51
|
Zheng J, Wu YC, Phillips EH, Cai X, Wang X, Seung-Young Lee S. Increased Multiplexity in Optical Tissue Clearing-Based Three-Dimensional Immunofluorescence Microscopy of the Tumor Microenvironment by Light-Emitting Diode Photobleaching. J Transl Med 2024; 104:102072. [PMID: 38679160 PMCID: PMC11240282 DOI: 10.1016/j.labinv.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Optical tissue clearing and three-dimensional (3D) immunofluorescence (IF) microscopy is transforming imaging of the complex tumor microenvironment (TME). However, current 3D IF microscopy has restricted multiplexity; only 3 or 4 cellular and noncellular TME components can be localized in cleared tumor tissue. Here we report a light-emitting diode (LED) photobleaching method and its application for 3D multiplexed optical mapping of the TME. We built a high-power LED light irradiation device and temperature-controlled chamber for completely bleaching fluorescent signals throughout optically cleared tumor tissues without compromise of tissue and protein antigen integrity. With newly developed tissue mounting and selected region-tracking methods, we established a cyclic workflow involving IF staining, tissue clearing, 3D confocal microscopy, and LED photobleaching. By registering microscope channel images generated through 3 work cycles, we produced 8-plex image data from individual 400 μm-thick tumor macrosections that visualize various vascular, immune, and cancer cells in the same TME at tissue-wide and cellular levels in 3D. Our method was also validated for quantitative 3D spatial analysis of cellular remodeling in the TME after immunotherapy. These results demonstrate that our LED photobleaching system and its workflow offer a novel approach to increase the multiplexing power of 3D IF microscopy for studying tumor heterogeneity and response to therapy.
Collapse
Affiliation(s)
- Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Yi-Chien Wu
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Evan H Phillips
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Xu Wang
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois; University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
52
|
Azuma I, Mizuno T, Kusuhara H. GLDADec: marker-gene guided LDA modeling for bulk gene expression deconvolution. Brief Bioinform 2024; 25:bbae315. [PMID: 38982642 PMCID: PMC11233176 DOI: 10.1093/bib/bbae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Inferring cell type proportions from bulk transcriptome data is crucial in immunology and oncology. Here, we introduce guided LDA deconvolution (GLDADec), a bulk deconvolution method that guides topics using cell type-specific marker gene names to estimate topic distributions for each sample. Through benchmarking using blood-derived datasets, we demonstrate its high estimation performance and robustness. Moreover, we apply GLDADec to heterogeneous tissue bulk data and perform comprehensive cell type analysis in a data-driven manner. We show that GLDADec outperforms existing methods in estimation performance and evaluate its biological interpretability by examining enrichment of biological processes for topics. Finally, we apply GLDADec to The Cancer Genome Atlas tumor samples, enabling subtype stratification and survival analysis based on estimated cell type proportions, thus proving its practical utility in clinical settings. This approach, utilizing marker gene names as partial prior information, can be applied to various scenarios for bulk data deconvolution. GLDADec is available as an open-source Python package at https://github.com/mizuno-group/GLDADec.
Collapse
Affiliation(s)
- Iori Azuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku 113-0033, Japan
| | - Tadahaya Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku 113-0033, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Bunkyo-ku 113-0033, Japan
| |
Collapse
|
53
|
Zheng J, Wu YC, Cai X, Phan P, Er EE, Zhao Z, Lee SSY. Correlative multiscale 3D imaging of mouse primary and metastatic tumors by sequential light sheet and confocal fluorescence microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594162. [PMID: 38798657 PMCID: PMC11118317 DOI: 10.1101/2024.05.14.594162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Three-dimensional (3D) optical microscopy, combined with advanced tissue clearing, permits in situ interrogation of the tumor microenvironment (TME) in large volumetric tumors for preclinical cancer research. Light sheet (also known as ultramicroscopy) and confocal fluorescence microscopy are often used to achieve macroscopic and microscopic 3D images of optically cleared tumor tissues, respectively. Although each technique offers distinct fields of view (FOVs) and spatial resolution, the combination of these two optical microscopy techniques to obtain correlative multiscale 3D images from the same tumor tissues has not yet been explored. To establish correlative multiscale 3D optical microscopy, we developed a method for optically marking defined regions of interest (ROIs) within a cleared mouse tumor by employing a UV light-activated visible dye and Z-axis position-selective UV irradiation in a light sheet microscope system. By integrating this method with subsequent tissue processing, including physical ROI marking, reversal of tissue clearing, tissue macrosectioning, and multiplex immunofluorescence, we established a workflow that enables the tracking and 3D imaging of ROIs within tumor tissues through sequential light sheet and confocal fluorescence microscopy. This approach allowed for quantitative 3D spatial analysis of the immune response in the TME of a mouse mammary tumor following cancer immunotherapy at multiple spatial scales. The workflow also facilitated the direct localization of a metastatic lesion within a whole mouse brain. These results demonstrate that our ROI tracking method and its associated workflow offer a novel approach for correlative multiscale 3D optical microscopy, with the potential to provide new insights into tumor heterogeneity, metastasis, and response to therapy at various spatial levels.
Collapse
|
54
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
55
|
Lee MK, Azizgolshani N, Shapiro JA, Nguyen LN, Kolling FW, Zanazzi GJ, Frost HR, Christensen BC. Identifying tumor type and cell type-specific gene expression alterations in pediatric central nervous system tumors. Nat Commun 2024; 15:3634. [PMID: 38688897 PMCID: PMC11061189 DOI: 10.1038/s41467-024-47712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collect single nuclei RNA-seq data from 84,700 nuclei of 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues and characterize tumor heterogeneity and transcriptomic alterations. We distinguish cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observe pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identify transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment. Here we address current gaps in understanding single nuclei gene expression profiles of previously under-investigated tumor types and enhance current knowledge of gene expression profiles of single cells of various pediatric CNS tumors.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nasim Azizgolshani
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua A Shapiro
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Bala Cynwyd, PA, USA
| | - Lananh N Nguyen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - George J Zanazzi
- Dartmouth Cancer Center, Lebanon, NH, USA
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Hildreth Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
56
|
Lv D, Fei Y, Chen H, Wang J, Han W, Cui B, Feng Y, Zhang P, Chen J. Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front Immunol 2024; 15:1340702. [PMID: 38690275 PMCID: PMC11058664 DOI: 10.3389/fimmu.2024.1340702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex three-dimensional structure composed of proteins, glycans, and proteoglycans, constituting a critical component of the tumor microenvironment. Complex interactions among immune cells, extracellular matrix, and tumor cells promote tumor development and metastasis, consequently influencing therapeutic efficacy. Hence, elucidating these interaction mechanisms is pivotal for precision cancer therapy. T lymphocytes are an important component of the immune system, exerting direct anti-tumor effects by attacking tumor cells or releasing lymphokines to enhance immune effects. The ECM significantly influences T cells function and infiltration within the tumor microenvironment, thereby impacting the behavior and biological characteristics of tumor cells. T cells are involved in regulating the synthesis, degradation, and remodeling of the extracellular matrix through the secretion of cytokines and enzymes. As a result, it affects the proliferation and invasive ability of tumor cells as well as the efficacy of immunotherapy. This review discusses the mechanisms underlying T lymphocyte-ECM interactions in the tumor immune microenvironment and their potential application in immunotherapy. It provides novel insights for the development of innovative tumor therapeutic strategies and drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiao Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
57
|
Kumari NU, Pardhi E, Chary PS, Mehra NK. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther Deliv 2024; 15:279-303. [PMID: 38374774 DOI: 10.4155/tde-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with various morphological features, clinicopathological conditions and responses to different therapeutic options, which is responsible for high mortality and morbidity in women. The heterogeneity of BC necessitates new strategies for diagnosis and treatment, which is possible only by cautious harmonization of the advanced nanomaterials. Recent developments in vesicular nanocarrier therapy indicate a paradigm shift in breast cancer treatment by providing an integrated approach to address current issues. This review provides a detailed classification of various nanovesicles in the treatment of BC with a special emphasis on recent advances, challenges in translating nanomaterials and future potentials.
Collapse
Affiliation(s)
- Nalla Usha Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
58
|
Kim J, Eygeris Y, Ryals RC, Jozić A, Sahay G. Strategies for non-viral vectors targeting organs beyond the liver. NATURE NANOTECHNOLOGY 2024; 19:428-447. [PMID: 38151642 DOI: 10.1038/s41565-023-01563-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/01/2023] [Indexed: 12/29/2023]
Abstract
In recent years, nanoparticles have evolved to a clinical modality to deliver diverse nucleic acids. Rising interest in nanomedicines comes from proven safety and efficacy profiles established by continuous efforts to optimize physicochemical properties and endosomal escape. However, despite their transformative impact on the pharmaceutical industry, the clinical use of non-viral nucleic acid delivery is limited to hepatic diseases and vaccines due to liver accumulation. Overcoming liver tropism of nanoparticles is vital to meet clinical needs in other organs. Understanding the anatomical structure and physiological features of various organs would help to identify potential strategies for fine-tuning nanoparticle characteristics. In this Review, we discuss the source of liver tropism of non-viral vectors, present a brief overview of biological structure, processes and barriers in select organs, highlight approaches available to reach non-liver targets, and discuss techniques to accelerate the discovery of non-hepatic therapies.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Renee C Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Antony Jozić
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA.
