/2 pathway.
Collapse
Affiliation(s)
- Qinghui Shang
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai 200438, China;
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Xuepeng Bian
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Lutao Zhu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Jun Liu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Min Wu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai 200438, China;
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| |
Collapse
|
69
|
Mohammad Nezhady MA, Modaresinejad M, Zia A, Chemtob S. Versatile lactate signaling via HCAR1: a multifaceted GPCR involved in many biological processes. Am J Physiol Cell Physiol 2023; 325:C1502-C1515. [PMID: 37899751 DOI: 10.1152/ajpcell.00346.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
G-coupled protein receptors (GPCRs) are the ultimate refuge of pharmacology and medicine as more than 40% of all marketed drugs are directly targeting these receptors. Through cell surface expression, they are at the forefront of cellular communication with the outside world. Metabolites among the conveyors of this communication are becoming more prominent with the recognition of them as ligands for GPCRs. HCAR1 is a GPCR conveyor of lactate. It is a class A GPCR coupled to Gαi which reduces cellular cAMP along with the downstream Gβγ signaling. It was first found to inhibit lipolysis, and lately has been implicated in diverse cellular processes, including neural activities, angiogenesis, inflammation, vision, cardiovascular function, stem cell proliferation, and involved in promoting pathogenesis for different conditions, such as cancer. Other than signaling from the plasma membrane, HCAR1 shows nuclear localization with different location-biased activities therein. Although different functions for HCAR1 are being discovered, its cell and molecular mechanisms are yet ill understood. Here, we provide a comprehensive review on HCAR1, which covers the literature on the subject, and discusses its importance and relevance in various biological phenomena.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Monir Modaresinejad
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Aliabbas Zia
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
70
|
Lundø K, Dmytriyeva O, Spøhr L, Goncalves-Alves E, Yao J, Blasco LP, Trauelsen M, Ponniah M, Severin M, Sandelin A, Kveiborg M, Schwartz TW, Pedersen SF. Lactate receptor GPR81 drives breast cancer growth and invasiveness through regulation of ECM properties and Notch ligand DLL4. BMC Cancer 2023; 23:1136. [PMID: 37993804 PMCID: PMC10666402 DOI: 10.1186/s12885-023-11631-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The lactate receptor GPR81 contributes to cancer development through unclear mechanisms. Here, we investigate the roles of GPR81 in three-dimensional (3D) and in vivo growth of breast cancer cells and study the molecular mechanisms involved. METHODS GPR81 was stably knocked down (KD) in MCF-7 human breast cancer cells which were subjected to RNA-seq analysis, 3D growth, in situ- and immunofluorescence analyses, and cell viability- and motility assays, combined with KD of key GPR81-regulated genes. Key findings were additionally studied in other breast cancer cell lines and in mammary epithelial cells. RESULTS GPR81 was upregulated in multiple human cancer types and further upregulated by extracellular lactate and 3D growth in breast cancer spheroids. GPR81 KD increased spheroid necrosis, reduced invasion and in vivo tumor growth, and altered expression of genes related to GO/KEGG terms extracellular matrix, cell adhesion, and Notch signaling. Single cell in situ analysis of MCF-7 cells revealed that several GPR81-regulated genes were upregulated in the same cell clusters. Notch signaling, particularly the Notch ligand Delta-like-4 (DLL4), was strikingly downregulated upon GPR81 KD, and DLL4 KD elicited spheroid necrosis and inhibited invasion in a manner similar to GPR81 KD. CONCLUSIONS GPR81 supports breast cancer aggressiveness, and in MCF-7 cells, this occurs at least in part via DLL4. Our findings reveal a new GPR81-driven mechanism in breast cancer and substantiate GPR81 as a promising treatment target.
Collapse
Affiliation(s)
- Kathrine Lundø
- Faculty of Health, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Faculty of Health, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Spøhr
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eliana Goncalves-Alves
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- The Bioinformatics Centre, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Laia P Blasco
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Mette Trauelsen
- Faculty of Health, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Muthulakshmi Ponniah
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Faculty of Health, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
71
|
Luo X, Liu W, Zheng B, Zheng Y, Zhao M, Feng F, Liu L. Sea cucumber peptides positively regulate sexual hormones in male mice with acute exhaustive swimming: possibly through the Ca 2+/PKA signaling pathway. Food Funct 2023; 14:10188-10203. [PMID: 37909356 DOI: 10.1039/d3fo03031h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Sea cucumber peptides (SCPs) have been proven to have many active functions; however, their impact on testosterone synthesis and the corresponding mechanism are not yet clear. This study attempts to explore the effects of SCPs on sex hormone regulation in acute exhaustive swimming (AES) male mice and the possible mechanisms. In the present study, SCP intervention significantly prolonged exhaustive swimming time and reduced exercise metabolite accumulation. The reproductive ability-related parameters including penile index, mating ability, testicular morphology, and sperm storage were dramatically improved by SCP intervention. Notably, SCPs markedly reversed the AES-induced decrease in serum testosterone (T), estradiol (E2), and follicle-stimulating hormone (FSH) levels. Moreover, treatment with a high dose of SCP (0.6 mg per g bw) significantly enhanced the expression of testosterone synthesis-related proteins in testis, meanwhile markedly increasing the gene expression of StAR, Hsd17b3, Hsd17b2, Ldlr, and Cyp19a1. Serum metabolomics results indicated that SCP intervention notably upregulated the expression of 1-stearoyl-2-arachidonoyl-sn-glycerol but downregulated the concentrations of succinate and DL-lactate. Furthermore, serum metabolomics combined with testicular transcriptome, western blot, and correlation analyses demonstrated that SCPs may regulate testosterone synthesis via the Ca2+/PKA signaling pathway. This study indicated that the SCP could be a potential dietary supplement to improve the symptoms of decreased sex hormones related to exercise fatigue.
