51
|
Chen Q, Zhang M, Pan X, Yuan X, Zhou L, Yan L, Zeng LH, Xu J, Yang B, Zhang L, Huang J, Lu W, Fukagawa T, Wang F, Yan H. Bub1 and CENP-U redundantly recruit Plk1 to stabilize kinetochore-microtubule attachments and ensure accurate chromosome segregation. Cell Rep 2021; 36:109740. [PMID: 34551298 DOI: 10.1016/j.celrep.2021.109740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/03/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Bub1 is required for the kinetochore/centromere localization of two essential mitotic kinases Plk1 and Aurora B. Surprisingly, stable depletion of Bub1 by ∼95% in human cells marginally affects whole chromosome segregation fidelity. We show that CENP-U, which is recruited to kinetochores by the CENP-P and CENP-Q subunits of the CENP-O complex, is required to prevent chromosome mis-segregation in Bub1-depleted cells. Mechanistically, Bub1 and CENP-U redundantly recruit Plk1 to kinetochores to stabilize kinetochore-microtubule attachments, thereby ensuring accurate chromosome segregation. Furthermore, unlike its budding yeast homolog, the CENP-O complex does not regulate centromeric localization of Aurora B. Consistently, depletion of Bub1 or CENP-U sensitizes cells to the inhibition of Plk1 but not Aurora B kinase activity. Taken together, our findings provide mechanistic insight into the regulation of kinetochore function, which may have implications for targeted treatment of cancer cells with mutations perturbing kinetochore recruitment of Plk1 by Bub1 or the CENP-O complex.
Collapse
Affiliation(s)
- Qinfu Chen
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Pan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xueying Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Linli Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lu Yan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Long Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fangwei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Yan
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
52
|
Gao X, Herrero S, Wernet V, Erhardt S, Valerius O, Braus GH, Fischer R. The role of Aspergillus nidulans polo-like kinase PlkA in microtubule-organizing center control. J Cell Sci 2021; 134:271867. [PMID: 34328180 DOI: 10.1242/jcs.256537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) have been described in many cell types. The functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans, additional MTOCs have been discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates the activities of the SPB outer plaque and the sMTOC. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest that the polo-like kinase is a regulator of MTOC activities and acts as a scaffolding unit through interaction with γ-TuRC receptors.
Collapse
Affiliation(s)
- Xiaolei Gao
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Valentin Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Oliver Valerius
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Gerhard H Braus
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
53
|
Moriuchi T, Hirose F. SUMOylation of RepoMan during late telophase regulates dephosphorylation of lamin A. J Cell Sci 2021; 134:271831. [PMID: 34387316 PMCID: PMC8445599 DOI: 10.1242/jcs.247171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Dephosphorylation of lamin A, which triggers nuclear lamina reconstitution, is crucial for the completion of mitosis. However, the specific phosphatase and regulatory mechanism that allow timely lamin A dephosphorylation remain unclear. Here, we report that RepoMan (also known as CDCA2), a regulatory subunit of protein phosphatase 1γ (PP1γ) is transiently modified with SUMO-2 at K762 during late telophase. SUMOylation of RepoMan markedly enhanced its binding affinity with lamin A. Moreover, SUMOylated RepoMan contributes to lamin A recruitment to telophase chromosomes and dephosphorylation of the mitotic lamin A phosphorylation. Expression of a SUMO-2 mutant that has a defective interaction with the SUMO-interacting motif (SIM) resulted in failure of the lamin A and RepoMan association, along with abrogation of lamin A dephosphorylation and subsequent nuclear lamina formation. These findings strongly suggest that RepoMan recruits lamin A through SUMO–SIM interaction. Thus, transient SUMOylation of RepoMan plays an important role in the spatiotemporal regulation of lamin A dephosphorylation and the subsequent nuclear lamina formation at the end of mitosis. Summary: Transient SUMOylation of RepoMan controls the recruitment of lamin A to telophase chromosomes, lamin A dephosphorylation and nuclear lamina formation.
Collapse
Affiliation(s)
- Takanobu Moriuchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo, 678-1297, Japan
| | - Fumiko Hirose
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo, 678-1297, Japan
| |
Collapse
|
54
|
Maier NK, Ma J, Lampson MA, Cheeseman IM. Separase cleaves the kinetochore protein Meikin at the meiosis I/II transition. Dev Cell 2021; 56:2192-2206.e8. [PMID: 34331869 PMCID: PMC8355204 DOI: 10.1016/j.devcel.2021.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
To generate haploid gametes, germ cells undergo two consecutive meiotic divisions requiring key changes to the cell division machinery. Here, we demonstrate that the protease separase rewires key cell division processes at the meiosis I/II transition by cleaving the meiosis-specific protein Meikin. Separase proteolysis does not inactivate Meikin but instead alters its function to create a distinct activity state. Full-length Meikin and the C-terminal Meikin separase cleavage product both localize to kinetochores, bind to Plk1 kinase, and promote Rec8 cleavage, but our results reveal distinct roles for these proteins in controlling meiosis. Mutations that prevent Meikin cleavage or that conditionally inactivate Meikin at anaphase I result in defective meiosis II chromosome alignment in mouse oocytes. Finally, as oocytes exit meiosis, C-Meikin is eliminated by APC/C-mediated degradation prior to the first mitotic division. Thus, multiple regulatory events irreversibly modulate Meikin activity during successive meiotic divisions to rewire the cell division machinery at two distinct transitions.
Collapse
Affiliation(s)
- Nolan K Maier
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jun Ma
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
55
|
Cai G, Yang Q, Sun W. RSF1 in cancer: interactions and functions. Cancer Cell Int 2021; 21:315. [PMID: 34147108 PMCID: PMC8214769 DOI: 10.1186/s12935-021-02012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
RSF1, remodelling and spacing factor 1, is an important interphase centromere protein and is overexpressed in many types of cancers and correlated with poor overall survival. RSF1 has functions mainly in maintaining chromosome stability, facilitating DNA repair, maintaining the protein homeostasis of RSF1 and suppressing the transcription of some oncogenes when RSF1 protein is expressed at an optimal level; however, RSF1 overexpression facilitates drug resistance and cell cycle checkpoint inhibition to prompt cancer proliferation and survival. The RSF1 expression level and gene background are crucial for RSF1 functions, which may explain why RSF1 has different functions in different cancer types. This review summarizes the functional domains of RSF1, the overexpression status of RSF1 and SNF2H in cancer based on the TCGA and GTEX databases, the cancer-related functions of RSF1 in interacting with H2Aub, HDAC1, CENP-A, PLK1, ATM, CENP-S, SNF2H, HBX, BubR1, cyclin E1, CBP and NF-κB and the potential clinical value of RSF1, which will lay a theoretical foundation for the structural biology study of RSF1 and application of RSF1 inhibitors, truncated RSF1 proteins and SNF2H inhibitors in the treatment of RSF1-overexpressing tumours.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Wei Sun
- Department of Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
56
|
Woods K, Perry C, Brühlmann F, Olias P. Theileria's Strategies and Effector Mechanisms for Host Cell Transformation: From Invasion to Immortalization. Front Cell Dev Biol 2021; 9:662805. [PMID: 33959614 PMCID: PMC8096294 DOI: 10.3389/fcell.2021.662805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
One of the first events that follows invasion of leukocytes by Theileria sporozoites is the destruction of the surrounding host cell membrane and the rapid association of the intracellular parasite with host microtubules. This is essential for the parasite to establish its niche within the cytoplasm of the invaded leukocyte and sets Theileria spp. apart from other members of the apicomplexan phylum such as Toxoplasma gondii and Plasmodium spp., which reside within the confines of a host-derived parasitophorous vacuole. After establishing infection, transforming Theileria species (T. annulata, T. parva) significantly rewire the signaling pathways of their bovine host cell, causing continual proliferation and resistance to ligand-induced apoptosis, and conferring invasive properties on the parasitized cell. Having transformed its target cell, Theileria hijacks the mitotic machinery to ensure its persistence in the cytoplasm of the dividing cell. Some of the parasite and bovine proteins involved in parasite-microtubule interactions have been fairly well characterized, and the schizont expresses at least two proteins on its membrane that contain conserved microtubule binding motifs. Theileria-encoded proteins have been shown to be translocated to the host cell cytoplasm and nucleus where they have the potential to directly modify signaling pathways and host gene expression. However, little is known about their mode of action, and even less about how these proteins are secreted by the parasite and trafficked to their target location. In this review we explore the strategies employed by Theileria to transform leukocytes, from sporozoite invasion until immortalization of the host cell has been established. We discuss the recent description of nuclear pore-like complexes that accumulate on membranes close to the schizont surface. Finally, we consider putative mechanisms of protein and nutrient exchange that might occur between the parasite and the host. We focus in particular on differences and similarities with recent discoveries in T. gondii and Plasmodium species.
