51
|
Bone CR, Tapley EC, Gorjánácz M, Starr DA. The Caenorhabditis elegans SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration. Mol Biol Cell 2014; 25:2853-65. [PMID: 25057012 PMCID: PMC4161519 DOI: 10.1091/mbc.e14-05-0971] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nucleoplasmic domain of the Caenorhabditis elegans SUN protein UNC-84 interacts with lamin. If this interaction is disrupted, a partial failure in nuclear migration occurs. Nuclear migration is a critical component of many cellular and developmental processes. The nuclear envelope forms a barrier between the cytoplasm, where mechanical forces are generated, and the nucleoskeleton. The LINC complex consists of KASH proteins in the outer nuclear membrane and SUN proteins in the inner nuclear membrane that bridge the nuclear envelope. How forces are transferred from the LINC complex to the nucleoskeleton is poorly understood. The Caenorhabditis elegans lamin, LMN-1, is required for nuclear migration and interacts with the nucleoplasmic domain of the SUN protein UNC-84. This interaction is weakened by the unc-84(P91S) missense mutation. These mutant nuclei have an intermediate nuclear migration defect—live imaging of nuclei or LMN-1::GFP shows that many nuclei migrate normally, others initiate migration before subsequently failing, and others fail to begin migration. At least one other component of the nucleoskeleton, the NET5/Samp1/Ima1 homologue SAMP-1, plays a role in nuclear migration. We propose a nut-and-bolt model to explain how forces are dissipated across the nuclear envelope during nuclear migration. In this model, SUN/KASH bridges serve as bolts through the nuclear envelope, and nucleoskeleton components LMN-1 and SAMP-1 act as both nuts and washers on the inside of the nucleus.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| | - Erin C Tapley
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| | - Mátyás Gorjánácz
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| |
Collapse
|
52
|
Chiotaki R, Polioudaki H, Theodoropoulos PA. Differential nuclear shape dynamics of invasive andnon-invasive breast cancer cells are associated with actin cytoskeleton organization and stability. Biochem Cell Biol 2014; 92:287-95. [PMID: 25053513 DOI: 10.1139/bcb-2013-0120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cancer cells often exhibit characteristic aberrations in their nuclear architecture, which are indicative of their malignant potential. In this study, we have examined the nuclear and cytoskeletal composition, attachment configuration dynamics, and osmotic or drug treatment response of invasive (Hs578T and MDA-MB-231) and non-invasive (MCF-10A and MCF-7) breast cancer cell lines. Unlike MCF-10A and MCF-7, Hs578T and MDA-MB-231 cells showed extensive nuclear elasticity and deformability and displayed distinct kinetic profiles during substrate attachment. The nuclear shape of MCF-10A and MCF-7 cells remained almost unaffected upon detachment, hyperosmotic shock, or cytoskeleton depolymerization, while Hs578T and MDA-MB-231 revealed dramatic nuclear contour malformations following actin reorganization.
Collapse
Affiliation(s)
- Rena Chiotaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion 71003, Greece
| | | | | |
Collapse
|
53
|
Yamamoto A. Gathering up meiotic telomeres: a novel function of the microtubule-organizing center. Cell Mol Life Sci 2014; 71:2119-34. [PMID: 24413667 PMCID: PMC11113538 DOI: 10.1007/s00018-013-1548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the "telocentrosome", and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka, 422-8529, Japan,
| |
Collapse
|
54
|
Palanca A, Casafont I, Berciano MT, Lafarga M. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell Mol Life Sci 2014; 71:1961-75. [PMID: 24061536 PMCID: PMC11113442 DOI: 10.1007/s00018-013-1474-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/24/2022]
Abstract
Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.
Collapse
Affiliation(s)
- Ana Palanca
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Iñigo Casafont
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - María T. Berciano
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| |
Collapse
|
55
|
Luxton GWG, Starr DA. KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus. Curr Opin Cell Biol 2014; 28:69-75. [PMID: 24704701 DOI: 10.1016/j.ceb.2014.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/05/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
Abstract
Nuclear-cytoskeletal connections are central to fundamental cellular processes, including nuclear positioning and chromosome movements in meiosis. The cytoskeleton is coupled to the nucleoskeleton through conserved KASH-SUN bridges, or LINC complexes, that span the nuclear envelope. KASH proteins localize to the outer nuclear membrane where they connect the nucleus to the cytoskeleton. New findings have expanded the functional diversity of KASH proteins, showing that they interact with microtubule motors, actin, intermediate filaments, a nonconventional myosin, RanGAP, and each other. The role of KASH proteins in cellular mechanics is discussed. Genetic mutations in KASH proteins are associated with autism, hearing loss, cancer, muscular dystrophy and other diseases.
Collapse
Affiliation(s)
- G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
56
|
Razafsky D, Hodzic D. Temporal and tissue-specific disruption of LINC complexes in vivo. Genesis 2014; 52:359-65. [PMID: 24550182 DOI: 10.1002/dvg.22755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/07/2014] [Accepted: 02/14/2014] [Indexed: 01/31/2023]
Abstract
Migration and anchorage of nuclei within developing and adult tissues rely on Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes). These macromolecular assemblies span the nuclear envelope and physically couple chromatin and nuclear lamina to cytoplasmic cytoskeletal networks. LINC complexes assemble within the perinuclear space through direct interactions between the respective evolutionary-conserved SUN and KASH domains of Sun proteins, which reside within the inner nuclear membrane, and Nesprins, which reside within the outer nuclear membrane. Here, we describe and validate a dominant-negative transgenic strategy allowing for the disruption of endogenous SUN/KASH interactions through the inducible expression of a recombinant KASH domain. Our approach, which is based on the Cre/Lox system, allows for the targeted disruption of LINC complexes in a wide array of mouse tissues or specific cell types thereof and bypasses the perinatal lethality and potential cell nonautonomous effects of current mouse models based on germline inactivation of genes encoding Sun proteins and Nesprins. For these reasons, this mouse model provides a useful tool to evaluate the physiological relevance of LINC complexes integrity during development and homeostasis in a wide array of mammalian tissues.
