51
|
Liu Y, Guerrero-Juarez CF, Xiao F, Shettigar NU, Ramos R, Kuan CH, Lin YC, de Jesus Martinez Lomeli L, Park JM, Oh JW, Liu R, Lin SJ, Tartaglia M, Yang RB, Yu Z, Nie Q, Li J, Plikus MV. Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Dev Cell 2022; 57:1758-1775.e7. [PMID: 35777353 PMCID: PMC9344965 DOI: 10.1016/j.devcel.2022.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Hair follicle stem cells are regulated by dermal papilla fibroblasts, their principal signaling niche. Overactivation of Hedgehog signaling in the niche dramatically accelerates hair growth and induces follicle multiplication in mice. On single-cell RNA sequencing, dermal papilla fibroblasts increase heterogeneity to include new Wnt5ahigh states. Transcriptionally, mutant fibroblasts activate regulatory networks for Gli1, Alx3, Ebf1, Hoxc8, Sox18, and Zfp239. These networks jointly upregulate secreted factors for multiple hair morphogenesis and hair-growth-related pathways. Among these is non-conventional TGF-β ligand Scube3. We show that in normal mouse skin, Scube3 is expressed only in dermal papillae of growing, but not in resting follicles. SCUBE3 protein microinjection is sufficient to induce new hair growth, and pharmacological TGF-β inhibition rescues mutant hair hyper-activation phenotype. Moreover, dermal-papilla-enriched expression of SCUBE3 and its growth-activating effect are partially conserved in human scalp hair follicles. Thus, Hedgehog regulates mesenchymal niche function in the hair follicle via SCUBE3/TGF-β mechanism.
Collapse
Affiliation(s)
- Yingzi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Fei Xiao
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Nitish Udupi Shettigar
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Amplifica Holdings Group, Inc., San Diego, CA 92128, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Chen-Hsiang Kuan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Jung Min Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sung-Jan Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Department of Dermatology, National Taiwan University, Taipei, Taiwan
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
52
|
Lef1 and Dlx3 May Facilitate the Maturation of Secondary Hair Follicles in the Skin of Gansu Alpine Merino. Genes (Basel) 2022; 13:genes13081326. [PMID: 35893063 PMCID: PMC9394301 DOI: 10.3390/genes13081326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphatic enhancer factor 1 (Lef1) and distal-less homeobox 3 (Dlx3) are the transcription factors involved in regulating hair follicle development in mice, goats, and other animals. Their deletion can lead to hair follicle deficiency. In this study, hematoxylin−eosin staining (HE), real-time quantitative PCR (RT-qPCR), immunohistochemistry, and immunofluorescence were used to analyze the expression, location, and biological functions of Lef1 and Dlx3 in the lateral skin of Gansu Alpine Merino aged 1, 30, 60, and 90 days. The results revealed that the number of hair follicles decreased with age and was significantly higher at 1 day than in the other three age groups (p < 0.05). The mRNA levels of Lef1 and Dlx3 in the skin of 30-day old Gansu Alpine Merino were significantly higher than those in the other three age groups (p < 0.05). Protein expression of Lef1 and Dlx3 was lowest at 1 day (p < 0.05) and peaked at 60 days. Lef1 and Dlx3 exhibited a high density and strong positive expression in the dermal papillae; additionally, Dlx3 exhibited a high density and strong positive expression in the inner and outer root sheaths. Collectively, Lef1 and Dlx3 may facilitate the maturation of secondary hair follicles, which is mainly achieved through the dermal papillae and inner and outer root sheaths.
Collapse
|
53
|
Sox2 in the dermal papilla regulates hair follicle pigmentation. Cell Rep 2022; 40:111100. [PMID: 35858560 DOI: 10.1016/j.celrep.2022.111100] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/15/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022] Open
Abstract
Within the hair follicle (HF) niche, dermal papilla (DP) cells are well known for the hair induction capacity; however, DP cell signaling also regulates HF pigmentation. Here we describe how Sox2 in the DP is a key regulator of melanocyte signaling. To study the largely unknown regulatory role the DP has on hair pigmentation, we characterize leptin receptor (Lepr) expression in the skin and as a genetic tool to target the DP. Sox2 ablation in the DP results in a phenotypic switch from eumelanin to pheomelanin. Mechanistically, we describe a temporal upregulation of Agouti and downregulation of Corin, directly by Sox2 in the DP. We also show that bone morphogenic protein (BMP) signaling regulation by Sox2 is responsible for downregulating MC1R, Dct, and Tyr in melanocytes of Sox2 cKO mice. Thus, we demonstrate that Sox2 in the DP regulates not only the choice of hair pigment but also the overall HF pigment production.
Collapse
|
54
|
Cellular Heterogeneity Facilitates the Functional Differences Between Hair Follicle Dermal Sheath Cells and Dermal Papilla Cells: A New Classification System for Mesenchymal Cells within the Hair Follicle Niche. Stem Cell Rev Rep 2022; 18:2016-2027. [PMID: 35849252 DOI: 10.1007/s12015-022-10411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for their self-renewal and multi-lineage differentiation potential, with these cells often being evaluated in the regulation and maintenance of specific cellular niches including those of the hair follicle. Most mesenchymal stem cells in the hair follicles are housed in the dermal papilla (DP) and dermal sheath (DS), with both niches characterized by a broad variety of cellular subsets. However, while most previous studies describing the hair follicle mesenchymal niche treated all DP and DS cells as Hair Follicle Mesenchymal Stem Cells (HF-MSCs), the high number of cellular subsets would suggest that these cells are actually too heterogenous for such a broad definition. Given this we designed this study to evaluate the differentiation processes in these cells and used this data to create a new set of classifications for DP and DS cells, dividing them into "hair follicle mesenchymal stem cells (HF-MSCs)", "hair follicle mesenchymal progenitor cells (HF-MPCs)", and "hair follicle mesenchymal functional cells (HF-MFCs)". In addition, those cells that possess self-renewal and differentiation were re-named hair follicle derived mesenchymal multipotent cells (HF-MMCs). This new classification may help to further our understanding of the heterogeneity of hair follicle dermal cells and provide new insights into their evaluation.
Collapse
|
55
|
Single-cell atlas of craniogenesis uncovers SOXC-dependent, highly proliferative, and myofibroblast-like osteodermal progenitors. Cell Rep 2022; 40:111045. [PMID: 35830813 PMCID: PMC9595211 DOI: 10.1016/j.celrep.2022.111045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
The mammalian skull vault is essential to shape the head and protect the brain, but the cellular and molecular events underlying its development remain incompletely understood. Single-cell transcriptomic profiling from early to late mouse embryonic stages provides a detailed atlas of cranial lineages. It distinguishes various populations of progenitors and reveals a high expression of SOXC genes (encoding the SOX4, SOX11, and SOX12 transcription factors) early in development in actively proliferating and myofibroblast-like osteodermal progenitors. SOXC inactivation in these cells causes severe skull and skin underdevelopment due to the limited expansion of cell populations before and upon lineage commitment. SOXC genes enhance the expression of gene signatures conferring dynamic cellular and molecular properties, including actin cytoskeleton assembly, chromatin remodeling, and signaling pathway induction and responsiveness. These findings shed light onto craniogenic mechanisms and SOXC functions and suggest that similar mechanisms could decisively control many developmental, adult, pathological, and regenerative processes. Angelozzi and colleagues establish a detailed transcriptomic atlas of mouse embryonic craniogenesis and use mutant mice to show that SOXC (SOX4, SOX11, and SOX12 transcription factors) critically support osteogenesis and dermogenesis by promoting the expression of dynamic cellular and molecular properties of progenitor populations. SOXC could similarly affect many other processes.
Collapse
|
56
|
Martínez-Martínez E, Atzei P, Vionnet C, Roubaty C, Kaeser-Pebernard S, Naef R, Dengjel J. A Dual-Acting Nitric Oxide Donor and Phosphodiesterase 5 Inhibitor Activates Autophagy in Primary Skin Fibroblasts. Int J Mol Sci 2022; 23:ijms23126860. [PMID: 35743299 PMCID: PMC9224465 DOI: 10.3390/ijms23126860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Wound healing pathologies are an increasing problem in ageing societies. Chronic, non-healing wounds, which cause high morbidity and severely reduce the quality of life of affected individuals, are frequently observed in aged individuals and people suffering from diseases affected by the Western lifestyle, such as diabetes. Causal treatments that support proper wound healing are still scarce. Here, we performed expression proteomics to study the effects of the small molecule TOP-N53 on primary human skin fibroblasts and keratinocytes. TOP-N53 is a dual-acting nitric oxide donor and phosphodiesterase-5 inhibitor increasing cGMP levels to support proper wound healing. In contrast to keratinocytes, which did not exhibit global proteome alterations, TOP-N53 had profound effects on the proteome of skin fibroblasts. In fibroblasts, TOP-N53 activated the cytoprotective, lysosomal degradation pathway autophagy and induced the expression of the selective autophagy receptor p62/SQSTM1. Thus, activation of autophagy might in part be responsible for beneficial effects of TOP-N53.