Collapse
Affiliation(s)
- Xianliang Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
72
|
Mohammad Nezhady MA, Cagnone G, Joyal JS, Chemtob S. Lack of HCAR1, the lactate GPCR, signaling promotes autistic-like behavior. Cell Commun Signal 2023; 21:196. [PMID: 37940970 PMCID: PMC10634184 DOI: 10.1186/s12964-023-01188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/06/2023] [Indexed: 11/10/2023] Open
Abstract
The GPCR HCAR1 is known to be the sole receptor for lactate, which modulates its metabolic effects. Despite its significant role in many processes, mice deficient in HCAR1 exhibit no visible phenotype and are healthy and fertile. We performed transcriptomic analysis on HCAR1 deficient cells, in combination with lactate, to explore pathophysiologically altered processes. Processes such as immune regulation, various cancers, and neurodegenerative diseases were significantly enriched for HCAR1 transcriptomic signature. However, the most affected process of all was autism spectrum disorder. We performed behavioral tests on HCAR1 KO mice and observed that these mice manifest autistic-like behavior. Our data opens new avenues for research on HCAR1 and lactate effect at a pathological level. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Program in Molecular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada.
- Department of Pediatrics, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | - Gael Cagnone
- Department of Pediatrics, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - Sylvain Chemtob
- Program in Molecular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada.
- Department of Pediatrics, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
73
|
Rajala RVS, Rajala A. Unlocking the role of lactate: metabolic pathways, signaling, and gene regulation in postmitotic retinal cells. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1296624. [PMID: 38983010 PMCID: PMC11182115 DOI: 10.3389/fopht.2023.1296624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/19/2023] [Indexed: 07/11/2024]
Abstract
The Warburg effect, which was first described a century ago, asserts that mitotic tumor cells generate higher quantities of lactate. Intriguingly, even in typical physiological circumstances, postmitotic retinal photoreceptor cells also produce elevated levels of lactate. Initially classified as metabolic waste, lactate has since gained recognition as a significant intracellular signaling mediator and extracellular ligand. This current review endeavors to provide a concise overview and discourse on the following topics: the localization of lactate-producing enzymes, the functional significance of these enzymes, the signaling functions of lactate, and its impact on the gene expression of photoreceptors in retinal cells.
Collapse
Affiliation(s)
- Raju V. S. Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Departments of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Ammaji Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
74
|
Chen S, Zhou X, Li W, Yang X, Niu X, Hu Z, Li S, Chen G, Sui X, Liu J, Gao Y. Development of a novel peptide targeting GPR81 to suppress adipocyte-mediated tumor progression. Biochem Pharmacol 2023; 217:115800. [PMID: 37696459 DOI: 10.1016/j.bcp.2023.115800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
GPR81, initially discovered in adipocytes, has been found to suppress lipolysis when activated. However, the current small molecules that target GPR81 carry the risk of off-target effects, and their impact on tumor progression remains uncertain. Here, we utilized phage display technology to screen a GPR81-targeting peptide named 7w-2 and proceeded to demonstrate its bioactivity. Although 7w-2 did not affect the proliferation of tumor cells, it effectively reduced adipocyte catabolism in vitro, consequently restraining the proliferation of co-cultured tumor cells. Furthermore, our findings revealed that 7w-2 could inhibit lipolysis in vivo, leading to a significant impediment in tumor growth and metastasis in the 4T1 murine tumor model. Additionally, 7w-2 exhibited the ability to significantly elevate the proportion and functionality of CD8+ T cells. Our study introduces 7w-2 as the first peptide targeting GPR81, shedding light on its potential role in adipocytes in suppressing tumor progression.
Collapse
Affiliation(s)
- Shaomeng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Zheng Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Shuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Juan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China.
| |
Collapse
|
75
|
Talarico GGM, Thoral E, Farhat E, Teulier L, Mennigen JA, Weber JM. Lactate signaling and fuel selection in rainbow trout: mobilization of energy reserves. Am J Physiol Regul Integr Comp Physiol 2023; 325:R556-R567. [PMID: 37694336 DOI: 10.1152/ajpregu.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Lactate is now recognized as a regulator of fuel selection in mammals because it inhibits lipolysis by binding to the hydroxycarboxylic acid receptor 1 (HCAR1). The goals of this study were to quantify the effects of exogenous lactate on: 1) lipolytic rate or rate of appearance of glycerol in the circulation (Ra glycerol) and hepatic glucose production (Ra glucose), and 2) key tissue proteins involved in lactate signaling, glucose transport, glycolysis, gluconeogenesis, lipolysis, and β-oxidation in rainbow trout. Measurements of fuel mobilization kinetics show that lactate does not affect lipolysis as it does in mammals (Ra glycerol remains at 7.3 ± 0.5 µmol·kg-1·min-1), but strongly reduces hepatic glucose production (16.4 ± 2.0 to 8.9 ± 1.2 µmol·kg-1·min-1). This reduction is likely induced by decreasing gluconeogenic flux through the inhibition of cytosolic phosphoenolpyruvate carboxykinase (Pck1, alternatively called Pepck1; 60% and 24% declines in gene expression and protein level, respectively). It is also caused by lactate substituting for glucose as a fuel in all tissues except white muscle that increases glut4a expression and has limited capacity for monocarboxylate transporter (Mct)-mediated lactate import. We conclude that lipolysis is not affected by hyperlactatemia because trout show no activation of autocrine Hcar1 signaling (gene expression of the receptor is unchanged or even repressed in red muscle). Lactate regulates fuel mobilization via Pck1-mediated suppression of gluconeogenesis and by replacing glucose as a fuel. This study highlights important functional differences in the Hcar1 signaling system between fish and mammals for the regulation of fuel selection.
Collapse
Affiliation(s)
| | - Elisa Thoral
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, École Nationale des Travaux Publics de l'État, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Elie Farhat
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Loïc Teulier
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, École Nationale des Travaux Publics de l'État, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Jan A Mennigen
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
76
|
Turchi R, Sciarretta F, Ceci V, Tiberi M, Audano M, Pedretti S, Panebianco C, Nesci V, Pazienza V, Ferri A, Carotti S, Chiurchiù V, Mitro N, Lettieri-Barbato D, Aquilano K. Butyrate prevents visceral adipose tissue inflammation and metabolic alterations in a Friedreich's ataxia mouse model. iScience 2023; 26:107713. [PMID: 37701569 PMCID: PMC10494209 DOI: 10.1016/j.isci.2023.107713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Friedreich's ataxia (FA) is a neurodegenerative disease resulting from a mutation in the FXN gene, leading to mitochondrial frataxin deficiency. FA patients exhibit increased visceral adiposity, inflammation, and heightened diabetes risk, negatively affecting prognosis. We investigated visceral white adipose tissue (vWAT) in a murine model (KIKO) to understand its role in FA-related metabolic complications. RNA-seq analysis revealed altered expression of inflammation, angiogenesis, and fibrosis genes. Diabetes-like traits, including larger adipocytes, immune cell infiltration, and increased lactate production, were observed in vWAT. FXN downregulation in cultured adipocytes mirrored vWAT diabetes-like features, showing metabolic shifts toward glycolysis and lactate production. Metagenomic analysis indicated a reduction in fecal butyrate-producing bacteria, known to exert antidiabetic effects. A butyrate-enriched diet restrained vWAT abnormalities and mitigated diabetes features in KIKO mice. Our work emphasizes the role of vWAT in FA-related metabolic issues and suggests butyrate as a safe and promising adjunct for FA management.