Collapse
Affiliation(s)
- David Razafsky
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid, St. Louis, Missouri
| | | |
Collapse
|
57
|
Stewart CL, Burke B. The missing LINC: a mammalian KASH-domain protein coupling meiotic chromosomes to the cytoskeleton. Nucleus 2014; 5:3-10. [PMID: 24637401 DOI: 10.4161/nucl.27819] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pairing of homologous chromosome is a unique event in meiosis that is essential for both haploidization of the genome and genetic recombination. Rapid chromosome movements during meiotic prophase are a key feature of the pairing process. This is usually telomere-led, and in metazoans is dependent upon microtubules and dynein. Chromosome movements culminate in the formation of a meiotic "bouquet" in which nuclear envelope-associated telomeres are clustered at the centrosomal pole of the nucleus. Bouquet formation is thought to facilitate homolog pairing. Recent studies reveal that coupling of telomeres to cytoplasmic dynein is mediated by SUN1 in the inner nuclear membrane (INM) and KASH5 a novel protein of the outer nuclear membrane (ONM). Together SUN1 and KASH5 assemble to form a transluminal LINC (linker of the nucleoskeleton and cytoskeleton) complex that spans both nuclear membranes. SUN1 forms attachment sites for telomeres at the INM while KASH5 functions as a dynein adaptor at the ONM. In mice deficient in KASH5, homologous chromosome pairing does not occur. The result is that meiosis is arrested at the leptotene/zygotene stage of meiotic prophase 1, and as a consequence both male and female mice are infertile. This study demonstrates an essential role for dynein directed telomere movement during meiotic prophase.
Collapse
Affiliation(s)
| | - Brian Burke
- Institute of Medical Biology; Immunos; Singapore
| |
Collapse
|
58
|
Connecting the nucleus to the cytoskeleton for nuclear positioning and cell migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:505-20. [PMID: 24563363 DOI: 10.1007/978-1-4899-8032-8_23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The position of the nucleus in the cytoplasm is a highly regulated process and is required for multiple cellular and developmental processes. Defects on different nuclear positioning events are associated with several pathologies such as muscle and nervous system disorders. In this chapter we describe the current knowledge on the mechanism of nuclear positioning. We discuss how the nucleus connects to the cytoskeleton by nesprins and SUN proteins, how this connection is regulated by Samp1, and how this connection is required for proper nuclear positioning. Furthermore, we discuss how nesprins, SUN, and Samp1 form transmembrane actin-associated nuclear (TAN) lines, novel nuclear envelope structures involved in force transduction during nuclear movement. Finally, we describe the recent evidences suggesting a role for the connection between the nucleus and the cytoskeleton in cancer.
Collapse
|
59
|
|
60
|
Lyakhovetsky R, Gruenbaum Y. Studying lamins in invertebrate models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:245-62. [PMID: 24563351 DOI: 10.1007/978-1-4899-8032-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lamins are nuclear intermediate filament proteins that are conserved in all multicellular animals. Proteins that resemble lamins are also found in unicellular organisms and in plants. Lamins form a proteinaceous meshwork that outlines the nucleoplasmic side of the inner nuclear membrane, while a small fraction of lamin molecules is also present in the nucleoplasm. They provide structural support for the nucleus and help regulate many other nuclear activities. Much of our knowledge on the function of nuclear lamins and their associated proteins comes from studies in invertebrate organisms and specifically in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. The simpler lamin system and the powerful genetic tools offered by these model organisms greatly promote such studies. Here we provide an overview of recent advances in the biology of invertebrate nuclear lamins, with special emphasis on their assembly, cellular functions and as models for studying the molecular basis underlying the pathology of human heritable diseases caused by mutations in lamins A/C.
Collapse
Affiliation(s)
- Roman Lyakhovetsky
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | | |
Collapse
|
61
|
Alam S, Lovett DB, Dickinson RB, Roux KJ, Lele TP. Nuclear forces and cell mechanosensing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:205-15. [PMID: 25081619 DOI: 10.1016/b978-0-12-394624-9.00008-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cells respond to mechanical signals, but the subcellular mechanisms are not well understood. The nucleus has recently emerged as an important mechanosensory organelle in the cell, as it is intimately connected to the cytoskeleton. Mechanical forces applied to cells that act on membrane-embedded receptors are transmitted through the cytoskeleton to the nuclear surface. Interfering with linkers of the nucleus to the cytoskeleton causes defects in cell mechanosensing and cell function. In this chapter, we discuss recent work in this area, highlighting the role that the nuclear linkages with the cytoskeleton play in cellular mechanotransduction.
Collapse
Affiliation(s)
- Samer Alam
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - David B Lovett
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Kyle J Roux
- Sanford Children's Health Research Center, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
62
|
Huelsmann S, Ylänne J, Brown NH. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells. Dev Cell 2013; 26:604-15. [PMID: 24091012 PMCID: PMC3791400 DOI: 10.1016/j.devcel.2013.08.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 06/18/2013] [Accepted: 08/17/2013] [Indexed: 11/21/2022]
Abstract
Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery. Actin cables in Drosophila nurse cells are unsegmented filopodia-like structures E-cadherin is required for the orientation of actin cables toward the nucleus Nuclear positioning is achieved by continuous elongation of actin cables Actin cables associate with perinuclear actin-containing crosslinkers like filamin
Collapse
Affiliation(s)
- Sven Huelsmann
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
63
|
Abstract
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics.
Collapse
Affiliation(s)
- Jan Lammerding
- Brigham and Women's Hospital/Harvard Medical School, Cambridge, Massachusetts, USA.
| |
Collapse
|
64
|
Abstract
Morphogenesis of the hermaphrodite gonad of Caenorhabditis elegans is directed by the U-shaped migration of the gonadal leader cells, which are called distal tip cells (DTCs). The nuclei of migrating DTCs are always positioned at the leading edge of the cells, even as these cells turn dorsally to contact the hypodermis and intestine. When the DTCs turn dorsally, VAB-10B1/spectraplakin acts in nuclear translocation by regulating the polarized growth of microtubules. The function of spectraplakin in nuclear positioning may be evolutionarily conserved. Here we discuss the possible reason for leading-edge positioning of the DTC nucleus.
Collapse
Affiliation(s)
- Hon-Song Kim
- Department of Bioscience; Kwansei Gakuin University; Sanda, Japan
| | | |
Collapse
|
65
|
Horn HF, Kim DI, Wright GD, Wong ESM, Stewart CL, Burke B, Roux KJ. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. ACTA ACUST UNITED AC 2013; 202:1023-39. [PMID: 24062341 PMCID: PMC3787381 DOI: 10.1083/jcb.201304004] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complex of KASH5 and Sun1 is required for meiotic homologous chromosome pairing through the coupling of telomere attachment sites to cytoplasmic dynein and microtubules. Chromosome pairing is an essential meiotic event that ensures faithful haploidization and recombination of the genome. Pairing of homologous chromosomes is facilitated by telomere-led chromosome movements and formation of a meiotic bouquet, where telomeres cluster to one pole of the nucleus. In metazoans, telomere clustering is dynein and microtubule dependent and requires Sun1, an inner nuclear membrane protein. Here we provide a functional analysis of KASH5, a mammalian dynein-binding protein of the outer nuclear membrane that forms a meiotic complex with Sun1. This protein is related to zebrafish futile cycle (Fue), a nuclear envelope (NE) constituent required for pronuclear migration. Mice deficient in this Fue homologue are infertile. Males display meiotic arrest in which pairing of homologous chromosomes fails. These findings demonstrate that telomere attachment to the NE is insufficient to promote pairing and that telomere attachment sites must be coupled to cytoplasmic dynein and the microtubule system to ensure meiotic progression.