Collapse
Affiliation(s)
- Esther Martínez-Martínez
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Paola Atzei
- Topadur Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland; (P.A.); (R.N.)
| | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Carole Roubaty
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Stephanie Kaeser-Pebernard
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Reto Naef
- Topadur Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland; (P.A.); (R.N.)
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
- Correspondence:
| |
Collapse
|
57
|
Nanmo A, Yan L, Asaba T, Wan L, Kageyama T, Fukuda J. Bioprinting of hair follicle germs for hair regenerative medicine. Acta Biomater 2022:S1742-7061(22)00360-9. [PMID: 35718100 DOI: 10.1016/j.actbio.2022.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Hair regenerative medicine is a promising approach to treat hair loss. The replication of in vivo tissue configurations and microenvironments, such as hair follicle germs, has been studied to prepare tissue grafts for hair regenerative medicine. However, such approaches should be scalable, because a single patient with alopecia requires thousands of tissue grafts. In this paper, we propose an approach for the scalable and automated preparation of highly hair-inductive tissue grafts using a bioprinter. Two collagen droplets (2 µL each) containing mesenchymal and epithelial cells were placed adjacent to each other to fabricate hair-follicle-germ-like grafts. During three days of culture, the pairs of microgel beads were spontaneously contracted by cell traction forces, whereas the two cell types remained separated, where the densities of the cells and collagen were enriched more than 10 times. This approach allowed us to fabricate submillimeter objects printed with millimeter-order accuracy, facilitating scalable and automated tissue graft preparation. Because of mesenchymal-epithelial interactions, hair microgels (HMGs, i.e., collagen- and cell-enriched microgels) efficiently regenerate hair follicles and shafts when transplanted into the back skin of mice. However, the generated hair shafts mostly remain under the skin. Therefore, we printed microgel beads onto surgical suture guides arrayed on a stage. The microgel beads were contracted along with the suture guides in culture prior to transplantation. The guide-inserted HMGs significantly improved hair-shaft sprouting through the skin, owing to the control of the orientation of the HMGs transplanted into the skin. This approach is a promising strategy to advance hair regenerative medicine. STATEMENT OF SIGNIFICANCE: This study proposes an approach for the scalable and automated preparation of highly hair-inductive grafts using a bioprinter. Two collagen droplets containing mesenchymal and epithelial cells were placed adjacently. Cell traction forces caused the pairs of microgel beads to spontaneously contract in culture. Because of mesenchymal-epithelial interactions, hair microgels (HMGs) efficiently regenerated hair follicles on the back skin of mice. However, the generated hair shafts remained mostly beneath the skin. Therefore, we printed microgel beads onto surgical suture guides arrayed on a stage. The guide-inserted HMGs significantly improved hair-shaft sprouting through the skin owing to the control of the orientation of the HMGs in the skin. This approach represents a promising strategy for advancing hair regenerative medicine.
Collapse
Affiliation(s)
- Ayaka Nanmo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Lei Yan
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tomoki Asaba
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Licheng Wan
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
58
|
Gao L, Chen EQ, Zhong HB, Xie J, Song HZ, Zhao XB, Lin LR, Liu Q, Wang S, Wu WY, Zhao RC, Liao XH. Large-scale isolation of functional dermal papilla cells using novel surface marker LEPR. Cytometry A 2022; 101:675-681. [PMID: 35524584 DOI: 10.1002/cyto.a.24569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Dermal papilla (DP) cells regulate hair follicle epithelial cells and melanocytes by secreting functional factors, playing a key role in hair follicle morphogenesis and hair growth. DP cells can reconstitute new hair follicles and induce hair regeneration, providing a potential therapeutic strategy for treating hair loss. However, current methods for isolating DP cells are either inefficient (physical microdissection) or only applied to genetically labeled mice. We systematically screened for the surface proteins specifically expressed in skin DP using mRNA expression databases. We identified two antibodies against receptors LEPR and SCARA5 which could specifically label and isolate DP cells by flow cytometry from mice back skin at the growth phase. The sorted LEPR+ cells maintained the DP characteristics after culturing in vitro, expressing DP marker alkaline phosphatase and functional factors including RSPO1/2 and EDN3, the three major DP secretory factors that regulate hair follicle epithelial cells and melanocytes. Furthermore, the low-passage LEPR+ DP cells could reconstitute hair follicles on nude mice using chamber graft assay when combined with epithelial stem cells. The method of isolating functional DP cells we established here lays a solid foundation for developing DP cell-based therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Eve Qian Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hong-Bing Zhong
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Xie
- Department of Dermatology, the Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, China
| | - Hong-Zhi Song
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xu-Bo Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin-Ran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wen-Yu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China.,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
59
|
Kenny C, Dilshat R, Seberg HE, Van Otterloo E, Bonde G, Helverson A, Franke CM, Steingrímsson E, Cornell RA. TFAP2 paralogs facilitate chromatin access for MITF at pigmentation and cell proliferation genes. PLoS Genet 2022; 18:e1010207. [PMID: 35580127 PMCID: PMC9159589 DOI: 10.1371/journal.pgen.1010207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/01/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
In developing melanocytes and in melanoma cells, multiple paralogs of the Activating-enhancer-binding Protein 2 family of transcription factors (TFAP2) contribute to expression of genes encoding pigmentation regulators, but their interaction with Microphthalmia transcription factor (MITF), a master regulator of these cells, is unclear. Supporting the model that TFAP2 facilitates MITF's ability to activate expression of pigmentation genes, single-cell seq analysis of zebrafish embryos revealed that pigmentation genes are only expressed in the subset of mitfa-expressing cells that also express tfap2 paralogs. To test this model in SK-MEL-28 melanoma cells we deleted the two TFAP2 paralogs with highest expression, TFAP2A and TFAP2C, creating TFAP2 knockout (TFAP2-KO) cells. We then assessed gene expression, chromatin accessibility, binding of TFAP2A and of MITF, and the chromatin marks H3K27Ac and H3K27Me3 which are characteristic of active enhancers and silenced chromatin, respectively. Integrated analyses of these datasets indicate TFAP2 paralogs directly activate enhancers near genes enriched for roles in pigmentation and proliferation, and directly repress enhancers near genes enriched for roles in cell adhesion. Consistently, compared to WT cells, TFAP2-KO cells proliferate less and adhere to one another more. TFAP2 paralogs and MITF co-operatively activate a subset of enhancers, with the former necessary for MITF binding and chromatin accessibility. By contrast, TFAP2 paralogs and MITF do not appear to co-operatively inhibit enhancers. These studies reveal a mechanism by which TFAP2 profoundly influences the set of genes activated by MITF, and thereby the phenotype of pigment cells and melanoma cells.
Collapse
Affiliation(s)
- Colin Kenny
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hannah E. Seberg
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric Van Otterloo
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Gregory Bonde
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Annika Helverson
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher M. Franke
- Department of Surgery, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Robert A. Cornell
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
60
|
Anderson ZT, Dawson AD, Slominski AT, Harris ML. Current Insights Into the Role of Neuropeptide Y in Skin Physiology and Pathology. Front Endocrinol (Lausanne) 2022; 13:838434. [PMID: 35418942 PMCID: PMC8996770 DOI: 10.3389/fendo.2022.838434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y is widely distributed within the body and has long been implicated as a contributor to skin disease based on the correlative clinical data. However, until recently, there have been few empirical investigations to determine whether NPY has a pathophysiological role in the skin. Due to appearance-altering phenotypes of atopic dermatitis, psoriasis, and vitiligo, those suffering from these diseases often face multiple forms of negative social attention. This often results in psychological stress, which has been shown to exacerbate inflammatory skin diseases - creating a vicious cycle that perpetuates disease. This has been shown to drive severe depression, which has resulted in suicidal ideation being a comorbidity of these diseases. Herein, we review what is currently known about the associations of NPY with skin diseases and stress. We also review and provide educated guessing what the effects NPY can have in the skin. Inflammatory skin diseases can affect physical appearance to have significant, negative impacts on quality of life. No cure exists for these conditions, highlighting the need for identification of novel proteins/neuropetides, like NPY, that can be targeted therapeutically. This review sets the stage for future investigations into the role of NPY in skin biology and pathology to stimulate research on therapeutic targeting NPY signaling in order to combat inflammatory skin diseases.
