51
|
Shabo I, Svanvik J, Lindström A, Lechertier T, Trabulo S, Hulit J, Sparey T, Pawelek J. Roles of cell fusion, hybridization and polyploid cell formation in cancer metastasis. World J Clin Oncol 2020; 11:121-135. [PMID: 32257843 PMCID: PMC7103524 DOI: 10.5306/wjco.v11.i3.121] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/02/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cell-cell fusion is a normal biological process playing essential roles in organ formation and tissue differentiation, repair and regeneration. Through cell fusion somatic cells undergo rapid nuclear reprogramming and epigenetic modifications to form hybrid cells with new genetic and phenotypic properties at a rate exceeding that achievable by random mutations. Factors that stimulate cell fusion are inflammation and hypoxia. Fusion of cancer cells with non-neoplastic cells facilitates several malignancy-related cell phenotypes, e.g., reprogramming of somatic cell into induced pluripotent stem cells and epithelial to mesenchymal transition. There is now considerable in vitro, in vivo and clinical evidence that fusion of cancer cells with motile leucocytes such as macrophages plays a major role in cancer metastasis. Of the many changes in cancer cells after hybridizing with leucocytes, it is notable that hybrids acquire resistance to chemo- and radiation therapy. One phenomenon that has been largely overlooked yet plays a role in these processes is polyploidization. Regardless of the mechanism of polyploid cell formation, it happens in response to genotoxic stresses and enhances a cancer cell’s ability to survive. Here we summarize the recent progress in research of cell fusion and with a focus on an important role for polyploid cells in cancer metastasis. In addition, we discuss the clinical evidence and the importance of cell fusion and polyploidization in solid tumors.
Collapse
Affiliation(s)
- Ivan Shabo
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE 171 77, Sweden
- Patient Area of Breast Cancer, Sarcoma and Endocrine Tumours, Theme Cancer, Karolinska University Hospital, Stockholm SE 171 76, Sweden
| | - Joar Svanvik
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg SE 413 45, Sweden
- Division of Surgery, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE 581 83, Sweden
| | - Annelie Lindström
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE 581 85, Sweden
| | - Tanguy Lechertier
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Sara Trabulo
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - James Hulit
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Tim Sparey
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - John Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
52
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
53
|
Coelho DS, Schwartz S, Merino MM, Hauert B, Topfel B, Tieche C, Rhiner C, Moreno E. Culling Less Fit Neurons Protects against Amyloid-β-Induced Brain Damage and Cognitive and Motor Decline. Cell Rep 2019; 25:3661-3673.e3. [PMID: 30590040 PMCID: PMC6315112 DOI: 10.1016/j.celrep.2018.11.098] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/05/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, impairing cognitive and motor functions. One of the pathological hallmarks of AD is neuronal loss, which is not reflected in mouse models of AD. Therefore, the role of neuronal death is still uncertain. Here, we used a Drosophila AD model expressing a secreted form of human amyloid-β42 peptide and showed that it recapitulates key aspects of AD pathology, including neuronal death and impaired long-term memory. We found that neuronal apoptosis is mediated by cell fitness-driven neuronal culling, which selectively eliminates impaired neurons from brain circuits. We demonstrated that removal of less fit neurons delays β-amyloid-induced brain damage and protects against cognitive and motor decline, suggesting that contrary to common knowledge, neuronal death may have a beneficial effect in AD. Peptides linked to neurodegenerative diseases reduce neuronal fitness in Drosophila β-amyloid-induced neuronal death is mediated by fitness regulators flower and azot Suppression of fitness-based neuronal culling aggravates cognitive and motor decline Neuronal death related to fitness-based selection has a beneficial net effect
Collapse
Affiliation(s)
- Dina S Coelho
- Cell Fitness Lab, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Silvia Schwartz
- Stem Cells and Regeneration Lab, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal
| | - Marisa M Merino
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Department of Biochemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Barbara Hauert
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Barbara Topfel
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Colin Tieche
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Christa Rhiner
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Stem Cells and Regeneration Lab, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Eduardo Moreno
- Cell Fitness Lab, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
54
|
Insights into the quantitative and dynamic aspects of Cell Competition. Curr Opin Cell Biol 2019; 60:68-74. [DOI: 10.1016/j.ceb.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
|
55
|
The Initial Stage of Tumorigenesis in Drosophila Epithelial Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31520350 DOI: 10.1007/978-3-030-23629-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer development originates in a single mutant cell transformed from a normal cell, including further evolution of pro-tumor cells through additional mutations into malignant cancer tissues. Data from recent studies, however, suggest that most pro-tumor cells do not develop into tumors but remain dormant within or are prophylactically eliminated from tissues unless bestowed with additional driver mutations. Drosophila melanogaster has provided very efficient model systems, such as imaginal discs and ovarian follicular epithelia, to study the initial stage of tumorigenesis. This review will focus on the behaviors of emerging pro-tumor cells surrounded by normal cells and situations where they initiate tumor development.
Collapse
|
56
|
Grendler J, Lowgren S, Mills M, Losick VP. Wound-induced polyploidization is driven by Myc and supports tissue repair in the presence of DNA damage. Development 2019; 146:dev173005. [PMID: 31315896 PMCID: PMC6703715 DOI: 10.1242/dev.173005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Tissue repair usually requires either polyploid cell growth or cell division, but the molecular mechanism promoting polyploidy and limiting cell division remains poorly understood. Here, we find that injury to the adult Drosophila epithelium causes cells to enter the endocycle through the activation of Yorkie-dependent genes (Myc and E2f1). Myc is even sufficient to induce the endocycle in the uninjured post-mitotic epithelium. As result, epithelial cells enter S phase but mitosis is blocked by inhibition of mitotic gene expression. The mitotic cell cycle program can be activated by simultaneously expressing the Cdc25-like phosphatase String (stg), while genetically depleting APC/C E3 ligase fizzy-related (fzr). However, forcing cells to undergo mitosis is detrimental to wound repair as the adult fly epithelium accumulates DNA damage, and mitotic errors ensue when cells are forced to proliferate. In conclusion, we find that wound-induced polyploidization enables tissue repair when cell division is not a viable option.
Collapse
Affiliation(s)
- Janelle Grendler
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Rd, Bar Harbor, ME 04609, USA
| | - Sara Lowgren
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Rd, Bar Harbor, ME 04609, USA
| | - Monique Mills
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Rd, Bar Harbor, ME 04609, USA
| | - Vicki P Losick
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Rd, Bar Harbor, ME 04609, USA
| |
Collapse
|
57
|
Matamoro-Vidal A, Levayer R. Multiple Influences of Mechanical Forces on Cell Competition. Curr Biol 2019; 29:R762-R774. [DOI: 10.1016/j.cub.2019.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
58
|
Bowling S, Lawlor K, Rodríguez TA. Cell competition: the winners and losers of fitness selection. Development 2019; 146:146/13/dev167486. [PMID: 31278123 DOI: 10.1242/dev.167486] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The process of cell competition results in the 'elimination of cells that are viable but less fit than surrounding cells'. Given the highly heterogeneous nature of our tissues, it seems increasingly likely that cells are engaged in a 'survival of the fittest' battle throughout life. The process has a myriad of positive roles in the organism: it selects against mutant cells in developing tissues, prevents the propagation of oncogenic cells and eliminates damaged cells during ageing. However, 'super-fit' cancer cells can exploit cell competition mechanisms to expand and spread. Here, we review the regulation, roles and risks of cell competition in organism development, ageing and disease.