Collapse
Affiliation(s)
- Kerry Woods
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
57
|
Xu Y, Xu CL, Xu ZF, Wang XJ, Liang HS, Zeng ZC, Zeng LX, Wei KN, Deng SZ, Xie SJ, Jiang J, Liu YX, Cao YK, Wang HL. Fbf1 regulates mouse oocyte meiosis by influencing Plk1. Theriogenology 2021; 164:74-83. [PMID: 33561696 DOI: 10.1016/j.theriogenology.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 01/02/2023]
Abstract
Fas binding factor 1 (Fbf1) is one of the distal appendage proteins in the centriole, located at its distal and proximal ends. It influences the duplication and separation of centrosomes, thereby affecting the progression of the cell cycle during mitosis. However, the function of Fbf1 in meiosis has remained unclear. To explore the role of Fbf1 in the in vitro maturation of mouse oocyte, immunofluorescence staining was used to examine the Fbf1 location in the oocyte and their phenotype after protein deletion. Western blot was used to examine the protein abundance. This study showed that mouse oocytes express Fbf1 which locates at the spindle poles and around the microtubules. Through taxol and nocodazole treatment, and microinjection of siRNA, it was demonstrated that Fbf1 had an important role in the spindle assembly and chromosome separation during mouse oocyte meiosis In particular, microinjection of Fbf1-siRNA resulted in severe abnormalities in the spindle and chromosome arrangement, decreased aggregation of microtubules, disrupted the first oocyte meiosis, and the extrusion of the first polar body. Furthermore, in the Fbf1-siRNA group, there was reduced expression of Plk1 and its agglutination at the spindle poles, along with retarded chromosome segregation due to the activation of the spindle assembly checkpoint (SAC) component BubR1. These results indicate that Fbf1 may function in microtubule depolymerization and agglutination, control the microtubule dynamics, spindle assembly and chromosome arrangement and, thus, influence the mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Ying Xu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chang-Long Xu
- The Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi, 530031, China
| | - Zhong-Feng Xu
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xin-Jie Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hui-Sheng Liang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Gynaecology and Obstetrics, The Affiliated Zhong-Shan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Zhao-Cheng Zeng
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; College of Life Sciences, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Li-Xin Zeng
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Gynaecology and Obstetrics, The Affiliated Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, China
| | - Kang-Na Wei
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Gynaecology and Obstetrics, The Affiliated Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, China
| | - Shu-Zi Deng
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; College of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Shu-Juan Xie
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, 900 Hospital of the Joint Logistics Team, Dongfang Affiliated Hospital of Xiamen University, Fuzhou, Fujian, 350025, China
| | - Jiang Jiang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yu-Xin Liu
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yun-Kao Cao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
58
|
Cell-cycle phospho-regulation of the kinetochore. Curr Genet 2021; 67:177-193. [PMID: 33221975 DOI: 10.1007/s00294-020-01127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore is a mega-dalton protein assembly that forms within centromeric regions of chromosomes and directs their segregation during cell division. Here we review cell cycle-mediated phosphorylation events at the kinetochore, with a focus on the budding yeast Saccharomyces cerevisiae and the insight gained from forced associations of kinases and phosphatases. The point centromeres found in the budding yeast S. cerevisiae are one of the simplest such structures found in eukaryotes. The S. cerevisiae kinetochore comprises a single nucleosome, containing a centromere-specific H3 variant Cse4CENP-A, bound to a set of kinetochore proteins that connect to a single microtubule. Despite the simplicity of the budding yeast kinetochore, the proteins are mostly homologous with their mammalian counterparts. In some cases, human proteins can complement their yeast orthologs. Like its mammalian equivalent, the regulation of the budding yeast kinetochore is complex: integrating signals from the cell cycle, checkpoints, error correction, and stress pathways. The regulatory signals from these diverse pathways are integrated at the kinetochore by post-translational modifications, notably phosphorylation and dephosphorylation, to control chromosome segregation. Here we highlight the complex interplay between the activity of the different cell-cycle kinases and phosphatases at the kinetochore, emphasizing how much more we have to understand this essential structure.
Collapse
|
59
|
Vagnarelli P. Back to the new beginning: Mitotic exit in space and time. Semin Cell Dev Biol 2021; 117:140-148. [PMID: 33810980 DOI: 10.1016/j.semcdb.2021.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
The ultimate goal of cell division is to generate two identical daughter cells that resemble the mother cell from which they derived. Once all the proper attachments to the spindle have occurred, the chromosomes have aligned at the metaphase plate and the spindle assembly checkpoint (a surveillance mechanism that halts cells form progressing in the cell cycle in case of spindle - microtubule attachment errors) has been satisfied, mitotic exit will occur. Mitotic exit has the purpose of completing the separation of the genomic material but also to rebuild the cellular structures necessary for the new cell cycle. This stage of mitosis received little attention until a decade ago, therefore our knowledge is much patchier than the molecular details we now have for the early stages of mitosis. However, it is emerging that mitotic exit is not just the simple reverse of mitotic entry and it is highly regulated in space and time. In this review I will discuss the main advances in the field that provided us with a better understanding on the key role of protein phosphorylation/de-phosphorylation in this transition together with the concept of their spatial regulation. As this field is much younger, I will highlight general consensus, contrasting views together with the outstanding questions awaiting for answers.
Collapse
Affiliation(s)
- Paola Vagnarelli
- College of Medicine, Health and Life Science, Centre for Genomic Engineering and Maintenance (CenGEM), Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
60
|
Qu X, Yu B, Zhu M, Li X, Ma L, Liu C, Zhang Y, Cheng Z. Sinomenine Inhibits the Growth of Ovarian Cancer Cells Through the Suppression of Mitosis by Down-Regulating the Expression and the Activity of CDK1. Onco Targets Ther 2021; 14:823-834. [PMID: 33574676 PMCID: PMC7873025 DOI: 10.2147/ott.s284261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Ovarian cancer is one of the most common gynecological cancers worldwide. While, therapies against ovarian cancer have not been completely effective, sinomenine has been proved to have anti-tumor activity in various cancer cells. However, study of its anti-ovarian cancer effect is still rare, and the underlying mechanism has not been elucidated. Therefore, we aim to explore the mechanism of sinomenine anti-ovarian cancer. Materials and Methods The effect of anti-ovarian cancer HeyA8 cells was analyzed by CCK8 and colony formation assay. The mechanism of sinomenine anti-ovarian cancer was explored via high throughput RNA-seq, and then the target mRNA and protein expression were verified by real-time PCR and Western blot, respectively. Results We found that the proliferation and clone formation ability of ovarian cancer HeyA8 cells were markedly reduced by 1.56 mM sinomenine. The transcriptome analysis showed that 2679 genes were differentially expressed after sinomenine treatment in HeyA8 cells, including 1323 down-regulated genes and 1356 up-regulated genes. Gene ontology and KEGG pathway enrichment indicated that differential expression genes (DEGs) between the groups of sinomenine and DMSO-treated HeyA8 cells were mainly involved in the process of the cell cycle, such as kinetochore organization, chromosome segregation, and DNA replication. Strikingly, the top 18 ranked degree genes in the protein-protein interaction (PPI) network were mainly involved in the process of mitosis, such as sister chromatid segregation, condensed chromosome, and microtubule cytoskeleton organization. Moreover, real-time PCR results showed consistent expression trends of DEGs with transcriptome analysis. The results of Western blot showed the expression level of CDK1, which was the highest degree gene in PPI and the main regulator controlling the process of mitosis, and the levels of phosphorylated P-CDK (Thr161) and P-Histone H3 (Ser10) were decreased after being treated with sinomenine. Conclusion Our results demonstrated that sinomenine inhibited the proliferation of HeyA8 cells through suppressing mitosis by down-regulating the expression and the activity of CDK1. The study may provide a preliminary research basis for the application of sinomenine in anti-ovarian cancer.
Collapse
Affiliation(s)
- Xiaoyan Qu
- Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Bing Yu
- Department of Cell Biology, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Mengmei Zhu
- Department of Cell Biology, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Xiaomei Li
- Department of Cell Biology, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China.,Cancer Research Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563003, People's Republic of China
| | - Lishan Ma
- Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Chuyin Liu
- Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Yixing Zhang
- Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Zhongping Cheng
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
61
|
Kim AJ, Griffin EE. PLK-1 Regulation of Asymmetric Cell Division in the Early C. elegans Embryo. Front Cell Dev Biol 2021; 8:632253. [PMID: 33553173 PMCID: PMC7859328 DOI: 10.3389/fcell.2020.632253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
PLK1 is a conserved mitotic kinase that is essential for the entry into and progression through mitosis. In addition to its canonical mitotic functions, recent studies have characterized a critical role for PLK-1 in regulating the polarization and asymmetric division of the one-cell C. elegans embryo. Prior to cell division, PLK-1 regulates both the polarization of the PAR proteins at the cell cortex and the segregation of cell fate determinants in the cytoplasm. Following cell division, PLK-1 is preferentially inherited to one daughter cell where it acts to regulate the timing of centrosome separation and cell division. PLK1 also regulates cell polarity in asymmetrically dividing Drosophila neuroblasts and during mammalian planar cell polarity, suggesting it may act broadly to connect cell polarity and cell cycle mechanisms.
Collapse
Affiliation(s)
- Amelia J Kim
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Erik E Griffin
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
62
|
Bibi N, Hupp T, Kamal MA, Rashid S. Elucidation of PLK1 Linked Biomarkers in Oesophageal Cancer Cell Lines: A Step Towards Novel Signaling Pathways by p53 and PLK1-Linked Functions Crosstalk. Protein Pept Lett 2021; 28:340-358. [PMID: 32875973 DOI: 10.2174/0929866527999200901201837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oesophgeal adenocarcinoma (OAC) is the most frequent cause of cancer death. POLO-like kinase 1 (PLK1) is overexpressed in broad spectrum of tumors and has prognostic value in many cancers including esophageal cancer, suggesting its potential as a therapeutic target. p53, the guardian of genome is the most important tumor suppressors that represses the promoter of PLK1, whereas tumor cells with inactive p53 are arrested in mitosis due to DNA damage. PLK1 expression has been linked to the elevated p53 expression and has been shown to act as a biomarker that predicts poor prognosis in OAC. OBJECTIVES The aim of the present study was identification of PLK1 associated phosphorylation targets in p53 mutant and p53 normal cells to explore the downstream signaling evets. METHODS Here we develop a proof-of-concept phospho-proteomics approach to identify possible biomarkers that can be used to identify mutant p53 or wild-type p53 pathways. We treated PLK1 asynchronously followed by mass spectrometry data analysis. Protein networking and motif analysis tools were used to identify the significant clusters and potential biomarkers. RESULTS We investigated approximately 1300 potential PLK1-dependent phosphopeptides by LCMS/ MS. In total, 2216 and 1155 high confidence phosphosites were identified in CP-A (p53+) and OE33 (p53-) cell lines owing to PLK1 inhibition. Further clustering and motif assessment uncovered many significant biomarkers with known and novel link to PLK1. CONCLUSION Taken together, our study suggests that PLK1 may serve as a potential therapeutic target in human OAC. The data highlight the efficacy and specificity of small molecule PLK1 kinase inhibitors to identify novel signaling pathways in vivo.