Collapse
Affiliation(s)
- Riccardo Turchi
- Department Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Veronica Ceci
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Audano
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Concetta Panebianco
- Gastroenterology Unit Fondazione IRCSS “Casa Sollievo della Sofferenza” Hospital San Giovanni Rotondo (FG)-Italy
| | - Valentina Nesci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valerio Pazienza
- Gastroenterology Unit Fondazione IRCSS “Casa Sollievo della Sofferenza” Hospital San Giovanni Rotondo (FG)-Italy
| | - Alberto Ferri
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute of Traslational Pharmacology, IFT-CNR, Rome, Italy
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy Research Unit, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Predictive Molecular Diagnostics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute of Traslational Pharmacology, IFT-CNR, Rome, Italy
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Daniele Lettieri-Barbato
- Department Biology, University of Rome Tor Vergata, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Katia Aquilano
- Department Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
77
|
Cimmino TP, Pagano E, Stornaiuolo M, Esposito G, Ammendola R, Cattaneo F. Formyl-peptide receptor 2 signalling triggers aerobic metabolism of glucose through Nox2-dependent modulation of pyruvate dehydrogenase activity. Open Biol 2023; 13:230336. [PMID: 37875162 PMCID: PMC10597678 DOI: 10.1098/rsob.230336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
The human formyl-peptide receptor 2 (FPR2) is activated by an array of ligands. By phospho-proteomic analysis we proved that FPR2 stimulation induces redox-regulated phosphorylation of many proteins involved in cellular metabolic processes. In this study, we investigated metabolic pathways activated in FPR2-stimulated CaLu-6 cells. The results showed an increased concentration of metabolites involved in glucose metabolism, and an enhanced uptake of glucose mediated by GLUT4, the insulin-regulated member of GLUT family. Accordingly, we observed that FPR2 transactivated IGF-IRβ/IRβ through a molecular mechanism that requires Nox2 activity. Since cancer cells support their metabolism via glycolysis, we analysed glucose oxidation and proved that FPR2 signalling promoted kinase activity of the bifunctional enzyme PFKFB2 through FGFR1/FRS2- and Akt-dependent phosphorylation. Furthermore, FPR2 stimulation induced IGF-IRβ/IRβ-, PI3K/Akt- and Nox-dependent inhibition of pyruvate dehydrogenase activity, thus preventing the entry of pyruvate in the tricarboxylic acid cycle. Consequently, we observed an enhanced FGFR-dependent lactate dehydrogenase (LDH) activity and lactate production in FPR2-stimulated cells. As LDH expression is transcriptionally regulated by c-Myc and HIF-1, we demonstrated that FPR2 signalling promoted c-Myc phosphorylation and Nox-dependent HIF-1α stabilization. These results strongly indicate that FPR2-dependent signalling can be explored as a new therapeutic target in treatment of human cancers.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
78
|
Geiseler SJ, Phan KD, Brox C, Nguyen TD, Tartanoglu C, Doosje HL, Christiansen CL, Liesz A, Morland C. Pre-stroke exercise does not reduce atrophy in healthy young adult mice. Neurosci Lett 2023; 814:137447. [PMID: 37604388 DOI: 10.1016/j.neulet.2023.137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Stroke is the main cause of acquired disability in adults. Exercise reduces the risk for stroke and protects against functional loss after stroke. An exercise-induced reduction in key risk factors probably contributes to the protective effect, but direct effects on the brain may also contribute to stroke protection. We previously reported that exercise increases angiogenesis and neurogenesis through activation of the lactate receptor HCA1. Here we exposed young adult wild-type mice and HCA1 knockout mice to interval exercise at high or medium intensity, or to intraperitoneal injections of L-lactate or saline for seven weeks before we induced experimental stroke by permanent occlusion of the distal medial cerebral artery (dMCA). The resulting cortical atrophy measured three weeks after stroke was unaffected by exercise or L-lactate pre-treatments, and independent of HCA1 activation. Our results suggest that the beneficial effect of exercise prior to stroke where no reperfusion occurs is limited in individuals who do not carry risk factors.
Collapse
Affiliation(s)
- Samuel J Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Kimberly D Phan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Camilla Brox
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Teresa D Nguyen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Can Tartanoglu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hanne-Lise Doosje
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway; Institute for Life Science and Technology, Hanzehogeschool, Groningen, the Netherlands
| | - Cathrine L Christiansen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Artur Liesz
- Institute for Stroke and Dementia Research, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
79
|
Chen X, Huang W, Zhang J, Li Y, Xing Z, Guo L, Jiang H, Zhang J. High-intensity interval training induces lactylation of fatty acid synthase to inhibit lipid synthesis. BMC Biol 2023; 21:196. [PMID: 37726733 PMCID: PMC10510295 DOI: 10.1186/s12915-023-01698-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The aim of study was to observe the effect of increased lactate levels during high-intensity interval training (HIIT) on protein lactylation, identify the target protein, and investigate the regulatory effect of lactylation on the function of the protein. METHODS C57B/L6 mice were divided into 3 groups: the control group, HIIT group, and dichloroacetate injection + HIIT group (DCA + HIIT). The HIIT and DCA + HIIT groups underwent 8 weeks of HIIT treatment, and the DCA + HIIT group was injected DCA before HIIT treatment. The expression of lipid metabolism-related genes was determined. Protein lactylation in subcutaneous adipose tissue was identified and analyzed using 4D label-free lactylation quantitative proteomics and bioinformatics analyses. The fatty acid synthase (FASN) lactylation and activity was determined. RESULTS HIIT had a significant effect on fat loss; this effect was weakened when lactate production was inhibited. HIIT significantly upregulated the protein lactylation while lactate inhibition downregulated in iWAT. FASN had the most modification sites. Lactate treatment increased FASN lactylation levels, inhibited FASN activity, and reduced palmitate and triglyceride synthesis in 3T3-L1 cells. CONCLUSIONS This investigation revealed that lactate produced by HIIT increased protein pan-lactylation levels in iWAT. FASN lactylation inhibited de novo lipogenesis, which may be an important mechanism in HIIT-induced fat loss.