Collapse
Affiliation(s)
- Henning F Horn
- Laborotory of Nuclear Dynamics and Architecture, 2 Laboratory of Developmental and Regenerative Biology, and 3 IMB Microscopy Unit, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | | | | | | | | | | | | |
Collapse
|
66
|
Razafsky DS, Ward CL, Kolb T, Hodzic D. Developmental regulation of linkers of the nucleoskeleton to the cytoskeleton during mouse postnatal retinogenesis. Nucleus 2013; 4:399-409. [PMID: 23974729 DOI: 10.4161/nucl.26244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sun proteins and Nesprins are two families of proteins whose direct interactions across the nuclear envelope provide for the core of Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) that physically connect the nucleus interior to cytoskeletal networks. Whereas LINC complexes play essential roles in nuclear migration anchorage and underlie normal CNS development, the developmental regulation of their composition remains largely unknown. In this study, we examined the spatiotemporal expression of lamins, Sun proteins and Nesprins during postnatal mouse retinal development. Whereas retinal precursor cells mostly express B-type lamins, Sun1, and high molecular weight isoforms of Nesprins, post-mitotic retinal cells are characterized by a drastic downregulation of the latter, the expression of A-type lamins, and the strong induction of a specific isoform of Nesprin1 late in retinal development. Importantly, our results emphasize different spatiotemporal expression for Nesprin1 and Nesprin2 and further suggest an important role for KASH-less isoforms of Nesprin1 in the CNS. In conclusion, the transition from retinal precursor cells undergoing interkinetic nuclear migration to post-mitotic retinal cells undergoing nuclear translocation and/or anchorage is accompanied by a profound remodeling of LINC complexes composition. This remodeling may reflect different requirements of nuclear dynamics at different stages of CNS development.
Collapse
Affiliation(s)
- David S Razafsky
- Department of Ophthalmology and Visual Sciences; Washington University School of Medicine; St Louis, MO USA; Division of Molecular Genetics; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | | | | | | |
Collapse
|
67
|
Rothballer A, Kutay U. The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma 2013; 122:415-29. [PMID: 23736899 PMCID: PMC3777164 DOI: 10.1007/s00412-013-0417-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
Abstract
The nuclear envelope (NE) is connected to the different types of cytoskeletal elements by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes exist from yeast to humans, and have preserved their general architecture throughout evolution. They are composed of SUN and KASH domain proteins of the inner and the outer nuclear membrane, respectively. These SUN–KASH bridges are used for the transmission of forces across the NE and support diverse biological processes. Here, we review the function of SUN and KASH domain proteins in various unicellular and multicellular species. Specifically, we discuss their influence on nuclear morphology and cytoskeletal organization. Further, emphasis is given on the role of LINC complexes in nuclear anchorage and migration as well as in genome organization.
Collapse
Affiliation(s)
- Andrea Rothballer
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| |
Collapse
|
68
|
Gibeaux R, Knop M. When yeast cells meet, karyogamy!: an example of nuclear migration slowly resolved. Nucleus 2013; 4:182-8. [PMID: 23715006 DOI: 10.4161/nucl.25021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cytoskeleton-mediated transport processes are central to the subcellular organization of cells. The nucleus constitutes the largest organelle of a cell, and studying how it is positioned and moved around during various types of cell morphogenetic processes has puzzled researchers for a long time. Now, the molecular architectures of the underlying dynamic processes start to reveal their secrets. In yeast, karyogamy denotes the migration of two nuclei toward each other-termed nuclear congression-upon partner cell mating and the subsequent fusion of these nuclei to form a diploid nucleus. It constitutes a well-studied case. Recent insights completed the picture about the molecular processes involved and provided us with a comprehensive model amenable to quantitative computational simulation of the process. This review discusses our understanding of yeast nuclear congression and karyogamy and seeks to explain how a detailed, quantitative and systemic understanding has emerged from this knowledge.
Collapse
Affiliation(s)
- Romain Gibeaux
- European Molecular Biology Laboratory EMBL, Heidelberg, Germany
| | | |
Collapse
|
69
|
Lovett DB, Shekhar N, Nickerson JA, Roux KJ, Lele TP. Modulation of Nuclear Shape by Substrate Rigidity. Cell Mol Bioeng 2013; 6:230-238. [PMID: 23914256 DOI: 10.1007/s12195-013-0270-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nucleus is mechanically coupled to the three cytoskeletal elements in the cell via linkages maintained by the LINC complex (for Linker of Nucleoskeleton to Cyto-skeleton). It has been shown that mechanical forces from the extracellular matrix (ECM) can be transmitted through the cytoskeleton to the nuclear surface. Here we quantified nuclear shape in NIH 3T3 fibroblasts on polyacrylamide gels with a controlled degree of cross-linking. On soft substrates with a Young's modulus of 0.4 kPa, the nucleus appeared rounded in its vertical cross-section, while on stiff substrates (308 kPa), the nucleus appears more flattened. Over-expression of dominant negative Klarsicht ANC-1 Syne Homology (KASH) domains, which disrupts the LINC complex, eliminated the sensitivity of nuclear shape to substrate rigidity; myosin inhibition had similar effects. GFP-KASH4 over-expression altered the rigidity dependence of cell motility and cell spreading. Taken together, our results suggest that nuclear shape is modulated by substrate rigidity-induced changes in actomyosin tension, and that a mechanically integrated nucleus-cytoskeleton is required for rigidity sensing. These results are significant because they suggest that substrate rigidity can potentially control nuclear function and hence cell function.
Collapse
Affiliation(s)
- David B Lovett
- Department of Chemical Engineering, University of Florida, Bldg. 723, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
70
|
Burakov AV, Nadezhdina ES. Association of nucleus and centrosome: magnet or velcro? Cell Biol Int 2013; 37:95-104. [DOI: 10.1002/cbin.10016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Anton V. Burakov
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
| | - Elena S. Nadezhdina
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
- Institute of Protein Research of Russian Academy of Science; Vavilova ul., 34, Moscow 119333 Russia
| |
Collapse
|
71
|
Rothballer A, Schwartz TU, Kutay U. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus 2013; 4:29-36. [PMID: 23324460 PMCID: PMC3585024 DOI: 10.4161/nucl.23387] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell.