Collapse
Affiliation(s)
- Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Ted Hupp
- Edinburgh Cancer Research Center, University of Edinburgh, Scotland, United Kingdom
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, Saudi Arabia
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
63
|
Xie G, Zhou Y, Tu X, Ye X, Xu L, Xiao Z, Wang Q, Wang X, Du M, Chen Z, Chi X, Zhang X, Xia J, Zhang X, Zhou Y, Li Z, Xie C, Sheng L, Zeng Z, Zhou H, Yin Z, Su Y, Xu Y, Zhang XK. Centrosomal Localization of RXRα Promotes PLK1 Activation and Mitotic Progression and Constitutes a Tumor Vulnerability. Dev Cell 2020; 55:707-722.e9. [PMID: 33321102 DOI: 10.1016/j.devcel.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Retinoid X receptor alpha (RXRα), a nuclear receptor of transcription factor, controls various physiological and pathological pathways including cellular growth, proliferation, differentiation, and apoptosis. Here, we report that RXRα is phosphorylated at its N-terminal A/B domain by cyclin-dependent kinase 1 (Cdk1) at the onset of mitosis, triggering its translocation to the centrosome, where phosphorylated-RXRα (p-RXRα) interacts with polo-like kinase 1 (PLK1) through its N-terminal A/B domain by a unique mechanism. The interaction promotes PLK1 activation, centrosome maturation, and mitotic progression. Levels of p-RXRα are abnormally elevated in cancer cell lines, during carcinogenesis in animals, and in clinical tumor tissues. An RXRα ligand XS060, which specifically inhibits p-RXRα/PLK1 interaction but not RXRα heterodimerization, promotes mitotic arrest and catastrophe in a tumor-specific manner. These findings unravel a transcription-independent action of RXRα at the centrosome during mitosis and identify p-RXRα as a tumor-specific vulnerability for developing mitotic drugs with improved therapeutic index.
Collapse
Affiliation(s)
- Guobin Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhijian Xiao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiqiang Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Mingxuan Du
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Xiaoli Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ji Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaowei Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Luoyan Sheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
64
|
Ruan H, Kiselar J, Zhang W, Li S, Xiong R, Liu Y, Yang S, Lai L. Integrative structural modeling of a multidomain polo-like kinase. Phys Chem Chem Phys 2020; 22:27581-27589. [PMID: 33236741 DOI: 10.1039/d0cp05030j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polo-like kinase 1 (PLK1) is a key regulator and coordinator for mitotic signaling that contains two major functional units of a kinase domain (KD) and a polo-box domain (PBD). While individual domain structures of the KD and the PBD are known, how they interact and assemble into a functional complex remains an open question. The structural model from the KD-PBD-Map205PBM heterotrimeric crystal structure of zebrafish PLK1 represents a major step in understanding the KD and the PBD interactions. However, how these two domains interact when connected by a linker in the full length PLK1 needs further investigation. By integrating different sources of structural data from small-angle X-ray scattering, hydroxyl radical protein footprinting, and computational sampling, here we report an overall architecture for PLK1 multidomain assembly between the KD and the PBD. Our model revealed that the KD uses its C-lobe to interact with the PBD via the site near the phosphopeptide binding site in its auto-inhibitory state in solution. Disruption of this auto-inhibition via site-directed mutagenesis at the KD-PBD interface increases its kinase activity, supporting the functional role of KD-PBD interactions predicted for regulating the PLK1 kinase function. Our results indicate that the full length human PLK1 takes dynamic structures with a variety of domain-domain interfaces in solution.
Collapse
Affiliation(s)
- Hao Ruan
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
66
|
Gunasekaran P, Yim MS, Ahn M, Soung NK, Park JE, Kim J, Bang G, Shin SC, Choi J, Kim M, Kim HN, Lee YH, Chung YH, Lee K, EunKyeong Kim E, Jeon YH, Kim MJ, Lee KR, Kim BY, Lee KS, Ryu EK, Bang JK. Development of a Polo-like Kinase-1 Polo-Box Domain Inhibitor as a Tumor Growth Suppressor in Mice Models. J Med Chem 2020; 63:14905-14920. [PMID: 33142063 PMCID: PMC8919061 DOI: 10.1021/acs.jmedchem.0c01451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polo-like kinase-1 (Plk1) plays a key role in mitosis and has been identified as an attractive anticancer drug target. Plk1 consists of two drug-targeting sites, namely, N-terminal kinase domain (KD) and C-terminal polo-box domain (PBD). As KD-targeting inhibitors are associated with severe side effects, here we report on the pyrazole-based Plk1 PBD inhibitor, KBJK557, which showed a remarkable in vitro anticancer effect by inducing Plk1 delocalization, mitotic arrest, and apoptosis in HeLa cells. Further, in vivo optical imaging analysis and antitumorigenic activities in mouse xenograft models demonstrate that KBJK557 preferentially accumulates in cancer cells and selectively inhibits cancer cell proliferation. Pharmacokinetic profiles and partition coefficients suggest that KBJK557 was exposed in the blood and circulated through the organs with an intermediate level of clearance (t1/2, 7.73 h). The present investigation offers a strategy for specifically targeting cancer using a newly identified small-molecule inhibitor that targets the Plk1 PBD.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Min Su Yim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jaehi Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Geul Bang
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Republic of Korea
| | - Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Joonhyeok Choi
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University, 52 Dongguk-ro, Ilsandong-gu, Goyang 10320, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Young-Ho Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Young-Ho Chung
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, 52 Dongguk-ro, Ilsandong-gu, Goyang 10320, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Young-Ho Jeon
- Laboratory of Biochemistry and Structural Biology, College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Min Ju Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Bo-Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
67
|
Wellard SR, Schindler K, Jordan PW. Aurora B and C kinases regulate chromosome desynapsis and segregation during mouse and human spermatogenesis. J Cell Sci 2020; 133:jcs248831. [PMID: 33172986 PMCID: PMC7725601 DOI: 10.1242/jcs.248831] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Precise control of chromosome dynamics during meiosis is critical for fertility. A gametocyte undergoing meiosis coordinates formation of the synaptonemal complex (SC) to promote efficient homologous chromosome recombination. Subsequent disassembly of the SC occurs prior to segregation of homologous chromosomes during meiosis I. We examined the requirements of the mammalian Aurora kinases (AURKA, AURKB and AURKC) during SC disassembly and chromosome segregation using a combination of chemical inhibition and gene deletion approaches. We find that both mouse and human spermatocytes fail to disassemble SC lateral elements when the kinase activity of AURKB and AURKC are chemically inhibited. Interestingly, both Aurkb conditional knockout and Aurkc knockout mouse spermatocytes successfully progress through meiosis, and the mice are fertile. In contrast, Aurkb, Aurkc double knockout spermatocytes fail to coordinate disassembly of SC lateral elements with chromosome condensation and segregation, resulting in delayed meiotic progression. In addition, deletion of Aurkb and Aurkc leads to an accumulation of metaphase spermatocytes, chromosome missegregation and aberrant cytokinesis. Collectively, our data demonstrate that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stephen R Wellard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
68
|
Arroyo M, Cañuelo A, Calahorra J, Hastert F, Sánchez A, Clarke DJ, Marchal J. Mitotic entry upon Topo II catalytic inhibition is controlled by Chk1 and Plk1. FEBS J 2020; 287:4933-4951. [PMID: 32144855 PMCID: PMC7483426 DOI: 10.1111/febs.15280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Catalytic inhibition of topoisomerase II during G2 phase delays onset of mitosis due to the activation of the so-called decatenation checkpoint. This checkpoint is less known compared with the extensively studied G2 DNA damage checkpoint and is partially compromised in many tumor cells. We recently identified MCPH1 as a key regulator that confers cells with the capacity to adapt to the decatenation checkpoint. In the present work, we have explored the contributions of checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1), in order to better understand the molecular basis of decatenation checkpoint. Our results demonstrate that Chk1 function is required to sustain the G2 arrest induced by catalytic inhibition of Topo II. Interestingly, Chk1 loss of function restores adaptation in cells lacking MCPH1. Furthermore, we demonstrate that Plk1 function is required to bypass the decatenation checkpoint arrest in cells following Chk1 inhibition. Taken together, our data suggest that MCPH1 is critical to allow checkpoint adaptation by counteracting Chk1-mediated inactivation of Plk1. Importantly, we also provide evidence that MCPH1 function is not required to allow recovery from this checkpoint, which lends support to the notion that checkpoint adaptation and recovery are different mechanisms distinguished in part by specific effectors.
Collapse
Affiliation(s)
- M. Arroyo
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - A. Cañuelo
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - J. Calahorra
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - F.D. Hastert
- Department of Biology, Technische Universität Darmstadt, Germany
| | - A. Sánchez
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - D. J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, US
| | - J.A. Marchal
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| |
Collapse
|
69
|
Huang JY, Krebs BB, Miskus ML, Russell ML, Duffy EP, Graf JM, Lu HC. Enhanced FGFR3 activity in postmitotic principal neurons during brain development results in cortical dysplasia and axonal tract abnormality. Sci Rep 2020; 10:18508. [PMID: 33116259 PMCID: PMC7595096 DOI: 10.1038/s41598-020-75537-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Abnormal levels of fibroblast growth factors (FGFs) and FGF receptors (FGFRs) have been detected in various neurological disorders. The potent impact of FGF-FGFR in multiple embryonic developmental processes makes it challenging to elucidate their roles in postmitotic neurons. Taking an alternative approach to examine the impact of aberrant FGFR function on glutamatergic neurons, we generated a FGFR gain-of-function (GOF) transgenic mouse, which expresses constitutively activated FGFR3 (FGFR3K650E) in postmitotic glutamatergic neurons. We found that GOF disrupts mitosis of radial-glia neural progenitors (RGCs), inside-out radial migration of post-mitotic glutamatergic neurons, and axonal tract projections. In particular, late-born CUX1-positive neurons are widely dispersed throughout the GOF cortex. Such a cortical migration deficit is likely caused, at least in part, by a significant reduction of the radial processes projecting from RGCs. RNA-sequencing analysis of the GOF embryonic cortex reveals significant alterations in several pathways involved in cell cycle regulation and axonal pathfinding. Collectively, our data suggest that FGFR3 GOF in postmitotic neurons not only alters axonal growth of postmitotic neurons but also impairs RGC neurogenesis and radial glia processes.
Collapse
Affiliation(s)
- Jui-Yen Huang
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| | - Bruna Baumgarten Krebs
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - Marisha Lynn Miskus
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - May Lin Russell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Eamonn Patrick Duffy
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Jason Michael Graf
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
70
|
Lee KH. Involvement of Wnt signaling in primary cilia assembly and disassembly. FEBS J 2020; 287:5027-5038. [PMID: 33015954 DOI: 10.1111/febs.15579] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
The primary cilium is a nonmotile microtubule-based structure, which functions as an antenna-like cellular sensing organelle. The primary cilium is assembled from the basal body, a mother centriole-based structure, during interphase or a quiescent cell stage, and rapidly disassembles before entering mitosis in a dynamic cycle. Defects in this ciliogenesis dynamics are associated with human diseases such as ciliopathy and cancer, but the molecular mechanisms of the ciliogenesis dynamics are still largely unknown. To date, various cellular signaling pathways associated with primary cilia have been proposed, but the main signaling pathways regulating primary cilia assembly/disassembly remain enigmatic. This review describes recent findings in Wnt-induced primary cilia assembly/disassembly and potential future directions for the study of the cellular signaling related to the primary ciliogenesis dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| |
Collapse
|
71
|
Jang SM, Redon CE, Thakur BL, Bahta MK, Aladjem MI. Regulation of cell cycle drivers by Cullin-RING ubiquitin ligases. Exp Mol Med 2020; 52:1637-1651. [PMID: 33005013 PMCID: PMC8080560 DOI: 10.1038/s12276-020-00508-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.