Collapse
Affiliation(s)
- Xuefei Chen
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
- School of Physical Education Institute (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Wenhua Huang
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Jingbo Zhang
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Yanjun Li
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Zheng Xing
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Lanlan Guo
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
80
|
Liu W, Zhang S, Li Q, Wu Y, Jia X, Feng W, Li Z, Shi Y, Hou Q, Ma J, Liu Y, Gao P, Ganz T, Liu S. Lactate modulates iron metabolism by binding soluble adenylyl cyclase. Cell Metab 2023; 35:1597-1612.e6. [PMID: 37480842 DOI: 10.1016/j.cmet.2023.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/18/2023] [Accepted: 06/27/2023] [Indexed: 07/24/2023]
Abstract
Overproduction of lactate (LA) can occur during exercise and in many diseases such as cancers. Individuals with hyperlactatemia often display anemia, decreased serum iron, and elevated hepcidin, a key regulator of iron metabolism. However, it is unknown whether and how LA regulates hepcidin expression. Here, we show LA binds to soluble adenylyl cyclase (sAC) in normal hepatocytes and affects systemic iron homeostasis in mice by increasing hepcidin expression. Comprehensive in vitro, in vivo, and in silico experiments show that the LA-sAC interaction raises cyclic adenosine monophosphate (cAMP) levels, which activates the PKA-Smad1/5/8 signaling pathway to increase hepcidin transcription. We verified this regulatory axis in wild-type mice and in mice with disordered iron homeostasis. LA also regulates hepcidin in humans at rest and subjected to extensive exercise that produce elevated LA. Our study links hyperlactatemia to iron deficiency, offering a mechanistic explanation for anemias seen in athletes and patients with lactic acidosis.
Collapse
Affiliation(s)
- Wei Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Quanjin Li
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenya Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaolong Li
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhi Hou
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Liu
- National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China; Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, China
| | - Pu Gao
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
81
|
Xing W, Li X, Zhou Y, Li M, Zhu M. Lactate metabolic pathway regulates tumor cell metastasis and its use as a new therapeutic target. EXPLORATION OF MEDICINE 2023:541-559. [DOI: https:/doi.org/10.37349/emed.2023.00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/17/2023] [Indexed: 09/04/2023] Open
Abstract
Abnormal energy metabolism is one of the ten hallmarks of tumors, and tumor cell metabolism provides energy and a suitable microenvironment for tumorigenesis and metastasis. Tumor cells can consume large amounts of glucose and produce large amounts of lactate through glycolysis even in the presence of oxygen, a process called aerobic glycolysis, also known as the Warburg effect. Lactate is the end product of the aerobic glycolysis. Lactate dehydrogenase A (LDHA), which is highly expressed in cancer cells, promotes lactate production and transports lactate to the tumor microenvironment and is taken up by surrounding stromal cells under the action of monocarboxylate transporter 1/4 (MCT1/4), which in turn influences the immune response and enhances the invasion and metastasis of cancer cells. Therapeutic strategies targeting lactate metabolism have been intensively investigated, focusing on its metastasis-promoting properties and various target inhibitors; AZD3965, an MCT1 inhibitor, has entered phase I clinical trials, and the LDHA inhibitor N-hydroxyindole (NHI) has shown cancer therapeutic activity in pre-clinical studies. Interventions targeting lactate metabolism are emerging as a promising option for cancer therapy, with chemotherapy or radiotherapy combined with lactate-metabolism-targeted drugs adding to the effectiveness of cancer treatment. Based on current research, this article outlines the role of lactate metabolism in tumor metastasis and the potential value of inhibitors targeting lactate metabolism in cancer therapy.
Collapse
Affiliation(s)
- Weimei Xing
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China
| | - Xiaowei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China
| | - Yuli Zhou
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China; Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou 570311, Hainan, China; Institution of Tumour, First Affiliated Hospital, Hainan Medical University, Haikou 570102, Hainan, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China
| |
Collapse
|
82
|
Colucci ACM, Tassinari ID, Loss EDS, de Fraga LS. History and Function of the Lactate Receptor GPR81/HCAR1 in the Brain: A Putative Therapeutic Target for the Treatment of Cerebral Ischemia. Neuroscience 2023; 526:144-163. [PMID: 37391123 DOI: 10.1016/j.neuroscience.2023.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
GPR81 is a G-protein coupled receptor (GPCR) discovered in 2001, but deorphanized only 7 years later, when its affinity for lactate as an endogenous ligand was demonstrated. More recently, GPR81 expression and distribution in the brain were also confirmed and the function of lactate as a volume transmitter has been suggested since then. These findings shed light on a new function of lactate acting as a signaling molecule in the central nervous system, in addition to its well-known role as a metabolic fuel for neurons. GPR81 seems to act as a metabolic sensor, coupling energy metabolism, synaptic activity, and blood flow. Activation of this receptor leads to Gi-mediated downregulation of adenylyl cyclase and subsequent reduction in cAMP levels, regulating several downstream pathways. Recent studies have also suggested the potential role of lactate as a neuroprotective agent, mainly under brain ischemic conditions. This effect is usually attributed to the metabolic role of lactate, but the underlying mechanisms need further investigation and could be related to lactate signaling via GPR81. The activation of GPR81 showed promising results for neuroprotection: it modulates many processes involved in the pathophysiology of ischemia. In this review, we summarize the history of GPR81, starting with its deorphanization; then, we discuss GPR81 expression and distribution, signaling transduction cascades, and neuroprotective roles. Lastly, we propose GPR81 as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Anna Clara Machado Colucci
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental (LABENEX), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil.