Collapse
Affiliation(s)
- Zoya T. Anderson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex D. Dawson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, United States
- Veteran Administration Medical Center, Birmingham, AL, United States
| | - Melissa L. Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
61
|
Identification and Molecular Analysis of m6A-circRNAs from Cashmere Goat Reveal Their Integrated Regulatory Network and Putative Functions in Secondary Hair Follicle during Anagen Stage. Animals (Basel) 2022; 12:ani12060694. [PMID: 35327094 PMCID: PMC8944478 DOI: 10.3390/ani12060694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Cashmere is a natural, high-end textile material. It is derived from the secondary hair follicle (SHFs) tissue in the skin of cashmere goats. Previous studies have indicated that m6A modifications in circRNA molecules play important roles in a variety of cells through multiple mechanisms. However, little information is available on the expression profile and functional regulatory characteristics of m6A-modified circRNA (m6A-circRNA) in SHFs of cashmere goats. In this study, a total of 15 m6A-circRNAs were identified. Six of these m6A-circRNAs were revealed to have significantly higher expression in skin at anagen than at telogen. To gain insight into the potential regulatory mechanisms of the anagen up-regulated m6A-circRNAs, we constructed the regulatory networks along with related pathways in SHFs of cashmere goats. In addition, we found that the expression trends of four m6A-circRNAs in the SHFs during SHF cycles were highly similar to their host genes. However, the expression patterns of two m6A-circRNAs were inconsistent with the linear RNAs from their host genes in the SHFs of cashmere goats. These results will provide new insights to elucidate the biological functions and regulatory features of m6A-circRNA in SHF development and cashmere growth in goats. Abstract N6-methyladenosine (m6A) is the most abundant modification in linear RNA molecules. Over the last few years, interestingly, many circRNA molecules are also found to have extensive m6A modification sites with temporal and spatial specific expression patterns. To date, however, little information is available concerning the expression profiling and functional regulatory characteristics of m6A modified circRNAs (m6A-circRNAs) in secondary hair follicles (SHFs) of cashmere goats. In this study, a total of fifteen m6A-circRNAs were identified and characterized in the skin tissue of cashmere goats. Of these, six m6A-circRNAs were revealed to have significantly higher expression in skin at anagen compared with those at telogen. The constructed ceRNA network indicated a complicated regulatory relationship of the six anagen up-regulated m6A-circRNAs through miRNA mediated pathways. Several signaling pathways implicated in the physiological processes of hair follicles were enriched based on the potential regulatory genes of the six anagen up-regulated m6A-circRNAs, such as TGF-beta, axon guidance, ribosome, and stem cell pluripotency regulatory pathways, suggesting the analyzed m6A-circRNAs might be essentially involved in SHF development and cashmere growth in cashmere goats. Further, we showed that four m6A-circRNAs had highly similar expression trends to their host genes in SHFs of cashmere goats including m6A-circRNA-ZNF638, -TULP4, -DNAJB6, and -CAT. However, the expression patterns of two m6A-circRNAs (m6A-circRNA-STAM2 and -CAAP1) were inconsistent with the linear RNAs from their host genes in the SHFs of cashmere goats. These results provide novel information for eluci-dating the biological function and regulatory characteristics of the m6A-circRNAs in SHF development and cashmere growth in goats.
Collapse
|
62
|
Deletion of hypoxia-inducible factor prolyl 4-hydroxylase 2 in FoxD1-lineage mesenchymal cells leads to congenital truncal alopecia. J Biol Chem 2022; 298:101787. [PMID: 35247391 PMCID: PMC8988008 DOI: 10.1016/j.jbc.2022.101787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) induce numerous genes regulating oxygen homeostasis. As oxygen sensors of the cells, the HIF prolyl 4-hydroxylases (HIF-P4Hs) regulate the stability of HIFs in an oxygen-dependent manner. During hair follicle (HF) morphogenesis and cycling, the location of dermal papilla (DP) alternates between the dermis and hypodermis and results in varying oxygen levels for the DP cells. These cells are known to express hypoxia-inducible genes, but the role of the hypoxia response pathway in HF development and homeostasis has not been studied. Using conditional gene targeting and analysis of hair morphogenesis, we show here that lack of Hif-p4h-2 in Forkhead box D1 (FoxD1)-lineage mesodermal cells interferes with the normal HF development in mice. FoxD1-lineage cells were found to be mainly mesenchymal cells located in the dermis of truncal skin, including those cells composing the DP of HFs. We found that upon Hif-p4h-2 inactivation, HF development was disturbed during the first catagen leading to formation of epithelial-lined HF cysts filled by unorganized keratins, which eventually manifested as truncal alopecia. Furthermore, the depletion of Hif-p4h-2 led to HIF stabilization and dysregulation of multiple genes involved in keratin formation, HF differentiation, and HIF, transforming growth factor β (TGF-β), and Notch signaling. We hypothesize that the failure of HF cycling is likely to be mechanistically caused by disruption of the interplay of the HIF, TGF-β, and Notch pathways. In summary, we show here for the first time that HIF-P4H-2 function in FoxD1-lineage cells is essential for the normal development and homeostasis of HFs.
Collapse
|
63
|
Brennan-Crispi DM, Frankfurter M, Murphy C, Sheng E, Xu M, Morrisey EE, Millar SE, Leung TH. Fzd2 regulates murine hair follicle function and maintenance. J Invest Dermatol 2022; 142:2260-2263.e2. [PMID: 35051380 PMCID: PMC9288559 DOI: 10.1016/j.jid.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Donna M Brennan-Crispi
- Dermatology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maxwell Frankfurter
- Dermatology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina Murphy
- Dermatology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Sheng
- Dermatology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edward E Morrisey
- Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas H Leung
- Dermatology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
64
|
Vishlaghi N, Rieger S, McGaughey V, Lisse TS. GDNF neurotrophic factor signaling determines the fate of dermal fibroblasts in wound-induced hair neogenesis and skin regeneration. Exp Dermatol 2022; 31:577-581. [PMID: 35020233 PMCID: PMC9306530 DOI: 10.1111/exd.14526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/24/2021] [Accepted: 01/08/2022] [Indexed: 11/27/2022]
Abstract
We propose that GDNF, a glial cell line‐derived neurotrophic factor, can promote hair follicle neogenesis and skin regeneration after wounding by directing the fate of dermal fibroblasts. Our hypothesis is largely based on detailed GDNF and receptor analysis during skin regenerative stages, as well as the induction of GDNF receptors after wounding between the pro‐regenerative spiny mouse (genus Acomys) and its less‐regenerative descendant, the house mouse (Mus musculus). To characterize the GDNF‐target cells, we will conduct a series of lineage‐tracing experiments in conjunction with single‐cell RNA and assay for transposase‐accessible chromatin sequencing experiments. The heterogenetic dynamics of skin regeneration have yet to be fully defined, and this research will help to advance the fields of regenerative medicine and biology. Finally, we believe that stimulating the GDNF signalling pathway in fibroblasts from less‐regenerative animals, such as humans, will promote skin regeneration, morphogenesis and scarless wound healing.
Collapse
Affiliation(s)
- Neda Vishlaghi
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA
| | - Sandra Rieger
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vanessa McGaughey
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA
| | - Thomas S Lisse
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
65
|
Rognoni E, Goss G, Hiratsuka T, Sipilä KH, Kirk T, Kober KI, Lui PP, Tsang VSK, Hawkshaw NJ, Pilkington SM, Cho I, Ali N, Rhodes LE, Watt FM. Role of distinct fibroblast lineages and immune cells in dermal repair following UV radiation-induced tissue damage. eLife 2021; 10:e71052. [PMID: 34939928 PMCID: PMC8747514 DOI: 10.7554/elife.71052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Solar ultraviolet radiation (UVR) is a major source of skin damage, resulting in inflammation, premature ageing, and cancer. While several UVR-induced changes, including extracellular matrix reorganisation and epidermal DNA damage, have been documented, the role of different fibroblast lineages and their communication with immune cells has not been explored. We show that acute and chronic UVR exposure led to selective loss of fibroblasts from the upper dermis in human and mouse skin. Lineage tracing and in vivo live imaging revealed that repair following acute UVR is predominantly mediated by papillary fibroblast proliferation and fibroblast reorganisation occurs with minimal migration. In contrast, chronic UVR exposure led to a permanent loss of papillary fibroblasts, with expansion of fibroblast membrane protrusions partially compensating for the reduction in cell number. Although UVR strongly activated Wnt signalling in skin, stimulation of fibroblast proliferation by epidermal β-catenin stabilisation did not enhance papillary dermis repair. Acute UVR triggered an infiltrate of neutrophils and T cell subpopulations and increased pro-inflammatory prostaglandin signalling in skin. Depletion of CD4- and CD8-positive cells resulted in increased papillary fibroblast depletion, which correlated with an increase in DNA damage, pro-inflammatory prostaglandins, and reduction in fibroblast proliferation. Conversely, topical COX-2 inhibition prevented fibroblast depletion and neutrophil infiltration after UVR. We conclude that loss of papillary fibroblasts is primarily induced by a deregulated inflammatory response, with infiltrating T cells supporting fibroblast survival upon UVR-induced environmental stress.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUnited Kingdom
| | - Georgina Goss
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Toru Hiratsuka
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kalle H Sipilä
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Thomas Kirk
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUnited Kingdom
| | - Katharina I Kober
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg UniversityHeidelbergGermany
| | - Prudence PokWai Lui
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Victoria SK Tsang
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUnited Kingdom
| | - Nathan J Hawkshaw
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation TrustManchesterUnited Kingdom
| | - Suzanne M Pilkington
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation TrustManchesterUnited Kingdom
| | - Inchul Cho
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Niwa Ali
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
- The Francis Crick InstituteLondonUnited Kingdom
| | - Lesley E Rhodes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation TrustManchesterUnited Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| |
Collapse
|
66
|
Thompson SM, Phan QM, Winuthayanon S, Driskell IM, Driskell RR. Parallel single cell multi-omics analysis of neonatal skin reveals transitional fibroblast states that restricts differentiation into distinct fates. J Invest Dermatol 2021; 142:1812-1823.e3. [PMID: 34922949 DOI: 10.1016/j.jid.2021.11.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
One of the keys to achieving skin regeneration lies within understanding the heterogeneity of neonatal fibroblasts, which support skin regeneration. However, the molecular underpinnings regulating the cellular states and fates of these cells are not fully understood. To investigate this, we performed a parallel multi-omics analysis by processing neonatal murine skin for single-cell ATAC-sequencing (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) separately. Our approach revealed that fibroblast clusters could be sorted into papillary and reticular lineages based on transcriptome profiling, as previously published. However, scATAC-seq analysis of neonatal fibroblast lineage markers, such as, Dpp4/CD26, Corin, and Dlk1 along with markers of myofibroblasts, revealed accessible chromatin in all fibroblast populations despite their lineage-specific transcriptome profiles. These results suggests that accessible chromatin does not always translate to gene expression and that many fibroblast lineage markers reflect a fibroblast state, which includes neonatal papillary, reticular, and myofibroblasts. This analysis also provides a possible explanation as to why these marker genes can be promiscuously expressed in different fibroblast populations under different conditions. Our scATAC-seq analysis also revealed that the functional lineage restriction between dermal papilla and adipocyte fates are regulated by distinct chromatin landscapes. Finally, we have developed a webtool for our multi-omics analysis: https://skinregeneration.org/scatacseq-and-scrnaseq-data-from-thompson-et-al-2021-2/.