Collapse
Affiliation(s)
- Sarah Bowling
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Katerina Lawlor
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Tristan A Rodríguez
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
59
|
Coelho DS, Moreno E. Emerging links between cell competition and Alzheimer's disease. J Cell Sci 2019; 132:132/13/jcs231258. [PMID: 31263078 DOI: 10.1242/jcs.231258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) causes a progressive loss of memory and other cognitive functions, which inexorably debilitates patients. There is still no cure for AD and effective treatments to delay or revert AD are urgently needed. On a molecular level, the excessive accumulation of amyloid-β (Aβ) peptides triggers a complex cascade of pathological events underlying neuronal death, whose details are not yet completely understood. Our laboratory recently discovered that cell competition may play a protective role against AD by eliminating less fit neurons from the brain of Aβ-transgenic flies. Loss of Aβ-damaged neurons through fitness comparison with healthy counterparts is beneficial for the organism, delaying cognitive decline and motor disability. In this Review, we introduce the molecular mechanisms of cell competition, including seminal works on the field and latest advances regarding genetic triggers and effectors of cell elimination. We then describe the biological relevance of competition in the nervous system and discuss how competitive interactions between neurons may arise and be exacerbated in the context of AD. Selection of neurons through fitness comparison is a promising, but still emerging, research field that may open new avenues for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Dina S Coelho
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília., 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília., 1400-038 Lisbon, Portugal
| |
Collapse
|
60
|
Paglia S, Sollazzo M, Di Giacomo S, Strocchi S, Grifoni D. Exploring MYC relevance to cancer biology from the perspective of cell competition. Semin Cancer Biol 2019; 63:49-59. [PMID: 31102666 DOI: 10.1016/j.semcancer.2019.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Cancer has long been regarded and treated as a foreign body appearing by mistake inside a living organism. However, now we know that cancer cells communicate with neighbours, thereby creating modified environments able to support their unusual need for nutrients and space. Understanding the molecular basis of these bi-directional interactions is thus mandatory to approach the complex nature of cancer. Since their discovery, MYC proteins have been showing to regulate a steadily increasing number of processes impacting cell fitness, and are consistently found upregulated in almost all human tumours. Of interest, MYC takes part in cell competition, an evolutionarily conserved fitness comparison strategy aimed at detecting weakened cells, which are then committed to death, removed from the tissue and replaced by fitter neighbours. During physiological development, MYC-mediated cell competition is engaged to eliminate cells with suboptimal MYC levels, so as to guarantee selective growth of the fittest and proper homeostasis, while transformed cells expressing high levels of MYC coopt cell competition to subvert tissue constraints, ultimately disrupting homeostasis. Therefore, the interplay between cells with different MYC levels may result in opposite functional outcomes, depending on the nature of the players. In the present review, we describe the most recent findings on the role of MYC-mediated cell competition in different contexts, with a special emphasis on its impact on cancer initiation and progression. We also discuss the relevance of competition-associated cell death to cancer disease.
Collapse
Affiliation(s)
- Simona Paglia
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Manuela Sollazzo
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Simone Di Giacomo
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Silvia Strocchi
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Daniela Grifoni
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
61
|
Lo PK, Huang YC, Corcoran D, Jiao R, Deng WM. Inhibition of Notch signaling by the p105 and p180 subunits of Drosophila chromatin assembly factor 1 is required for follicle cell proliferation. J Cell Sci 2019; 132:jcs.224170. [PMID: 30630896 DOI: 10.1242/jcs.224170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023] Open
Abstract
Chromatin assembly factor 1 (CAF1), a histone chaperone that mediates the deposition of histone H3/H4 onto newly synthesized DNA, is involved in Notch signaling activation during Drosophila wing imaginal disc development. Here, we report another side of CAF1, wherein the subunits CAF1-p105 and CAF1-p180 (also known as CAF1-105 and CAF1-180, respectively) inhibit expression of Notch target genes and show this is required for proliferation of Drosophila ovarian follicle cells. Loss-of-function of either CAF1-p105 or CAF1-p180 caused premature activation of Notch signaling reporters and early expression of the Notch target Hindsight (Hnt, also known as Pebbled), leading to Cut downregulation and inhibition of follicle cell mitosis. Our studies further show Notch is functionally responsible for these phenotypes observed in both the CAF1-p105- and CAF1-p180-deficient follicle cells. Moreover, we reveal that CAF1-p105- and CAF1-p180-dependent Cut expression is essential for inhibiting Hnt expression in follicle cells during their mitotic stage. These findings together indicate a novel negative-feedback regulatory loop between Cut and Hnt underlying CAF1-p105 and CAF-p180 regulation, which is crucial for follicle cell differentiation. In conclusion, our studies suggest CAF1 plays a dual role to sustain cell proliferation by positively or negatively regulating Drosophila Notch signaling in a tissue-context-dependent manner.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yi-Chun Huang
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - David Corcoran
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou 510182, China.,The Second Affiliated Hospital of Guangzhou Medical University, Changgangdong Road 250, Guangzhou 510260, China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
62
|
Gjelsvik KJ, Besen-McNally R, Losick VP. Solving the Polyploid Mystery in Health and Disease. Trends Genet 2019; 35:6-14. [PMID: 30470486 PMCID: PMC6457904 DOI: 10.1016/j.tig.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 01/12/2023]
Abstract
Polyploidy (the more than doubling of a cell's genome) frequently arises during organogenesis, tissue repair, and age-associated diseases. Despite its prevalence, major gaps exist in how polyploid cells emerge and affect tissue function. Studies have begun to elucidate the signals required for polyploid cell growth as well as the advantages and disadvantages of polyploidy in health and disease. This review highlights the recent advances on the role and regulation of polyploidy in Drosophila and vertebrate models. The newly discovered versatility of polyploid cells has the potential to provide alternative strategies to promote tissue growth and repair, while limiting disease and dysfunction.