Collapse
|
72
|
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:253-301. [PMID: 23890384 DOI: 10.1016/b978-0-12-407695-2.00006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Gametogenesis combines two important features: reduction of the genome content from diploid to haploid by carefully partitioning chromosomes, and the subsequent differentiation into fertilization-competent gametes, which in males is characterized by profound nuclear restructuring. These are quite difficult tasks and require a tight coordination of different cellular mechanisms. Recent studies in the field established a key role for LINC complexes in both meiosis and sperm head formation. LINC complexes comprise SUN and KASH domain proteins that form nuclear envelope (NE) bridges, linking the nucleoskeleton to the cytoskeleton. They are well known for their crucial roles in diverse cellular and developmental processes, such as nuclear positioning and cell polarization. In this review, we highlight key roles ascribed to LINC complexes and to the nucleocytoskeletal connection in gametogenesis. First, we give a short overview about the general features of LINC components and the profound reorganization of the NE in germ cells. We then focus on specific roles of LINC complexes in meiotic chromosome dynamics and their impact on pairing, synapsis, and recombination. Finally, we provide an update of the mechanisms controlling sperm head formation and discuss the role of sperm-specific LINC complexes in nuclear shaping and their relation to specialized cytoskeletal structures that form concurrently with nuclear restructuring and sperm elongation.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Department of Physiology, Wayne State University Medical School, Detroit, Michigan, USA
| | | | | |
Collapse
|
74
|
|
75
|
Genetic analysis of Mps3 SUN domain mutants in Saccharomyces cerevisiae reveals an interaction with the SUN-like protein Slp1. G3-GENES GENOMES GENETICS 2012; 2:1703-18. [PMID: 23275891 PMCID: PMC3516490 DOI: 10.1534/g3.112.004614] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/26/2012] [Indexed: 01/16/2023]
Abstract
In virtually all eukaryotic cells, protein bridges formed by the conserved inner nuclear membrane SUN (for Sad1-UNC-84) domain-containing proteins and their outer nuclear membrane binding partners span the nuclear envelope (NE) to connect the nucleoplasm and cytoplasm. These linkages are important for chromosome movements within the nucleus during meiotic prophase and are essential for nuclear migration and centrosome attachment to the NE. In Saccharomyces cerevisiae, MPS3 encodes the sole SUN protein. Deletion of MPS3 or the conserved SUN domain is lethal in three different genetic backgrounds. Mutations in the SUN domain result in defects in duplication of the spindle pole body, the yeast centrosome-equivalent organelle. A genome-wide screen for mutants that exhibited synthetic fitness defects in combination with mps3 SUN domain mutants yielded a large number of hits in components of the spindle apparatus and the spindle checkpoint. Mutants in lipid metabolic processes and membrane organization also exacerbated the growth defects of mps3 SUN domain mutants, pointing to a role for Mps3 in nuclear membrane organization. Deletion of SLP1 or YER140W/EMP65 (for ER membrane protein of 65 kDa) aggravated growth of mps3 SUN domain mutants. Slp1 and Emp65 form an ER-membrane associated protein complex that is not required directly for spindle pole body duplication or spindle assembly. Rather, Slp1 is involved in Mps3 localization to the NE.
Collapse
|
76
|
Tapley EC, Starr DA. Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr Opin Cell Biol 2012; 25:57-62. [PMID: 23149102 DOI: 10.1016/j.ceb.2012.10.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/20/2012] [Indexed: 12/11/2022]
Abstract
The nuclear-cytoskeleton connection influences many aspects of cellular architecture, including nuclear positioning, the stiffness of the global cytoskeleton, and mechanotransduction. Central to all of these processes is the assembly and function of conserved SUN-KASH bridges, or LINC complexes, that span the nuclear envelope. Recent studies provide details of the higher order assembly and targeting of SUN proteins to the inner nuclear membrane. Structural studies characterize SUN-KASH interactions that form the central link of the nuclear-envelope bridge. KASH proteins at the outer nuclear membrane link the nuclear envelope to the cytoskeleton where forces are generated to move nuclei. Significantly, SUN proteins were recently shown to contribute to the progression of laminopathies.
Collapse
Affiliation(s)
- Erin C Tapley
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | | |
Collapse
|
77
|
Mana-Capelli S, McLean JR, Chen CT, Gould KL, McCollum D. The kinesin-14 Klp2 is negatively regulated by the SIN for proper spindle elongation and telophase nuclear positioning. Mol Biol Cell 2012; 23:4592-600. [PMID: 23087209 PMCID: PMC3510020 DOI: 10.1091/mbc.e12-07-0532] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Schizosaccharomyces pombe, a late mitotic kinase pathway called the septation initiation network (SIN) triggers cytokinesis. Here we show that the SIN is also involved in regulating anaphase spindle elongation and telophase nuclear positioning via inhibition of Klp2, a minus end-directed kinesin-14. Klp2 is known to localize to microtubules (MTs) and have roles in interphase nuclear positioning, mitotic chromosome alignment, and nuclear migration during karyogamy (nuclear fusion during mating). We observe SIN-dependent disappearance of Klp2 from MTs in anaphase, and we find that this is mediated by direct phosphorylation of Klp2 by the SIN kinase Sid2, which abrogates loading of Klp2 onto MTs by inhibiting its interaction with Mal3 (EB1 homologue). Disruption of Klp2 MT localization is required for efficient anaphase spindle elongation. Furthermore, when cytokinesis is delayed, SIN inhibition of Klp2 acts in concert with microtubules emanating from the equatorial microtubule-organizing center to position the nuclei away from the cell division site. These results reveal novel functions of the SIN in regulating the MT cytoskeleton and suggest that the SIN may have broader functions in regulating cellular organization in late mitosis than previously realized.
Collapse
Affiliation(s)
- Sebastian Mana-Capelli
- Department of Microbiology and Physiological Systems and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
78
|
LINC complexes mediate the positioning of cone photoreceptor nuclei in mouse retina. PLoS One 2012; 7:e47180. [PMID: 23071752 PMCID: PMC3465324 DOI: 10.1371/journal.pone.0047180] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
It has long been observed that many neuronal types position their nuclei within restricted cytoplasmic boundaries. A striking example is the apical localization of cone photoreceptors nuclei at the outer edge of the outer nuclear layer of mammalian retinas. Yet, little is known about how such nuclear spatial confinement is achieved and further maintained. Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) consist of evolutionary-conserved macromolecular assemblies that span the nuclear envelope to connect the nucleus with the peripheral cytoskeleton. Here, we applied a new transgenic strategy to disrupt LINC complexes either in cones or rods. In adult cones, we observed a drastic nuclear mislocalization on the basal side of the ONL that affected cone terminals overall architecture. We further provide evidence that this phenotype may stem from the inability of cone precursor nuclei to migrate towards the apical side of the outer nuclear layer during early postnatal retinal development. By contrast, disruption of LINC complexes within rod photoreceptors, whose nuclei are scattered across the outer nuclear layer, had no effect on the positioning of their nuclei thereby emphasizing differential requirements for LINC complexes by different neuronal types. We further show that Sun1, a component of LINC complexes, but not A-type lamins, which interact with LINC complexes at the nuclear envelope, participate in cone nuclei positioning. This study provides key mechanistic aspects underlying the well-known spatial confinement of cone nuclei as well as a new mouse model to evaluate the pathological relevance of nuclear mispositioning.