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
59
|
Liu G, Li B, Qin S, Nice EC, Yang J, Yang L, Huang C. Redox signaling-mediated tumor extracellular matrix remodeling: pleiotropic regulatory mechanisms. Cell Oncol (Dordr) 2024; 47:429-445. [PMID: 37792154 DOI: 10.1007/s13402-023-00884-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The extracellular matrix (ECM), a fundamental constituent of all tissues and organs, is crucial for shaping the tumor microenvironment. Dysregulation of ECM remodeling has been closely linked to tumor initiation and progression, where specific signaling pathways, including redox signaling, play essential roles. Reactive oxygen species (ROS) are risk factors for carcinogenesis whose excess can facilitate the oxidative damage of biomacromolecules, such as DNA and proteins. Emerging evidence suggests that redox effects can aid the modification, stimulation, and degradation of ECM, thus affecting ECM remodeling. These alterations in both the density and components of the ECM subsequently act as critical drivers for tumorigenesis. In this review, we provide an overview of the functions and primary traits of the ECM, and it delves into our current understanding of how redox reactions participate in ECM remodeling during cancer progression. We also discuss the opportunities and challenges presented by clinical strategies targeting redox-controlled ECM remodeling to overcome cancer. CONCLUSIONS The redox-mediated ECM remodeling contributes importantly to tumor survival, progression, metastasis, and poor prognosis. A comprehensive investigation of the concrete mechanism of redox-mediated tumor ECM remodeling and the combination usage of redox-targeted drugs with existing treatment means may reveal new therapeutic strategy for future antitumor therapies.
Collapse
Affiliation(s)
- Guowen Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jinlin Yang
- Department of Gastroenterology & Hepatology, West China Hospital of Sichuan University, Sichuan Province, No.37 Guoxue Alley, Chengdu, 610041, China.
- Department of Gastroenterology & Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Li Yang
- Department of Gastroenterology & Hepatology, West China Hospital of Sichuan University, Sichuan Province, No.37 Guoxue Alley, Chengdu, 610041, China.
- Department of Gastroenterology & Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China.
| |
Collapse
|
60
|
M S K, Rajaguru H, Nair AR. Enhancement of Classifier Performance with Adam and RanAdam Hyper-Parameter Tuning for Lung Cancer Detection from Microarray Data-In Pursuit of Precision. Bioengineering (Basel) 2024; 11:314. [PMID: 38671736 PMCID: PMC11047746 DOI: 10.3390/bioengineering11040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Microarray gene expression analysis is a powerful technique used in cancer classification and research to identify and understand gene expression patterns that can differentiate between different cancer types, subtypes, and stages. However, microarray databases are highly redundant, inherently nonlinear, and noisy. Therefore, extracting meaningful information from such a huge database is a challenging one. The paper adopts the Fast Fourier Transform (FFT) and Mixture Model (MM) for dimensionality reduction and utilises the Dragonfly optimisation algorithm as the feature selection technique. The classifiers employed in this research are Nonlinear Regression, Naïve Bayes, Decision Tree, Random Forest and SVM (RBF). The classifiers' performances are analysed with and without feature selection methods. Finally, Adaptive Moment Estimation (Adam) and Random Adaptive Moment Estimation (RanAdam) hyper-parameter tuning techniques are used as improvisation techniques for classifiers. The SVM (RBF) classifier with the Fast Fourier Transform Dimensionality Reduction method and Dragonfly feature selection achieved the highest accuracy of 98.343% with RanAdam hyper-parameter tuning compared to other classifiers.
Collapse
Affiliation(s)
- Karthika M S
- Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam 638401, India;
| | - Harikumar Rajaguru
- Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638401, India;
| | - Ajin R. Nair
- Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638401, India;
| |
Collapse
|
61
|
LIU JUN, LI WENLI, LU RUYUE, XU JIAQING, JIANG CHUNHUI, DUAN JUNLIN, ZHANG LINGZHI, WANG GUANFU, CHEN JIAXI. Investigation of the feasibility of NRAV as a biomarker for hepatocellular carcinoma. Oncol Res 2024; 32:717-726. [PMID: 38560576 PMCID: PMC10972727 DOI: 10.32604/or.2023.043575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
The long non-coding RNA, Negative Regulator of Antiviral Response (NRAV) has been identified as a participant in both respiratory virus replication and immune checkpoints, however, its involvement in pan-cancer immune regulation and prognosis, particularly those of hepatocellular carcinoma (HCC), remains unclear. To address this knowledge gap, we analyzed expression profiles obtained from The Cancer Genome Atlas (TCGA) database, comparing normal and malignant tumor tissues. We found that NRAV expression is significantly upregulated in tumor tissues compared to adjacent nontumor tissues. Kaplan-Meier (K-M) analysis revealed the prognostic power of NRAV, wherein overexpression was significantly linked to reduced overall survival in a diverse range of tumor patients. Furthermore, noteworthy associations were observed between NRAV, immune checkpoints, immune cell infiltration, genes related to autophagy, epithelial-mesenchymal transition (EMT), pyroptosis, tumor mutational burden (TMB), and microsatellite instability (MSI) across different cancer types, including HCC. Moreover, NRAV upregulation expression was associated with multiple pathological stages by clinical observations. Furthermore, our investigation revealed a substantial elevation in the expression of NRAV in both HCC tumor tissues and cells compared to normal tissues and cells. The inhibition of NRAV resulted in the inhibition of cell proliferation, migration, and invasion in HCC cells, while also influencing the expression of CD274 (PD-L1) and CD44, along with various biomarkers associated with EMT, autophagy, and pyroptosis. The aforementioned results propose NRAV as a promising prognostic biomarker for HCC.
Collapse
Affiliation(s)
- JUN LIU
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, China
- Department of Clinical Laboratory, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - WENLI LI
- Department of Clinical Laboratory, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - RUYUE LU
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, China
| | - JIAQING XU
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, China
| | - CHUNHUI JIANG
- School of Basic Medical Sciences Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - JUNLIN DUAN
- Department of Clinical Laboratory, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - LINGZHI ZHANG
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - GUANFU WANG
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - JIAXI CHEN
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, China
| |
Collapse
|
62
|
Sharma K, Dey S, Karmakar R, Rengan AK. A comprehensive review of 3D cancer models for drug screening and translational research. CANCER INNOVATION 2024; 3:e102. [PMID: 38948533 PMCID: PMC11212324 DOI: 10.1002/cai2.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 07/02/2024]
Abstract
The 3D cancer models fill the discovery gap of 2D cancer models and play an important role in cancer research. In addition to cancer cells, a range of other factors include the stroma, density and composition of extracellular matrix, cancer-associated immune cells (e.g., cancer-associated fibroblasts cancer cell-stroma interactions and subsequent interactions, and a number of other factors (e.g., tumor vasculature and tumor-like microenvironment in vivo) has been widely ignored in the 2D concept of culture. Despite this knowledge, the continued use of monolayer cell culture methods has led to the failure of a series of clinical trials. This review discusses the immense importance of tumor microenvironment (TME) recapitulation in cancer research, prioritizing the individual roles of TME elements in cancer histopathology. The TME provided by the 3D model fulfills the requirements of in vivo spatiotemporal arrangement, components, and is helpful in analyzing various different aspects of drug sensitivity in preclinical and clinical trials, some of which are discussed here. Furthermore, it discusses models for the co-assembly of different TME elements in vitro and focuses on their synergistic function and responsiveness as tumors. Furthermore, this review broadly describes of a handful of recently developed 3D models whose main focus is limited to drug development and their screening and/or the impact of this approach in preclinical and translational research.
Collapse
Affiliation(s)
- Karthikey Sharma
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Sreenath Dey
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Rounik Karmakar
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Aravind Kumar Rengan
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| |
Collapse
|
63
|
Chen S, Zhang K, Zou J, Yu Z, Gai C, Chai X, Zhao Q, Zou Y. Further structural optimization and SAR study of sungsanpin derivatives as cell-invasion inhibitors. Bioorg Med Chem Lett 2024; 99:129627. [PMID: 38272189 DOI: 10.1016/j.bmcl.2024.129627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Metastasis is one of the major causes of death in patients with cancer, and cell invasion plays a fundamental part in this process. Because of the absence of efficacious treatments, caring for these patients is challenging. Recently, we optimized the structure of the naturally occurring lasso peptide sungsanpin. We identified two peptides, octapeptide S3 and cyclic peptide S4, which inhibited invasion into A549 cells effectively. We undertook an alanine scan of S3 to explore the structure-activity relationship. The linear octapeptide S3-4 and cyclic peptide S4-1 exhibited improved inhibition of invasion into A549 cells. We modified S3-4 to obtain S3-4K, which displayed much higher inhibitory activity against invasion into A549 cells than S3-4. Of all peptides tested, S4-1 upregulated significantly mRNA of tissue inhibitor matrix metalloproteinase TIMP-1 and TIMP-2.