| |
Collapse
|
83
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
84
|
Brenmoehl J, Brosig E, Trakooljul N, Walz C, Ohde D, Noce A, Walz M, Langhammer M, Petkov S, Röntgen M, Maak S, Galuska CE, Fuchs B, Kuhla B, Ponsuksili S, Wimmers K, Hoeflich A. Metabolic Pathway Modeling in Muscle of Male Marathon Mice (DUhTP) and Controls (DUC)-A Possible Role of Lactate Dehydrogenase in Metabolic Flexibility. Cells 2023; 12:1925. [PMID: 37566003 PMCID: PMC10417281 DOI: 10.3390/cells12151925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
In contracting muscles, carbohydrates and fatty acids serve as energy substrates; the predominant utilization depends on the workload. Here, we investigated the contribution of non-mitochondrial and mitochondrial metabolic pathways in response to repeated training in a polygenic, paternally selected marathon mouse model (DUhTP), characterized by exceptional running performance and an unselected control (DUC), with both lines descended from the same genetic background. Both lines underwent three weeks of high-speed treadmill training or were sedentary. Both lines' muscles and plasma were analyzed. Muscle RNA was sequenced, and KEGG pathway analysis was performed. Analyses of muscle revealed no significant selection-related differences in muscle structure. However, in response to physical exercise, glucose and fatty acid oxidation were stimulated, lactate dehydrogenase activity was reduced, and lactate formation was inhibited in the marathon mice compared with trained control mice. The lack of lactate formation in response to exercise appears to be associated with increased lipid mobilization from peripheral adipose tissue in DUhTP mice, suggesting a specific benefit of lactate avoidance. Thus, results from the analysis of muscle metabolism in born marathon mice, shaped by 35 years (140 generations) of phenotype selection for superior running performance, suggest increased metabolic flexibility in male marathon mice toward lipid catabolism regulated by lactate dehydrogenase.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Elli Brosig
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Christina Walz
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Daniela Ohde
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Antonia Noce
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Department of Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Michael Walz
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Martina Langhammer
- Lab Animal Facility, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Stefan Petkov
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Monika Röntgen
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Christina E. Galuska
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Beate Fuchs
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutrition, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
85
|
Emhoff CAW, Messonnier LA. Concepts of Lactate Metabolic Clearance Rate and Lactate Clamp for Metabolic Inquiry: A Mini-Review. Nutrients 2023; 15:3213. [PMID: 37513631 PMCID: PMC10385598 DOI: 10.3390/nu15143213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Lactate is known to play a central role in the link between glycolytic and mitochondrial oxidative metabolism, as well as to serve as a primary gluconeogenic precursor. Blood lactate concentration is sensitive to the metabolic state of tissues and organs as lactate rates of appearance and disposal/disappearance in the circulation rise and fall in response to physical exercise and other metabolic disturbances. The highest lactate flux rates have been measured during moderate intensity exercise in endurance-trained individuals who exhibit muscular and metabolic adaptations lending to superior oxidative capacity. In contrast, a diminished ability to utilize lactate is associated with poor metabolic fitness. Given these widespread implications in exercise performance and health, we discuss the concept of lactate metabolic clearance rate, which increases at the onset of exercise and, unlike flux rates, reaches a peak just below the power output associated with the maximal lactate steady state. The metabolic clearance rate is determined by both disposal rate and blood concentration, two parameters that are mutually interdependent and thus difficult to parse during steady state exercise studies. We review the evolution of the in vivo lactate clamp methodology to control blood lactate concentration and discuss its application in the investigation of whole-body lactate disposal capacities. In conclusion, we assert that the lactate clamp is a useful research methodology for examining lactate flux, in particular the factors that drive metabolic clearance rate.
Collapse
Affiliation(s)
- Chi-An W Emhoff
- Department of Kinesiology, Saint Mary's College of California, Moraga, CA 94575, USA
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, F-73000 Chambéry, France
| | - Laurent A Messonnier
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, F-73000 Chambéry, France
| |
Collapse
|
86
|
Raph SM, Dwenger MM, Hu X, Nystoriak MA. Basal NAD(H) redox state permits hydrogen peroxide-induced mesenteric artery dilatation. J Physiol 2023; 601:2621-2634. [PMID: 37114864 PMCID: PMC11714382 DOI: 10.1113/jp284195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Smooth muscle voltage-gated K+ (Kv) channels in resistance arteries control vascular tone and contribute to the coupling of blood flow with local metabolic activity. Members of the Kv1 family are expressed in vascular smooth muscle and are modulated upon physiological elevation of local metabolites, including the glycolytic end-product l-lactate and superoxide-derived hydrogen peroxide (H2 O2 ). Here, we show that l-lactate elicits vasodilatation of small-diameter mesenteric arteries in a mechanism that requires lactate dehydrogenase (LDH). Using the inside-out configuration of the patch clamp technique, we show that increases in NADH that reflect LDH-mediated conversion of l-lactate to pyruvate directly stimulate the activity of single Kv1 channels and significantly enhance the sensitivity of Kv1 activity to H2 O2 . Consistent with these findings, H2 O2 -evoked vasodilatation was significantly greater in the presence of 10 mM l-lactate relative to lactate-free conditions, yet was abolished in the presence of 10 mM pyruvate, which shifts the LDH reaction towards the generation of NAD+ . Moreover, the enhancement of H2 O2 -induced vasodilatation was abolished in arteries from double transgenic mice with selective overexpression of the intracellular Kvβ1.1 subunit in smooth muscle cells. Together, our results indicate that the Kvβ complex of native vascular Kv1 channels serves as a nodal effector for multiple redox signals to precisely control channel activity and vascular tone in the face of dynamic tissue-derived metabolic cues. KEY POINTS: Vasodilatation of mesenteric arteries by elevated external l-lactate requires its conversion by lactate dehydrogenase. Application of either NADH or H2 O2 potentiates single Kv channel currents in excised membrane patches from mesenteric artery smooth muscle cells. The binding of NADH enhances the stimulatory effects of H2 O2 on single Kv channel activity. The vasodilatory response to H2 O2 is differentially modified upon elevation of external l-lactate or pyruvate. The presence of l-lactate enhances the vasodilatory response to H2 O2 via the Kvβ subunit complex in smooth muscle.