Collapse
Affiliation(s)
- Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Quan M Phan
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Sarayut Winuthayanon
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Iwona M Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA. https://twitter.com/Driskellab
| |
Collapse
|
67
|
Frech S, Forsthuber A, Korosec A, Lipp K, Kozumov V, Lichtenberger BM. Hedgehog-signalling in papillary fibroblasts is essential for hair follicle regeneration during wound healing. J Invest Dermatol 2021; 142:1737-1748.e5. [PMID: 34922948 DOI: 10.1016/j.jid.2021.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Patients suffering from large scars such as burn victims not only encounter aesthetical challenges but also ongoing itching or pain that substantially deteriorates their quality of life. Skin appendages such as hair follicles (HFs) rarely regenerate within the healing wound. As they are crucial for skin homeostasis and the lack thereof constitutes one of the main limitations to scarless wound healing, their regeneration represents a major objective for regenerative medicine. Fibroblasts, the main resident cell type of the skin dermis, mediate embryonic HF morphogenesis and are particularly involved in wound healing as they orchestrate extracellular matrix (ECM) remodeling and collagen deposition in the wound bed. Importantly, dermal fibroblasts originate from two distinct developmental lineages with unique functions that differently mediate the response to epidermal signals such as Hedgehog (Hh)-signalling. In the present study, we show that Hh-signalling in the reticular fibroblast lineage promotes the initial phase of wound repair, possibly by modulating angiogenesis and fibroblast proliferation, while Hh-signalling in papillary fibroblasts is essential to induce de novo HF formation within the healing wound.
Collapse
Affiliation(s)
- Sophie Frech
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Agnes Forsthuber
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Ana Korosec
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Katharina Lipp
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Viktor Kozumov
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Beate M Lichtenberger
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria.
| |
Collapse
|
68
|
Inhibition of class I HDACs preserves hair follicle inductivity in postnatal dermal cells. Sci Rep 2021; 11:24056. [PMID: 34911993 PMCID: PMC8674223 DOI: 10.1038/s41598-021-03508-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
Induction of new hair follicles (HFs) may be an ultimate treatment goal for alopecia; however, functional cells with HF inductivity must be expanded in bulk for clinical use. In vitro culture conditions are completely different from the in vivo microenvironment. Although fetal and postnatal dermal cells (DCs) have the potential to induce HFs, they rapidly lose this HF inductivity during culture, accompanied by a drastic change in gene expression. This suggests that epigenetic regulation may be involved. Of the various histone deacetylases (HDACs), Class I HDACs are noteworthy because they are ubiquitously expressed and have the strongest deacetylase activity. This study revealed that DCs from postnatal mice rapidly lose HF inductivity and that this reduction is accompanied by a significant decrease in histone H3 acetylation. However, MS-275, an inhibitor of class I HDACs, preserves HF inductivity in DCs during culture, increasing alkaline phosphatase activity and upregulating HF inductive genes such as BMP4, HEY1, and WIF1. In addition, the inhibition of class I HDACs activates the Wnt signaling pathway, the most well-described molecular pathway in HF development, via increased histone H3 acetylation within the promoter region of the Wnt transcription factor LEF1. Our results suggest that class I HDACs could be a potential target for the neogenesis of HFs.
Collapse
|
69
|
Holmes G, Gonzalez-Reiche AS, Saturne M, Motch Perrine SM, Zhou X, Borges AC, Shewale B, Richtsmeier JT, Zhang B, van Bakel H, Jabs EW. Single-cell analysis identifies a key role for Hhip in murine coronal suture development. Nat Commun 2021; 12:7132. [PMID: 34880220 PMCID: PMC8655033 DOI: 10.1038/s41467-021-27402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Craniofacial development depends on formation and maintenance of sutures between bones of the skull. In sutures, growth occurs at osteogenic fronts along the edge of each bone, and suture mesenchyme separates adjacent bones. Here, we perform single-cell RNA-seq analysis of the embryonic, wild type murine coronal suture to define its population structure. Seven populations at E16.5 and nine at E18.5 comprise the suture mesenchyme, osteogenic cells, and associated populations. Expression of Hhip, an inhibitor of hedgehog signaling, marks a mesenchymal population distinct from those of other neurocranial sutures. Tracing of the neonatal Hhip-expressing population shows that descendant cells persist in the coronal suture and contribute to calvarial bone growth. In Hhip-/- coronal sutures at E18.5, the osteogenic fronts are closely apposed and the suture mesenchyme is depleted with increased hedgehog signaling compared to those of the wild type. Collectively, these data demonstrate that Hhip is required for normal coronal suture development.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ana S. Gonzalez-Reiche
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Madrikha Saturne
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Susan M. Motch Perrine
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Xianxiao Zhou
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ana C. Borges
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bhavana Shewale
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Joan T. Richtsmeier
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Harm van Bakel
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ethylin Wang Jabs
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.21107.350000 0001 2171 9311Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
70
|
Moreci RS, Lechler T. KIF18B is a cell type-specific regulator of spindle orientation in the epidermis. Mol Biol Cell 2021; 32:ar29. [PMID: 34432485 PMCID: PMC8693959 DOI: 10.1091/mbc.e21-06-0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
Proper spindle orientation is required for asymmetric cell division and the establishment of complex tissue architecture. In the developing epidermis, spindle orientation requires a conserved cortical protein complex of LGN/NuMA/dynein-dynactin. However, how microtubule dynamics are regulated to interact with this machinery and properly position the mitotic spindle is not fully understood. Furthermore, our understanding of the processes that link spindle orientation during asymmetric cell division to cell fate specification in distinct tissue contexts remains incomplete. We report a role for the microtubule catastrophe factor KIF18B in regulating microtubule dynamics to promote spindle orientation in keratinocytes. During mitosis, KIF18B accumulates at the cell cortex, colocalizing with the conserved spindle orientation machinery. In vivo we find that KIF18B is required for oriented cell divisions within the hair placode, the first stage of hair follicle morphogenesis, but is not essential in the interfollicular epidermis. Disrupting spindle orientation in the placode, using mutations in either KIF18B or NuMA, results in aberrant cell fate marker expression of hair follicle progenitor cells. These data functionally link spindle orientation to cell fate decisions during hair follicle morphogenesis. Taken together, our data demonstrate a role for regulated microtubule dynamics in spindle orientation in epidermal cells. This work also highlights the importance of spindle orientation during asymmetric cell division to dictate cell fate specification.
Collapse
Affiliation(s)
- Rebecca S. Moreci
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| |
Collapse
|
71
|
Yan S, Ripamonti R, Kawabe H, Ben-Yehuda Greenwald M, Werner S. NEDD4-1 is a key regulator of epidermal homeostasis and wound repair. J Invest Dermatol 2021; 142:1703-1713.e11. [PMID: 34756879 DOI: 10.1016/j.jid.2021.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin ligase Nedd4-1 plays key roles in organ development, tissue homeostasis and cancer, but its functions in the skin are largely unknown. Here we show perturbations in keratinocyte proliferation and terminal differentiation, epidermal barrier function, and hair follicle cycling as well as increased UV-induced apoptosis in mice lacking Nedd4-1 in keratinocytes. In particular, re-epithelialization of full-thickness excisional wounds was delayed in the mutant mice. This was caused by severely impaired migration and proliferation of Nedd4-1-deficient keratinocytes. Therefore, a few keratinocytes, which had escaped recombination and expressed Nedd4-1, obtained a growth advantage and contributed to re-epithelialization. Mechanistically, Nedd4-1-deficient keratinocytes failed to efficiently activate the Erk1/2 mitogen-activated kinases and the YAP transcriptional co-activator. These results identify Nedd4-1 as an essential player in wound repair through its effect on mitogenic and motogenic signaling pathways in keratinocytes.