Collapse
Affiliation(s)
- Shuai Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Kai Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Jihua Zou
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province 350122, PR China
| | - Zhou Yu
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Conghao Gai
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Xiaoyun Chai
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Qingjie Zhao
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| | - Yan Zou
- School of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
64
|
Dragic H, Chaveroux C, Cosset E, Manie SN. Modelling cancer metabolism in vitro: current improvements and future challenges. FEBS J 2024; 291:402-411. [PMID: 36516350 DOI: 10.1111/febs.16704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Advances in cancer biology over the past decades have revealed that metabolic adaptation of cancer cells is an essential aspect of tumorigenesis. However, recent insights into tumour metabolism in vivo have revealed dissimilarities with results obtained in vitro. This is partly due to the reductionism of in vitro cancer models that struggle to reproduce the complexity of tumour tissues. This review describes some of the discrepancies in cancer cell metabolism between in vitro and in vivo conditions, and presents current methodological approaches and tools used to bridge the gap with the clinically relevant microenvironment. As such, these approaches should generate new knowledge that could be more effectively translated into therapeutic opportunities.
Collapse
Affiliation(s)
- Helena Dragic
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Univ Lyon, Université Claude Bernard Lyon 1, France
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Univ Lyon, Université Claude Bernard Lyon 1, France
| | - Erika Cosset
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Univ Lyon, Université Claude Bernard Lyon 1, France
| | - Serge N Manie
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Univ Lyon, Université Claude Bernard Lyon 1, France
| |
Collapse
|
65
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front Immunol 2024; 14:1264774. [PMID: 38347955 PMCID: PMC10859433 DOI: 10.3389/fimmu.2023.1264774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are present in almost all solid tumor tissues. 16They play critical roles in immune regulation, tumor angiogenesis, tumor stem cell activation, tumor invasion and metastasis, and resistance to therapy. However, it is unclear how TAMs perform these functions. With the application of single-cell RNA sequencing (scRNA-seq), it has become possible to identify TAM subpopulations associated with distinct functions. In this review, we discuss four novel TAM subpopulations in distinct solid tumors based on core gene signatures by scRNA-seq, including FCN1 +, SPP1 +, C1Q + and CCL18 + TAMs. Functional enrichment and gene expression in scRNA-seq data from different solid tumor tissues found that FCN1 + TAMs may induce inflammation; SPP1 + TAMs are potentially involved in metastasis, angiogenesis, and cancer cell stem cell activation, whereas C1Q + TAMs participate in immune regulation and suppression; And CCL18 + cells are terminal immunosuppressive macrophages that not only have a stronger immunosuppressive function but also enhance tumor metastasis. SPP1 + and C1Q + TAM subpopulations can be further divided into distinct populations with different functions. Meanwhile, we will also present emerging evidence highlighting the separating macrophage subpopulations associated with distinct functions. However, there exist the potential disconnects between cell types and subpopulations identified by scRNA-seq and their actual function.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
66
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
67
|
Szasz A. Peto's "Paradox" and Six Degrees of Cancer Prevalence. Cells 2024; 13:197. [PMID: 38275822 PMCID: PMC10814230 DOI: 10.3390/cells13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Peto's paradox and the epidemiologic observation of the average six degrees of tumor prevalence are studied and hypothetically solved. A simple consideration, Petho's paradox challenges our intuitive understanding of cancer risk and prevalence. Our simple consideration is that the more a cell divides, the higher the chance of acquiring cancerous mutations, and so the larger or longer-lived organisms have more cells and undergo more cell divisions over their lifetime, expecting to have a higher risk of developing cancer. Paradoxically, it is not supported by the observations. The allometric scaling of species could answer the Peto paradox. Another paradoxical human epidemiology observation in six average mutations is necessary for cancer prevalence, despite the random expectations of the tumor causes. To solve this challenge, game theory could be applied. The inherited and random DNA mutations in the replication process nonlinearly drive cancer development. The statistical variance concept does not reasonably describe tumor development. Instead, the Darwinian natural selection principle is applied. The mutations in the healthy organism's cellular population can serve the species' evolutionary adaptation by the selective pressure of the circumstances. Still, some cells collect multiple uncorrected mutations, adapt to the extreme stress in the stromal environment, and develop subclinical phases of cancer in the individual. This process needs extensive subsequent DNA replications to heritage and collect additional mutations, which are only marginal alone. Still, together, they are preparing for the first stage of the precancerous condition. In the second stage, when one of the caretaker genes is accidentally mutated, the caused genetic instability prepares the cell to fight for its survival and avoid apoptosis. This can be described as a competitive game. In the third stage, the precancerous cell develops uncontrolled proliferation with the damaged gatekeeper gene and forces the new game strategy with binary cooperation with stromal cells for alimentation. In the fourth stage, the starving conditions cause a game change again, starting a cooperative game, where the malignant cells cooperate and force the cooperation of the stromal host, too. In the fifth stage, the resetting of homeostasis finishes the subclinical stage, and in the fifth stage, the clinical phase starts. The prevention of the development of mutated cells is more complex than averting exposure to mutagens from the environment throughout the organism's lifetime. Mutagenic exposure can increase the otherwise random imperfect DNA reproduction, increasing the likelihood of cancer development, but mutations exist. Toxic exposure is more challenging; it may select the tolerant cells on this particular toxic stress, so these mutations have more facility to avoid apoptosis in otherwise collected random mutational states.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
68
|
Wilk A, Setkowicz Z, Banas D, Fernández-Ruiz R, Marguí E, Matusiak K, Wrobel P, Wudarczyk-Mocko J, Janik-Olchawa N, Chwiej J. Glioblastoma multiforme influence on the elemental homeostasis of the distant organs: the results of inter-comparison study carried out with TXRF method. Sci Rep 2024; 14:1254. [PMID: 38218977 PMCID: PMC10787745 DOI: 10.1038/s41598-024-51731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glioblastoma (GBM) is a fast-growing and aggressive brain tumor which invades the nearby brain tissue but generally does not spread to the distant organs. Nonetheless, if untreated, GBM can result in patient death in time even less than few months from the diagnosis. The influence of the tumor progress on organs other than brain is obvious but still not well described. Therefore, we examined the elemental abnormalities appearing in selected body organs (kidney, heart, spleen, lung) in two rat models of GBM. The animals used for the study were subjected to the implantation of human GBM cell lines (U87MG and T98G) characterized by different levels of invasiveness. The elemental analysis of digested organ samples was carried out using the total reflection X-ray fluorescence (TXRF) method, independently, in three European laboratories utilizing various commercially available TXRF spectrometers. The comparison of the data obtained for animals subjected to T98G and U87MG cells implantation showed a number of elemental anomalies in the examined organs. What is more, the abnormalities were found for rats even if neoplastic tumor did not develop in their brains. The most of alterations for both experimental groups were noted in the spleen and lungs, with the direction of the found element changes in these organs being the opposite. The observed disorders of element homeostasis may result from many processes occurring in the animal body as a result of implantation of cancer cells or the development of GBM, including inflammation, anemia of chronic disease or changes in iron metabolism. Tumor induced changes in organ elemental composition detected in cooperating laboratories were usually in a good agreement. In case of elements with higher atomic numbers (Fe, Cu, Zn and Se), 88% of the results were classified as fully compliant. Some discrepancies between the laboratories were found for lighter elements (P, S, K and Ca). However, also in this case, the obtained results fulfilled the requirements of full (the results from three laboratories were in agreement) or partial agreement (the results from two laboratories were in agreement).