Collapse
Affiliation(s)
- Sean M. Raph
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202
| | - Marc M. Dwenger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202
| | - Xuemei Hu
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
87
|
Wei B, Peng Z, Xiao M, Huang T, Yang S, Liu K, Wu M, Zheng W, Xie M, Xiong T. Modulation of the Microbiome-Fat-Liver Axis by Lactic Acid Bacteria: A Potential Alleviated Role in High-Fat-Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390401 DOI: 10.1021/acs.jafc.3c03149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The major characteristics of obesity are abnormal lipid metabolism, chronic inflammation, and imbalanced gut microbiota. It has been reported that lactic acid bacteria (LAB) possess potential for alleviating obesity, considering which the strain-specific functions and diverse mechanisms and the roles and mechanisms of various LAB are worthy of investigation. This study aimed to validate and investigate the alleviating effects and underlying mechanisms of three LAB strains, Lactiplantibacillus plantarum NCUH001046 (LP), Limosilactobacillus reuteri NCUH064003, and Limosilactobacillus fermentum NCUH003068 (LF), in high-fat-diet-induced obese mice. The findings demonstrated that the three strains, particularly LP, suppressed body weight gain and fat deposition; ameliorated lipid disorders, liver and adipocyte morphology, and chronic low-grade inflammation; and reduced lipid synthesis via activating the adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway. In addition, LP and LF decreased the enrichment of bacteria positively correlated with obesity, like Mucispirillum, Olsenella, and Streptococcus, but facilitated the growth of beneficial bacteria negatively correlated with obesity, like Roseburia, Coprococcus, and Bacteroides, along with increasing the short-chain fatty acid levels. It is deduced that the underlying alleviating mechanism of LP was to modulate the hepatic AMPK signaling pathway and gut microbiota by the microbiome-fat-liver axis to alleviate obesity development. In conclusion, as a diet supplement, LP has promising potential in obesity prevention and treatment.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Zhen Peng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Shiyu Yang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Kui Liu
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Min Wu
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| |
Collapse
|
88
|
Cauli B, Dusart I, Li D. Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol Dis 2023:106207. [PMID: 37331530 DOI: 10.1016/j.nbd.2023.106207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
Over the last decades, lactate has emerged as important energy substrate for the brain fueling of neurons. A growing body of evidence now indicates that it is also a signaling molecule modulating neuronal excitability and activity as well as brain functions. In this review, we will briefly summarize how different cell types produce and release lactate. We will further describe different signaling mechanisms allowing lactate to fine-tune neuronal excitability and activity, and will finally discuss how these mechanisms could cooperate to modulate neuroenergetics and higher order brain functions both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France.
| | - Isabelle Dusart
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
89
|
Wu P, Zhu T, Huang Y, Fang Z, Luo F. Current understanding of the contribution of lactate to the cardiovascular system and its therapeutic relevance. Front Endocrinol (Lausanne) 2023; 14:1205442. [PMID: 37396168 PMCID: PMC10309561 DOI: 10.3389/fendo.2023.1205442] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Research during the past decades has yielded numerous insights into the presence and function of lactate in the body. Lactate is primarily produced via glycolysis and plays special roles in the regulation of tissues and organs, particularly in the cardiovascular system. In addition to being a net consumer of lactate, the heart is also the organ in the body with the greatest lactate consumption. Furthermore, lactate maintains cardiovascular homeostasis through energy supply and signal regulation under physiological conditions. Lactate also affects the occurrence, development, and prognosis of various cardiovascular diseases. We will highlight how lactate regulates the cardiovascular system under physiological and pathological conditions based on evidence from recent studies. We aim to provide a better understanding of the relationship between lactate and cardiovascular health and provide new ideas for preventing and treating cardiovascular diseases. Additionally, we will summarize current developments in treatments targeting lactate metabolism, transport, and signaling, including their role in cardiovascular diseases.
Collapse
Affiliation(s)
- Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Tengteng Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyuan Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
90
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
91
|
Zorec R, Vardjan N. Adrenergic regulation of astroglial aerobic glycolysis and lipid metabolism: Towards a noradrenergic hypothesis of neurodegeneration. Neurobiol Dis 2023; 182:106132. [PMID: 37094775 DOI: 10.1016/j.nbd.2023.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Ageing is a key factor in the development of cognitive decline and dementia, an increasing and challenging problem of the modern world. The most commonly diagnosed cognitive decline is related to Alzheimer's disease (AD), the pathophysiology of which is poorly understood. Several hypotheses have been proposed. The cholinergic hypothesis is the oldest, however, recently the noradrenergic system has been considered to have a role as well. The aim of this review is to provide evidence that supports the view that an impaired noradrenergic system is causally linked to AD. Although dementia is associated with neurodegeneration and loss of neurons, this likely develops due to a primary failure of homeostatic cells, astrocytes, abundant and heterogeneous neuroglial cells in the central nervous system (CNS). The many functions that astrocytes provide to maintain the viability of neural networks include the control of ionic balance, neurotransmitter turnover, synaptic connectivity and energy balance. This latter function is regulated by noradrenaline, released from the axon varicosities of neurons arising from the locus coeruleus (LC), the primary site of noradrenaline release in the CNS. The demise of the LC is linked to AD, whereby a hypometabolic CNS state is observed clinically. This is likely due to impaired release of noradrenaline in the AD brain during states of arousal, attention and awareness. These functions controlled by the LC are needed for learning and memory formation and require activation of the energy metabolism. In this review, we address first the process of neurodegeneration and cognitive decline, highlighting the function of astrocytes. Cholinergic and/or noradrenergic deficits lead to impaired astroglial function. Then, we focus on adrenergic control of astroglial aerobic glycolysis and lipid droplet metabolism, which play a protective role but also promote neurodegeneration under some circumstances, supporting the noradrenergic hypothesis of cognitive decline. We conclude that targeting astroglial metabolism, glycolysis and/or mitochondrial processes may lead to important new developments in the future when searching for medicines to prevent or even halt cognitive decline.
Collapse
Affiliation(s)
- Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| |
Collapse
|
92
|
Zhou W, Simic P, Zhou IY, Caravan P, Vela Parada X, Wen D, Washington OL, Shvedova M, Pierce KA, Clish CB, Mannstadt M, Kobayashi T, Wein MN, Jüppner H, Rhee EP. Kidney glycolysis serves as a mammalian phosphate sensor that maintains phosphate homeostasis. J Clin Invest 2023; 133:e164610. [PMID: 36821389 PMCID: PMC10104895 DOI: 10.1172/jci164610] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
How phosphate levels are detected in mammals is unknown. The bone-derived hormone fibroblast growth factor 23 (FGF23) lowers blood phosphate levels by reducing kidney phosphate reabsorption and 1,25(OH)2D production, but phosphate does not directly stimulate bone FGF23 expression. Using PET scanning and LC-MS, we found that phosphate increases kidney-specific glycolysis and synthesis of glycerol-3-phosphate (G-3-P), which then circulates to bone to trigger FGF23 production. Further, we found that G-3-P dehydrogenase 1 (Gpd1), a cytosolic enzyme that synthesizes G-3-P and oxidizes NADH to NAD+, is required for phosphate-stimulated G-3-P and FGF23 production and prevention of hyperphosphatemia. In proximal tubule cells, we found that phosphate availability is substrate-limiting for glycolysis and G-3-P production and that increased glycolysis and Gpd1 activity are coupled through cytosolic NAD+ recycling. Finally, we show that the type II sodium-dependent phosphate cotransporter Npt2a, which is primarily expressed in the proximal tubule, conferred kidney specificity to phosphate-stimulated G-3-P production. Importantly, exogenous G-3-P stimulated FGF23 production when Npt2a or Gpd1 were absent, confirming that it was the key circulating factor downstream of glycolytic phosphate sensing in the kidney. Together, these findings place glycolysis at the nexus of mineral and energy metabolism and identify a kidney-bone feedback loop that controls phosphate homeostasis.