Collapse
Affiliation(s)
- K J Gjelsvik
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - R Besen-McNally
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - V P Losick
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA.
| |
Collapse
|
63
|
Sollazzo M, Genchi C, Paglia S, Di Giacomo S, Pession A, de Biase D, Grifoni D. High MYC Levels Favour Multifocal Carcinogenesis. Front Genet 2018; 9:612. [PMID: 30619451 PMCID: PMC6297171 DOI: 10.3389/fgene.2018.00612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023] Open
Abstract
The term "field cancerisation" describes the formation of tissue sub-areas highly susceptible to multifocal tumourigenesis. In the earlier stages of cancer, cells may indeed display a series of molecular alterations that allow them to proliferate faster, eventually occupying discrete tissue regions with irrelevant morphological anomalies. This behaviour recalls cell competition, a process based on a reciprocal fitness comparison: when cells with a growth advantage arise in a tissue, they are able to commit wild-type neighbours to death and to proliferate at their expense. It is known that cells expressing high MYC levels behave as super-competitors, able to kill and replace less performant adjacent cells; given MYC upregulation in most human cancers, MYC-mediated cell competition is likely to pioneer field cancerisation. Here we show that MYC overexpression in a sub-territory of the larval wing epithelium of Drosophila is sufficient to trigger a number of cellular responses specific to mammalian pre-malignant tissues. Moreover, following induction of different second mutations, high MYC-expressing epithelia were found to be susceptible to multifocal growth, a hallmark of mammalian pre-cancerous fields. In summary, our study identified an early molecular alteration implicated in field cancerisation and established a genetically amenable model which may help study the molecular basis of early carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniela Grifoni
- Cancer Evolution Laboratory, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
64
|
Abstract
Life starts with a zygote, which is formed by the fusion of a haploid sperm and egg. The formation of a blastomere by cleavage division (nuclear division without an increase in cell size) is the first step in embryogenesis, after the formation of the zygote. Blastomeres are responsible for reprogramming the parental genome as a new embryonic genome for generation of the pluripotent stem cells which then differentiate by Waddington's epigenetic landscape to create a new life. Multiple authors over the past 150 years have proposed that tumors arises from development gone awry at a point within Waddington's landscape. Recent discoveries showing that differentiated somatic cells can be reprogrammed into induced pluripotent stem cells, and that somatic cell nuclear transfer can be used to successfully clone animals, have fundamentally reshaped our understanding of tumor development and origin. Differentiated somatic cells are plastic and can be induced to dedifferentiate into pluripotent stem cells. Here, I review the evidence that suggests somatic cells may have a previously overlooked endogenous embryonic program that can be activated to dedifferentiate somatic cells into stem cells of various potencies for tumor initiation. Polyploid giant cancer cells (PGCCs) have long been observed in cancer and were thought originally to be nondividing. Contrary to this belief, recent findings show that stress-induced PGCCs divide by endoreplication, which may recapitulate the pattern of cleavage-like division in blastomeres and lead to dedifferentiation of somatic cells by a programmed process known as "the giant cell cycle", which comprise four distinct but overlapping phases: initiation, self-renewal, termination and stability. Depending on the intensity and type of stress, different levels of dedifferentiation result in the formation of tumors of different grades of malignancy. Based on these results, I propose a unified dualistic model to demonstrate the origin of human tumors. The tenet of this model includes four points, as follows. 1. Tumors originate from a stem cell at a specific developmental hierarchy, which can be achieved by dualistic origin: dedifferentiation of the zygote formed by two haploid gametes (sexual reproduction) via the blastomere during normal development, or transformation from damaged or aged mature somatic cells via a blastomere-like embryonic program (asexual reproduction). 2. Initiation of the tumor begins with a stem cell that has uncoupled the differentiation from the proliferation program which results in stem cell maturation arrest. 3. The developmental hierarchy at which stem cells arrest determines the degree of malignancy: the more primitive the level at which stem cells arrest, the greater the likelihood of the tumor being malignant. 4. Environmental factors and intrinsic genetic or epigenetic alterations represent the risk factors or stressors that facilitate stem cell arrest and somatic cell dedifferentiation. However, they, per se, are not the driving force of tumorigenesis. Thus, the birth of a tumor can be viewed as a triad that originates from a stem cell via dedifferentiation through a blastomere or blastomere-like program, which then differentiates along Waddington's landscape, and arrests at a developmental hierarchy. Blocking the PGCC-mediated dedifferentiation process and inducing their differentiation may represent a novel alternative approach to eliminate the tumor occurrence and therapeutic resistance.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4095, United States.
| |
Collapse
|
65
|
Madan E, Gogna R, Moreno E. Cell competition in development: information from flies and vertebrates. Curr Opin Cell Biol 2018; 55:150-157. [DOI: 10.1016/j.ceb.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
66
|
Nagata R, Igaki T. Cell competition: Emerging mechanisms to eliminate neighbors. Dev Growth Differ 2018; 60:522-530. [DOI: 10.1111/dgd.12575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Rina Nagata
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| | - Tatsushi Igaki
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| |
Collapse
|
67
|
Meserve JH, Duronio RJ. Fate mapping during regeneration: Cells that undergo compensatory proliferation in damaged Drosophila eye imaginal discs differentiate into multiple retinal accessory cell types. Dev Biol 2018; 444:43-49. [PMID: 30347187 DOI: 10.1016/j.ydbio.2018.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Regeneration of tissues that have been damaged by cell loss requires new growth, often via proliferation of precursor cells followed by differentiation to replace loss of specific cell types. When regeneration occurs after normal differentiation of the tissue is complete, developmental pathways driving differentiation must be re-activated. How proliferation and differentiation are induced and balanced during regeneration is not well understood. To investigate these processes, we utilized a paradigm for tissue damage and regeneration in the developing Drosophila melanogaster eye. Previous studies have demonstrated that tissue damage resulting from extensive cell death stimulates quiescent, undifferentiated cells in the developing larval eye to re-enter the cell cycle and proliferate. Whether these cells are restricted to certain fates or can contribute to all retinal cell types and thus potentially be fully regenerative is not known. Here we found by fate mapping experiments that these cells are competent to differentiate into all accessory cell types in the retina but do not differentiate into photoreceptors, likely because cell cycle re-entry in response to damage occurs after photoreceptor differentiation has completed. We conclude that the ability to re-enter the cell cycle in response to tissue damage in the developing Drosophila eye is not restricted to precursors of a specific cell type and that cell cycle re-entry following damage does not disrupt developmental programs that control differentiation.
Collapse
Affiliation(s)
- Joy H Meserve
- Curriculum in Genetics&Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics&Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
68
|
Cohen E, Allen SR, Sawyer JK, Fox DT. Fizzy-Related dictates A cell cycle switch during organ repair and tissue growth responses in the Drosophila hindgut. eLife 2018; 7:e38327. [PMID: 30117808 PMCID: PMC6130973 DOI: 10.7554/elife.38327] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Ploidy-increasing cell cycles drive tissue growth in many developing organs. Such cycles, including endocycles, are increasingly appreciated to drive tissue growth following injury or activated growth signaling in mature organs. In these organs, the regulation and distinct roles of different cell cycles remains unclear. Here, we uncover a programmed switch between cell cycles in the Drosophila hindgut pylorus. Using an acute injury model, we identify mitosis as the response in larval pyloric cells, whereas endocycles occur in adult pyloric cells. By developing a novel genetic method, DEMISE (Dual-Expression-Method-for-Induced-Site-specific-Eradication), we show the cell cycle regulator Fizzy-related dictates the decision between mitosis and endocycles. After injury, both cycles accurately restore tissue mass and genome content. However, in response to sustained growth signaling, only endocycles preserve epithelial architecture. Our data reveal distinct cell cycle programming in response to similar stimuli in mature vs. developmental states and reveal a tissue-protective role of endocycles.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
| | - Scott R Allen
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
| | - Jessica K Sawyer
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamUnited States
| | - Donald T Fox
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamUnited States
- Regeneration Next InitiativeDuke University School of MedicineDurhamUnited States
| |
Collapse
|
69
|
Abstract
Fast-growing cells can expand in a tissue by eliminating and replacing the neighbouring wild-type cells. A new study provides an elegant explanation for how cell elimination contributes to the preferential expansion of the invading population.