Collapse
|
79
|
Pierre V, Martinez G, Coutton C, Delaroche J, Yassine S, Novella C, Pernet-Gallay K, Hennebicq S, Ray PF, Arnoult C. Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development 2012; 139:2955-65. [DOI: 10.1242/dev.077982] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sperm-head elongation and acrosome formation, which take place during the last stages of spermatogenesis, are essential to produce competent spermatozoa that are able to cross the oocyte zona pellucida and to achieve fertilization. During acrosome biogenesis, acrosome attachment and spreading over the nucleus are still poorly understood and to date no proteins have been described to link the acrosome to the nucleus. We recently demonstrated that a deletion of DPY19L2, a gene coding for an uncharacterized protein, was responsible for a majority of cases of type I globozoospermia, a rare cause of male infertility that is characterized by the exclusive production of round-headed acrosomeless spermatozoa. Here, using Dpy19l2 knockout mice, we describe the cellular function of the Dpy19l2 protein. We demonstrate that the protein is expressed predominantly in spermatids with a very specific localization restricted to the inner nuclear membrane facing the acrosomal vesicle. We show that the absence of Dpy19l2 leads to the destabilization of both the nuclear dense lamina (NDL) and the junction between the acroplaxome and the nuclear envelope. Consequently, the acrosome and the manchette fail to be linked to the nucleus leading to the disruption of vesicular trafficking, failure of sperm nuclear shaping and eventually to the elimination of the unbound acrosomal vesicle. Finally, we show for the first time that Dpy19l3 proteins are also located in the inner nuclear envelope, therefore implying that the Dpy19 proteins constitute a new family of structural transmembrane proteins of the nuclear envelope.
Collapse
Affiliation(s)
- Virginie Pierre
- Université Joseph Fourier, Grenoble F-38000, France
- Equipe ‘Génétique, Infertilité et Thérapeutiques’ Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
| | - Guillaume Martinez
- Université Joseph Fourier, Grenoble F-38000, France
- Equipe ‘Génétique, Infertilité et Thérapeutiques’ Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
- CHU de Grenoble, Centre d’AMP-CECOS, BP217, Grenoble cedex 9 F-38043, France
| | - Charles Coutton
- Université Joseph Fourier, Grenoble F-38000, France
- Equipe ‘Génétique, Infertilité et Thérapeutiques’ Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
- CHU de Grenoble, UF de Génétique Chromosomique, Grenoble F-38000, France
| | - Julie Delaroche
- Université Joseph Fourier, Grenoble F-38000, France
- Grenoble Institut des Neurosciences, INSERM U.836, Grenoble F-38000, France
| | - Sandra Yassine
- Université Joseph Fourier, Grenoble F-38000, France
- Equipe ‘Génétique, Infertilité et Thérapeutiques’ Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
| | - Caroline Novella
- Université Joseph Fourier, Grenoble F-38000, France
- Equipe ‘Génétique, Infertilité et Thérapeutiques’ Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
| | - Karin Pernet-Gallay
- Université Joseph Fourier, Grenoble F-38000, France
- Grenoble Institut des Neurosciences, INSERM U.836, Grenoble F-38000, France
| | - Sylviane Hennebicq
- Université Joseph Fourier, Grenoble F-38000, France
- Equipe ‘Génétique, Infertilité et Thérapeutiques’ Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
- CHU de Grenoble, Centre d’AMP-CECOS, BP217, Grenoble cedex 9 F-38043, France
| | - Pierre F. Ray
- Université Joseph Fourier, Grenoble F-38000, France
- Equipe ‘Génétique, Infertilité et Thérapeutiques’ Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
- CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble F-38000, France
| | - Christophe Arnoult
- Université Joseph Fourier, Grenoble F-38000, France
- Equipe ‘Génétique, Infertilité et Thérapeutiques’ Laboratoire AGIM, CNRS FRE3405, La Tronche F-38700, France
| |
Collapse
|
80
|
Kosodo Y. Interkinetic nuclear migration: beyond a hallmark of neurogenesis. Cell Mol Life Sci 2012; 69:2727-38. [PMID: 22415322 PMCID: PMC11115108 DOI: 10.1007/s00018-012-0952-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 12/23/2022]
Abstract
Interkinetic nuclear migration (INM) is an oscillatory nuclear movement that is synchronized with the progression of the cell cycle. The efforts of several researchers, following the first report of INM in 1935, have revealed many of the molecular mechanisms of this fascinating phenomenon linking the timing of the cell cycle and nuclear positioning in tissue. Researchers are now faced with a more fundamental question: is INM important for tissue, particularly brain, development? In this review, I summarize the current understanding of the regulatory mechanisms governing INM, investigations involving several different tissues and species, and possible explanations for how nuclear movement affects cell-fate determination and tissue formation.
Collapse
Affiliation(s)
- Yoichi Kosodo
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan.
| |
Collapse
|
81
|
Sosa BA, Rothballer A, Kutay U, Schwartz TU. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 2012; 149:1035-47. [PMID: 22632968 DOI: 10.1016/j.cell.2012.03.046] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/02/2012] [Accepted: 03/27/2012] [Indexed: 01/28/2023]
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.