Collapse
Affiliation(s)
- Wen Zhou
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Petra Simic
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Xavier Vela Parada
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Donghai Wen
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Onica L. Washington
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Shvedova
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kerry A. Pierce
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael Mannstadt
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tatsuya Kobayashi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marc N. Wein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eugene P. Rhee
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
93
|
Lund J, Breum AW, Gil C, Falk S, Sass F, Isidor MS, Dmytriyeva O, Ranea-Robles P, Mathiesen CV, Basse AL, Johansen OS, Fadahunsi N, Lund C, Nicolaisen TS, Klein AB, Ma T, Emanuelli B, Kleinert M, Sørensen CM, Gerhart-Hines Z, Clemmensen C. The anorectic and thermogenic effects of pharmacological lactate in male mice are confounded by treatment osmolarity and co-administered counterions. Nat Metab 2023; 5:677-698. [PMID: 37055619 DOI: 10.1038/s42255-023-00780-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.
Collapse
Affiliation(s)
- Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Alberte Wollesen Breum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cláudia Gil
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Adipocyte Signaling, University of Southern Denmark, Odense, Denmark
| | - Marie Sophie Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Linde Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olivia Sveidahl Johansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Adipocyte Signaling, University of Southern Denmark, Odense, Denmark
| | - Nicole Fadahunsi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Sand Nicolaisen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bue Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Muscle Physiology and Metabolism Group, German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Center for Adipocyte Signaling, University of Southern Denmark, Odense, Denmark.
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
94
|
Abdelmoez AM, Dmytriyeva O, Zurke YX, Trauelsen M, Marica AA, Savikj M, Smith JAB, Monaco C, Schwartz TW, Krook A, Pillon NJ. Cell selectivity in succinate receptor SUCNR1/GPR91 signaling in skeletal muscle. Am J Physiol Endocrinol Metab 2023; 324:E289-E298. [PMID: 36812387 DOI: 10.1152/ajpendo.00009.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Succinate is released by skeletal muscle during exercise and activates SUCNR1/GPR91. Signaling of SUCNR1 is involved in metabolite-sensing paracrine communication in skeletal muscle during exercise. However, the specific cell types responding to succinate and the directionality of communication are unclear. We aim to characterize the expression of SUCNR1 in human skeletal muscle. De novo analysis of transcriptomic datasets demonstrated that SUCNR1 mRNA is expressed in immune, adipose, and liver tissues, but scarce in skeletal muscle. In human tissues, SUCNR1 mRNA was associated with macrophage markers. Single-cell RNA sequencing and fluorescent RNAscope demonstrated that in human skeletal muscle, SUCNR1 mRNA is not expressed in muscle fibers but coincided with macrophage populations. Human M2-polarized macrophages exhibit high levels of SUCNR1 mRNA and stimulation with selective agonists of SUCNR1 triggered Gq- and Gi-coupled signaling. Primary human skeletal muscle cells were unresponsive to SUCNR1 agonists. In conclusion, SUCNR1 is not expressed in muscle cells and its role in the adaptive response of skeletal muscle to exercise is most likely mediated via paracrine mechanisms involving M2-like macrophages within the muscle.NEW & NOTEWORTHY Macrophages but not skeletal muscle cells respond to extracellular succinate via SUCNR1/GPR91.
Collapse
Affiliation(s)
- Ahmed M Abdelmoez
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yasemin-Xiomara Zurke
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Mette Trauelsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alesandra A Marica
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
95
|
Villanueva-Carmona T, Cedó L, Madeira A, Ceperuelo-Mallafré V, Rodríguez-Peña MM, Núñez-Roa C, Maymó-Masip E, Repollés-de-Dalmau M, Badia J, Keiran N, Mirasierra M, Pimenta-Lopes C, Sabadell-Basallote J, Bosch R, Caubet L, Escolà-Gil JC, Fernández-Real JM, Vilarrasa N, Ventura F, Vallejo M, Vendrell J, Fernández-Veledo S. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab 2023; 35:601-619.e10. [PMID: 36977414 DOI: 10.1016/j.cmet.2023.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.