Collapse
Affiliation(s)
- Shen Yan
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Raphael Ripamonti
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 317-8511, Japan
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
72
|
Jiang Y, Zou Q, Liu B, Li S, Wang Y, Liu T, Ding X. Atlas of Prenatal Hair Follicle Morphogenesis Using the Pig as a Model System. Front Cell Dev Biol 2021; 9:721979. [PMID: 34692680 PMCID: PMC8529045 DOI: 10.3389/fcell.2021.721979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/13/2021] [Indexed: 01/15/2023] Open
Abstract
The pig is an increasingly popular biomedical model, but only a few in depth data exist on its studies in hair follicle (HF) morphogenesis and development. Hence, the objective of this study was to identify the suitability of the pig as an animal model for human hair research. We performed a classification of pig HF morphogenesis stages and hair types. All four different hair types sampled from 17 different body parts in pig were similar to those of human. The Guard_2 sub-type was more similar to type II human scalp hair while Guard_1, Awl, Auchene, and Zigzag were similar to type I scalp hair. Based on morphological observation and marker gene expression of HF at 11 different embryonic days and six postnatal days, we classified pig HF morphogenesis development from E41 to P45 into three main periods - induction (E37-E41), organogenesis (E41-E85), and cytodifferentiation (>E85). Furthermore, we demonstrated that human and pig share high similarities in HF morphogenesis occurrence time (early/mid gestational) and marker gene expression patterns. Our findings will facilitate the study of human follicle morphogenesis and research on complex hair diseases and offer researchers a suitable model for human hair research.
Collapse
Affiliation(s)
- Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Quan Zou
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shujuan Li
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Wang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianlong Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
73
|
Kaelin CB, McGowan KA, Barsh GS. Developmental genetics of color pattern establishment in cats. Nat Commun 2021; 12:5127. [PMID: 34493721 PMCID: PMC8423757 DOI: 10.1038/s41467-021-25348-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Intricate color patterns are a defining aspect of morphological diversity in the Felidae. We applied morphological and single-cell gene expression analysis to fetal skin of domestic cats to identify when, where, and how, during fetal development, felid color patterns are established. Early in development, we identify stripe-like alterations in epidermal thickness preceded by a gene expression pre-pattern. The secreted Wnt inhibitor encoded by Dickkopf 4 plays a central role in this process, and is mutated in cats with the Ticked pattern type. Our results bring molecular understanding to how the leopard got its spots, suggest that similar mechanisms underlie periodic color pattern and periodic hair follicle spacing, and identify targets for diverse pattern variation in other mammals.
Collapse
Affiliation(s)
- Christopher B Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly A McGowan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
74
|
Affiliation(s)
- Alicia M McConnell
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
75
|
Belote RL, Le D, Maynard A, Lang UE, Sinclair A, Lohman BK, Planells-Palop V, Baskin L, Tward AD, Darmanis S, Judson-Torres RL. Human melanocyte development and melanoma dedifferentiation at single-cell resolution. Nat Cell Biol 2021; 23:1035-1047. [PMID: 34475532 DOI: 10.1038/s41556-021-00740-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
In humans, epidermal melanocytes are responsible for skin pigmentation, defence against ultraviolet radiation and the deadliest common skin cancer, melanoma. Although there is substantial overlap in melanocyte development pathways between different model organisms, species-dependent differences are frequent and the conservation of these processes in human skin remains unresolved. Here, we used a single-cell enrichment and RNA-sequencing pipeline to study human epidermal melanocytes directly from the skin, capturing transcriptomes across different anatomical sites, developmental age, sexes and multiple skin tones. We uncovered subpopulations of melanocytes that exhibit anatomical site-specific enrichment that occurs during gestation and persists through adulthood. The transcriptional signature of the volar-enriched subpopulation is retained in acral melanomas. Furthermore, we identified human melanocyte differentiation transcriptional programs that are distinct from gene signatures generated from model systems. Finally, we used these programs to define patterns of dedifferentiation that are predictive of melanoma prognosis and response to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Rachel L Belote
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Daniel Le
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA, USA
| | - Ashley Maynard
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ursula E Lang
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology and Division of Pediatric Urology, University of California, San Francisco, CA, USA
| | - Brian K Lohman
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Vicente Planells-Palop
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Laurence Baskin
- Department of Urology and Division of Pediatric Urology, University of California, San Francisco, CA, USA
| | - Aaron D Tward
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA, USA.
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
76
|
Overexpression of Flii during Murine Embryonic Development Increases Symmetrical Division of Epidermal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22158235. [PMID: 34361001 PMCID: PMC8348627 DOI: 10.3390/ijms22158235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023] Open
Abstract
Epidermal progenitor cells divide symmetrically and asymmetrically to form stratified epidermis and hair follicles during late embryonic development. Flightless I (Flii), an actin remodelling protein, is implicated in Wnt/β-cat and integrin signalling pathways that govern cell division. This study investigated the effect of altering Flii on the divisional orientation of epidermal progenitor cells (EpSCs) in the basal layer during late murine embryonic development and early adolescence. The effect of altering Flii expression on asymmetric vs. symmetric division was assessed in vitro in adult human primary keratinocytes and in vivo at late embryonic development stages (E16, E17 and E19) as well as adolescence (P21 day-old) in mice with altered Flii expression (Flii knockdown: Flii+/−, wild type: WT, transgenic Flii overexpressing: FliiTg/Tg) using Western blot and immunohistochemistry. Flii+/− embryonic skin showed increased asymmetrical cell division of EpSCs with an increase in epidermal stratification and elevated talin, activated-Itgb1 and Par3 expression. FliiTg/Tg led to increased symmetrical cell division of EpSCs with increased cell proliferation rate, an elevated epidermal SOX9, Flap1 and β-cat expression, a thinner epidermis, but increased hair follicle number and depth. Flii promotes symmetric division of epidermal progenitor cells during murine embryonic development.
Collapse
|
77
|
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021; 184:3852-3872. [PMID: 34297930 PMCID: PMC8566693 DOI: 10.1016/j.cell.2021.06.024] [Citation(s) in RCA: 533] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts are diverse mesenchymal cells that participate in tissue homeostasis and disease by producing complex extracellular matrix and creating signaling niches through biophysical and biochemical cues. Transcriptionally and functionally heterogeneous across and within organs, fibroblasts encode regional positional information and maintain distinct cellular progeny. We summarize their development, lineages, functions, and contributions to fibrosis in four fibroblast-rich organs: skin, lung, skeletal muscle, and heart. We propose that fibroblasts are uniquely poised for tissue repair by easily reentering the cell cycle and exhibiting a reversible plasticity in phenotype and cell fate. These properties, when activated aberrantly, drive fibrotic disorders in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Erica L Herzog
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
78
|
The Three Rs of Single-Cell RNA Sequencing: Reuse, Refine, and Resource. J Invest Dermatol 2021; 141:1627-1629. [PMID: 34167721 DOI: 10.1016/j.jid.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/21/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) provides an unprecedented ability to investigate cellular heterogeneity in entire organs and tissues, including human skin. Ascensión et al. (2020) combined and reanalyzed human skin scRNA-seq datasets to uncover new insights into fibroblast heterogeneity. This work demonstrates that new discoveries can be made from published data on the basis of principles of these three Rs: Reuse, Refine, and Resource.
Collapse
|
79
|
Anderson ZT, Mehl J, Corder KM, Dobrunz LE, Harris ML. A novel mouse model to evaluate neuropeptide Y-mediated melanocyte pathology. Exp Dermatol 2021; 30:1800-1806. [PMID: 34114698 DOI: 10.1111/exd.14406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Vitiligo is an autoimmune disease characterized by depigmented patches of skin due to loss of the pigment-producing melanocytes. No cure exists for vitiligo. The available treatments are inefficient for many patients, suggesting that universal treatment approaches may be inappropriate. Deeper understanding of the mechanistic basis for variability in vitiligo aetiologies is necessary. Genetic mutations in neuropeptide Y (NPY), a widely distributed protein, are associated with increased NPY expression and increased susceptibility for vitiligo. NPY is also upregulated in the circulation and lesional skin of some vitiligo patients. However, the contributions of NPY to melanocyte pathology are not understood, and presently there are no models with which to investigate this possibility. In this study, we employed NPY-overexpressing mice to explore the role of NPY in melanocyte dysfunction. Our results show that NPY overexpression induces progressive hair greying (depigmentation) due to premature depletion of follicular melanocyte stem cells. Additionally, NPY transcripts and protein are elevated in the skin and melanocytes of these mice, respectively, suggesting that these effects may be mediated locally. Together, these results suggest that supraphysiological levels of NPY in the skin can induce melanocyte dysfunction, thus identifying this mouse line as a novel model to study NPY-mediated melanocyte pathology.