Collapse
Affiliation(s)
- Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Meriam K Bahta
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| |
Collapse
|
72
|
Kurasawa Y, An T, Li Z. Polo-like kinase in trypanosomes: an odd member out of the Polo family. Open Biol 2020; 10:200189. [PMID: 33050792 PMCID: PMC7653357 DOI: 10.1098/rsob.200189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are evolutionarily conserved serine/threonine protein kinases playing crucial roles during multiple stages of mitosis and cytokinesis in yeast and animals. Plks are characterized by a unique Polo-box domain, which plays regulatory roles in controlling Plk activation, interacting with substrates and targeting Plk to specific subcellular locations. Plk activity and protein abundance are subject to temporal and spatial control through transcription, phosphorylation and proteolysis. In the early branching protists, Plk orthologues are present in some taxa, such as kinetoplastids and Giardia, but are lost in apicomplexans, such as Plasmodium. Works from characterizing a Plk orthologue in Trypanosoma brucei, a kinetoplastid protozoan, discover its essential roles in regulating the inheritance of flagellum-associated cytoskeleton and the initiation of cytokinesis, but not any stage of mitosis. These studies reveal evolutionarily conserved and species-specific features in the control of Plk activation, substrate recognition and protein abundance, and suggest the divergence of Plk function and regulation for specialized needs in this flagellated unicellular eukaryote.
Collapse
Affiliation(s)
| | | | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
73
|
Farkašovský M. Septin architecture and function in budding yeast. Biol Chem 2020; 401:903-919. [PMID: 31913844 DOI: 10.1515/hsz-2019-0401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/28/2019] [Indexed: 01/22/2023]
Abstract
The septins constitute a conserved family of guanosine phosphate-binding and filament-forming proteins widespread across eukaryotic species. Septins appear to have two principal functions. One is to form a cortical diffusion barrier, like the septin collar at the bud neck of Saccharomyces cerevisiae, which prevents movement of membrane-associated proteins between the mother and daughter cells. The second is to serve as a polymeric scaffold for recruiting the proteins required for critical cellular processes to particular subcellular areas. In the last decade, structural information about the different levels of septin organization has appeared, but crucial structural determinants and factors responsible for septin assembly remain largely unknown. This review highlights recent findings on the architecture and function of septins and their remodeling with an emphasis on mitotically dividing budding yeasts.
Collapse
Affiliation(s)
- Marian Farkašovský
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology SAS, Dubravska cesta 21, 84551 Bratislava, Slovak Republic
| |
Collapse
|
74
|
Buljan M, Ciuffa R, van Drogen A, Vichalkovski A, Mehnert M, Rosenberger G, Lee S, Varjosalo M, Pernas LE, Spegg V, Snijder B, Aebersold R, Gstaiger M. Kinase Interaction Network Expands Functional and Disease Roles of Human Kinases. Mol Cell 2020; 79:504-520.e9. [PMID: 32707033 PMCID: PMC7427327 DOI: 10.1016/j.molcel.2020.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/14/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022]
Abstract
Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.
Collapse
Affiliation(s)
- Marija Buljan
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Rodolfo Ciuffa
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Anton Vichalkovski
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Mehnert
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - George Rosenberger
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Columbia University Department of Systems Biology, New York, NY 10032, USA
| | - Sohyon Lee
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Lucia Espona Pernas
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
75
|
Tavian D, Missaglia S, Michelini S, Maltese PE, Manara E, Mordente A, Bertelli M. FOXC2 Disease Mutations Identified in Lymphedema Distichiasis Patients Impair Transcriptional Activity and Cell Proliferation. Int J Mol Sci 2020; 21:ijms21145112. [PMID: 32698337 PMCID: PMC7404146 DOI: 10.3390/ijms21145112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Abstract
FOXC2 is a member of the human forkhead-box gene family and encodes a regulatory transcription factor. Mutations in FOXC2 have been associated with lymphedema distichiasis (LD), an autosomal dominant disorder that primarily affects the limbs. Most patients also show extra eyelashes, a condition known as distichiasis. We previously reported genetic and clinical findings in six unrelated families with LD. Half the patients showed missense mutations, two carried frameshift mutations and a stop mutation was identified in a last patient. Here we analyzed the subcellular localization and transactivation activity of the mutant proteins, showing that all but one (p.Y109*) localized to the nucleus. A significant reduction of transactivation activity was observed in four mutants (p.L80F, p.H199Pfs*264, p.I213Tfs*18, p.Y109*) compared with wild type FOXC2 protein, while only a partial loss of function was associated with p.V228M. The mutant p.I213V showed a very slight increase of transactivation activity. Finally, immunofluorescence analysis revealed that some mutants were sequestered into nuclear aggregates and caused a reduction of cell viability. This study offers new insights into the effect of FOXC2 mutations on protein function and shows the involvement of aberrant aggregation of FOXC2 proteins in cell death.
Collapse
Affiliation(s)
- Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, 20145 Milan, Italy;
- Psychology Department, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Correspondence: ; Tel.: +39-02-72348731
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, 20145 Milan, Italy;
- Psychology Department, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Sandro Michelini
- Department of Vascular Rehabilitation, San Giovanni Battista Hospital, 00148 Rome, Italy;
| | - Paolo Enrico Maltese
- Laboratory of Molecular Genetics, International Association of Medical Genetics, MAGI’s Lab s.r.l., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
| | | | - Alvaro Mordente
- Dipartimento di Scienze di Laboratorio ed Infettivologiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
- Facoltà di Scienze della Formazione, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Matteo Bertelli
- Laboratory of Molecular Genetics, International Association of Medical Genetics, MAGI’s Lab s.r.l., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
- MAGI EUREGIO, 39100 Bolzano, Italy;
| |
Collapse
|
76
|
Phosphorylation of PLK3 Is Controlled by Protein Phosphatase 6. Cells 2020; 9:cells9061506. [PMID: 32575753 PMCID: PMC7349513 DOI: 10.3390/cells9061506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinases play essential roles in cell cycle control and mitosis. In contrast to other members of this kinase family, PLK3 has been reported to be activated upon cellular stress including DNA damage, hypoxia and osmotic stress. Here we knocked out PLK3 in human non-transformed RPE cells using CRISPR/Cas9-mediated gene editing. Surprisingly, we find that loss of PLK3 does not impair stabilization of HIF1α after hypoxia, phosphorylation of the c-Jun after osmotic stress and dynamics of DNA damage response after exposure to ionizing radiation. Similarly, RNAi-mediated depletion of PLK3 did not impair stress response in human transformed cell lines. Exposure of cells to various forms of stress also did not affect kinase activity of purified EGFP-PLK3. We conclude that PLK3 is largely dispensable for stress response in human cells. Using mass spectrometry, we identify protein phosphatase 6 as a new interacting partner of PLK3. Polo box domain of PLK3 mediates the interaction with the PP6 complex. Finally, we find that PLK3 is phosphorylated at Thr219 in the T-loop and that PP6 constantly dephosphorylates this residue. However, in contrast to PLK1, phosphorylation of Thr219 does not upregulate enzymatic activity of PLK3, suggesting that activation of both kinases is regulated by distinct mechanisms.
Collapse
|
77
|
Gao Z, Man X, Li Z, Bi J, Liu X, Li Z, Li J, Zhang Z, Kong C. PLK1 promotes proliferation and suppresses apoptosis of renal cell carcinoma cells by phosphorylating MCM3. Cancer Gene Ther 2020; 27:412-423. [PMID: 31186514 DOI: 10.1038/s41417-019-0094-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/22/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
Minichromosome maintenance 3 (MCM3) protein has been widely studied due to its essential role in DNA replication. In addition, it is overexpressed in several human tumor types. However, the role of this protein in renal cell carcinoma (RCC) is not widely known. In this study, we demonstrated that polo-like kinase 1 (PLK1)-mediated MCM3 phosphorylation regulates proliferation and apoptosis in RCC. Our results confirm that PLK1 and phospho-MCM3 (p-MCM3) are highly expressed in renal cell carcinoma. The expression of PLK1 is closely related to the clinical characteristics of renal cell carcinoma. They play important roles in the proliferation and apoptosis of RCC. In vitro, after overexpression of PLK1 or MCM3, the proliferation of RCC cells was significantly enhanced and cell apoptosis was inhibited, while after knockout, the proliferation of RCC cells was weakened and cell apoptosis was promoted. In addition, Mn2+-Phos-tag SDS-PAGE, western blotting, and immunofluorescence were utilized to determine that MCM3 is a physiological substrate of PLK1, which is phosphorylated on serine 112 (Ser112) in a PLK1-dependent manner. PLK1-mediated MCM3 phosphorylation promotes RCC cell cycle proliferation and suppresses apoptosis in vitro. Moreover, we found that PLK1-mediated MCM3 phosphorylation induced cellular proliferation and decreased apoptosis, as well as tumor growth in mice. Overall, we conclude that PLK1-mediated MCM3 phosphorylation is a novel mechanism to regulate RCC proliferation and apoptosis.
Collapse
Affiliation(s)
- Zhipeng Gao
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Xiaojun Man
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Zhenhua Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Xiankui Liu
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Zeliang Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Jun Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Zhe Zhang
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China.
| | - Chuize Kong
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China.
| |
Collapse
|
78
|
ALK Inhibitors-Induced M Phase Delay Contributes to the Suppression of Cell Proliferation. Cancers (Basel) 2020; 12:cancers12041054. [PMID: 32344689 PMCID: PMC7226408 DOI: 10.3390/cancers12041054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK), a receptor-type tyrosine kinase, is involved in the pathogenesis of several cancers. ALK has been targeted with small molecule inhibitors for the treatment of different cancers, but absolute success remains elusive. In the present study, the effects of ALK inhibitors on M phase progression were evaluated. Crizotinib, ceritinib, and TAE684 suppressed proliferation of neuroblastoma SH-SY5Y cells in a concentration-dependent manner. At approximate IC50 concentrations, these inhibitors caused misorientation of spindles, misalignment of chromosomes and reduction in autophosphorylation. Similarly, knockdown of ALK caused M phase delay, which was rescued by re-expression of ALK. Time-lapse imaging revealed that anaphase onset was delayed. The monopolar spindle 1 (MPS1) inhibitor, AZ3146, and MAD2 knockdown led to a release from inhibitor-induced M phase delay, suggesting that spindle assembly checkpoint may be activated in ALK-inhibited cells. H2228 human lung carcinoma cells that express EML4-ALK fusion showed M phase delay in the presence of TAE684 at about IC50 concentrations. These results suggest that ALK plays a role in M phase regulation and ALK inhibition may contribute to the suppression of cell proliferation in ALK-expressing cancer cells.