Collapse
Affiliation(s)
- Aleksandra Wilk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Dariusz Banas
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Ramón Fernández-Ruiz
- Interdepartmental Research Service (SIdI), Autonomous University of Madrid, Madrid, Spain
| | - Eva Marguí
- Department of Chemistry, University of Girona, Girona, Spain
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Pawel Wrobel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | | | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland.
| |
Collapse
|
69
|
Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit. Cancers (Basel) 2024; 16:312. [PMID: 38254801 PMCID: PMC10814769 DOI: 10.3390/cancers16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA;
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| | - Justine Y. Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| |
Collapse
|
70
|
Yang H, Howerton B, Brown L, Izumi T, Cheek D, Brandon JA, Marti F, Gedaly R, Adatorwovor R, Chapelin F. Magnetic Resonance Imaging of Macrophage Response to Radiation Therapy. Cancers (Basel) 2023; 15:5874. [PMID: 38136418 PMCID: PMC10742077 DOI: 10.3390/cancers15245874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is a non-invasive imaging modality which, in conjunction with biopsies, provide a qualitative assessment of tumor response to treatment. Intravenous injection of contrast agents such as fluorine (19F) nanoemulsions labels systemic macrophages, which can, then, be tracked in real time with MRI. This method can provide quantifiable insights into the behavior of tumor-associated macrophages (TAMs) in the tumor microenvironment and macrophage recruitment during therapy. METHODS Female mice received mammary fat pad injections of murine breast or colon cancer cell lines. The mice then received an intravenous 19F nanoemulsion injection, followed by a baseline 19F MRI. For each cancer model, half of the mice then received 8 Gy of localized radiation therapy (RT), while others remained untreated. The mice were monitored for two weeks for tumor growth and 9F signal using MRI. RESULTS Across both cohorts, the RT-treated groups presented significant tumor growth reduction or arrest, contrary to the untreated groups. Similarly, the fluorine signal in treated groups increased significantly as early as four days post therapy. The fluorine signal change correlated to tumor volumes irrespective of time. CONCLUSION These results demonstrate the potential of 19F MRI to non-invasively track macrophages during radiation therapy and its prognostic value with regard to tumor growth.
Collapse
Affiliation(s)
- Harrison Yang
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA; (H.Y.); (L.B.)
| | - Brock Howerton
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
| | - Logan Brown
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA; (H.Y.); (L.B.)
| | - Tadahide Izumi
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.I.); (F.M.); (R.G.)
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Dennis Cheek
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - J. Anthony Brandon
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40508, USA;
| | - Francesc Marti
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.I.); (F.M.); (R.G.)
- Department of Surgery, Transplant Division, University of Kentucky, Lexington, KY 40506, USA
| | - Roberto Gedaly
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.I.); (F.M.); (R.G.)
- Department of Surgery, Transplant Division, University of Kentucky, Lexington, KY 40506, USA
| | - Reuben Adatorwovor
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA;
| | - Fanny Chapelin
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
71
|
Wang S, Rong R, Zhou Q, Yang DM, Zhang X, Zhan X, Bishop J, Chi Z, Wilhelm CJ, Zhang S, Pickering CR, Kris MG, Minna J, Xie Y, Xiao G. Deep learning of cell spatial organizations identifies clinically relevant insights in tissue images. Nat Commun 2023; 14:7872. [PMID: 38081823 PMCID: PMC10713592 DOI: 10.1038/s41467-023-43172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Recent advancements in tissue imaging techniques have facilitated the visualization and identification of various cell types within physiological and pathological contexts. Despite the emergence of cell-cell interaction studies, there is a lack of methods for evaluating individual spatial interactions. In this study, we introduce Ceograph, a cell spatial organization-based graph convolutional network designed to analyze cell spatial organization (for example,. the cell spatial distribution, morphology, proximity, and interactions) derived from pathology images. Ceograph identifies key cell spatial organization features by accurately predicting their influence on patient clinical outcomes. In patients with oral potentially malignant disorders, our model highlights reduced structural concordance and increased closeness in epithelial substrata as driving features for an elevated risk of malignant transformation. In lung cancer patients, Ceograph detects elongated tumor nuclei and diminished stroma-stroma closeness as biomarkers for insensitivity to EGFR tyrosine kinase inhibitors. With its potential to predict various clinical outcomes, Ceograph offers a deeper understanding of biological processes and supports the development of personalized therapeutic strategies.
Collapse
Affiliation(s)
- Shidan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ruichen Rong
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qin Zhou
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M Yang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinyi Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhikai Chi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clare J Wilhelm
- Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Siyuan Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Mark G Kris
- Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
72
|
Zheng J, Wu YC, Phillips EH, Wang X, Lee SSY. Increased multiplexity in optical tissue clearing-based 3D immunofluorescence microscopy of the tumor microenvironment by LED photobleaching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569277. [PMID: 38076864 PMCID: PMC10705380 DOI: 10.1101/2023.11.29.569277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Optical tissue clearing and three-dimensional (3D) immunofluorescence (IF) microscopy have been transforming imaging of the complex tumor microenvironment (TME). However, current 3D IF microscopy has restricted multiplexity; only three or four cellular and non-cellular TME components can be localized in a cleared tumor tissue. Here we report a LED photobleaching method and its application for 3D multiplexed optical mapping of the TME. We built a high-power LED light irradiation device and temperature-controlled chamber for completely bleaching fluorescent signals throughout optically cleared tumor tissues without compromise of tissue and protein antigen integrity. With newly developed tissue mounting and selected region-tracking methods, we established a cyclic workflow involving IF staining, tissue clearing, 3D confocal microscopy, and LED photobleaching. By registering microscope channel images generated through three work cycles, we produced 8-plex image data from individual 400 μm-thick tumor macrosections that visualize various vascular, immune, and cancer cells in the same TME at tissue-wide and cellular levels in 3D. Our method was also validated for quantitative 3D spatial analysis of cellular remodeling in the TME after immunotherapy. These results demonstrate that our LED photobleaching system and its workflow offer a novel approach to increase the multiplexing power of 3D IF microscopy for studying tumor heterogeneity and response to therapy.
Collapse
|
73
|
Bai Y, Zhou L, Zhang C, Guo M, Xia L, Tang Z, Liu Y, Deng S. Dual network analysis of transcriptome data for discovery of new therapeutic targets in non-small cell lung cancer. Oncogene 2023; 42:3605-3618. [PMID: 37864031 PMCID: PMC10691970 DOI: 10.1038/s41388-023-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
The drug therapy for non-small cell lung cancer (NSCLC) have always been issues of poisonous side effect, acquired drug resistance and narrow applicable population. In this study, we built a novel network analysis method (difference- correlation- enrichment- causality- node), which was based on the difference analysis, Spearman correlation network analysis, biological function analysis and Bayesian causality network analysis to discover new therapeutic target of NSCLC in the sequencing data of BEAS-2B and 7 NSCLC cell lines. Our results showed that, as a proteasome subunit coding gene in the central of cell cycle network, PSMD2 was associated with prognosis and was an independent prognostic factor for NSCLC patients. Knockout of PSMD2 inhibited the proliferation of NSCLC cells by inducing cell cycle arrest, and exhibited marked increase of cell cycle blocking protein p21, p27 and decrease of cell cycle driven protein CDK4, CDK6, CCND1 and CCNE1. IPA and molecular docking suggested bortezomib has stronger affinity to PSMD2 compared with reported targets PSMB1 and PSMB5. In vitro and In vivo experiments demonstrated the inhibitory effect of bortezomib in NSCLC with different driven mutations or with tyrosine kinase inhibitors resistance. Taken together, bortezomib could target PSMD2, PSMB1 and PSMB5 to inhibit the proteasome degradation of cell cycle check points, to block cell proliferation of NSCLC, which was potential optional drug for NSCLC patients.
Collapse
Affiliation(s)
- Yuquan Bai
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhou
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuanfen Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minzhang Guo
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Xia
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenying Tang
- College of Computer Science, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Senyi Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
74
|
Martinez-Castillo M, M. Elsayed A, López-Berestein G, Amero P, Rodríguez-Aguayo C. An Overview of the Immune Modulatory Properties of Long Non-Coding RNAs and Their Potential Use as Therapeutic Targets in Cancer. Noncoding RNA 2023; 9:70. [PMID: 37987366 PMCID: PMC10660772 DOI: 10.3390/ncrna9060070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play pivotal roles in regulating immune responses, immune cell differentiation, activation, and inflammatory processes. In cancer, they are gaining prominence as potential therapeutic targets due to their ability to regulate immune checkpoint molecules and immune-related factors, suggesting avenues for bolstering anti-tumor immune responses. Here, we explore the mechanistic insights into lncRNA-mediated immune modulation, highlighting their impact on immunity. Additionally, we discuss their potential to enhance cancer immunotherapy, augmenting the effectiveness of immune checkpoint inhibitors and adoptive T cell therapies. LncRNAs as therapeutic targets hold the promise of revolutionizing cancer treatments, inspiring further research in this field with substantial clinical implications.
Collapse
Affiliation(s)
- Moises Martinez-Castillo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (M.M.-C.); (G.L.-B.); (P.A.)