Collapse
Affiliation(s)
- Zoya T Anderson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julian Mehl
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.,Metabolic and Genetic Regulation of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Katelynn M Corder
- Department of Neurobiology, University of Alabama, Birmingham, AL, USA.,Department of Biological and Environmental Sciences, Samford University, Birmingham, AL, USA
| | - Lynn E Dobrunz
- Department of Neurobiology, University of Alabama, Birmingham, AL, USA
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
80
|
Goss G, Rognoni E, Salameti V, Watt FM. Distinct Fibroblast Lineages Give Rise to NG2+ Pericyte Populations in Mouse Skin Development and Repair. Front Cell Dev Biol 2021; 9:675080. [PMID: 34124060 PMCID: PMC8194079 DOI: 10.3389/fcell.2021.675080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
We have examined the developmental origins of Ng2+ perivascular cell populations that adhere to the basement membrane of blood vessels, and their contribution to wound healing. Neural/glial antigen 2 (Ng2) labeled most perivascular cells (70-80%) in developing and adult mouse back skin, a higher proportion than expressed by other pericyte markers Tbx18, Nestin and Pdgfrβ. In adult mouse back skin Ng2+ perivascular cells could be categorized into 4 populations based on whether they expressed Pdgfrα and Pdgfrβ individually or in combination or were Pdgfr-negative. Lineage tracing demonstrated that although Ng2+ cells in embryonic and neonatal back skin contributed to multiple cell types they did not give rise to interfollicular fibroblasts within the dermis. Lineage tracing of distinct fibroblast populations during skin development showed that papillary fibroblasts (Lrig1+) gave rise to Ng2+ perivascular cells in the upper dermis, whilst Ng2+ perivascular cells in the lower dermis were primarily derived from reticular Dlk1+ fibroblasts. Following wounding of adult skin, Ng2+ dermal cells only give rise to Ng2+ blood vessel associated cells and did not contribute to other fibroblast lineages. The relative abundance of Ng2+ Pdgfrβ+ perivascular populations was comparable in wounded and non-wounded skin, indicating that perivascular heterogeneity was maintained during full thickness skin repair. In the wound bed Ng2+ perivascular populations were primarily derived from Lrig1+ papillary or Dlk1+ reticular fibroblast lineages, according to the location of the regenerating blood vessels. We conclude that Ng2+ perivascular cells represent a heterogeneous lineage restricted population that is primarily recruited from the papillary or reticular fibroblast lineages during tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Fiona M. Watt
- Centre for Stem Cells and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
81
|
Harn HIC, Wang SP, Lai YC, Van Handel B, Liang YC, Tsai S, Schiessl IM, Sarkar A, Xi H, Hughes M, Kaemmer S, Tang MJ, Peti-Peterdi J, Pyle AD, Woolley TE, Evseenko D, Jiang TX, Chuong CM. Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice. Nat Commun 2021; 12:2595. [PMID: 33972536 PMCID: PMC8110808 DOI: 10.1038/s41467-021-22822-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue regeneration is a process that recapitulates and restores organ structure and function. Although previous studies have demonstrated wound-induced hair neogenesis (WIHN) in laboratory mice (Mus), the regeneration is limited to the center of the wound unlike those observed in African spiny (Acomys) mice. Tissue mechanics have been implicated as an integral part of tissue morphogenesis. Here, we use the WIHN model to investigate the mechanical and molecular responses of laboratory and African spiny mice, and report these models demonstrate opposing trends in spatiotemporal morphogenetic field formation with association to wound stiffness landscapes. Transcriptome analysis and K14-Cre-Twist1 transgenic mice show the Twist1 pathway acts as a mediator for both epidermal-dermal interactions and a competence factor for periodic patterning, differing from those used in development. We propose a Turing model based on tissue stiffness that supports a two-scale tissue mechanics process: (1) establishing a morphogenetic field within the wound bed (mm scale) and (2) symmetry breaking of the epidermis and forming periodically arranged hair primordia within the morphogenetic field (μm scale). Thus, we delineate distinct chemo-mechanical events in building a Turing morphogenesis-competent field during WIHN of laboratory and African spiny mice and identify its evo-devo advantages with perspectives for regenerative medicine.
Collapse
Affiliation(s)
- Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Pei Wang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chih Lai
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Stephanie Tsai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ina Maria Schiessl
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Hughes
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Stefan Kaemmer
- Park Systems Inc., 3040 Olcott Street, Santa Clara, CA, 95054, USA
| | - Ming-Jer Tang
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas E Woolley
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, UK
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
82
|
Zyulina V, Yan KK, Ju B, Schwarzenberger E, Passegger C, Tam-Amersdorfer C, Pan Q, Sconocchia T, Pollack C, Shaner B, Zebisch A, Easton J, Yu J, Silva JM, Strobl H. The miR-424(322)/503 gene cluster regulates pro- versus anti-inflammatory skin DC subset differentiation by modulating TGF-β signaling. Cell Rep 2021; 35:109049. [PMID: 33910004 DOI: 10.1016/j.celrep.2021.109049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/26/2020] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
Transforming growth factor β (TGF-β) family ligands are key regulators of dendritic cell (DC) differentiation and activation. Epidermal Langerhans cells (LCs) require TGF-β family signaling for their differentiation, and canonical TGF-β1 signaling secures a non-activated LC state. LCs reportedly control skin inflammation and are replenished from peripheral blood monocytes, which also give rise to pro-inflammatory monocyte-derived DCs (moDCs). By studying mechanisms in inflammation, we previously screened LCs versus moDCs for differentially expressed microRNAs (miRNAs). This revealed that miR-424/503 is the most strongly inversely regulated (moDCs > LCs). We here demonstrate that miR-424/503 is induced during moDC differentiation and promotes moDC differentiation in human and mouse. Inversely, forced repression of miR-424 during moDC differentiation facilitates TGF-β1-dependent LC differentiation. Mechanistically, miR-424/503 deficiency in monocyte/DC precursors leads to the induction of TGF-β1 response genes critical for LC differentiation. Therefore, the miR-424/503 gene cluster plays a decisive role in anti-inflammatory LC versus pro-inflammatory moDC differentiation from monocytes.
Collapse
Affiliation(s)
- Victoria Zyulina
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Elke Schwarzenberger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Christina Passegger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Pollack
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Bridget Shaner
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria; Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
83
|
Geueke A, Niemann C. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies. Exp Dermatol 2021; 30:588-597. [PMID: 33599012 DOI: 10.1111/exd.14303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Sebaceous glands (SGs), typically associated with hair follicles, are critical for the homeostasis and function of mammalian skin. The main physiological function of SGs is the production and holocrine secretion of sebum to lubricate and protect the skin. Defective SGs have been linked to a variety of skin disorders, including acne, seborrheic dermatitis and formation of sebaceous tumors. Thus, a better understanding how SGs are formed and maintained is important to unravel the underlying molecular and cellular mechanisms of SG pathologies and to find better and effective therapies. Over the last two decades, research has come a long way from the initial identification of skin epithelial stem cells to the isolation and functional characterization of multiple stem cell pools as well as a better understanding of their unique and complex activities that drive skin homeostasis and operate in skin pathologies. Here, we discuss recent progress in unravelling cellular mechanisms underlying SG development, homeostasis and sebaceous tumor formation and assess the role of stem and progenitor cells in controlling SG physiology and disease processes. The development of elegant in vivo imaging as well as various in vitro and ex vivo stem cell and SG tissue models will advance mechanistic studies on SG function and allow drug screening and testing for efficient and successful targeting SG pathologies.
Collapse
Affiliation(s)
- Anna Geueke
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
84
|
Wu Z, Hai E, Di Z, Ma R, Shang F, Wang Y, Wang M, Liang L, Rong Y, Pan J, Wu W, Su R, Wang Z, Wang R, Zhang Y, Li J. Using WGCNA (weighted gene co-expression network analysis) to identify the hub genes of skin hair follicle development in fetus stage of Inner Mongolia cashmere goat. PLoS One 2020; 15:e0243507. [PMID: 33351808 PMCID: PMC7755285 DOI: 10.1371/journal.pone.0243507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. METHODS We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45-135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). RESULTS Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n.