Collapse
|
79
|
Yousef EH, El-Mesery ME, Habeeb MR, Eissa LA. Polo-like kinase 1 as a promising diagnostic biomarker and potential therapeutic target for hepatocellular carcinoma. Tumour Biol 2020; 42:1010428320914475. [PMID: 32252611 DOI: 10.1177/1010428320914475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma is a major cause of cancer mortality worldwide. The outcome of hepatocellular carcinoma depends mainly on its early diagnosis. To date, the performance of traditional biomarkers is unsatisfactory. Polo-like kinase 1 is a serine/threonine kinase that plays essential roles in cell cycle progression and deoxyribonucleic acid damage. Moreover, polo-like kinase 1 knockdown decreases the survival of hepatocellular carcinoma cells; therefore, polo-like kinase 1 is an attractive target for anticancer treatments. Nobiletin, a natural polymethoxy flavonoid, exhibits a potential antiproliferative effect against a wide variety of cancers. This study targets to identify a reliable diagnostic biomarker for hepatocellular carcinoma and provide a potential therapeutic target for its treatment. Polo-like kinase 1 levels were analyzed in 44 hepatocellular carcinoma patients, 33 non-hepatocellular carcinoma liver cirrhosis patients and 15 healthy controls using the enzyme-linked immunosorbent assay method. Receiver operating characteristics curve analysis was used to establish a predictive model for polo-like kinase 1 relative to α-fetoprotein in hepatocellular carcinoma diagnosis. Furthermore, in the in vitro study, gene expressions were assessed by quantitative polymerase chain reaction in two human hepatocellular carcinoma cell lines after treatment with doxorubicin and polo-like kinase 1 inhibitor volasertib (Vola) either alone or in combination with nobiletin. Cell viability was also determined using the crystal violet assay.: Serum polo-like kinase 1 levels in hepatocellular carcinoma patients were significantly higher than liver cirrhosis and control groups (p < 0.0001). Polo-like kinase 1 showed a reasonable sensitivity, specificity, positive predictive value, and negative predictive value in hepatocellular carcinoma diagnosis. Moreover, nobiletin improved inhibition of cell growth induced by Vola and doxorubicin. Regarding reverse transcription polymerase chain reaction results, nobiletin suppressed expressions of polo-like kinase 1 and proliferating cell nuclear antigen and elevated expressions of P53, poly (ADPribose) polymerase 1, and caspase-3. Nobiletin/doxorubicin and nobiletin/Vola showed a significant increase in caspase-3 activity indicating cell apoptosis. Polo-like kinase 1 may be a potential biomarker for hepatocellular carcinoma diagnosis and follow-up during treatment with chemotherapies. In addition, nobiletin synergistically potentiates the doxorubicin and Vola-mediated anticancer effect that may be attributed partly to suppression of polo-like kinase 1 and proliferating cell nuclear antigen expression and enhancement of chemotherapy-induced apoptosis.
Collapse
Affiliation(s)
- Eman H Yousef
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Horus University - Egypt, Damietta, Egypt
| | - Mohamed E El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Maha R Habeeb
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
80
|
Yim MS, Soung NK, Han EH, Min JY, Han H, Son EJ, Kim HN, Kim B, Bang JK, Ryu EK. Vitamin E-Conjugated Phosphopeptide Inhibitor of the Polo-Box Domain of Polo-Like Kinase 1. Mol Pharm 2019; 16:4867-4877. [PMID: 31663746 DOI: 10.1021/acs.molpharmaceut.9b00757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polo-like kinase 1 (Plk1) regulates cell cycle and cell proliferation, and is currently considered a potential biomarker in clinical trials for many cancers. A characteristic feature of Plks is their C-terminal polo-box domain (PBD). Pro-Leu-His-Ser-pThr (PLHS[pT])-the phosphopeptide inhibitor of the PBD of Plk1-induces apoptosis in cancer cells. However, because of the low cell membrane-penetration ability of PLHS[pT], new approaches are required to overcome these drawbacks. We therefore developed a vitamin E (VE) conjugate that is biodegradable by intracellular redox enzymes as an anticancer drug-delivery system. To ensure high efficiency of membrane penetration, we synthesized VE-S-S-PLHS[pT]KY (1) by conjugating PLHS[pT] to VE via a disulfide bond. We found that 1 penetrated cancer cell membranes, blocked cancer cell proliferation, and induced apoptosis in cancer cells through cell cycle arrest in the G2/M phase. We synthesized a radiolabeled peptide (124I-1), and the radioligand was evaluated in in vivo tumor uptake using positron emission tomography. This study shows that combination conjugates are an excellent strategy for specifically targeting Plk PBD. These conjugates have a dual function, with possible uses in anticancer therapy and tumor diagnosis.
Collapse
Affiliation(s)
- Min Su Yim
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - Nak Kyun Soung
- Anticancer Agent Research Center, World Class Institute, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - Jin-Young Min
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - HoJin Han
- Anticancer Agent Research Center, World Class Institute, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Eun-Ju Son
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - Hak Nam Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - BoYeon Kim
- Anticancer Agent Research Center, World Class Institute, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jeong Kyu Bang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - Eun Kyoung Ryu
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| |
Collapse
|
81
|
Papini D, Fant X, Ogawa H, Desban N, Samejima K, Feizbakhsh O, Askin B, Ly T, Earnshaw WC, Ruchaud S. Cell cycle-independent furrowing triggered by phosphomimetic mutations of the INCENP STD motif requires Plk1. J Cell Sci 2019; 132:jcs234401. [PMID: 31601613 PMCID: PMC7115952 DOI: 10.1242/jcs.234401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Timely and precise control of Aurora B kinase, the chromosomal passenger complex (CPC) catalytic subunit, is essential for accurate chromosome segregation and cytokinesis. Post-translational modifications of CPC subunits are directly involved in controlling Aurora B activity. Here, we identified a highly conserved acidic STD-rich motif of INCENP that is phosphorylated during mitosis in vivo and by Plk1 in vitro and is involved in controlling Aurora B activity. By using an INCENP conditional-knockout cell line, we show that impairing the phosphorylation status of this region disrupts chromosome congression and induces cytokinesis failure. In contrast, mimicking constitutive phosphorylation not only rescues cytokinesis but also induces ectopic furrows and contractile ring formation in a Plk1- and ROCK1-dependent manner independent of cell cycle and microtubule status. Our experiments identify the phospho-regulation of the INCENP STD motif as a novel mechanism that is key for chromosome alignment and cytokinesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Diana Papini
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Xavier Fant
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Hiromi Ogawa
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Nathalie Desban
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Omid Feizbakhsh
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Bilge Askin
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Sandrine Ruchaud
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| |
Collapse
|
82
|
Hu H, Shao D, Wang L, He F, Huang X, Lu Y, Xiang X, Zhu S, Zhang P, Li J, Chen J. Phospho‑regulation of Cdc14A by polo‑like kinase 1 is involved in β‑cell function and cell cycle regulation. Mol Med Rep 2019; 20:4277-4284. [PMID: 31545409 DOI: 10.3892/mmr.2019.10653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/29/2019] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the effects of polo‑like kinase 1 (PLK1) and the phosphorylation of human cell division cycle protein 14A (Cdc14A) by PLK1 on β‑cell function and cell cycle regulation. Mouse β‑TC3 cells were incubated with small interfering RNA (siRNA) to knock down the expression of PLK1. Cell cycle analysis was performed using flow cytometry, and cell proliferation and apoptosis was determined. Insulin secretion was evaluated by a radioimmunoassay under both low and high glucose conditions. Mouse β‑TC3 cells were transfected with a wild type or a non‑phosphorylatable Cdc14A mutant (Cdc14AS351A/363A; Cdc14AAA) to investigate whether the phosphorylation of Cdc14A is involved in cellular regulation of PLK1 under high glucose conditions. It was found that PLK1 siRNA significantly promoted cellular apoptosis, inhibited cell proliferation, decreased insulin secretion and reduced Cdc14A expression under both low and high glucose conditions. Cdc14A overexpression promoted β‑TC3 cell proliferation and insulin secretion, while Cdc14AAA overexpression inhibited cell proliferation and insulin secretion under high glucose conditions. PLK1 siRNA partially reversed the proliferation‑promoting effects of Cdc14A and further intensified the inhibition of proliferation by Cdc14AAA under high glucose conditions. Similarly, Cdc14A overexpression partially reversed the insulin‑inhibiting effects of PLK1 siRNA, while Cdc14AAA overexpression showed a synergistic inhibitory effect on insulin secretion with PLK1 siRNA under high glucose conditions. In conclusion, PLK1 promoted cell proliferation and insulin secretion while inhibiting cellular apoptosis in β‑TC3 cell lines under both low and high glucose conditions. In addition, the phospho‑regulation of Cdc14A by PLK1 may be involved in β‑TC3 cell cycle regulation and insulin secretion under high glucose conditions.
Collapse
Affiliation(s)
- Haiying Hu
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Dandan Shao
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Leilei Wang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Fang He
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaoxu Huang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanyu Lu
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaona Xiang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Susu Zhu
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Pianhong Zhang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingsen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
83
|
Li Z, Zhang Z, Sun H, Xu L, Jiang C. Identification of novel peptidomimetics targeting the polo-box domain of polo-like kinase 1. Bioorg Chem 2019; 91:103148. [PMID: 31376784 DOI: 10.1016/j.bioorg.2019.103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
A series of new peptidomimetics targeting the polo-box domain (PBD) of polo-like kinase 1 (Plk1) was identified based on the potent and selective pentapeptide Plk1 PBD inhibitor PLHSpT. Unnatural amino acid residues were introduced to the newly designed compound and the N-terminal substituent of the peptidomimetic was investigated. The optimized compound 9 inhibited the Plk1 PBD with IC50 of 0.267 μM and showed almost no inhibition to Plk2 PBD or Plk3 PBD at 100 μM. Biolayer interferometry studies demonstrated that compound 9 showed potent binding affinity to Plk1 with a Kd value of 0.164 μM, while no Kd were detected against Plk2 and Plk3. Compound 9 showed improved stability in rat plasma compared to PLHSpT. Binding mode analysis was performed and in agreement with the observed experimental results. There are only two natural amino acids remained in the chemical structure of 9. This study may provide new information for further research on Plk1 PBD inhibitors.