Collapse
Affiliation(s)
- Romain Levayer
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
70
|
Tsuboi A, Ohsawa S, Umetsu D, Sando Y, Kuranaga E, Igaki T, Fujimoto K. Competition for Space Is Controlled by Apoptosis-Induced Change of Local Epithelial Topology. Curr Biol 2018; 28:2115-2128.e5. [DOI: 10.1016/j.cub.2018.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/09/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
|
71
|
Lazzeri E, Angelotti ML, Peired A, Conte C, Marschner JA, Maggi L, Mazzinghi B, Lombardi D, Melica ME, Nardi S, Ronconi E, Sisti A, Antonelli G, Becherucci F, De Chiara L, Guevara RR, Burger A, Schaefer B, Annunziato F, Anders HJ, Lasagni L, Romagnani P. Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nat Commun 2018; 9:1344. [PMID: 29632300 PMCID: PMC5890293 DOI: 10.1038/s41467-018-03753-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Acute kidney injury (AKI) is considered largely reversible based on the capacity of surviving tubular cells to dedifferentiate and replace lost cells via cell division. Here we show by tracking individual tubular cells in conditional Pax8/Confetti mice that kidney function is recovered after AKI despite substantial tubular cell loss. Cell cycle and ploidy analysis upon AKI in conditional Pax8/FUCCI2aR mice and human biopsies identify endocycle-mediated hypertrophy of tubular cells. By contrast, a small subset of Pax2+ tubular progenitors enriches via higher stress resistance and clonal expansion and regenerates necrotic tubule segments, a process that can be enhanced by suitable drugs. Thus, renal functional recovery upon AKI involves remnant tubular cell hypertrophy via endocycle and limited progenitor-driven regeneration that can be pharmacologically enhanced.
Collapse
Affiliation(s)
- Elena Lazzeri
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Maria Lucia Angelotti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Anna Peired
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Carolina Conte
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Julian A Marschner
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Klinikum der LMU München, Munich, Germany
| | - Laura Maggi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | | | - Duccio Lombardi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Maria Elena Melica
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Sara Nardi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Elisa Ronconi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Alessandro Sisti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Nephrology Unit and Meyer Children's University Hospital, Florence, Italy
| | - Giulia Antonelli
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | | | - Letizia De Chiara
- Nephrology Unit and Meyer Children's University Hospital, Florence, Italy
| | - Ricardo Romero Guevara
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Beat Schaefer
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Francesco Annunziato
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Klinikum der LMU München, Munich, Germany
| | - Laura Lasagni
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Paola Romagnani
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy.
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy.
- Nephrology Unit and Meyer Children's University Hospital, Florence, Italy.
| |
Collapse
|
72
|
Shu Z, Row S, Deng WM. Endoreplication: The Good, the Bad, and the Ugly. Trends Cell Biol 2018; 28:465-474. [PMID: 29567370 DOI: 10.1016/j.tcb.2018.02.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
To battle adverse internal and external conditions and maintain homeostasis, diploid organisms employ various cellular processes, such as proliferation and apoptosis. In some tissues, an alternative mechanism, endoreplication, is employed toward similar goals. Endoreplication is an evolutionarily conserved cell cycle program during which cells replicate their genomes without division, resulting in polyploid cells. Importantly, endoreplication is reported to be indispensable for normal development and organ formation across various organisms, from fungi to humans. In recent years, more attention has been drawn to delineating its connections to wound healing and tumorigenesis. In this Review, we discuss mechanisms of endoreplication and polyploidization, their essential and positive roles in normal development and tissue homeostasis, and the relationship between polyploidy and cancer.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Sarayu Row
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
73
|
Kon S. Physiological and pathological relevance of cell competition in fly to mammals. Dev Growth Differ 2017; 60:14-20. [PMID: 29250773 DOI: 10.1111/dgd.12415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
In multicellular organisms, incidentally emerging suboptimal cells are removed to maintain homeostasis of tissues. The unfavorable cells are excluded by a process termed cell competition whereby the resident normal cells actively eliminate the unfit cells of the identical lineage. Although the phenomenon of cell competition was originally discovered in Drosophila, a number of recent studies have provided implications of cell competition in tissue regeneration, development and oncogenesis in mammals. Here the roles of cell competition in fly to mammals are discussed.
Collapse
Affiliation(s)
- Shunsuke Kon
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| |
Collapse
|
74
|
The phenomenology of cell size control. Curr Opin Cell Biol 2017; 49:53-58. [DOI: 10.1016/j.ceb.2017.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/26/2017] [Indexed: 01/27/2023]
|
75
|
Lynch MD, Lynch CNS, Craythorne E, Liakath-Ali K, Mallipeddi R, Barker JN, Watt FM. Spatial constraints govern competition of mutant clones in human epidermis. Nat Commun 2017; 8:1119. [PMID: 29066762 PMCID: PMC5654977 DOI: 10.1038/s41467-017-00993-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Deep sequencing can detect somatic DNA mutations in tissues permitting inference of clonal relationships. This has been applied to human epidermis, where sun exposure leads to the accumulation of mutations and an increased risk of skin cancer. However, previous studies have yielded conflicting conclusions about the relative importance of positive selection and neutral drift in clonal evolution. Here, we sequenced larger areas of skin than previously, focusing on cancer-prone skin spanning five decades of life. The mutant clones identified were too large to be accounted for solely by neutral drift. Rather, using mathematical modelling and computational lattice-based simulations, we show that observed clone size distributions can be explained by a combination of neutral drift and stochastic nucleation of mutations at the boundary of expanding mutant clones that have a competitive advantage. These findings demonstrate that spatial context and cell competition cooperate to determine the fate of a mutant stem cell. Deep sequencing technologies allow for the investigation of clonal evolution in human cancers. Here the authors, combining sequencing data from human skin with mathematical modelling and simulations, suggest that the spatial context of a mutation with respect to other mutant clones may lead to differential clonal evolution.