- Liver, Pancreas and Motility Laboratory, Unit of Research in Experimental Medicine, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 06726, Mexico
| | - Abdelrahman M. Elsayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt;
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Gabriel López-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (M.M.-C.); (G.L.-B.); (P.A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (M.M.-C.); (G.L.-B.); (P.A.)
| | - Cristian Rodríguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (M.M.-C.); (G.L.-B.); (P.A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
75
|
Wang Y, Zhou JX, Pedrini E, Rubin I, Khalil M, Taramelli R, Qian H, Huang S. Cell population growth kinetics in the presence of stochastic heterogeneity of cell phenotype. J Theor Biol 2023; 575:111645. [PMID: 37863423 DOI: 10.1016/j.jtbi.2023.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, University of California, Los Angeles, CA, United States of America; Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America
| | - Joseph X Zhou
- Institute for Systems Biology, Seattle, WA, United States of America
| | - Edoardo Pedrini
- Institute for Systems Biology, Seattle, WA, United States of America
| | - Irit Rubin
- Institute for Systems Biology, Seattle, WA, United States of America
| | - May Khalil
- Institute for Systems Biology, Seattle, WA, United States of America
| | - Roberto Taramelli
- Department of Theoretical and Applied Science, University of Insubria, Italy
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, United States of America.
| |
Collapse
|
76
|
Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the research of tumor microenvironment. Front Immunol 2023; 14:1285540. [PMID: 37965341 PMCID: PMC10641410 DOI: 10.3389/fimmu.2023.1285540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Single-cell sequencing is a technique for detecting and analyzing genomes, transcriptomes, and epigenomes at the single-cell level, which can detect cellular heterogeneity lost in conventional sequencing hybrid samples, and it has revolutionized our understanding of the genetic heterogeneity and complexity of tumor progression. Moreover, the tumor microenvironment (TME) plays a crucial role in the formation, development and response to treatment of tumors. The application of single-cell sequencing has ushered in a new age for the TME analysis, revealing not only the blueprint of the pan-cancer immune microenvironment, but also the heterogeneity and differentiation routes of immune cells, as well as predicting tumor prognosis. Thus, the combination of single-cell sequencing and the TME analysis provides a unique opportunity to unravel the molecular mechanisms underlying tumor development and progression. In this review, we summarize the recent advances in single-cell sequencing and the TME analysis, highlighting their potential applications in cancer research and clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
77
|
Wang Y, Zhou JX, Pedrini E, Rubin I, Khalil M, Taramelli R, Qian H, Huang S. Cell Population Growth Kinetics in the Presence of Stochastic Heterogeneity of Cell Phenotype. ARXIV 2023:arXiv:2301.03782v2. [PMID: 37904742 PMCID: PMC10614996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, University of California, Los Angeles, California, United States of America
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Joseph X. Zhou
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Edoardo Pedrini
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Irit Rubin
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - May Khalil
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Roberto Taramelli
- Department of Theoretical and Applied Science, University of Insubria, Italy
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Sui Huang
- Institute for Systems Biology, Seattle, Washington, United States of America
| |
Collapse
|
78
|
Lyu A, Humphrey RS, Nam SH, Durham TA, Hu Z, Arasappan D, Horton TM, Ehrlich LIR. Integrin signaling is critical for myeloid-mediated support of T-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:6270. [PMID: 37805579 PMCID: PMC10560206 DOI: 10.1038/s41467-023-41925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.
Collapse
Affiliation(s)
- Aram Lyu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tyler A Durham
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
79
|
Liao K, Zhang X, Liu J, Teng F, He Y, Cheng J, Yang Q, Zhang W, Xie Y, Guo D, Cao G, Xu Y, Huang B, Wang X. The role of platelets in the regulation of tumor growth and metastasis: the mechanisms and targeted therapy. MedComm (Beijing) 2023; 4:e350. [PMID: 37719444 PMCID: PMC10501337 DOI: 10.1002/mco2.350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 09/19/2023] Open
Abstract
Platelets are a class of pluripotent cells that, in addition to hemostasis and maintaining vascular endothelial integrity, are also involved in tumor growth and distant metastasis. The tumor microenvironment is a complex and comprehensive system composed of tumor cells and their surrounding immune and inflammatory cells, tumor-related fibroblasts, nearby interstitial tissues, microvessels, and various cytokines and chemokines. As an important member of the tumor microenvironment, platelets can promote tumor invasion and metastasis through various mechanisms. Understanding the role of platelets in tumor metastasis is important for diagnosing the risk of metastasis and prolonging survival. In this study, we more fully elucidate the underlying mechanisms by which platelets promote tumor growth and metastasis by modulating processes, such as immune escape, angiogenesis, tumor cell homing, and tumor cell exudation, and further summarize the effects of platelet-tumor cell interactions in the tumor microenvironment and possible tumor treatment strategies based on platelet studies. Our summary will more comprehensively and clearly demonstrate the role of platelets in tumor metastasis, so as to help clinical judgment of the potential risk of metastasis in cancer patients, with a view to improving the prognosis of patients.
Collapse
Affiliation(s)
- Kaili Liao
- Jiangxi Province Key Laboratory of Laboratory MedicineJiangxi Provincial Clinical Research Center for Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xue Zhang
- Queen Mary College of Nanchang UniversityNanchangChina
| | - Jie Liu
- School of Public HealthNanchang UniversityNanchangChina
| | - Feifei Teng
- School of Public HealthNanchang UniversityNanchangChina
| | - Yingcheng He
- Queen Mary College of Nanchang UniversityNanchangChina
| | - Jinting Cheng
- School of Public HealthNanchang UniversityNanchangChina
| | - Qijun Yang
- Queen Mary College of Nanchang UniversityNanchangChina
| | - Wenyige Zhang
- Queen Mary College of Nanchang UniversityNanchangChina
| | - Yuxuan Xie
- The Second Clinical Medical CollegeNanchang UniversityNanchangChina
| | - Daixin Guo
- School of Public HealthNanchang UniversityNanchangChina
| | - Gaoquan Cao
- The Fourth Clinical Medical CollegeNanchang UniversityNanchangChina
| | - Yanmei Xu
- Jiangxi Province Key Laboratory of Laboratory MedicineJiangxi Provincial Clinical Research Center for Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory MedicineJiangxi Provincial Clinical Research Center for Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory MedicineJiangxi Provincial Clinical Research Center for Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
80
|
Lin T, Yu Z, Xu Z, Hu H, Xu Y, Chen CW. SGCL: Spatial guided contrastive learning on whole-slide pathological images. Med Image Anal 2023; 89:102845. [PMID: 37597317 DOI: 10.1016/j.media.2023.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 08/21/2023]
Abstract
Self-supervised representation learning (SSL) has achieved remarkable success in its application to natural images while falling behind in performance when applied to whole-slide pathological images (WSIs). This is because the inherent characteristics of WSIs in terms of gigapixel resolution and multiple objects in training patches are fundamentally different from natural images. Directly transferring the state-of-the-art (SOTA) SSL methods designed for natural images to WSIs will inevitably compromise their performance. We present a novel scheme SGCL: Spatial Guided Contrastive Learning, to fully explore the inherent properties of WSIs, leveraging the spatial proximity and multi-object priors for stable self-supervision. Beyond the self-invariance of instance discrimination, we expand and propagate the spatial proximity for the intra-invariance from the same WSI and inter-invariance from different WSIs, as well as propose the spatial-guided multi-cropping for inner-invariance within patches. To adaptively explore such spatial information without supervision, we propose a new loss function and conduct a theoretical analysis to validate it. This novel scheme of SGCL is able to achieve additional improvements over the SOTA pre-training methods on diverse downstream tasks across multiple datasets. Extensive ablation studies have been carried out and visualizations of these results have been presented to aid understanding of the proposed SGCL scheme. As open science, all codes and pre-trained models are available at https://github.com/HHHedo/SGCL.
Collapse
Affiliation(s)
- Tiancheng Lin
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Zhimiao Yu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Zengchao Xu
- Department of Mathematics and Lab for Educational Big Data and Policymaking, Shanghai Normal University, China
| | - Hongyu Hu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Yi Xu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China.