Collapse
Affiliation(s)
- Zhiyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenguo Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China.
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
84
|
Olukoga T, Fernández-Casañas M, Chan KL. Another string to the polo bow: a new mitotic role of PLK1 in centromere protection. Mol Cell Oncol 2019; 6:1658515. [PMID: 31692966 PMCID: PMC6816413 DOI: 10.1080/23723556.2019.1658515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Polo-like kinase 1 (PLK1) plays a fundamental role in the spatiotemporal control of mitosis. Cells lacking PLK1 activity exhibit characteristic chromosome misalignment due to defects in microtubule-kinetochore organization and attachment. In our recently published paper, we uncover a new role for PLK1 in the preservation and maintenance of centromere integrity.
Collapse
Affiliation(s)
- Tomisin Olukoga
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | | | - Kok-Lung Chan
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
85
|
Lin TC, Kuo HH, Wu YC, Pan TS, Yih LH. Phosphatidylinositol-5-phosphate 4-kinase gamma accumulates at the spindle pole and prevents microtubule depolymerization. Cell Div 2019; 14:9. [PMID: 31452676 PMCID: PMC6702725 DOI: 10.1186/s13008-019-0053-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background A previous screen of a human kinase and phosphatase shRNA library to select genes that mediate arsenite induction of spindle abnormalities resulted in the identification of phosphatidylinositol-5-phosphate 4-kinase type-2 gamma (PIP4KIIγ), a phosphatidylinositol 4,5-bisphosphate (PIP2)-synthesizing enzyme. In this study, we explored how PIP4KIIγ regulates the assembly of mitotic spindles. Results PIP4KIIγ accumulates at the spindle pole before anaphase, and is required for the assembly of functional bipolar spindles. Depletion of PIP4KIIγ enhanced the spindle pole accumulation of mitotic centromere-associated kinesin (MCAK), a microtubule (MT)-depolymerizing kinesin, and resulted in a less stable spindle pole-associated MT. Depletion of MCAK can ameliorate PIP4KIIγ depletion-induced spindle abnormalities. In addition, PIP2 binds to polo-like kinase (PLK1) and reduces PLK1-mediated phosphorylation of MCAK. These results indicate that PIP4KIIγ and PIP2 may negatively regulate the MT depolymerization activity of MCAK by reducing PLK1-mediated phosphorylation of MCAK. Consequently, depletion of PLK1 has been shown to counteract the PIP4KIIγ depletion-induced instability of spindle pole-associated MT and cell resistance to arsenite. Conclusions Our current results imply that PIP4KIIγ may restrain MT depolymerization at the spindle pole through attenuating PLK1-mediated activation of MCAK before anaphase onset.
Collapse
Affiliation(s)
- Tz-Chi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Yi-Chen Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Tiffany S Pan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
86
|
Zhang R, Wei R, Du W, Zhang L, Du T, Geng Y, Wei X. Long noncoding RNA ENST00000413528 sponges microRNA-593-5p to modulate human glioma growth via polo-like kinase 1. CNS Neurosci Ther 2019; 25:842-854. [PMID: 30924320 PMCID: PMC6630009 DOI: 10.1111/cns.13121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS In this study, we examined the expression of lncRNA ENST00000413528 in glioma and determined its role in glioma development. METHODS LncRNA ENST00000413528 was detected in glioma tissues by lncRNA microarray. Then, we performed real-time PCR, CCK-8, colony formation assay, flow cytometry, caspase-3/7 assay and animal experiment to detect the function of ENST00000413528 in glioma after ENST00000413528 knockdown. Subsequent bioinformatics analysis, luciferase reporter assays and RNA immunoprecipitation (RIP) assay western blotting indicated possible downstream regulatory molecules. The expression of PLK1 in glioma tissues was also examined by immunohistochemistry staining. RESULTS Expression of ENST00000413528 was significantly increased in glioma tissues and LN229 and U251 cells. PLK1 protein could not be detected in peritumoral brain edema (PTBE) tissues; however, it showed an increasing number of positively cytoplasmic stained from WHO-Grade II to Grade III gliomas. Knockdown of ENST00000413528 in glioma cells inhibited cell proliferation and colony formation abilities, induced the G0/G1 arrest of the cell cycle, and promoted apoptosis. The dual reporter assay and RNA immunoprecipitation assay verified the interaction between ENST00000413528 and miR-593. We also demonstrated that polo-like kinase 1 (PLK1) was regulated by miR-593; PLK1 messenger RNA lacking 3'UTR partially reversed the effects caused by ENST00000413528 knockdown or miR-593 upregulation. CONCLUSION lncRNA ENST00000413528 is closely related to the development of glioma via the miR-593-5p/PLK1 pathway.
Collapse
Affiliation(s)
- Ren Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ruo‐Lun Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Wei Du
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Li‐Wei Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tao Du
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ya‐Dong Geng
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xin‐ting Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
87
|
Verma V, Mogilner A, Maresca TJ. Classical and Emerging Regulatory Mechanisms of Cytokinesis in Animal Cells. BIOLOGY 2019; 8:biology8030055. [PMID: 31357447 PMCID: PMC6784142 DOI: 10.3390/biology8030055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
The primary goal of cytokinesis is to produce two daughter cells, each having a full set of chromosomes. To achieve this, cells assemble a dynamic structure between segregated sister chromatids called the contractile ring, which is made up of filamentous actin, myosin-II, and other regulatory proteins. Constriction of the actomyosin ring generates a cleavage furrow that divides the cytoplasm to produce two daughter cells. Decades of research have identified key regulators and underlying molecular mechanisms; however, many fundamental questions remain unanswered and are still being actively investigated. This review summarizes the key findings, computational modeling, and recent advances in understanding of the molecular mechanisms that control the formation of the cleavage furrow and cytokinesis.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Department of Biology, New York University, New York, NY 10012, USA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
88
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
89
|
Li B, Pu K, Wu X. Identifying novel biomarkers in hepatocellular carcinoma by weighted gene co-expression network analysis. J Cell Biochem 2019; 120:11418-11431. [PMID: 30746803 DOI: 10.1002/jcb.28420] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/04/2018] [Indexed: 01/24/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor found in the bile duct epithelial cells, and the second most common tumor of the liver. However, the pivotal roles of most molecules of tumorigenesis in HCC are still unclear. Hence, it is essential to detect the tumorigenic mechanism and develop novel prognostic biomarkers for clinical application. The data of HCC mRNA-seq and clinical information from The Cancer Genome Atlas (TCGA) database were analyzed by weighted gene co-expression network analysis (WGCNA). Co-expression modules and clinical traits were constructed by the Pearson correlation analysis, interesting modules were selected and gene ontology and pathway enrichment analysis were performed. Intramodule analysis and protein-protein interaction construction of selected modules were conducted to screen hub genes. In addition, upstream transcription factors and microRNAs of hub genes were predicted by miRecords and NetworkAnalyst database. Afterward, a high connectivity degree of hub genes from two networks was picked out to perform the differential expression validation in the Gene Expression Profiling Interactive Analysis database and Human Protein Atlas database and survival analysis in Kaplan-Meier plotter online tool. By utilizing WGCNA, several hub genes that regulate the mechanism of tumorigenesis in HCC were identified, which was associated with clinical traits including the pathological stage, histological grade, and liver function. Surprisingly, ZWINT, CENPA, RACGAP1, PLK1, NCAPG, OIP5, CDCA8, PRC1, and CDK1 were identified statistically as hub genes in the blue module, which were closely implicated in pathological T stage and histologic grade of HCC. Moreover, these genes also were strongly associated with the HCC cell growth and division. Network and survival analyses found that nine hub genes may be considered theoretically as indicators to predict the prognosis of patients with HCC or clinical treatment target, it will be necessary for basic experiments and large-scale cohort studies to validate further.
Collapse
Affiliation(s)
- Boxuan Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Xinan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
90
|
Carbajosa S, Pansa MF, Paviolo NS, Castellaro AM, Andino DL, Nigra AD, García IA, Racca AC, Rodriguez-Berdini L, Angiolini V, Guantay L, Villafañez F, Federico MB, Rodríguez-Baili MC, Caputto BL, Drewes G, Madauss KP, Gloger I, Fernandez E, Gil GA, Bocco JL, Gottifredi V, Soria G. Polo-like Kinase 1 Inhibition as a Therapeutic Approach to Selectively Target BRCA1-Deficient Cancer Cells by Synthetic Lethality Induction. Clin Cancer Res 2019; 25:4049-4062. [PMID: 30890549 DOI: 10.1158/1078-0432.ccr-18-3516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE BRCA1 and BRCA2 deficiencies are widespread drivers of human cancers that await the development of targeted therapies. We aimed to identify novel synthetic lethal relationships with therapeutic potential using BRCA-deficient isogenic backgrounds. EXPERIMENTAL DESIGN We developed a phenotypic screening technology to simultaneously search for synthetic lethal (SL) interactions in BRCA1- and BRCA2-deficient contexts. For validation, we developed chimeric spheroids and a dual-tumor xenograft model that allowed the confirmation of SL induction with the concomitant evaluation of undesired cytotoxicity on BRCA-proficient cells. To extend our results using clinical data, we performed retrospective analysis on The Cancer Genome Atlas (TCGA) breast cancer database. RESULTS The screening of a kinase inhibitors library revealed that Polo-like kinase 1 (PLK1) inhibition triggers strong SL induction in BRCA1-deficient cells. Mechanistically, we found no connection between the SL induced by PLK1 inhibition and PARP inhibitors. Instead, we uncovered that BRCA1 downregulation and PLK1 inhibition lead to aberrant mitotic phenotypes with altered centrosomal duplication and cytokinesis, which severely reduced the clonogenic potential of these cells. The penetrance of PLK1/BRCA1 SL interaction was validated using several isogenic and nonisogenic cellular models, chimeric spheroids, and mice xenografts. Moreover, bioinformatic analysis revealed high-PLK1 expression in BRCA1-deficient tumors, a phenotype that was consistently recapitulated by inducing BRCA1 deficiency in multiple cell lines as well as in BRCA1-mutant cells. CONCLUSIONS We uncovered an unforeseen addiction of BRCA1-deficient cancer cells to PLK1 expression, which provides a new means to exploit the therapeutic potential of PLK1 inhibitors in clinical trials, by generating stratification schemes that consider this molecular trait in patient cohorts.