Collapse
Affiliation(s)
- Brian A Sosa
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
82
|
Affiliation(s)
- Brian Burke
- Institute of Medical Biology, Singapore 138648, Singapore.
| |
Collapse
|
83
|
Khatau SB, Kusuma S, Hanjaya-Putra D, Mali P, Cheng L, Lee JSH, Gerecht S, Wirtz D. The differential formation of the LINC-mediated perinuclear actin cap in pluripotent and somatic cells. PLoS One 2012; 7:e36689. [PMID: 22574215 PMCID: PMC3344930 DOI: 10.1371/journal.pone.0036689] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/12/2012] [Indexed: 12/22/2022] Open
Abstract
The actin filament cytoskeleton mediates cell motility and adhesion in somatic cells. However, whether the function and organization of the actin network are fundamentally different in pluripotent stem cells is unknown. Here we show that while conventional actin stress fibers at the basal surface of cells are present before and after onset of differentiation of mouse (mESCs) and human embryonic stem cells (hESCs), actin stress fibers of the actin cap, which wrap around the nucleus, are completely absent from undifferentiated mESCs and hESCs and their formation strongly correlates with differentiation. Similarly, the perinuclear actin cap is absent from human induced pluripotent stem cells (hiPSCs), while it is organized in the parental lung fibroblasts from which these hiPSCs are derived and in a wide range of human somatic cells, including lung, embryonic, and foreskin fibroblasts and endothelial cells. During differentiation, the formation of the actin cap follows the expression and proper localization of nuclear lamin A/C and associated linkers of nucleus and cytoskeleton (LINC) complexes at the nuclear envelope, which physically couple the actin cap to the apical surface of the nucleus. The differentiation of hESCs is accompanied by the progressive formation of a perinuclear actin cap while induced pluripotency is accompanied by the specific elimination of the actin cap, and that, through lamin A/C and LINC complexes, this actin cap is involved in progressively shaping the nucleus of hESCs undergoing differentiation. While, the localization of lamin A/C at the nuclear envelope is required for perinuclear actin cap formation, it is not sufficient to control nuclear shape.
Collapse
Affiliation(s)
- Shyam B. Khatau
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sravanti Kusuma
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Donny Hanjaya-Putra
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Prashant Mali
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Linzhao Cheng
- Institute for Cell Engineering and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jerry S. H. Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Strategic Scientific Initiatives, Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
84
|
Luxton GWG, Gomes ER, Folker ES, Worman HJ, Gundersen GG. TAN lines: a novel nuclear envelope structure involved in nuclear positioning. Nucleus 2012; 2:173-81. [PMID: 21818410 DOI: 10.4161/nucl.2.3.16243] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/30/2011] [Accepted: 05/02/2011] [Indexed: 11/19/2022] Open
Abstract
Nuclear position is actively controlled and can be adjusted according to the needs of a cell by nuclear movement. Microtubules mediate the majority of nuclear movements studied to date, although examples of nuclear movements mediated by the actin cytoskeleton have been described. One such actin-dependent nuclear movement occurs during centrosome orientation in fibroblasts polarizing for migration. Here, the centrosome is maintained at the cell center while the nucleus is moved to the cell rear by actin retrograde flow thus positioning the centrosome between the nucleus and the leading edge of the cell. We have explored the molecular mechanism for actin dependent movement of the nucleus during centrosome centration. We found that a novel linear array of nuclear envelope membrane proteins composed of nesprin-2G and SUN2, called transmembrane actin-associated nuclear (TAN) lines, couple the nucleus to moving actin cables resulting in the nucleus being positioned toward the cell rear. TAN lines are anchored by A-type lamins and this allows the forces generated by the actin cytoskeleton to be transmitted across the nuclear envelope to move the nucleus. Here we review the data supporting this mechanism for nuclear movement, discuss questions remaining to be addressed and consider how this new mechanism of nuclear movement may shed light on human disease.
Collapse
Affiliation(s)
- G W Gant Luxton
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | | | | | | | | |
Collapse
|
85
|
May SF, Peacock L, Almeida Costa CIC, Gibson WC, Tetley L, Robinson DR, Hammarton TC. The Trypanosoma brucei AIR9-like protein is cytoskeleton-associated and is required for nucleus positioning and accurate cleavage furrow placement. Mol Microbiol 2012; 84:77-92. [PMID: 22329999 PMCID: PMC3488599 DOI: 10.1111/j.1365-2958.2012.08008.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2012] [Indexed: 12/26/2022]
Abstract
AIR9 is a cytoskeleton-associated protein in Arabidopsis thaliana with roles in cytokinesis and cross wall maturation, and reported homologues in land plants and excavate protists, including trypanosomatids. We show that the Trypanosoma brucei AIR9-like protein, TbAIR9, is also cytoskeleton-associated and colocalizes with the subpellicular microtubules. We find it to be expressed in all life cycle stages and show that it is essential for normal proliferation of trypanosomes in vitro. Depletion of TbAIR9 from procyclic trypanosomes resulted in increased cell length due to increased microtubule extension at the cell posterior. Additionally, the nucleus was re-positioned to a location posterior to the kinetoplast, leading to defects in cytokinesis and the generation of aberrant progeny. In contrast, in bloodstream trypanosomes, depletion of TbAIR9 had little effect on nucleus positioning, but resulted in aberrant cleavage furrow placement and the generation of non-equivalent daughter cells following cytokinesis. Our data provide insight into the control of nucleus positioning in this important pathogen and emphasize differences in the cytoskeleton and cell cycle control between two life cycle stages of the T. brucei parasite.
Collapse
Affiliation(s)
- Sophie F May
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| | - Lori Peacock
- School of Clinical Veterinary Science, University of BristolLangford, Bristol BS40 7DU, UK
- School of Biological Sciences, University of BristolBristol BS8 1UG, UK
| | - Cristina I C Almeida Costa
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
- Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisbon, Portugal
| | - Wendy C Gibson
- School of Biological Sciences, University of BristolBristol BS8 1UG, UK
| | - Laurence Tetley
- School of Life Sciences, University of GlasgowGlasgow G12 8QQ, UK
| | | | - Tansy C Hammarton
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow G12 8TA, UK
| |
Collapse
|
86
|
Abstract
Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell's microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can not only affect nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer.
Collapse
Affiliation(s)
- Monika Zwerger
- Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
87
|
Roux KJ, Kim DI, Raida M, Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. ACTA ACUST UNITED AC 2012; 196:801-10. [PMID: 22412018 PMCID: PMC3308701 DOI: 10.1083/jcb.201112098] [Citation(s) in RCA: 1665] [Impact Index Per Article: 128.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proximity-dependent biotin identification (BioID) is a new approach making use of biotin ligase fusion proteins for the identification of both interacting and neighboring proteins in their native cellular environment. We have developed a new technique for proximity-dependent labeling of proteins in eukaryotic cells. Named BioID for proximity-dependent biotin identification, this approach is based on fusion of a promiscuous Escherichia coli biotin protein ligase to a targeting protein. BioID features proximity-dependent biotinylation of proteins that are near-neighbors of the fusion protein. Biotinylated proteins may be isolated by affinity capture and identified by mass spectrometry. We apply BioID to lamin-A (LaA), a well-characterized intermediate filament protein that is a constituent of the nuclear lamina, an important structural element of the nuclear envelope (NE). We identify multiple proteins that associate with and/or are proximate to LaA in vivo. The most abundant of these include known interactors of LaA that are localized to the NE, as well as a new NE-associated protein named SLAP75. Our results suggest BioID is a useful and generally applicable method to screen for both interacting and neighboring proteins in their native cellular environment.