Collapse
Affiliation(s)
- Zhihong Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Erhan Hai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhengyang Di
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lili Liang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Wenbin Wu
- Zhenlai Hehe Animal Husbandry Development Co., Ltd, Baicheng, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
- * E-mail: (JL); , (YZ)
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
- * E-mail: (JL); , (YZ)
| |
Collapse
|
85
|
Weber EL, Lai YC, Lei M, Jiang TX, Chuong CM. Human Fetal Scalp Dermal Papilla Enriched Genes and the Role of R-Spondin-1 in the Restoration of Hair Neogenesis in Adult Mouse Cells. Front Cell Dev Biol 2020; 8:583434. [PMID: 33324639 PMCID: PMC7726222 DOI: 10.3389/fcell.2020.583434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Much remains unknown about the regulatory networks which govern the dermal papilla’s (DP) ability to induce hair follicle neogenesis, a capacity which decreases greatly with age. To further define the core genes which characterize the DP cell and to identify pathways prominent in DP cells with greater hair inductive capacity, comparative transcriptome analyses of human fetal and adult dermal follicular cells were performed. 121 genes were significantly upregulated in fetal DP cells in comparison to both fetal dermal sheath cup (DSC) cells and interfollicular dermal (IFD) populations. Comparison of the set of enriched human fetal DP genes with human adult DP, newborn mouse DP, and embryonic mouse dermal condensation (DC) cells revealed differences in the expression of Wnt/β-catenin, Shh, FGF, BMP, and Notch signaling pathways. We chose R-spondin-1, a Wnt agonist, for functional verification and show that exogenous administration restores hair follicle neogenesis from adult mouse cells in skin reconstitution assays. To explore upstream regulators of fetal DP gene expression, we identified twenty-nine transcription factors which are upregulated in human fetal DP cells compared to adult DP cells. Of these, seven transcription factor binding motifs were significantly enriched in the candidate promoter regions of genes differentially expressed between fetal and adult DP cells, suggesting a potential role in the regulatory network which confers the fetal DP phenotype and a possible relationship to the induction of follicle neogenesis.
Collapse
Affiliation(s)
- Erin L Weber
- Department of Pathology, University of Southern California, Los Angeles, CA, United States.,Division of Plastic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yung-Chih Lai
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles, CA, United States
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
86
|
Saxena N, Mok KW, Rendl M. An updated classification of hair follicle morphogenesis. Exp Dermatol 2020; 28:332-344. [PMID: 30887615 DOI: 10.1111/exd.13913] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Hair follicle (HF) formation in developing embryonic skin requires stepwise signalling between the epithelial epidermis and mesenchymal dermis, and their specialized derivatives, the placode/germ/peg and dermal condensate/papilla, respectively. Classically, distinct stages of HF morphogenesis have been defined, in the mouse model, based on (a) changes in cell morphology and aggregation; (b) expression of few known molecular markers; (c) the extent of follicle downgrowth; and (d) the presence of differentiating cell types. Refined genetic strategies and recent emerging technologies, such as live imaging and transcriptome analyses of isolated cell populations or single cells, have enabled a closer dissection of the signalling requirements at different stages of HF formation, particularly early on. They have also led to the discovery of precursor cells for placode, dermal condensate and future bulge stem cells that, combined with molecular insights into their fate specification and subsequent formation, serve as novel landmarks for early HF morphogenetic events and studies of the signalling networks mediating these processes. In this review, we integrate the emergence of HF precursor cell states and novel molecular markers of fate and formation to update the widely used 20-year-old seminal classification guide of HF morphogenetic stages by Paus et al. We then temporally describe the latest insights into the early cellular and molecular events and signalling requirements for HF morphogenesis in relation to one another in a holistic manner.
Collapse
Affiliation(s)
- Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ka-Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
87
|
Expression profile analysis to identify circular RNA expression signatures in hair follicle of Hu sheep lambskin. Genomics 2020; 112:4454-4462. [PMID: 32768426 DOI: 10.1016/j.ygeno.2020.07.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/01/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022]
Abstract
CircRNAs are involved in the regulation of various cellular and biological processes, but none of the studies have focused on hair follicle in sheep. In this study, the expression profile of circRNAs between small waves (SM) and straight wool (ST) groups was investigated using RNA-Seq. The results showed that a total of 5,527 circRNAs were identified and 114 of them were differentially expressed between two groups. Enrichment analysis revealed that the host genes with DE circRNAs were mainly enriched in TGF-beta pathway, Notch pathway. Miranda software was used to found that 129 miRNAs might be binding to 114 DE circRNAs, including miR-10a, miR-143, miR-let-7a, miR-199a-3p, miR-200a, which also had important influence on hair follicle morphogenesis. Furthermore, the coding potential of circRNAs was predicted, and 11 circRNAs were simultaneously identified with coding potential. In summary, circRNAs have important effects on hair follicle growth and development, and these results will provide a basis for molecular mechanism of pattern formation.
Collapse
|
88
|
Abbasi S, Sinha S, Labit E, Rosin NL, Yoon G, Rahmani W, Jaffer A, Sharma N, Hagner A, Shah P, Arora R, Yoon J, Islam A, Uchida A, Chang CK, Stratton JA, Scott RW, Rossi FMV, Underhill TM, Biernaskie J. Distinct Regulatory Programs Control the Latent Regenerative Potential of Dermal Fibroblasts during Wound Healing. Cell Stem Cell 2020; 27:396-412.e6. [PMID: 32755548 DOI: 10.1016/j.stem.2020.07.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023]
Abstract
Dermal fibroblasts exhibit considerable heterogeneity during homeostasis and in response to injury. Defining lineage origins of reparative fibroblasts and regulatory programs that drive fibrosis or, conversely, promote regeneration will be essential for improving healing outcomes. Using complementary fate-mapping approaches, we show that hair follicle mesenchymal progenitors make limited contributions to wound repair. In contrast, extrafollicular progenitors marked by the quiescence-associated factor Hic1 generated the bulk of reparative fibroblasts and exhibited functional divergence, mediating regeneration in the center of the wound neodermis and scar formation in the periphery. Single-cell RNA-seq revealed unique transcriptional, regulatory, and epithelial-mesenchymal crosstalk signatures that enabled mesenchymal competence for regeneration. Integration with scATAC-seq highlighted changes in chromatin accessibility within regeneration-associated loci. Finally, pharmacological modulation of RUNX1 and retinoic acid signaling or genetic deletion of Hic1 within wound-activated fibroblasts was sufficient to modulate healing outcomes, suggesting that reparative fibroblasts have latent but modifiable regenerative capacity.
Collapse
Affiliation(s)
- Sepideh Abbasi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Grace Yoon
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nilesh Sharma
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Andrew Hagner
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Prajay Shah
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rohit Arora
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jessica Yoon
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anowara Islam
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Aya Uchida
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Chih Kai Chang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jo Anne Stratton
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - R Wilder Scott
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - T Michael Underhill
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
89
|
Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool diversity. Gene 2020; 758:144968. [PMID: 32707304 DOI: 10.1016/j.gene.2020.144968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
The hair follicle is an excellent mini-system illustrating the mechanisms governing organogenesis and regeneration. Although the general mechanisms modulating skin and hair follicle development are widely studied in mouse and chicken models, the delicate network regulating skin and hair diversity remains largely unclear. Sheep is an additional model to address the various wool characteristics observed in nature. The coarse and fine wool sheep with diverse fibers were examined to show differences in the primary wool follicle size and skin thickness. The molecular dynamics in skin staged at the primary wool follicle induction between two sheep lines were investigated by RNA-sequencing analyses to generate 1994 differentially expressed genes revealing marker genes for epithelium (6 genes), dermal condensate (38 genes) and dermal fibroblast (58 genes) highly correlated with skin and wool follicle morphological differences. The DEGs were enriched in GO terms represented by epithelial cell migration and differentiation, regulation of hair follicle development and ectodermal placode formation, and KEGG pathways typified by WNT and Hedgehog signaling pathways governing the differences of skin structure. The qPCR detection of 9 genes confirmed the similar expression tendency with RNA-sequencing profiles. This comparative study of coarse and fine wool sheep skin reveals the presence of skin and wool follicle differences at primary wool follicle induction stage, and indicates the potential effectors (APCDD1, FGF20, DKK1, IGFBP3 and SFRP4) regulating the skin compartments during the early morphogenesis of primary wool follicles to shape the variable wool fiber thickness in later developmental stages.
Collapse
|
90
|
Shwartz Y, Gonzalez-Celeiro M, Chen CL, Pasolli HA, Sheu SH, Fan SMY, Shamsi F, Assaad S, Lin ETY, Zhang B, Tsai PC, He M, Tseng YH, Lin SJ, Hsu YC. Cell Types Promoting Goosebumps Form a Niche to Regulate Hair Follicle Stem Cells. Cell 2020; 182:578-593.e19. [PMID: 32679029 DOI: 10.1016/j.cell.2020.06.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 04/06/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.