| | | |
Collapse
|
81
|
Pradeu T, Daignan-Fornier B, Ewald A, Germain PL, Okasha S, Plutynski A, Benzekry S, Bertolaso M, Bissell M, Brown JS, Chin-Yee B, Chin-Yee I, Clevers H, Cognet L, Darrason M, Farge E, Feunteun J, Galon J, Giroux E, Green S, Gross F, Jaulin F, Knight R, Laconi E, Larmonier N, Maley C, Mantovani A, Moreau V, Nassoy P, Rondeau E, Santamaria D, Sawai CM, Seluanov A, Sepich-Poore GD, Sisirak V, Solary E, Yvonnet S, Laplane L. Reuniting philosophy and science to advance cancer research. Biol Rev Camb Philos Soc 2023; 98:1668-1686. [PMID: 37157910 PMCID: PMC10869205 DOI: 10.1111/brv.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
- CNRS UMR8590, Institut d’Histoire et Philosophie des Sciences et des Technique, University Paris I Panthéon-Sorbonne, 13 rue du Four, Paris 75006, France
| | - Bertrand Daignan-Fornier
- CNRS UMR 5095 Institut de Biochimie et Génétique Cellulaires, University of Bordeaux, 1 rue Camille St Saens, Bordeaux 33077, France
| | - Andrew Ewald
- Departments of Cell Biology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre-Luc Germain
- Department of Health Sciences and Technology, Institute for Neurosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 2, Zürich 8092, Switzerland
- Department of Molecular Life Sciences, Laboratory of Statistical Bioinformatics, Universität Zürich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Samir Okasha
- Department of Philosophy, University of Bristol, Cotham House, Bristol, BS6 6JL, UK
| | - Anya Plutynski
- Department of Philosophy, Washington University in St. Louis, and Associate with Division of Biology and Biomedical Sciences, St. Louis, MO 63105, USA
| | - Sébastien Benzekry
- Computational Pharmacology and Clinical Oncology (COMPO) Unit, Inria Sophia Antipolis-Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 27, bd Jean Moulin, Marseille 13005, France
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21-00128, Rome, Italy
- Centre for Cancer Biomarkers, University of Bergen, Bergen 5007, Norway
| | - Mina Bissell
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Benjamin Chin-Yee
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 800 Commissioners Rd E, London, ON, Canada
- Rotman Institute of Philosophy, Western University, 1151 Richmond Street North, London, ON, Canada
| | - Ian Chin-Yee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, 800 Commissioners Rd E, London, ON, Canada
| | - Hans Clevers
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Laurent Cognet
- CNRS UMR 5298, Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Rue François Mitterrand, Talence 33400, France
| | - Marie Darrason
- Department of Pneumology and Thoracic Oncology, University Hospital of Lyon, 165 Chem. du Grand Revoyet, 69310 Pierre Bénite, Lyon, France
- Lyon Institute of Philosophical Research, Lyon 3 Jean Moulin University, 1 Av. des Frères Lumière, Lyon 69007, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development group, Institut Curie, CNRS, UMR168, Inserm, Centre Origines et conditions d’apparition de la vie (OCAV) Paris Sciences Lettres Research University, Sorbonne University, Institut Curie, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Jean Feunteun
- INSERM U981, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
| | - Jérôme Galon
- INSERM UMRS1138, Integrative Cancer Immunology, Cordelier Research Center, Sorbonne Université, Université Paris Cité, 15 rue de l’École de Médecine, Paris 75006, France
| | - Elodie Giroux
- Lyon Institute of Philosophical Research, Lyon 3 Jean Moulin University, 1 Av. des Frères Lumière, Lyon 69007, France
| | - Sara Green
- Section for History and Philosophy of Science, Department of Science Education, University of Copenhagen, Rådmandsgade 64, Copenhagen 2200, Denmark
| | - Fridolin Gross
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Fanny Jaulin
- INSERM U1279, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, 3223 Voigt Dr, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ezio Laconi
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Via Università 40, Cagliari 09124, Italy
| | - Nicolas Larmonier
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Carlo Maley
- Arizona Cancer Evolution Center, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, 4 Via Rita Levi Montalcini, 20090 Pieve Emanuele, Milan, Italy
- Department of Immunology and Inflammation, Istituto Clinico Humanitas Humanitas Cancer Center (IRCCS) Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Violaine Moreau
- INSERM UMR1312, Bordeaux Institute of Oncology (BRIC), University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France
| | - Pierre Nassoy
- CNRS UMR 5298, Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Rue François Mitterrand, Talence 33400, France
| | - Elena Rondeau
- INSERM U1111, ENS Lyon and Centre International de Recherche en Infectionlogie (CIRI), 46 Allée d’Italie, Lyon 69007, France
| | - David Santamaria
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca 37007, Spain
| | - Catherine M. Sawai
- INSERM UMR1312, Bordeaux Institute of Oncology (BRIC), University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France
| | - Andrei Seluanov
- Department of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | | | - Vanja Sisirak
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Département d’hématologie, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine, 63 Rue Gabriel Péri, Le Kremlin-Bicêtre 94270, France
| | - Sarah Yvonnet
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Lucie Laplane
- CNRS UMR8590, Institut d’Histoire et Philosophie des Sciences et des Technique, University Paris I Panthéon-Sorbonne, 13 rue du Four, Paris 75006, France
- INSERM U1287, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Center for Biology and Society, College of Liberal Arts and Sciences, Arizona State University, 1100 S McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
82
|
Gregory CD. Hijacking homeostasis: Regulation of the tumor microenvironment by apoptosis. Immunol Rev 2023; 319:100-127. [PMID: 37553811 PMCID: PMC10952466 DOI: 10.1111/imr.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Cancers are genetically driven, rogue tissues which generate dysfunctional, obdurate organs by hijacking normal, homeostatic programs. Apoptosis is an evolutionarily conserved regulated cell death program and a profoundly important homeostatic mechanism that is common (alongside tumor cell proliferation) in actively growing cancers, as well as in tumors responding to cytotoxic anti-cancer therapies. Although well known for its cell-autonomous tumor-suppressive qualities, apoptosis harbors pro-oncogenic properties which are deployed through non-cell-autonomous mechanisms and which generally remain poorly defined. Here, the roles of apoptosis in tumor biology are reviewed, with particular focus on the secreted and fragmentation products of apoptotic tumor cells and their effects on tumor-associated macrophages, key supportive cells in the aberrant homeostasis of the tumor microenvironment. Historical aspects of cell loss in tumor growth kinetics are considered and the impact (and potential impact) on tumor growth of apoptotic-cell clearance (efferocytosis) as well as released soluble and extracellular vesicle-associated factors are discussed from the perspectives of inflammation, tissue repair, and regeneration programs. An "apoptosis-centric" view is proposed in which dying tumor cells provide an important platform for intricate intercellular communication networks in growing cancers. The perspective has implications for future research and for improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Christopher D. Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| |
Collapse
|
83
|
Wu BX, Wu Z, Hou YY, Fang ZX, Deng Y, Wu HT, Liu J. Application of three-dimensional (3D) bioprinting in anti-cancer therapy. Heliyon 2023; 9:e20475. [PMID: 37800075 PMCID: PMC10550518 DOI: 10.1016/j.heliyon.2023.e20475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a novel technology that enables the creation of 3D structures with bioinks, the biomaterials containing living cells. 3D bioprinted structures can mimic human tissue at different levels of complexity from cells to organs. Currently, 3D bioprinting is a promising method in regenerative medicine and tissue engineering applications, as well as in anti-cancer therapy research. Cancer, a type of complex and multifaceted disease, presents significant challenges regarding diagnosis, treatment, and drug development. 3D bioprinted models of cancer have been used to investigate the molecular mechanisms of oncogenesis, the development of cancers, and the responses to treatment. Conventional 2D cancer models have limitations in predicting human clinical outcomes and drug responses, while 3D bioprinting offers an innovative technique for creating 3D tissue structures that closely mimic the natural characteristics of cancers in terms of morphology, composition, structure, and function. By precise manipulation of the spatial arrangement of different cell types, extracellular matrix components, and vascular networks, 3D bioprinting facilitates the development of cancer models that are more accurate and representative, emulating intricate interactions between cancer cells and their surrounding microenvironment. Moreover, the technology of 3D bioprinting enables the creation of personalized cancer models using patient-derived cells and biomarkers, thereby advancing the fields of precision medicine and immunotherapy. The integration of 3D cell models with 3D bioprinting technology holds the potential to revolutionize cancer research, offering extensive flexibility, precision, and adaptability in crafting customized 3D structures with desired attributes and functionalities. In conclusion, 3D bioprinting exhibits significant potential in cancer research, providing opportunities for identifying therapeutic targets, reducing reliance on animal experiments, and potentially lowering the overall cost of cancer treatment. Further investigation and development are necessary to address challenges such as cell viability, printing resolution, material characteristics, and cost-effectiveness. With ongoing progress, 3D bioprinting can significantly impact the field of cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
84
|
Dittmar T, Sieler M, Hass R. Why do certain cancer cells alter functionality and fuse? Biol Chem 2023; 404:951-960. [PMID: 37246410 DOI: 10.1515/hsz-2023-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023]
Abstract
Cancer cell fusion represents a rare event. However, the surviving cancer hybrid cells after a post-hybrid selection process (PHSP) can overgrow other cancer cells by exhibiting a proliferation advantage and/or expression of cancer stem-like properties. Addition of new tumor properties during hetero-fusion of cancer cells e.g. with mesenchymal stroma-/stem-like cells (MSC) contribute to enhanced tumor plasticity via acquisition of new/altered functionalities. This provides new avenues for tumor development and metastatic behavior. Consequently, the present review article will also address the question as to whether cancer cell fusion represents a general and possibly evolutionary-conserved program or rather a random process?