Collapse
Affiliation(s)
- Sofía Carbajosa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Florencia Pansa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Andrés M Castellaro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego L Andino
- CIDIE-CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Ayelén D Nigra
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana C Racca
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucía Rodriguez-Berdini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia Angiolini
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Guantay
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Villafañez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - María Celeste Rodríguez-Baili
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz L Caputto
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Kevin P Madauss
- GlaxoSmithKline-Trust in Science, Global Health R&D, Upper Providence, Pennsylvania
| | - Israel Gloger
- GlaxoSmithKline-Trust in Science, Global Health R&D, Stevenage, United Kingdom
| | - Elmer Fernandez
- CIDIE-CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Germán A Gil
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
91
|
Dalvi PS, Macheleidt IF, Lim SY, Meemboor S, Müller M, Eischeid-Scholz H, Schaefer SC, Buettner R, Klein S, Odenthal M. LSD1 Inhibition Attenuates Tumor Growth by Disrupting PLK1 Mitotic Pathway. Mol Cancer Res 2019; 17:1326-1337. [PMID: 30760542 DOI: 10.1158/1541-7786.mcr-18-0971] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/16/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone modifier that is highly overexpressed in lung adenocarcinoma, which results in aggressive tumor biology. Tumor cell proliferation and migration analysis after LSD1 inhibition in the lung adenocarcinoma cell line PC9, using the LSD1 inhibitor HCI-2509 and siRNA, demonstrated that LSD1 activity was essential for proliferation and migration capacities of tumor cells. Moreover, reduced proliferation rates after LSD1 inhibition were shown to be associated with a cell-cycle arrest of the tumor cells in the G2-M-phase. Expression profiling followed by functional classification and pathway analysis indicated prominent repression of the polo-like kinase 1 (PLK1) pathway upon LSD1 inhibition. In contrast, transient overexpression of exogenous PLK1 plasmid rescued the LSD1 inhibition-mediated downregulation of PLK1 pathway genes. Mechanistically, LSD1 directly regulates expression of PLK1 by binding to its promoter region that subsequently affects expression of its downstream target genes. Notably, using lung adenocarcinoma TCGA datasets a significant correlation between LSD1 and PLK1 along with its downstream targets was observed. Furthermore, the LSD1/PLK1 linkage was confirmed by IHC analysis in a clinical lung adenocarcinoma cohort (n = 43). Conclusively, this is the first study showing a direct transcriptional link between LSD1 and PLK1. IMPLICATIONS: These findings point to a role of LSD1 in regulating PLK1 and thus efficient G2-M-transition-mediating proliferation of tumor cells and suggest targeting the LSD1/PLK1 axis as a novel therapeutic approach for lung adenocarcinoma treatment.
Collapse
Affiliation(s)
- Priya S Dalvi
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| | - Iris F Macheleidt
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| | - So-Young Lim
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| | - Sonja Meemboor
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| | - Marion Müller
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | - Stephan C Schaefer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Integrated Oncology Cologne Bonn, Cologne, Germany
- Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
- Center for Integrated Oncology Cologne Bonn, Cologne, Germany
- Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany
| | - Sebastian Klein
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Cologne, Germany
- Else Kröner Forschungskolleg Cologne, University Hospital of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
92
|
Rezey AC, Gerlach BD, Wang R, Liao G, Tang DD. Plk1 Mediates Paxillin Phosphorylation (Ser-272), Centrosome Maturation, and Airway Smooth Muscle Layer Thickening in Allergic Asthma. Sci Rep 2019; 9:7555. [PMID: 31101859 PMCID: PMC6525254 DOI: 10.1038/s41598-019-43927-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/01/2019] [Indexed: 01/09/2023] Open
Abstract
Allergic asthma is characterized by airway smooth muscle layer thickening, which is largely attributed to cell division that requires the formation of centrosomes. Centrosomes play a pivotal role in regulating bipolar spindle formation and cell division. Before mitosis, centrosomes undergo maturation characterized by expansion of pericentriolar material proteins, which facilitates spindle formation and mitotic efficiency of many cell types. Although polo-like kinase 1 (Plk1) has been implicated in centrosome maturation, the mechanisms by which Plk1 regulates the cellular process are incompletely elucidated. Here, we identified paxillin as a new Plk1-interacting protein in human airway smooth muscle cells. We unexpectedly found that phosphorylated paxillin (Ser-272) was localized in centrosomes of human smooth muscle cells, which regulated centrosome maturation and spindle assembly. Plk1 knockdown inhibited paxillin Ser-272 phosphorylation, centrosome maturation, and cell division. Furthermore, exposure to allergens enhanced airway smooth muscle layer and paxillin phosphorylation at this residue in mice, which was reduced by smooth muscle conditional knockout of Plk1. These findings suggest that Plk1 regulates centrosome maturation and cell division in part by modulating paxillin phosphorylation on Ser-272. Furthermore, Plk1 contributes to the pathogenesis of allergen-induced thickening of the airway smooth muscle layer by affecting paxillin phosphorylation at this position.
Collapse
Affiliation(s)
- Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA.
| |
Collapse
|
93
|
Kim SY, Hyun SY, Jang YJ. Dephosphorylation of Plk1 occurs through PP2A-B55/ENSA/Greatwall pathway during mitotic DNA damage recovery. Cell Cycle 2019; 18:1154-1167. [PMID: 31072185 PMCID: PMC6592230 DOI: 10.1080/15384101.2019.1617003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Recovery from DNA damage is critical for cell survival. However, serious damage cannot be repaired, leading to cell death for prevention of abnormal cell growth. Previously, we demonstrated that 4N-DNA accumulates via the initiation of an abnormal interphase without cytokinesis and that re-replication occurs during a prolonged recovery period in the presence of severe DNA damage in mitotic cells. Mitotic phosphorylated Plk1 is typically degraded during mitotic exit. However, Plk1 has unusually found to be dephosphorylated in mitotic slippage without cytokinesis during recovery from mitotic DNA damage. Here, we investigated how Plk1 dephosphorylation is established during recovery from mitotic DNA damage. Mitotic DNA damage activated ATM and Chk1/2 and repressed Cdk1 and Greatwall protein kinase, followed by PP2A activation through the dissociation of ENSA and PP2A-B55. Interaction between Plk1 and PP2A-B55α or PP2A-B55δ was strongly induced during recovery from mitotic DNA damage. Moreover, the depletion of PP2A-B55α and/or PP2A-B55δ by siRNA transfection led to the recovery of Plk1 phosphorylation and progression of the cell cycle into the G1 phase. Therefore, to adapt to severe DNA damage, the activated Greatwall/ENSA signaling pathway was repressed by ATM/Chk1/2, even in mitotic cells. Activation of the PP2A-B55 holoenzyme complex induced the dephosphorylation of Plk1 and Cdk1, and finally, mitotic slippage occurred without normal chromosome segregation and cytokinesis.
Collapse
Affiliation(s)
- Shin-Young Kim
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Sun-Yi Hyun
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| |
Collapse
|
94
|
Kim KU, Lee JH, Lee MY, Chae CH, Lee JH, Lee BH, Oh KS. DITMD-induced mitotic defects and apoptosis in tumor cells by blocking the polo-box domain-dependent functions of polo-like kinase 1. Eur J Pharmacol 2019; 847:113-122. [PMID: 30689997 DOI: 10.1016/j.ejphar.2019.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 11/29/2022]
Abstract
DITMD (1, 3- Dioxolo[4,5-g] isoquinolinium 5, 6, 7, 8- tetrahydro- 4- methoxy- 6, 6- dimethyl- 5- [2- oxo- 2- (2-pyridinyl)ethyl] - iodide) is a natural product-like compound with a hydrocotarnine moiety. The aim of this study was to investigate the anticancer effects of DITMD including mitotic arrest, apoptosis, radiosensitization, and to further explore its possible mechanism. DITMD (3-30 µM) induced an obvious cell cycle delay at G2/M transition and apoptosis in HeLa cells. In a validation study, DITMD caused chromosome alignment defects and accumulation of mitotic markers such as polo-like kinase 1, cyclin B1, and phospho-histone H3. DITMD pre-treatment for 11 h also significantly decreased the cells' survival after X-ray irradiation. In mechanism studies, DITMD inhibited the polo-box domain of polo-like kinase 1 but not the conserved kinase domain. Molecular modeling also suggests that DITMD binds at the phosphate group recognition site and inhibits the action on phospho-peptide ligands. In addition, DITMD was analyzed as a PLHSpT competitive inhibitor with an IC50 value of 2.1 μM and exhibited good selectivity against 105 distinct kinases. Taken together, these results indicate that DITMD induced chromosome alignment defects, apoptosis and radio-sensitization, and suggest that one mechanism underlying these anticancer effects involves inhibiting the polo-box domain-dependent functions of polo-like kinase 1.