Collapse
Affiliation(s)
- M D Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE1 9RT, UK.,St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - C N S Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - E Craythorne
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - K Liakath-Ali
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - R Mallipeddi
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - J N Barker
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - F M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
76
|
Cao J, Wang J, Jackman CP, Cox AH, Trembley MA, Balowski JJ, Cox BD, De Simone A, Dickson AL, Di Talia S, Small EM, Kiehart DP, Bursac N, Poss KD. Tension Creates an Endoreplication Wavefront that Leads Regeneration of Epicardial Tissue. Dev Cell 2017; 42:600-615.e4. [PMID: 28950101 DOI: 10.1016/j.devcel.2017.08.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/24/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023]
Abstract
Mechanisms that control cell-cycle dynamics during tissue regeneration require elucidation. Here we find in zebrafish that regeneration of the epicardium, the mesothelial covering of the heart, is mediated by two phenotypically distinct epicardial cell subpopulations. These include a front of large, multinucleate leader cells, trailed by follower cells that divide to produce small, mononucleate daughters. By using live imaging of cell-cycle dynamics, we show that leader cells form by spatiotemporally regulated endoreplication, caused primarily by cytokinesis failure. Leader cells display greater velocities and mechanical tension within the epicardial tissue sheet, and experimentally induced tension anisotropy stimulates ectopic endoreplication. Unbalancing epicardial cell-cycle dynamics with chemical modulators indicated autonomous regenerative capacity in both leader and follower cells, with leaders displaying an enhanced capacity for surface coverage. Our findings provide evidence that mechanical tension can regulate cell-cycle dynamics in regenerating tissue, stratifying the source cell features to improve repair.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Jinhu Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Christopher P Jackman
- Regeneration Next, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Amanda H Cox
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Michael A Trembley
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| | - Joseph J Balowski
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Ben D Cox
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Alessandro De Simone
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric M Small
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| | | | - Nenad Bursac
- Regeneration Next, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
77
|
Kucinski I, Dinan M, Kolahgar G, Piddini E. Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nat Commun 2017; 8:136. [PMID: 28743877 PMCID: PMC5526992 DOI: 10.1038/s41467-017-00145-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/02/2017] [Indexed: 01/27/2023] Open
Abstract
Cell competition is a form of cell interaction that causes the elimination of less fit cells, or losers, by wild-type (WT) cells, influencing overall tissue health. Several mutations can cause cells to become losers; however, it is not known how. Here we show that Drosophila wing disc cells carrying functionally unrelated loser mutations (Minute and mahjong) display the common activation of multiple stress signalling pathways before cell competition and find that these pathways collectively account for the loser status. We find that JNK signalling inhibits the growth of losers, while JAK/STAT signalling promotes competition-induced winner cell proliferation. Furthermore, we show that losers display oxidative stress response activation and, strikingly, that activation of this pathway alone, by Nrf2 overexpression, is sufficient to prime cells for their elimination by WT neighbours. Since oxidative stress and Nrf2 are linked to several diseases, cell competition may occur in a number of pathological conditions.Cell competition causes the removal of less fit cells ('losers') but why some gene mutations turn cells into losers is unclear. Here, the authors show that Drosophila wing disc cells carrying some loser mutations activate Nrf2 and JNK signalling, which contribute to the loser status.
Collapse
Affiliation(s)
- Iwo Kucinski
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Haematology and Cambridge Institute of Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Michael Dinan
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Golnar Kolahgar
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Eugenia Piddini
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
78
|
Baker NE. Mechanisms of cell competition emerging from Drosophila studies. Curr Opin Cell Biol 2017; 48:40-46. [PMID: 28600967 DOI: 10.1016/j.ceb.2017.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
Cell competition was described in Drosophila as the loss from mosaic tissues of otherwise viable cells heterozygous for Ribosomal protein mutations ('Minutes'). Cell competition has now been described to occur between multiple other genotypes, such as cells differing in myc expression levels, or mutated for neoplastic tumor suppressors. Recent studies implicate innate immunity components, and possibly mechanical stress, compression and cell intercalation as a consequence of differential growth rates in competitive cell death. Competition to eliminate pre-neoplastic tumors makes use of signals and receptors also used in patterning the nervous system including Slit/Robo2 and Sas/PTP10D to recognize and extrude clones of mutant cells, at least where local epithelial cyto-architecture is favorable. Cell competition facilitates expansion of Drosophila tumors through host tissue, and in normal development may promote developmental robustness and longevity by selecting for optimal progenitor cells.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Department of Developmental and Molecular Biology, Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
79
|
EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. Nat Commun 2017; 8:15125. [PMID: 28485389 PMCID: PMC5436070 DOI: 10.1038/ncomms15125] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair. In response to gut epithelial damage, Drosophila stem cells proliferate to produce large polyploid enterocytes (EC), which comprise the bulk of the epithelium. Here, the authors show that stress-dependent EGFR/MAP kinase signalling drives both endoreplication and cell growth in newborn ECs.
Collapse
|
80
|
Differential Regulation of Cyclin E by Yorkie-Scalloped Signaling in Organ Development. G3-GENES GENOMES GENETICS 2017; 7:1049-1060. [PMID: 28143945 PMCID: PMC5345706 DOI: 10.1534/g3.117.039065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue integrity and homeostasis are accomplished through strict spatial and temporal regulation of cell growth and proliferation during development. Various signaling pathways have emerged as major growth regulators across metazoans; yet, how differential growth within a tissue is spatiotemporally coordinated remains largely unclear. Here, we report a role of a growth modulator Yorkie (Yki), the Drosophila homolog of Yes-associated protein (YAP), that differentially regulates its targets in Drosophila wing imaginal discs; whereby Yki interacts with its transcriptional partner, Scalloped (Sd), the homolog of the TEAD/TEF family transcription factor in mammals, to control an essential cell cycle regulator Cyclin E (CycE). Interestingly, when Yki was coexpressed with Fizzy-related (Fzr), a Drosophila endocycle inducer and homolog of Cdh1 in mammals, surrounding hinge cells displayed larger nuclear size than distal pouch cells. The observed size difference is attributable to differential regulation of CycE, a target of Yki and Sd, the latter of which can directly bind to CycE regulatory sequences, and is expressed only in the pouch region of the wing disc starting from the late second-instar larval stage. During earlier stages of larval development, when Sd expression was not detected in the wing disc, coexpression of Fzr and Yki did not cause size differences between cells along the proximal–distal axis of the disc. We show that ectopic CycE promoted cell proliferation and apoptosis, and inhibited transcriptional activity of Yki targets. These findings suggest that spatiotemporal expression of transcription factor Sd induces differential growth regulation by Yki during wing disc development, highlighting coordination between Yki and CycE to control growth and maintain homeostasis.
Collapse
|
81
|
Schäfer P, Karl MO. Prospective purification and characterization of Müller glia in the mouse retina regeneration assay. Glia 2017; 65:828-847. [PMID: 28220544 DOI: 10.1002/glia.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023]
Abstract
Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown. To facilitate studies on the mechanisms regulating and limiting glia functions, we developed a strategy to purify glia and their progeny by fluorescence-activated cell sorting. Dual-transgenic nuclear reporter mice, which label neurons and glia with red and green fluorescent proteins, respectively, have enabled MG enrichment up to 93% purity. We applied this approach to MG in a mouse retina regeneration ex vivo assay. Combined cell size and cell cycle analysis indicates that most MG hypertrophy and a subpopulation proliferates which, over time, become even larger in cell size than the ones that do not proliferate. MG undergo timed differential genomic changes in genes controlling stemness and neurogenic competence; and glial markers are downregulated. Genes that are potentially required for, or associated with, regeneration and reactive gliosis are differentially regulated by retina explant culture time, epidermal growth factor stimulation, and animal age. Thus, MG enrichment facilitates cellular and molecular studies which, in combination with the mouse retina regeneration assay, provide an experimental approach for deciphering mechanisms that possibly regulate reactive gliosis and limit regeneration in mammals.