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Ralf Hass
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
85
|
Bhargava A, Popel AS, Pathak AP. Vascular phenotyping of the invasive front in breast cancer using a 3D angiogenesis atlas. Microvasc Res 2023; 149:104555. [PMID: 37257688 PMCID: PMC10526652 DOI: 10.1016/j.mvr.2023.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE Vascular remodeling at the invasive tumor front (ITF) plays a critical role in progression and metastasis of triple negative breast cancer (TNBC). Therefore, there is a crucial need to characterize the vascular phenotype (i.e. changes in the structure and function of vasculature) of the ITF and tumor core (TC) in TNBC. This requires high-resolution, 3D structural and functional microvascular data that spans the ITF and TC (i.e. ∼4-5 mm from the tumor's edge). Since such data are often challenging to obtain with most conventional imaging approaches, we employed a unique "3D whole-tumor angiogenesis atlas" derived from orthotopic xenografts to characterize the vascular phenotype of the ITF and TC in TNBC. METHODS First, high-resolution (8 μm) computed tomography (CT) images of "whole-tumor" microvasculature were acquired from eight orthotopic TNBC xenografts, of which three tumors were excised at post-inoculation day 21 (i.e. early-stage) and five tumors were excised at post-inoculation day 35 (i.e. advanced-stage). These 3D morphological CT data were combined with soft tissue contrast from MRI as well as functional data generated in silico using image-based hemodynamic modeling to generate a multi-layered "angiogenesis atlas". Employing this atlas, blood vessels were first spatially stratified within the ITF (i.e. ≤1 mm from the tumor's edge) and TC (i.e. >1 mm from the tumor's edge) of each tumor xenograft. Then, a novel method was developed to visualize and characterize microvascular remodeling and perfusion changes in terms of distance from the tumor's edge. RESULTS The angiogenesis atlas enabled the 3D visualization of changes in tumor vessel growth patterns, morphology and perfusion within the ITF and TC. Early and advanced stage tumors demonstrated significant differences in terms of their edge-to-center distributions for vascular surface area density, vascular length density, intervessel distance and simulated perfusion density (p ≪ 0.01). Elevated vascular length density, vascular surface area density and perfusion density along the circumference of the ITF was suggestive of a preferential spatial pattern of angiogenic growth in this tumor cohort. Finally, we demonstrated the feasibility of differentiating the vascular phenotypes of ITF and TC in these TNBC xenografts. CONCLUSIONS The combination of a 3D angiogenesis atlas and image-based hemodynamic modeling heralds a new approach for characterizing the role of vascular remodeling in cancer and other diseases.
Collapse
Affiliation(s)
- Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Electrical Engineering, Johns Hopkins University
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Electrical Engineering, Johns Hopkins University; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
86
|
Paresishvili T, Kakabadze Z. Challenges and Opportunities Associated With Drug Delivery for the Treatment of Solid Tumors. Oncol Rev 2023; 17:10577. [PMID: 37711860 PMCID: PMC10497757 DOI: 10.3389/or.2023.10577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
In this review, we discuss the effectiveness of drug delivery system based on metal nanoparticles, and also, describe the problems associated with their delivery to tumor cells. Throughout recent years, more reports have appeared in the literature that demonstrate promising results for the treatment of various types of cancer using metal-based nanoparticles. Due to their unique physical and chemical properties, metal nanoparticles are effectively being used for the delivery of drug to the tumor cells, for cancer diagnosis and treatment. They can also be synthesized allowing the control of size and shape. However, the effectiveness of the metal nanoparticles for cancer treatment largely depends on their stability, biocompatibility, and ability to selectively affect tumor cells after their systemic or local administration. Another major problem associated with metal nanoparticles is their ability to overcome tumor tissue barriers such as atypical blood vessel structure, dense and rigid extracellular matrix, and high pressure of tumor interstitial fluid. The review also describes the design of tumor drug delivery systems that are based on metal nanoparticles. The mechanism of action of metal nanoparticles on cancer cells is also discussed. Considering the therapeutic safety and toxicity of metal nanoparticles, the prospects for their use for future clinical applications are being currently reviewed.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | | |
Collapse
|
87
|
Chen XY, Yan MY, Liu Q, Yu BX, Cen Y, Li SY. Chimeric Peptide Engineered Bioregulator for Metastatic Tumor Immunotherapy through Macrophage Polarization and Phagocytosis Restoration. ACS NANO 2023; 17:16056-16068. [PMID: 37578051 DOI: 10.1021/acsnano.3c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in solid tumor tissues, which restrict antitumor immunity by releasing tumor-supporting cytokines and attenuating phagocytosis behaviors. In this work, a chimeric peptide engineered bioregulator (ChiP-RS) is constructed for tumor immunotherapy through macrophage polarization and phagocytosis restoration. ChiP-RS is fabricated by utilizing macrophage-targeting chimeric peptide (ChiP) to load Toll-like receptor agonists (R848) and Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP-2) inhibitor (SHP099). Among which, ChiP-RS prefers to be internalized by TAMs, repolarizing M2 macrophages into M1 macrophages to reverse the immunosuppressive microenvironment. In addition, SHP-2 can be downregulated to promote phagocytotic elimination behaviors of M1 macrophages, which will also activate T cell-based antitumor immunity for metastatic tumor therapy. In vitro and in vivo findings demonstrate a superior suppression effect of ChiP-RS against metastatic tumors without systemic side effects. Such a simple but effective nanoplatform provides sophisticated synergism for immunotherapy, which may facilitate the development of translational nanomedicine for metastatic tumor treatment.
Collapse
Affiliation(s)
- Xia-Yun Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Meng-Yi Yan
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qianqian Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Bai-Xue Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
88
|
Sala A, Cameron JM, Brennan PM, Crosbie EJ, Curran T, Gray E, Martin-Hirsch P, Palmer DS, Rehman IU, Rattray NJW, Baker MJ. Global serum profiling: an opportunity for earlier cancer detection. J Exp Clin Cancer Res 2023; 42:207. [PMID: 37580713 PMCID: PMC10426107 DOI: 10.1186/s13046-023-02786-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
The advances in cancer research achieved in the last 50 years have been remarkable and have provided a deeper knowledge of this disease in many of its conceptual and biochemical aspects. From viewing a tumor as a 'simple' aggregate of mutant cells and focusing on detecting key cell changes leading to the tumorigenesis, the understanding of cancer has broadened to consider it as a complex organ interacting with its close and far surroundings through tumor and non-tumor cells, metabolic mechanisms, and immune processes. Metabolism and the immune system have been linked to tumorigenesis and malignancy progression along with cancer-specific genetic mutations. However, most technologies developed to overcome the barriers to earlier detection are focused solely on genetic information. The concept of cancer as a complex organ has led to research on other analytical techniques, with the quest of finding a more sensitive and cost-effective comprehensive approach. Furthermore, artificial intelligence has gained broader consensus in the oncology community as a powerful tool with the potential to revolutionize cancer diagnosis for physicians. We herein explore the relevance of the concept of cancer as a complex organ interacting with the bodily surroundings, and focus on promising emerging technologies seeking to diagnose cancer earlier, such as liquid biopsies. We highlight the importance of a comprehensive approach to encompass all the tumor and non-tumor derived information salient to earlier cancer detection.
Collapse
Affiliation(s)
| | | | - Paul M Brennan
- Translational Neurosurgery, Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Division of Gynecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Tom Curran
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Ewan Gray
- Independent Health Economics Consultant, Edinburgh, UK
| | - Pierre Martin-Hirsch
- Gynecological Oncology, Clinical Research Facility, Lancashire Teaching Hospitals, Preston, PR2 9HT, UK
| | - David S Palmer
- Dxcover Limited, Glasgow, G1 1XW, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Ihtesham U Rehman
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Matthew J Baker
- Dxcover Limited, Glasgow, G1 1XW, UK.
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK.