Collapse
Affiliation(s)
- Ka-Ul Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 176 Gajeong-ro, Yuseong, Daejeon 34129, Republic of Korea
| | - Ju Hee Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Mi Young Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Chong Hak Chae
- Chemical simulation Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Jeong Hyun Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 176 Gajeong-ro, Yuseong, Daejeon 34129, Republic of Korea
| | - Byung Ho Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34183, Republic of Korea
| | - Kwang-Seok Oh
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 176 Gajeong-ro, Yuseong, Daejeon 34129, Republic of Korea.
| |
Collapse
|
95
|
de Cárcer G. The Mitotic Cancer Target Polo-Like Kinase 1: Oncogene or Tumor Suppressor? Genes (Basel) 2019; 10:E208. [PMID: 30862113 PMCID: PMC6470689 DOI: 10.3390/genes10030208] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The master mitotic regulator, Polo-like kinase 1 (Plk1), is an essential gene for the correct execution of cell division. Plk1 has strong clinical relevance, as it is considered a bona fide cancer target, it is found overexpressed in a large collection of different cancer types and this tumoral overexpression often correlates with poor patient prognosis. All these data led the scientific community to historically consider Plk1 as an oncogene. Although there is a collection of scientific reports showing how Plk1 can contribute to tumor progression, recent data from different laboratories using mouse models, show that Plk1 can surprisingly play as a tumor suppressor. Therefore, the fact that Plk1 is an oncogene is now under debate. This review summarizes the proposed mechanisms by which Plk1 can play as an oncogene or as a tumor suppressor, and extrapolates this information to clinical features.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Group, Cancer Biology Department, Instituto de Investigaciones Biomédicas"Alberto Sols" (IIBm), Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid,(CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
96
|
Sizek H, Hamel A, Deritei D, Campbell S, Ravasz Regan E. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput Biol 2019; 15:e1006402. [PMID: 30875364 PMCID: PMC6436762 DOI: 10.1371/journal.pcbi.1006402] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/27/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT signaling pathway plays a role in most cellular functions linked to cancer progression, including cell growth, proliferation, cell survival, tissue invasion and angiogenesis. It is generally recognized that hyperactive PI3K/AKT1 are oncogenic due to their boost to cell survival, cell cycle entry and growth-promoting metabolism. That said, the dynamics of PI3K and AKT1 during cell cycle progression are highly nonlinear. In addition to negative feedback that curtails their activity, protein expression of PI3K subunits has been shown to oscillate in dividing cells. The low-PI3K/low-AKT1 phase of these oscillations is required for cytokinesis, indicating that oncogenic PI3K may directly contribute to genome duplication. To explore this, we construct a Boolean model of growth factor signaling that can reproduce PI3K oscillations and link them to cell cycle progression and apoptosis. The resulting modular model reproduces hyperactive PI3K-driven cytokinesis failure and genome duplication and predicts the molecular drivers responsible for these failures by linking hyperactive PI3K to mis-regulation of Polo-like kinase 1 (Plk1) expression late in G2. To do this, our model captures the role of Plk1 in cell cycle progression and accurately reproduces multiple effects of its loss: G2 arrest, mitotic catastrophe, chromosome mis-segregation / aneuploidy due to premature anaphase, and cytokinesis failure leading to genome duplication, depending on the timing of Plk1 inhibition along the cell cycle. Finally, we offer testable predictions on the molecular drivers of PI3K oscillations, the timing of these oscillations with respect to division, and the role of altered Plk1 and FoxO activity in genome-level defects caused by hyperactive PI3K. Our model is an important starting point for the predictive modeling of cell fate decisions that include AKT1-driven senescence, as well as the non-intuitive effects of drugs that interfere with mitosis.
Collapse
Affiliation(s)
- Herbert Sizek
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Andrew Hamel
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Dávid Deritei
- Department of Physics, Pennsylvania State University, State College, PA, United States of America
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Sarah Campbell
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Erzsébet Ravasz Regan
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| |
Collapse
|
97
|
Li L, Miao W, Huang M, Williams P, Wang Y. Integrated Genomic and Proteomic Analyses Reveal Novel Mechanisms of the Methyltransferase SETD2 in Renal Cell Carcinoma Development. Mol Cell Proteomics 2019; 18:437-447. [PMID: 30487242 PMCID: PMC6398210 DOI: 10.1074/mcp.ra118.000957] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of RCC in humans. SET domain-containing 2 (SETD2), a lysine methyltransferase for histone and other proteins, has been found to be frequently lost in ccRCC. However, the mechanisms through which deficiency in SETD2 contributes to ccRCC development remain largely unknown. Here, we used a human embryonic kidney epithelial cell line with the SETD2 gene being knocked out using CRISPR/Cas9 technology. Using ChIP-seq analysis, we showed that SETD2 loss leads to diminished occupancy of histone H3K36me3 and H4K16ac on actively transcribed genes. Transcriptome sequencing of the knockout cells revealed diminished expression of genes involved in metabolic pathways and elevated expression of genes involved in regulation of RNA polymerase II-mediated transcription. Quantitative proteomic analysis of chromatin-associated proteins showed that genetic ablation of SETD2 leads to elevated chromatin occupancy of proteins involved in chromatin remodeling and RNA polymerase II transcription regulation, and diminished chromatin binding of proteins involved in translation elongation and RNA splicing. Interestingly, we found that SETD2 depletion attenuates cell proliferation, and this can be rescued by knockdown of CDK1. Taken together, we illustrate multiple SETD2-regulated cellular pathways that suppress cancer development and uncover mechanisms underlying aberrant cell cycle regulation in SETD2-depleted cells.
Collapse
Affiliation(s)
- Lin Li
- From the ‡Department of Chemistry, University of California, Riverside, California 92521
| | - Weili Miao
- From the ‡Department of Chemistry, University of California, Riverside, California 92521
| | - Ming Huang
- §Environmental Toxicology Graduate Program, University of California, Riverside, California 92521
| | - Preston Williams
- From the ‡Department of Chemistry, University of California, Riverside, California 92521
| | - Yinsheng Wang
- From the ‡Department of Chemistry, University of California, Riverside, California 92521;
- §Environmental Toxicology Graduate Program, University of California, Riverside, California 92521
| |
Collapse
|
98
|
Li W, Wang HY, Zhao X, Duan H, Cheng B, Liu Y, Zhao M, Shu W, Mei Y, Wen Z, Tang M, Guo L, Li G, Chen Q, Liu X, Du HN. A methylation-phosphorylation switch determines Plk1 kinase activity and function in DNA damage repair. SCIENCE ADVANCES 2019; 5:eaau7566. [PMID: 30854428 PMCID: PMC6402851 DOI: 10.1126/sciadv.aau7566] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/23/2019] [Indexed: 05/27/2023]
Abstract
Polo-like kinase 1 (Plk1) is a crucial regulator of cell cycle progression; but the mechanism of regulation of Plk1 activity is not well understood. We present evidence that Plk1 activity is controlled by a balanced methylation and phosphorylation switch. The methyltransferase G9a monomethylates Plk1 at Lys209, which antagonizes phosphorylation of T210 to inhibit Plk1 activity. We found that the methyl-deficient Plk1 mutant K209A affects DNA replication, whereas the methyl-mimetic Plk1 mutant K209M prolongs metaphase-to-anaphase duration through the inability of sister chromatids separation. We detected accumulation of Plk1 K209me1 when cells were challenged with DNA damage stresses. Ablation of K209me1 delays the timely removal of RPA2 and RAD51 from DNA damage sites, indicating the critical role of K209me1 in guiding the machinery of DNA damage repair. Thus, our study highlights the importance of a methylation-phosphorylation switch of Plk1 in determining its kinase activity and functioning in DNA damage repair.
Collapse
Affiliation(s)
- Weizhe Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hong-Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongguo Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Binghua Cheng
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yafei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Mengjie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenjie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuchao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences ,Beijing 100101, China
| | - Mingliang Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences ,Beijing 100101, China
| | - Qiang Chen
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
99
|
Verma V, Maresca TJ. Microtubule plus-ends act as physical signaling hubs to activate RhoA during cytokinesis. eLife 2019; 8:38968. [PMID: 30758285 PMCID: PMC6398982 DOI: 10.7554/elife.38968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
Microtubules (MTs) are essential for cleavage furrow positioning during cytokinesis, but the mechanisms by which MT-derived signals spatially define regions of cortical contractility are unresolved. In this study cytokinesis regulators visualized in Drosophila melanogaster (Dm) cells were found to localize to and track MT plus-ends during cytokinesis. The RhoA GEF Pebble (Dm ECT2) did not evidently tip-track, but rather localized rapidly to cortical sites contacted by MT plus-tips, resulting in RhoA activation and enrichment of myosin-regulatory light chain. The MT plus-end localization of centralspindlin was compromised following EB1 depletion, which resulted in a higher incidence of cytokinesis failure. Centralspindlin plus-tip localization depended on the C-terminus and a putative EB1-interaction motif (hxxPTxh) in RacGAP50C. We propose that MT plus-end-associated centralspindlin recruits a cortical pool of Dm ECT2 upon physical contact to activate RhoA and to trigger localized contractility.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, United States
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, United States.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
| |
Collapse
|
100
|
Chen WK, Chen CA, Chi CW, Li LH, Lin CP, Shieh HR, Hsu ML, Ko CC, Hwang JJ, Chen YJ. Moscatilin Inhibits Growth of Human Esophageal Cancer Xenograft and Sensitizes Cancer Cells to Radiotherapy. J Clin Med 2019; 8:jcm8020187. [PMID: 30764514 PMCID: PMC6406854 DOI: 10.3390/jcm8020187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 01/27/2023] Open
Abstract
Esophageal cancer prognosis remains poor in current clinical practice. We previously reported that moscatilin can induce apoptosis and mitotic catastrophe in esophageal cancer cells, accompanied by upregulation of polo-like kinase 1 (Plk1) expression. We aimed to validate in vitro activity and Plk1 expression in vivo following moscatilin treatment and to examine the treatment's radiosensitizing effect. Human esophageal cancer cells were implanted in nude mice. Moscatilin was intraperitoneally (i.p.) injected into the mice. Tumor size, body weight, white blood cell counts, and liver and renal function were measured. Aberrant mitosis and Plk1 expression were assessed. Colony formation was used to measure survival fraction after radiation. Moscatilin significantly suppressed tumor growth in mice bearing human esophageal xenografts without affecting body weight, white blood cell counts, or liver and renal function. Moscatilin also induced aberrant mitosis and apoptosis. Plk1 expression was markedly upregulated in vivo. Moreover, moscatilin pretreatment enhanced CE81T/VGH and BE3 cell radioresponse in vitro. Moscatilin may inhibit growth of human esophageal tumors and sensitize esophageal cancer cells to radiation therapy.
Collapse
Affiliation(s)
- Wun-Ke Chen
- Department of Radiation Oncology, Hsinchu MacKay Memorial Hospital, Hsinchu 30071, Taiwan.
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chien-An Chen
- Department of Radiation Oncology in Zhongxing Branch, Taipei City Hospital, Taipei 10341, Taiwan.
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
- Department of Nursing, MacKay Medical College, New Taipei City 25245, Taiwan.
| | - Li-Hui Li
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
| | - Chin-Ping Lin
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
| | - Hui-Ru Shieh
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
| | - Ming-Ling Hsu
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
| | - Chun-Chuan Ko
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
| | - Jeng-Jong Hwang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yu-Jen Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan.
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 10449, Taiwan.
| |
Collapse
|