Collapse
Affiliation(s)
- Patrick Schäfer
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| | - Mike O Karl
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| |
Collapse
|
82
|
Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis during Drosophila Development. PLoS Genet 2017; 13:e1006569. [PMID: 28085885 PMCID: PMC5279808 DOI: 10.1371/journal.pgen.1006569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/30/2017] [Accepted: 01/04/2017] [Indexed: 12/15/2022] Open
Abstract
NF-κB pathways are key signaling cascades of the Drosophila innate immune response. One of them, the Immune Deficiency (IMD) pathway, is under a very tight negative control. Although molecular brakes exist at each step of this signaling module from ligand availability to transcriptional regulation, it remains unknown whether repressors act in the same cells or tissues and if not, what is rationale behind this spatial specificity. We show here that the negative regulator of IMD pathway PGRP-LF is epressed in ectodermal derivatives. We provide evidence that, in the absence of any immune elicitor, PGRP-LF loss-of-function mutants, display a constitutive NF-κB/IMD activation specifically in ectodermal tissues leading to genitalia and tergite malformations. In agreement with previous data showing that proper development of these structures requires induction of apoptosis, we show that ectopic activation of NF-κB/IMD signaling leads to apoptosis inhibition in both genitalia and tergite primordia. We demonstrate that NF-κB/IMD signaling antagonizes apoptosis by up-regulating expression of the anti-apoptotic protein Diap1. Altogether these results show that, in the complete absence of infection, the negative regulation of NF-κB/IMD pathway by PGRP-LF is crucial to ensure proper induction of apoptosis and consequently normal fly development. These results highlight that IMD pathway regulation is controlled independently in different tissues, probably reflecting the different roles of this signaling cascade in both developmental and immune processes. In multicellular organism such as mammals or insects, activation of innate immune responses occurs following detection of microbes by dedicated receptors called pattern recognition receptors. Such immune activation is taking place in immune competent tissue such as the skin, the digestive and respiratory epithelia and is under a tight negative control. Negative control is essential to finely adjust the duration and the intensity of the immune response to the level of infection. We found that the Drosophila innate immunity negative regulator PGRP-LF, is specifically expressed in non-immune tissues and plays an essential role during development, in absence of any infection. Lack of PGRP-LF function in these tissues inhibits apoptosis leading to incomplete genitalia rotation and tergite malformations. We show that such apoptosis inhibition results from the over expression of the negative regulator of apoptosis Diap1 specifically in PGRP-LF expressing cells. Our data highlight that proper negative regulation of immune signaling pathway in non-immune tissues is contributing to normal development and illustrate the growing evidence of the dual role of immune signaling pathway contribution to both immunity and in development processes.
Collapse
|
83
|
Antonino de Souza Junior JD, Pierre O, Coelho RR, Grossi-de-Sa MF, Engler G, de Almeida Engler J. Application of Nuclear Volume Measurements to Comprehend the Cell Cycle in Root-Knot Nematode-Induced Giant Cells. FRONTIERS IN PLANT SCIENCE 2017; 8:961. [PMID: 28659939 PMCID: PMC5466992 DOI: 10.3389/fpls.2017.00961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 05/12/2023]
Abstract
Root-knot nematodes induce galls that contain giant-feeding cells harboring multiple enlarged nuclei within the roots of host plants. It is recognized that the cell cycle plays an essential role in the set-up of a peculiar nuclear organization that seemingly steers nematode feeding site induction and development. Functional studies of a large set of cell cycle genes in transgenic lines of the model host Arabidopsis thaliana have contributed to better understand the role of the cell cycle components and their implication in the establishment of functional galls. Mitotic activity mainly occurs during the initial stages of gall development and is followed by an intense endoreduplication phase imperative to produce giant-feeding cells, essential to form vigorous galls. Transgenic lines overexpressing particular cell cycle genes can provoke severe nuclei phenotype changes mainly at later stages of feeding site development. This can result in chaotic nuclear phenotypes affecting their volume. These aberrant nuclear organizations are hampering gall development and nematode maturation. Herein we report on two nuclear volume assessment methods which provide information on the complex changes occurring in nuclei during giant cell development. Although we observed that the data obtained with AMIRA tend to be more detailed than Volumest (Image J), both approaches proved to be highly versatile, allowing to access 3D morphological changes in nuclei of complex tissues and organs. The protocol presented here is based on standard confocal optical sectioning and 3-D image analysis and can be applied to study any volume and shape of cellular organelles in various complex biological specimens. Our results suggest that an increase in giant cell nuclear volume is not solely linked to increasing ploidy levels, but might result from the accumulation of mitotic defects.
Collapse
Affiliation(s)
- José Dijair Antonino de Souza Junior
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e BiotecnologiaBrasília, Brazil
| | - Olivier Pierre
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
| | - Roberta R. Coelho
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e BiotecnologiaBrasília, Brazil
| | - Maria F. Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e BiotecnologiaBrasília, Brazil
| | - Gilbert Engler
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
- *Correspondence: Janice de Almeida Engler,
| |
Collapse
|
84
|
Percharde M, Bulut-Karslioglu A, Ramalho-Santos M. Hypertranscription in Development, Stem Cells, and Regeneration. Dev Cell 2016; 40:9-21. [PMID: 27989554 DOI: 10.1016/j.devcel.2016.11.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/23/2016] [Accepted: 11/16/2016] [Indexed: 11/29/2022]
Abstract
Cells can globally upregulate their transcriptome during specific transitions, a phenomenon called hypertranscription. Evidence for hypertranscription dates back over 70 years but has gone largely ignored in the genomics era until recently. We discuss data supporting the notion that hypertranscription is a unifying theme in embryonic development, stem cell biology, regeneration, and cell competition. We review the history, methods for analysis, underlying mechanisms, and biological significance of hypertranscription.