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
89
|
Cappelletti C, Henriksen SP, Geut H, Rozemuller AJM, van de Berg WDJ, Pihlstrøm L, Toft M. Transcriptomic profiling of Parkinson's disease brains reveals disease stage specific gene expression changes. Acta Neuropathol 2023; 146:227-244. [PMID: 37347276 PMCID: PMC10329075 DOI: 10.1007/s00401-023-02597-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara Cappelletti
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Hanneke Geut
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
- Netherlands Brain Bank, Netherlands Institute of Neurosciences, Amsterdam, Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
90
|
Cortellino S, Longo VD. Metabolites and Immune Response in Tumor Microenvironments. Cancers (Basel) 2023; 15:3898. [PMID: 37568713 PMCID: PMC10417674 DOI: 10.3390/cancers15153898] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The remodeled cancer cell metabolism affects the tumor microenvironment and promotes an immunosuppressive state by changing the levels of macro- and micronutrients and by releasing hormones and cytokines that recruit immunosuppressive immune cells. Novel dietary interventions such as amino acid restriction and periodic fasting mimicking diets can prevent or dampen the formation of an immunosuppressive microenvironment by acting systemically on the release of hormones and growth factors, inhibiting the release of proinflammatory cytokines, and remodeling the tumor vasculature and extracellular matrix. Here, we discuss the latest research on the effects of these therapeutic interventions on immunometabolism and tumor immune response and future scenarios pertaining to how dietary interventions could contribute to cancer therapy.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Valter D. Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
91
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
92
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
93
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
94
|
Banerjee M, Devi Rajeswari V. A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer. Med Oncol 2023; 40:245. [PMID: 37454033 DOI: 10.1007/s12032-023-02112-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The microenvironment role is very important in cancer development. The epithelial-mesenchymal transition of the cancer cells depends upon specific signaling and microenvironmental conditions, such as hypoxic conditions. The crosstalk between hypoxia and Wnt signaling through some molecular mechanism in TNBC is related. Cross-communication between hypoxia and Wnt signaling in cancer cells is known, but the detailed mechanism in TNBC is unknown. This review includes the role of the hypoxia microenvironment in TNBC and the novel crosstalk of the Wnt signaling and hypoxia. When targeted, the new pathway and crosstalk link may be a solution for metastatic TNBC and chemoresistance. The microenvironment influences cancer's metastasis, which changes from person to person. Therefore, organ-on-a-chip is a very novel model to test the drugs clinically before going for human trials, focusing on personalized medications can be done. The effect of the hypoxia microenvironment on breast cancer stem cells is still unknown. Apart from all the published papers, this paper mainly focuses only on the hypoxic microenvironment and its association with the growth of TNBC. The medicines or small proteins, drugs, mimics, and inhibitors targeting wnt and hypoxia genes are consolidated in this review paper.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
95
|
Goldman O, Adler LN, Hajaj E, Croese T, Darzi N, Galai S, Tishler H, Ariav Y, Lavie D, Fellus-Alyagor L, Oren R, Kuznetsov Y, David E, Jaschek R, Stossel C, Singer O, Malitsky S, Barak R, Seger R, Erez N, Amit I, Tanay A, Saada A, Golan T, Rubinek T, Sang Lee J, Ben-Shachar S, Wolf I, Erez A. Early Infiltration of Innate Immune Cells to the Liver Depletes HNF4α and Promotes Extrahepatic Carcinogenesis. Cancer Discov 2023; 13:1616-1635. [PMID: 36972357 PMCID: PMC10326600 DOI: 10.1158/2159-8290.cd-22-1062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Multiple studies have identified metabolic changes within the tumor and its microenvironment during carcinogenesis. Yet, the mechanisms by which tumors affect the host metabolism are unclear. We find that systemic inflammation induced by cancer leads to liver infiltration of myeloid cells at early extrahepatic carcinogenesis. The infiltrating immune cells via IL6-pSTAT3 immune-hepatocyte cross-talk cause the depletion of a master metabolic regulator, HNF4α, consequently leading to systemic metabolic changes that promote breast and pancreatic cancer proliferation and a worse outcome. Preserving HNF4α levels maintains liver metabolism and restricts carcinogenesis. Standard liver biochemical tests can identify early metabolic changes and predict patients' outcomes and weight loss. Thus, the tumor induces early metabolic changes in its macroenvironment with diagnostic and potentially therapeutic implications for the host. SIGNIFICANCE Cancer growth requires a permanent nutrient supply starting from early disease stages. We find that the tumor extends its effect to the host's liver to obtain nutrients and rewires the systemic and tissue-specific metabolism early during carcinogenesis. Preserving liver metabolism restricts tumor growth and improves cancer outcomes. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Omer Goldman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lital N Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Brain Science, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Darzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Galai
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Tishler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yarden Ariav
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Lavie
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Rami Jaschek
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Oded Singer
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Renana Barak
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Amit
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center, Hebrew University and Faculty of Medicine, Jerusalem, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Rubinek
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Joo Sang Lee
- Department of Precision Medicine, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shay Ben-Shachar
- Clalit Research Institute, Innovation Division, Clalit Health Services, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Wolf
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
96
|
Wang S, Rong R, Yang DM, Zhang X, Zhan X, Bishop J, Wilhelm CJ, Zhang S, Pickering CR, Kris MG, Minna J, Xie Y, Xiao G. Deep Learning of Cell Spatial Organizations Identifies Clinically Relevant Insights in Tissue Images. RESEARCH SQUARE 2023:rs.3.rs-2928838. [PMID: 37461694 PMCID: PMC10350240 DOI: 10.21203/rs.3.rs-2928838/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Recent advancements in tissue imaging techniques have facilitated the visualization and identification of various cell types within physiological and pathological contexts. Despite the emergence of cell-cell interaction studies, there is a lack of methods for evaluating individual spatial interactions. In this study, we introduce Ceograph, a novel cell spatial organization-based graph convolutional network designed to analyze cell spatial organization (i.e. the cell spatial distribution, morphology, proximity, and interactions) derived from pathology images. Ceograph identifies key cell spatial organization features by accurately predicting their influence on patient clinical outcomes. In patients with oral potentially malignant disorders, our model highlights reduced structural concordance and increased closeness in epithelial substrata as driving features for an elevated risk of malignant transformation. In lung cancer patients, Ceograph detects elongated tumor nuclei and diminished stroma-stroma closeness as biomarkers for insensitivity to EGFR tyrosine kinase inhibitors. With its potential to predict various clinical outcomes, Ceograph offers a deeper understanding of biological processes and supports the development of personalized therapeutic strategies.
Collapse
Affiliation(s)
- Shidan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ruichen Rong
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xinyi Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Justin Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Clare J. Wilhelm
- Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Siyuan Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Mark G. Kris
- Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Texas, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
97
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
98
|
Okada M, Takano T, Ikegawa Y, Ciesielski H, Nishida H, Yoo SK. Oncogenic stress-induced Netrin is a humoral signaling molecule that reprograms systemic metabolism in Drosophila. EMBO J 2023:e111383. [PMID: 37140455 DOI: 10.15252/embj.2022111383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Cancer exerts pleiotropic, systemic effects on organisms, leading to health deterioration and eventually to organismal death. How cancer induces systemic effects on remote organs and the organism itself still remains elusive. Here we describe a role for NetrinB (NetB), a protein with a particularly well-characterized role as a tissue-level axon guidance cue, in mediating oncogenic stress-induced organismal, metabolic reprogramming as a systemic humoral factor. In Drosophila, Ras-induced dysplastic cells upregulate and secrete NetB. Inhibition of either NetB from the transformed tissue or its receptor in the fat body suppresses oncogenic stress-induced organismal death. NetB from the dysplastic tissue remotely suppresses carnitine biosynthesis in the fat body, which is critical for acetyl-CoA generation and systemic metabolism. Supplementation of carnitine or acetyl-CoA ameliorates organismal health under oncogenic stress. This is the first identification, to our knowledge, of a role for the Netrin molecule, which has been studied extensively for its role within tissues, in humorally mediating systemic effects of local oncogenic stress on remote organs and organismal metabolism.
Collapse
Affiliation(s)
- Morihiro Okada
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
| | - Tomomi Takano
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
| | - Yuko Ikegawa
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hanna Ciesielski
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
| | - Hiroshi Nishida
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Division of Cell Physiology, Kobe University, Kobe, Japan
| | - Sa Kan Yoo
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
99
|
Rajan S, Franz EM, McAloney CA, Vetter TA, Cam M, Gross AC, Taslim C, Wang M, Cannon MV, Oles A, Roberts RD. Osteosarcoma tumors maintain intra-tumoral transcriptional heterogeneity during bone and lung colonization. BMC Biol 2023; 21:98. [PMID: 37106386 PMCID: PMC10142502 DOI: 10.1186/s12915-023-01593-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to primary and metastatic microenvironments could inform the development of therapeutic targeting strategies. RESULTS We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glucose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcriptional profiles that are preserved across cellular generations. CONCLUSIONS Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in the face of selective pressures.
Collapse
Affiliation(s)
- Sanjana Rajan
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH USA
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Emily M. Franz
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH USA
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Camille A. McAloney
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Maren Cam
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Amy C. Gross
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Cenny Taslim
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Meng Wang
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Matthew V. Cannon
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Alexander Oles
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC USA
| | - Ryan D. Roberts
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
- Division of Pediatric Hematology, Oncology, and BMT, Nationwide Children’s Hospital, Columbus, OH USA
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH USA
| |
Collapse
|
100
|
Wang R, Kumar B, Bhat-Nakshatri P, Khatpe AS, Murphy MP, Wanczyk KE, Simpson E, Chen D, Gao H, Liu Y, Doud EH, Mosley AL, Nakshatri H. A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle. iScience 2023; 26:106541. [PMID: 37102148 PMCID: PMC10123345 DOI: 10.1016/j.isci.2023.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Skeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Kristen E. Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Edward Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Duojiao Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|