Collapse
Affiliation(s)
- Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD 57104, USA.
| | | | | | | |
Collapse
|
88
|
Borrego-Pinto J, Jegou T, Osorio DS, Auradé F, Gorjánácz M, Koch B, Mattaj IW, Gomes ER. Samp1 is a component of TAN lines and is required for nuclear movement. J Cell Sci 2012; 125:1099-105. [PMID: 22349700 DOI: 10.1242/jcs.087049] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The position of the nucleus is regulated in different developmental stages and cellular events. During polarization, the nucleus moves away from the future leading edge and this movement is required for proper cell migration. Nuclear movement requires the LINC complex components nesprin-2G and SUN2, which form transmembrane actin-associated nuclear (TAN) lines at the nuclear envelope. Here we show that the nuclear envelope protein Samp1 (NET5) is involved in nuclear movement during fibroblast polarization and migration. Moreover, we demonstrate that Samp1 is a component of TAN lines that contain nesprin-2G and SUN2. Finally, Samp1 associates with SUN2 and lamin A/C, and the presence of Samp1 at the nuclear envelope requires lamin A/C. These results support a role for Samp1 in the association between the LINC complex and lamins during nuclear movement.
Collapse
|
89
|
Abstract
The organization and function of eukaryotic cells rely on the action of many different molecular motor proteins. Cytoplasmic dynein drives the movement of a wide range of cargoes towards the minus ends of microtubules, and these events are needed, not just at the single-cell level, but are vital for correct development. In the present paper, I review recent progress on understanding dynein's mechanochemistry, how it is regulated and how it binds to such a plethora of cargoes. The importance of a number of accessory factors in these processes is discussed.
Collapse
|
90
|
Boruc J, Zhou X, Meier I. Dynamics of the plant nuclear envelope and nuclear pore. PLANT PHYSIOLOGY 2012; 158:78-86. [PMID: 21949214 PMCID: PMC3252082 DOI: 10.1104/pp.111.185256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
91
|
Shimi T, Butin-Israeli V, Goldman RD. The functions of the nuclear envelope in mediating the molecular crosstalk between the nucleus and the cytoplasm. Curr Opin Cell Biol 2011; 24:71-8. [PMID: 22192274 DOI: 10.1016/j.ceb.2011.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/05/2011] [Accepted: 11/16/2011] [Indexed: 11/26/2022]
Abstract
Recent studies of the nuclear envelope (NE) have emphasized its role in linking the nuclear and cytoplasmic compartments of mammalian cells. The inner face of the NE is bound to chromatin and this interaction is involved in regulating DNA replication and transcription. The outer face of the NE binds to different components of the cytoskeleton, and these interactions are involved in nuclear positioning. Many disease causing mutations in genes encoding NE proteins cause significant changes in nuclear architecture and cytoskeletal interactions with the NE. These mutations are also providing important new insights into nuclear-cytoplasmic interactions.
Collapse
Affiliation(s)
- Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
92
|
Gerace L, Huber MD. Nuclear lamina at the crossroads of the cytoplasm and nucleus. J Struct Biol 2011; 177:24-31. [PMID: 22126840 DOI: 10.1016/j.jsb.2011.11.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
The nuclear lamina is a protein meshwork that lines the nuclear envelope in metazoan cells. It is composed largely of a polymeric assembly of lamins, which comprise a distinct sequence homology class of the intermediate filament protein family. On the basis of its structural properties, the lamina originally was proposed to provide scaffolding for the nuclear envelope and to promote anchoring of chromatin and nuclear pore complexes at the nuclear surface. This viewpoint has expanded greatly during the past 25 years, with a host of surprising new insights on lamina structure, molecular composition and functional attributes. It has been established that the self-assembly properties of lamins are very similar to those of cytoplasmic intermediate filament proteins, and that the lamin polymer is physically associated with components of the cytoplasmic cytoskeleton and with a multitude of chromatin and inner nuclear membrane proteins. Cumulative evidence points to an important role for the lamina in regulating signaling and gene activity, and in mechanically coupling the cytoplasmic cytoskeleton to the nucleus. The significance of the lamina has been vaulted to the forefront by the discovery that mutations in lamins and lamina-associated polypeptides lead to an array of human diseases. A key future challenge is to understand how the lamina integrates pathways for mechanics and signaling at the molecular level. Understanding the structure of the lamina from the atomic to supramolecular levels will be essential for achieving this goal.
Collapse
Affiliation(s)
- Larry Gerace
- Department of Cell, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | |
Collapse
|
93
|
Friederichs JM, Ghosh S, Smoyer CJ, McCroskey S, Miller BD, Weaver KJ, Delventhal KM, Unruh J, Slaughter BD, Jaspersen SL. The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis. PLoS Genet 2011; 7:e1002365. [PMID: 22125491 PMCID: PMC3219597 DOI: 10.1371/journal.pgen.1002365] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/13/2011] [Indexed: 01/23/2023] Open
Abstract
The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.
Collapse
Affiliation(s)
| | - Suman Ghosh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christine J. Smoyer
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brandon D. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kyle J. Weaver
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kym M. Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brian D. Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
94
|
Dupin I, Etienne-Manneville S. Nuclear positioning: mechanisms and functions. Int J Biochem Cell Biol 2011; 43:1698-707. [PMID: 21959251 DOI: 10.1016/j.biocel.2011.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/10/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
The nucleus is the largest organelle in the cell and its position is dynamically controlled in space and time, although the functional significance of this dynamic regulation is not always clear. Nuclear movements are mediated by the cytoskeleton which transmits pushing or pulling forces onto the nuclear envelope. Recent studies have shed light on the mechanisms regulating nuclear positioning inside the cell. While microtubules have been known for a long time to be key players in nuclear positioning, the actin and cytoplasmic intermediate filament cytoskeletons have been implicated in this function more recently and various molecular links between the nuclear envelope and cytoplasmic elements have been identified. In this review, we summarize the recent advances in our understanding of the molecular mechanisms involved in the regulation of nuclear localization in various animal cells and give an overview of the evidence suggesting a crucial role of nuclear positioning in cell polarity and physiology and the consequences of nuclear mispositioning in human pathologies.