Collapse
Affiliation(s)
- Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
85
|
Affiliation(s)
- Cristina Clavería
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain;
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain;
| |
Collapse
|
86
|
Merino MM, Levayer R, Moreno E. Survival of the Fittest: Essential Roles of Cell Competition in Development, Aging, and Cancer. Trends Cell Biol 2016; 26:776-788. [DOI: 10.1016/j.tcb.2016.05.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
87
|
Yoo SK, Pascoe HG, Pereira T, Kondo S, Jacinto A, Zhang X, Hariharan IK. Plexins function in epithelial repair in both Drosophila and zebrafish. Nat Commun 2016; 7:12282. [PMID: 27452696 PMCID: PMC4962468 DOI: 10.1038/ncomms12282] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
In most multicellular organisms, homeostasis is contingent upon maintaining epithelial integrity. When unanticipated insults breach epithelial barriers, dormant programmes of tissue repair are immediately activated. However, many of the mechanisms that repair damaged epithelia remain poorly characterized. Here we describe a role for Plexin A (PlexA), a protein with particularly well-characterized roles in axonal pathfinding, in the healing of damaged epithelia in Drosophila. Semaphorins, which are PlexA ligands, also regulate tissue repair. We show that Drosophila PlexA has GAP activity for the Rap1 GTPase, which is known to regulate the stability of adherens junctions. Our observations suggest that the inhibition of Rap1 activity by PlexA in damaged Drosophila epithelia allows epithelial remodelling, thus facilitating wound repair. We also demonstrate a role for Plexin A1, a zebrafish orthologue of Drosophila PlexA, in epithelial repair in zebrafish tail fins. Thus, plexins function in epithelial wound healing in diverse taxa. Plexins are semaphorin receptors and are well known for their roles in neuronal pathfinding. Here the authors describe a role for Plexin A in healing damaged epithelia in Drosophila and zebrafish. In Drosophila, Plexin A inhibits the GTPase Rap1 to allow epithelial remodelling to facilitate wound repair.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.,The Miller Institute, University of California, Berkeley, California 94720, USA.,Physiological Genetics Laboratory, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Telmo Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 130, 1169-056 Lisboa, Portugal
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Antonio Jacinto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 130, 1169-056 Lisboa, Portugal
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
88
|
Guo Z, Lucchetta E, Rafel N, Ohlstein B. Maintenance of the adult Drosophila intestine: all roads lead to homeostasis. Curr Opin Genet Dev 2016; 40:81-86. [PMID: 27392294 DOI: 10.1016/j.gde.2016.06.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Maintenance of tissue homeostasis is critical in tissues with high turnover such as the intestinal epithelium. The intestinal epithelium is under constant cellular assault due to its digestive functions and its function as a barrier to chemical and bacterial insults. The resulting high rate of cellular turnover necessitates highly controlled mechanisms of regeneration to maintain the integrity of the tissue over the lifetime of the organism. Transient increase in stem cell proliferation is a commonly used and elaborate mechanism to ensure fast and efficient repair of the gut. However, tissue repair is not limited to regulating ISC proliferation, as emerging evidence demonstrates that the Drosophila intestine uses multiple strategies to ensure proper tissue homeostasis that may also extend to other tissues.
Collapse
Affiliation(s)
- Zheng Guo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Elena Lucchetta
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Neus Rafel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin Ohlstein
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
89
|
Losick VP. Wound-Induced Polyploidy Is Required for Tissue Repair. Adv Wound Care (New Rochelle) 2016; 5:271-278. [PMID: 27274437 DOI: 10.1089/wound.2014.0545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Significance: All organs suffer wounds to some extent during an animal's lifetime and to compensate for cell loss, tissues often rely on cell division. However, many organs are made up of differentiated cells with only a limited capacity to divide. It is not well understood how cells are replaced in the absence of cell division. Recent Advances: Recent studies in the model organism Drosophila melanogaster have proven that wound-induced polyploidy (WIP) is an essential mechanism to replace tissue mass and restore tissue integrity in the absence of cell division. In this repair mechanism, preexisting differentiated cells increase their DNA content and cell size by becoming polyploid. Critical Issues: Cells within mammalian organs such as the liver, heart, and cornea have also been observed to increase their DNA ploidy in response to injury, suggesting that WIP may be an evolutionarily conserved mechanism to compensate for cell loss. Future Directions: The Hippo signal transduction pathway is required for differentiated cells to initiate WIP in Drosophila. Continued studies in Drosophila will help to identify other signaling pathways required for WIP as well as the conserved mechanisms that polyploid cells may play during wound repair in all organisms.
Collapse
Affiliation(s)
- Vicki P. Losick
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| |
Collapse
|
90
|
Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun 2016; 7:11373. [PMID: 27109213 PMCID: PMC4848481 DOI: 10.1038/ncomms11373] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scribKD) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scribKD cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells. Cell competition is a quality control mechanism to eliminate unfit cells. Here the authors show that physical compaction of less fit cells surrounded by healthy neighbours leads to increased expression of tumour suppressor p53 in the compacted cells, causing cell death.
Collapse
|
91
|
Dynamics of spinal microglia repopulation following an acute depletion. Sci Rep 2016; 6:22839. [PMID: 26961247 PMCID: PMC4785356 DOI: 10.1038/srep22839] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022] Open
Abstract
Our understanding on the function of microglia has been revolutionized in the recent 20 years. However, the process of maintaining microglia homeostasis has not been fully understood. In this study, we dissected the features of spinal microglia repopulation following an acute partial depletion. By injecting intrathecally Mac-1-saporin, a microglia selective immunotoxin, we ablated 50% microglia in the spinal cord of naive mice. Spinal microglia repopulated rapidly and local homeostasis was re-established within 14 days post-depletion. Mac-1-saporin treatment resulted in microglia cell proliferation and circulating monocyte infiltration. The latter is indeed part of an acute, transient inflammatory reaction that follows cell depletion, and was characterized by an increase in the expression of inflammatory molecules and by the breakdown of the blood spinal cord barrier. During this period, microglia formed cell clusters and exhibited a M1-like phenotype. MCP-1/CCR2 signaling was essential in promoting this depletion associated spinal inflammatory reaction. Interestingly, ruling out MCP-1-mediated secondary inflammation, including blocking recruitment of monocyte-derived microglia, did not affect depletion-triggered microglia repopulation. Our results also demonstrated that newly generated microglia kept their responsiveness to peripheral nerve injury and their contribution to injury-associated neuropathic pain was not significantly altered.
Collapse
|
92
|
Losick VP, Jun AS, Spradling AC. Wound-Induced Polyploidization: Regulation by Hippo and JNK Signaling and Conservation in Mammals. PLoS One 2016; 11:e0151251. [PMID: 26958853 PMCID: PMC4784922 DOI: 10.1371/journal.pone.0151251] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
Tissue integrity and homeostasis often rely on the proliferation of stem cells or differentiated cells to replace lost, aged, or damaged cells. Recently, we described an alternative source of cell replacement- the expansion of resident, non-dividing diploid cells by wound-induced polyploidization (WIP). Here we show that the magnitude of WIP is proportional to the extent of cell loss using a new semi-automated assay with single cell resolution. Hippo and JNK signaling regulate WIP; unexpectedly however, JNK signaling through AP-1 limits rather than stimulates the level of Yki activation and polyploidization in the Drosophila epidermis. We found that polyploidization also quantitatively compensates for cell loss in a mammalian tissue, mouse corneal endothelium, where increased cell death occurs with age in a mouse model of Fuchs Endothelial Corneal Dystrophy (FECD). Our results suggest that WIP is an evolutionarily conserved homeostatic mechanism that maintains the size and synthetic capacity of adult tissues.
Collapse
Affiliation(s)
- Vicki P. Losick
- Department of Embryology, Carnegie Institution for Science, Howard Hughes Medical Institute, 3250 San Martin Dr., Baltimore, MD 21218, United States of America
| | - Albert S. Jun
- Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N. Broadway, Baltimore, MD 21231, United States of America
| | - Allan C. Spradling
- Department of Embryology, Carnegie Institution for Science, Howard Hughes Medical Institute, 3250 San Martin Dr., Baltimore, MD 21218, United States of America
- * E-mail:
| |
Collapse
|
93
|
Abstract
Polyploid cells, which contain more than two genome copies, occur throughout nature. Beyond well-established roles in increasing cell size/metabolic output, polyploidy can also promote nonuniform genome, transcriptome, and metabolome alterations. Polyploidy also frequently confers resistance to environmental stresses not tolerated by diploid cells. Recent progress has begun to unravel how this fascinating phenomenon contributes to normal physiology and disease.