Collapse
Affiliation(s)
- Teresa Villanueva-Carmona
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Lídia Cedó
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Madeira
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Victòria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - M-Mar Rodríguez-Peña
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Catalina Núñez-Roa
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Elsa Maymó-Masip
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria Repollés-de-Dalmau
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Joan Badia
- Institut d'Oncologia de la Catalunya Sud, Hospital Universitari Sant Joan de Reus, IISPV, Reus 43204, Spain
| | - Noelia Keiran
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mercedes Mirasierra
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Joan Sabadell-Basallote
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ramón Bosch
- Department of Pathology, Oncological Pathology and Bioinformatics Research Group, Hospital de Tortosa Verge de la Cinta, IISPV, Tortosa 43500, Spain
| | - Laura Caubet
- General and Digestive Surgery Service, Hospital Sant Pau i Santa Tecla, Institut d'Investigació Sanitària Pere Virgili, Tarragona 43003, Spain
| | - Joan Carles Escolà-Gil
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona 08041, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Salt 17190, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona 17004, Spain
| | - Nuria Vilarrasa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Endocrinology and Nutrition, Hospital Universitari Bellvitge - IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Mario Vallejo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Joan Vendrell
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
96
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
97
|
Brooks GA, Osmond AD, Arevalo JA, Duong JJ, Curl CC, Moreno-Santillan DD, Leija RG. Lactate as a myokine and exerkine: drivers and signals of physiology and metabolism. J Appl Physiol (1985) 2023; 134:529-548. [PMID: 36633863 PMCID: PMC9970662 DOI: 10.1152/japplphysiol.00497.2022] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
No longer viewed as a metabolic waste product and cause of muscle fatigue, a contemporary view incorporates the roles of lactate in metabolism, sensing and signaling in normal as well as pathophysiological conditions. Lactate exists in millimolar concentrations in muscle, blood, and other tissues and can rise more than an order of magnitude as the result of increased production and clearance limitations. Lactate exerts its powerful driver-like influence by mass action, redox change, allosteric binding, and other mechanisms described in this article. Depending on the condition, such as during rest and exercise, following carbohydrate nutrition, injury, or pathology, lactate can serve as a myokine or exerkine with autocrine-, paracrine-, and endocrine-like functions that have important basic and translational implications. For instance, lactate signaling is: involved in reproductive biology, fueling the heart, muscle adaptation, and brain executive function, growth and development, and a treatment for inflammatory conditions. Lactate also works with many other mechanisms and factors in controlling cardiac output and pulmonary ventilation during exercise. Ironically, lactate can be disruptive of normal processes such as insulin secretion when insertion of lactate transporters into pancreatic β-cell membranes is not suppressed, and in carcinogenesis when factors that suppress carcinogenesis are inhibited, whereas factors that promote carcinogenesis are upregulated. Lactate signaling is important in areas of intermediary metabolism, redox biology, mitochondrial biogenesis, neurobiology, gut physiology, appetite regulation, nutrition, and overall health and vigor. The various roles of lactate as a myokine and exerkine are reviewed.NEW & NOTEWORTHY Lactate sensing and signaling is a relatively new and rapidly changing field. As a physiological signal lactate works both independently and in concert with other signals. Lactate operates via covalent binding and canonical signaling, redox change, and lactylation of DNA. Lactate can also serve as an element of feedback loops in cardiopulmonary regulation. From conception through aging lactate is not the only a myokine or exerkine, but it certainly deserves consideration as a physiological signal.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Diana D Moreno-Santillan
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| |
Collapse
|
98
|
Nordström F, Liegnell R, Apró W, Blackwood SJ, Katz A, Moberg M. The lactate receptor GPR81 is predominantly expressed in type II human skeletal muscle fibers: potential for lactate autocrine signaling. Am J Physiol Cell Physiol 2023; 324:C477-C487. [PMID: 36622074 DOI: 10.1152/ajpcell.00443.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gi-coupled protein receptor 81 (GPR81) was first identified in adipocytes as a receptor for l-lactate, which upon binding inhibits cyclicAMP (cAMP)-protein kinase (PKA)-cAMP-response element binding (CREB) signaling. Moreover, incubation of myotubes with lactate augments expression of GPR81 and genes and proteins involved in lactate- and energy metabolism. However, characterization of GPR81 expression and investigation of related signaling in human skeletal muscle under conditions of elevated circulating lactate levels are lacking. Muscle biopsies were obtained from healthy men and women at rest, after leg extension exercise, with or without venous infusion of sodium lactate, and 90 and 180 min after exercise (8 men and 8 women). Analyses included protein and mRNA levels of GPR81, as well as GPR81-dependent signaling molecules. GPR81 expression was 2.5-fold higher in type II glycolytic compared with type I oxidative muscle fibers, and the expression was inversely related to the percentage of type I muscle fibers. Muscle from women expressed about 25% more GPR81 protein than from men. Global PKA activity increased by 5%-8% after exercise, with no differences between trials. CREBS133 phosphorylation was reduced by 30% after exercise and remained repressed during the entire trials, with no influence of the lactate infusion. The mRNA expression of vascular endothelial growth factor (VEGF) and peroxisome-proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) were increased by 2.5-6-fold during recovery, and that of lactate dehydrogenase reduced by 15% with no differences between trials for any gene at any time point. The high expression of GPR81-protein in type II fibers suggests that lactate functions as an autocrine signaling molecule in muscle; however, lactate does not appear to regulate CREB signaling during exercise.
Collapse
Affiliation(s)
- Fabian Nordström
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, https://ror.org/046hach49Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Rasmus Liegnell
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, https://ror.org/046hach49Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, https://ror.org/046hach49Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Sarah J Blackwood
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, https://ror.org/046hach49Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Abram Katz
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, https://ror.org/046hach49Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marcus Moberg
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, https://ror.org/046hach49Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
99
|
Tumor lactic acid: a potential target for cancer therapy. Arch Pharm Res 2023; 46:90-110. [PMID: 36729274 DOI: 10.1007/s12272-023-01431-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Tumor development is influenced by circulating metabolites and most tumors are exposed to substantially elevated levels of lactic acid and low levels of nutrients, such as glucose and glutamine. Tumor-derived lactic acid, the major circulating carbon metabolite, regulates energy metabolism and cancer cell signaling pathways, while also acting as an energy source and signaling molecule. Recent studies have yielded new insights into the pro-tumorigenic action of lactic acid and its metabolism. These insights suggest an anti-tumor therapeutic strategy targeting the oncometabolite lactic acid, with the aim of improving the efficacy and clinical safety of tumor metabolism inhibitors. This review describes the current understanding of the multifunctional roles of tumor lactic acid, as well as therapeutic approaches targeting lactic acid metabolism, including lactate dehydrogenase and monocarboxylate transporters, for anti-cancer therapy.
Collapse
|
100
|
Wu Y, Ma W, Liu W, Zhang S. Lactate: a pearl dropped in the ocean-an overlooked signal molecule in physiology and pathology. Cell Biol Int 2023; 47:295-307. [PMID: 36511218 DOI: 10.1002/cbin.11975] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Lactate, once recognized as a wasty product from anaerobic glycolysis, is proved to be a pivotal signal molecule. Lactate accumulation occurs in diverse physiological and pathological settings due to the imbalance between lactate production and clearance. Under the condition with drastic changes in local microenvironment, such as tumorigenesis, inflammation, and microbial infection, the glycolysis turns to be active in surrounding cells leading to increased lactate release. Meanwhile, lactate can be utilized by these cells as an energy substrate and acts as a signal molecule to regulate cell functions through receptor-dependent or independent pathways. In this review, we tended to tease out the contribution of lactate in tumor progression and immunomodulation. And we also discussed the accessory role of lactate, beyond as the energy source only, in the growth of invading pathogens.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wanqi Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|