Collapse
Affiliation(s)
- Isabelle Dupin
- Institut Pasteur, Cell Polarity, Migration and Cancer Unit and CNRS URA 2582, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
95
|
Tanenbaum ME, Akhmanova A, Medema RH. Bi-directional transport of the nucleus by dynein and kinesin-1. Commun Integr Biol 2011; 4:21-5. [PMID: 21509171 DOI: 10.4161/cib.4.1.13780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/13/2022] Open
Abstract
Proper transport and positioning of cell organelles often depends on the antagonistic activities of dynein and kinesin-1, two microtubule motors with opposite directionality.1 One of the largest known transport cargoes is the cell nucleus. Both dynein and kinesin-1 participate in positioning of the nucleus through binding to the nuclear envelope (NE).2-9 Surprisingly, both dynein and kinesin-1 can be recruited to the NE through multiple pathways, one involving SUN-KASH domain containing proteins and the other involving nuclear pore complexes (NPCs). Here, we discuss the molecular mechanisms of dynein and kinesin recruitment to the NE through NPCs, as well as the functional implications of dynein and kinesin-1 activity at the NE in mammalian cells. Finally, we discuss how motor activities at the NE might be controlled during the cell cycle.
Collapse
Affiliation(s)
- Marvin E Tanenbaum
- Department of Medical Oncology and Cancer Genomics Center; University Medical Center; Utrecht
| | | | | |
Collapse
|
96
|
Gudise S, Figueroa RA, Lindberg R, Larsson V, Hallberg E. Samp1 is functionally associated with the LINC complex and A-type lamina networks. J Cell Sci 2011; 124:2077-85. [PMID: 21610090 DOI: 10.1242/jcs.078923] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transmembrane inner nuclear membrane (INM) protein Samp1 is required for anchoring centrosomes near the nuclei. Using high-resolution fluorescence microscopy we show that Samp1 is distributed in a distinct and characteristic pattern in the nuclear envelope (NE), where it partially colocalizes with the LINC complex protein Sun1. By studying the localization of Samp1 deletion mutants and fusion proteins, we conclude that the cysteine-rich N-terminal half of Samp1 is nucleoplasmically exposed and is responsible for targeting to the INM. It contains four conserved CxxC motifs with the potential to form zinc fingers. The distribution of cysteine-to-alanine substitution mutants, designed to prevent zinc finger formation, showed that NE localization of Samp1 depends on intact CxxC motifs. Overexpression of Samp1 zinc finger mutants produced an abnormal dominant phenotype characterized by disrupted organization of a selective subset NE proteins, including emerin, Sun1, endogenous Samp1 and, in some cases, lamin A/C, but not lamin B, Sun2 or nucleoporins. Silencing of Samp1 expression showed that emerin depends on Samp1 for its correct localization in the NE. Our results demonstrate that Samp1 is functionally associated with the LINC complex protein Sun1 and proteins of the A-type lamina network.
Collapse
Affiliation(s)
- Santhosh Gudise
- Department of Neurochemistry, Stockholm University, SE10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
97
|
Kimura K, Kimura A. A novel mechanism of microtubule length-dependent force to pull centrosomes toward the cell center. BIOARCHITECTURE 2011; 1:74-79. [PMID: 21866267 PMCID: PMC3158624 DOI: 10.4161/bioa.1.2.15549] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/21/2011] [Indexed: 12/29/2022]
Abstract
The centrosome is a major microtubule-organizing center in animal cells, and its intracellular positioning is critical for defining intracellular architecture. The centrosome positions itself at the cell center. Centrosome centration depends on the microtubule cytoskeleton. To accomplish robust centration regardless of the cell size or cell shape, it has been assumed that the force mediated by the microtubules depends on microtubule length. However, a concrete mechanism to generate forces to pull the centrosome in a microtubule length-dependent manner has been elusive. Recently, we successfully demonstrated that centrosome-directed movement of intracellular organelles along microtubules drives centrosome centration in the Caenorhabditis elegans early embryo. Based on this observation, we proposed the centrosome-organelle mutual pulling model in which the reaction forces of organelle transport generated along microtubules act as a driving force that pulls the centrosomes toward the cell center. This is the first experiment-based model that accounts for the microtubule length-dependent pulling force generated in the cytoplasm contributing to centrosome centration. Intriguingly, this model is consistent with a recent estimation that the pulling force is proportional to the cubic length of microtubules.
Collapse
Affiliation(s)
- Kenji Kimura
- Cell Architecture Laboratory; Center for Frontier Research; National Institute of Genetics; Mishima, Japan
| | | |
Collapse
|
98
|
Yu YV, Li Z, Rizzo NP, Einstein J, Welte MA. Targeting the motor regulator Klar to lipid droplets. BMC Cell Biol 2011; 12:9. [PMID: 21349165 PMCID: PMC3051913 DOI: 10.1186/1471-2121-12-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/24/2011] [Indexed: 11/24/2022] Open
Abstract
Background In Drosophila, the transport regulator Klar displays tissue-specific localization: In photoreceptors, it is abundant on the nuclear envelope; in early embryos, it is absent from nuclei, but instead present on lipid droplets. Differential targeting of Klar appears to be due to isoform variation. Droplet targeting, in particular, has been suggested to occur via a variant C-terminal region, the LD domain. Although the LD domain is necessary and sufficient for droplet targeting in cultured cells, lack of specific reagents had made it previously impossible to analyze its role in vivo. Results Here we describe a new mutant allele of klar with a lesion specifically in the LD domain; this lesion abolishes both droplet localization of Klar and the ability of Klar to regulate droplet motion. It does not disrupt Klar's function for nuclear migration in photoreceptors. Using a GFP-LD fusion, we show that the LD domain is not only necessary but also sufficient for droplet targeting in vivo; it mediates droplet targeting in embryos, in ovaries, and in a number of somatic tissues. Conclusions Our analysis demonstrates that droplet targeting of Klar occurs via a cis-acting sequence and generates a new tool for monitoring lipid droplets in living tissues of Drosophila.
Collapse
Affiliation(s)
- Yanxun V Yu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | |
Collapse
|
99
|
Dynamic Behavior of Double-Membrane-Bounded Organelles in Plant Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:181-222. [DOI: 10.1016/b978-0-12-385859-7.00004-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
100
|
Gerlitz G, Bustin M. The role of chromatin structure in cell migration. Trends Cell Biol 2011; 21:6-11. [PMID: 20951589 PMCID: PMC3014417 DOI: 10.1016/j.tcb.2010.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/24/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022]
Abstract
Chromatin dynamics play a major role in regulating genetic processes. Now, accumulating data suggest that chromatin structure may also affect the mechanical properties of the nucleus and cell migration. Global chromatin organization appears to modulate the shape, the size and the stiffness of the nucleus. Directed-cell migration, which often requires nuclear reshaping to allow passage of cells through narrow openings, is dependent not only on changes in cytoskeletal elements but also on global chromatin condensation. Conceivably, during cell migration a physical link between the chromatin and the cytoskeleton facilitates coordinated structural changes in these two components. Thus, in addition to regulating genetic processes, we suggest that alterations in chromatin structure could facilitate cellular reorganizations necessary for efficient migration.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Protein Section, Laboratory of Metabolism, National Cancer Institute, US National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|