Collapse
Affiliation(s)
- Kevin P Schoenfelder
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
94
|
Abstract
Throughout their lifetime, cells may suffer insults that reduce their fitness and disrupt their function, and it is unclear how these potentially harmful cells are managed in adult tissues. We address this question using the adult Drosophila posterior midgut as a model of homeostatic tissue and ribosomal Minute mutations to reduce fitness in groups of cells. We take a quantitative approach combining lineage tracing and biophysical modeling and address how cell competition affects stem cell and tissue population dynamics. We show that healthy cells induce clonal extinction in weak tissues, targeting both stem and differentiated cells for elimination. We also find that competition induces stem cell proliferation and self-renewal in healthy tissue, promoting selective advantage and tissue colonization. Finally, we show that winner cell proliferation is fueled by the JAK-STAT ligand Unpaired-3, produced by Minute−/+ cells in response to chronic JNK stress signaling. In the adult fly gut, wild-type cells outcompete subfit Minute−/+ cells Both stem and differentiated Minute−/+ cells are eliminated by cell competition Cell competition promotes proliferation and self-renewal of normal stem cells The growth of healthy cells is boosted by JAK-STAT signaling
Collapse
|
95
|
Meserve JH, Duronio RJ. Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Development 2015; 142:2740-51. [PMID: 26160905 DOI: 10.1242/dev.119339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Regeneration of damaged tissues typically requires a population of active stem cells. How damaged tissue is regenerated in quiescent tissues lacking a stem cell population is less well understood. We used a genetic screen in the developing Drosophila melanogaster eye to investigate the mechanisms that trigger quiescent cells to re-enter the cell cycle and proliferate in response to tissue damage. We discovered that Hippo signaling regulates compensatory proliferation after extensive cell death in the developing eye. Scalloped and Yorkie, transcriptional effectors of the Hippo pathway, drive Cyclin E expression to induce cell cycle re-entry in cells that normally remain quiescent in the absence of damage. Ajuba, an upstream regulator of Hippo signaling that functions as a sensor of epithelial integrity, is also required for cell cycle re-entry. Thus, in addition to its well-established role in modulating proliferation during periods of tissue growth, Hippo signaling maintains homeostasis by regulating quiescent cell populations affected by tissue damage.
Collapse
Affiliation(s)
- Joy H Meserve
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
96
|
Kajita M, Fujita Y. EDAC: Epithelial defence against cancer--cell competition between normal and transformed epithelial cells in mammals. J Biochem 2015; 158:15-23. [DOI: 10.1093/jb/mvv050] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/04/2015] [Indexed: 02/07/2023] Open
|
97
|
Orr-Weaver TL. When bigger is better: the role of polyploidy in organogenesis. Trends Genet 2015; 31:307-15. [PMID: 25921783 DOI: 10.1016/j.tig.2015.03.011] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 12/28/2022]
Abstract
Defining how organ size is regulated, a process controlled not only by the number of cells but also by the size of the cells, is a frontier in developmental biology. Large cells are produced by increasing DNA content or ploidy, a developmental strategy employed throughout the plant and animal kingdoms. The widespread use of polyploidy during cell differentiation makes it important to define how this hypertrophy contributes to organogenesis. I discuss here examples from a variety of animals and plants in which polyploidy controls organ size, the size and function of specific tissues within an organ, or the differentiated properties of cells. In addition, I highlight how polyploidy functions in wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Terry L Orr-Weaver
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
98
|
Neves J, Demaria M, Campisi J, Jasper H. Of flies, mice, and men: evolutionarily conserved tissue damage responses and aging. Dev Cell 2015; 32:9-18. [PMID: 25584795 PMCID: PMC4450349 DOI: 10.1016/j.devcel.2014.11.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studies in flies, mice, and human models have provided a conceptual framework for how paracrine interactions between damaged cells and the surrounding tissue control tissue repair. These studies have amassed evidence for an evolutionarily conserved secretory program that regulates tissue homeostasis. This program coordinates cell survival and proliferation during tissue regeneration and repair in young animals. By virtue of chronic engagement, however, it also contributes to the age-related decline of tissue homeostasis leading to degeneration, metabolic dysfunction, and cancer. Here, we review recent studies that shed light on the nature and regulation of this evolutionarily conserved secretory program.
Collapse
Affiliation(s)
- Joana Neves
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Marco Demaria
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94520, USA.
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
99
|
Patel M, Antala B, Shrivastava N. In silico screening of alleged miRNAs associated with cell competition: an emerging cellular event in cancer. ACTA ACUST UNITED AC 2015; 20:798-815. [DOI: 10.1515/cmble-2015-0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/20/2015] [Indexed: 01/13/2023]
Abstract
AbstractCell competition is identified as a crucial phenomenon for cancer and organ development. There is a possibility that microRNAs (miRNAs) may play an important role in the regulation of expression of genes involved in cell competition. In silico screening of miRNAs is an effort to abridge, economize and expedite the experimental approaches to identification of potential miRNAs involved in cell competition, as no study has reported involvement of miRNAs in cell competition to date. In this study, we used multiple screening steps as follows: (i) selection of cell competition related genes of Drosophila through a literature survey; (ii) homology study of selected cell competition related genes; (iii) identification of miRNAs that target conserved cell competitionrelated genes through prediction tools; (iv) sequence conservation analysis of identified miRNAs with human genome; (v) identification of conserved cell competition miRNAs using their expression profiles and exploration of roles of their homologous human miRNAs. This study led to the identification of nine potential cell competition miRNAs in the Drosophila genome. Importantly, eighteen human homologs of these nine potential Drosophila miRNAs are well reported for their involvement in different types of cancers. This confirms their probable involvement in cell competition as well, because cell competition is well justified for its involvement in cancer initiation and maintenance.
Collapse
|
100
|
Moreno E, Rhiner C. Darwin's multicellularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr Opin Cell Biol 2014; 31:16-22. [PMID: 25022356 PMCID: PMC4238900 DOI: 10.1016/j.ceb.2014.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
Abstract
Metazoans have evolved ways to engage only the most appropriate cells for long-term tissue development and homeostasis. In many cases, competitive interactions have been shown to guide such cell selection events. In Drosophila, a process termed cell competition eliminates slow proliferating cells from growing epithelia. Recent studies show that cell competition is conserved in mammals with crucial functions like the elimination of suboptimal stem cells from the early embryo and the replacement of old T-cell progenitors in the thymus to prevent tumor formation. Moreover, new data in Drosophila has revealed that fitness indicator proteins, required for cell competition, are also involved in the culling of retinal neurons suggesting that 'fitness fingerprints' may play a general role in cell selection.
Collapse
Affiliation(s)
- Eduardo Moreno
- Institute of Cell Biology, IZB, University of Bern, Bern CH-3012, Switzerland.
| | - Christa Rhiner
- Institute of Cell Biology, IZB, University of Bern, Bern CH-3012, Switzerland.
| |
Collapse
|