Collapse
Affiliation(s)
- Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Meryem Gonzalez-Celeiro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Chih-Lung Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Shu-Hsien Sheu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sabrina Mai-Yi Fan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Steven Assaad
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Edrick Tai-Yu Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Bing Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Pai-Chi Tsai
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Megan He
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Hua Tseng
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 100, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
91
|
Holmes G, Gonzalez-Reiche AS, Lu N, Zhou X, Rivera J, Kriti D, Sebra R, Williams AA, Donovan MJ, Potter SS, Pinto D, Zhang B, van Bakel H, Jabs EW. Integrated Transcriptome and Network Analysis Reveals Spatiotemporal Dynamics of Calvarial Suturogenesis. Cell Rep 2020; 32:107871. [PMID: 32640236 PMCID: PMC7379176 DOI: 10.1016/j.celrep.2020.107871] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
Craniofacial abnormalities often involve sutures, the growth centers of the skull. To characterize the organization and processes governing their development, we profile the murine frontal suture, a model for sutural growth and fusion, at the tissue- and single-cell level on embryonic days (E)16.5 and E18.5. For the wild-type suture, bulk RNA sequencing (RNA-seq) analysis identifies mesenchyme-, osteogenic front-, and stage-enriched genes and biological processes, as well as alternative splicing events modifying the extracellular matrix. Single-cell RNA-seq analysis distinguishes multiple subpopulations, of which five define a mesenchyme-osteoblast differentiation trajectory and show variation along the anteroposterior axis. Similar analyses of in vivo mouse models of impaired frontal suturogenesis in Saethre-Chotzen and Apert syndromes, Twist1+/- and Fgfr2+/S252W, demonstrate distinct transcriptional changes involving angiogenesis and ribogenesis, respectively. Co-expression network analysis reveals gene expression modules from which we validate key driver genes regulating osteoblast differentiation. Our study provides a global approach to gain insights into suturogenesis.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Rivera
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anthony A Williams
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH 45229, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
92
|
Ben-Yehuda Greenwald M, Tacconi C, Jukic M, Joshi N, Hiebert P, Brinckmann J, Tenor H, Naef R, Werner S. A Dual-Acting Nitric Oxide Donor and Phosphodiesterase 5 Inhibitor Promotes Wound Healing in Normal Mice and Mice with Diabetes. J Invest Dermatol 2020; 141:415-426. [PMID: 32598925 DOI: 10.1016/j.jid.2020.05.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/12/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
Chronic wounds affect a large percentage of the population worldwide and cause significant morbidity. Unfortunately, efficient compounds for the treatment of chronic wounds are yet not available. Endothelial dysfunction, which is at least in part a result of compromised nitric oxide production and concomitant reduction in cGMP levels, is a major pathologic feature of chronic wounds. Therefore, we designed and synthesized a compound with a unique dual-acting activity (TOP-N53), acting as a nitric oxide donor and phosphodiesterase 5 inhibitor, and applied it locally to full-thickness skin wounds in healthy and healing-impaired mice with diabetes. TOP-N53 promoted keratinocyte proliferation, angiogenesis, and collagen maturation in healthy mice without accelerating the wound inflammatory response or scar formation. Most importantly, it partially rescued the healing impairment of mice with genetically determined type II diabetes (db/db) by stimulating re-epithelialization and granulation tissue formation, including angiogenesis. In vitro studies with human and murine primary cells showed a positive effect of TOP-N53 on keratinocyte and fibroblast migration, keratinocyte proliferation, and endothelial cell migration and tube formation. These results demonstrate a remarkable healing-promoting activity of TOP-N53 by targeting the major resident cells in the wound tissue.
Collapse
Affiliation(s)
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marko Jukic
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Natasha Joshi
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paul Hiebert
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jürgen Brinckmann
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Institute of Virology and Cell Biology, University of Lubeck, Lübeck, Germany
| | | | - Reto Naef
- Topadur Pharma AG, Schlieren, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
93
|
High Throughput strategies Aimed at Closing the GAP in Our Knowledge of Rho GTPase Signaling. Cells 2020; 9:cells9061430. [PMID: 32526908 PMCID: PMC7348934 DOI: 10.3390/cells9061430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022] Open
Abstract
Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell–cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases’ biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases’ effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos. In this review, we highlight theses latest large-scale efforts, and we discuss the emerging opportunities that may lead to the next wave of discoveries.
Collapse
|
94
|
Lee J, Rabbani CC, Gao H, Steinhart MR, Woodruff BM, Pflum ZE, Kim A, Heller S, Liu Y, Shipchandler TZ, Koehler KR. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature 2020; 582:399-404. [PMID: 32494013 PMCID: PMC7593871 DOI: 10.1038/s41586-020-2352-3] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
The skin is a multi-layered organ equipped with appendages (i.e. follicles and glands) critical for regulating bodily fluid retention and temperature, guarding against external stresses, and mediating touch and pain sensation1,2. Reconstruction of appendage-bearing skin in cultures and in bioengineered grafts remains an unmet biomedical challenge3–9. Here, we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use step-wise modulation of the TGFβ and FGF signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During 4–5 months incubation, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis, and pigmented hair follicles equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking human touch circuitry. Single-cell RNA-sequencing and direct comparison to foetal specimens suggest that skin organoids are equivalent to human facial skin in the second-trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted on nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate skin organoids will be foundational to future studies of human skin development, disease modelling, or reconstructive surgery.
Collapse
Affiliation(s)
- Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA.,F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cyrus C Rabbani
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew R Steinhart
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Zachary E Pflum
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander Kim
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stefan Heller
- Department of Otolaryngology, Stanford University, Palo Alto, CA, USA
| | - Yunlong Liu
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taha Z Shipchandler
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA. .,F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA. .,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA. .,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
95
|
Silva LMA, Hsieh R, Lourenço SV, Ottoni V, Valente N, Fernandes JD. Immunoexpression of adhesion molecules during human fetal hair development. Histol Histopathol 2020; 35:911-917. [PMID: 32364615 DOI: 10.14670/hh-18-224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hair follicles are produced in a cyclical manner and the machinery involved in the reproduction of these follicles is present since the fetal stage. Although extensive research has been done on the human hair follicle, very little is known about the importance of adhesion molecules in its development. MATERIAL AND METHODS We analyzed here, the immunoexpression of beta-1 integrin, p-cadherin, e-cadherin, and beta-catenin in hair follicles from 26 formalin-fixed and paraffin-embedded skin samples from human embryos and fetus between 12-23 weeks of gestational age. RESULTS The adhesion molecules beta-1 integrin and e-cadherin/p-cadherin were expressed from 12 weeks and seemed to play a role in regulating epidermis invagination. Beta-catenin immunostaining was negative in all cases; down regulation of this protein may be necessary for fetal hair development and thus facilitating hair follicle down growth. DISCUSSION/CONCLUSION Adhesion molecules are essential for hair follicle down growth and proliferation; integrins and cadherins play a major role in this process. More studies are needed to describe hair follicle development.
Collapse
Affiliation(s)
- Laura Maria Andrade Silva
- Postgraduate Program in Medicine and Health, School of Medicine, Federal University of Bahia, Bahia, Brazil.
| | - Ricardo Hsieh
- Institute of Tropical Medicine, University of São Paulo -IMT- University of São Paulo, São Paulo, Brazil
| | | | - Verônica Ottoni
- Institute of Tropical Medicine, University of São Paulo -IMT- University of São Paulo, São Paulo, Brazil
| | - Neusa Valente
- Dermatopathology Department, University of São Paulo, São Paulo, Brazil
| | - Juliana Dumet Fernandes
- Postgraduate Program in Medicine and Health, School of Medicine, Federal University of Bahia, Bahia, Brazil
| |
Collapse
|
96
|
Integrative Analysis of Methylome and Transcriptome Reveals the Regulatory Mechanisms of Hair Follicle Morphogenesis in Cashmere Goat. Cells 2020; 9:cells9040969. [PMID: 32295263 PMCID: PMC7226977 DOI: 10.3390/cells9040969] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/22/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022] Open
Abstract
Studies in humans and mice have revealed that hair follicle morphogenesis relies on tightly coordinated ectodermal–mesodermal interactions, involving multiple signals and regulatory factors. DNA methylation and long non-coding RNA (lncRNA) play a critical role in early embryonic skin development by controlling gene expression. Acting as an indirect regulator, lncRNA could recruit DNA methyltransferases to specific genomic sites to methylate DNA. However, the molecular regulation mechanisms underlying hair follicle morphogenesis is unclear in cashmere goat. In this study, RNA-seq and whole-genome bisulfite sequencing (WGBS) in embryonic day 65 (E 65) and E 120 skin tissues of cashmere goat were used to reveal this complex regulatory process. The RNA-seq, qRT-PCR, and immunohistochemistry results showed that Wnt signaling played an important role in both hair follicle induction and differentiation stage; transcriptional factors (TFs), including HOXC13, SOX9, SOX21, JUNB, LHX2, VDR, and GATA3, participated in hair follicle differentiation via specific expression at E 120. Subsequently, the combination of WGBS and RNA-seq analysis showed that the expression of some hair follicle differentiation genes and TF genes were negatively correlated with the DNA methylation level generally. A portion of hair follicle differentiation genes were methylated and repressed in the hair follicle induction stage but were subsequently demethylated and expressed during the hair follicle differentiation stage, suggesting that DNA methylation plays an important role in hair morphogenesis by regulating associated gene expression. Furthermore, 45 upregulated and 147 downregulated lncRNAs in E 120 compared with E 65 were identified by lncRNA mapping, and then the potential differentially expressed lncRNAs associated with DNA methylation on the target gene were revealed. In conclusion, critical signals and genes were revealed during hair follicle morphogenesis in the cashmere goat. In this process, DNA methylation was lower in the hair follicle differentiation compared with the hair follicle induction stage and may play an important role in hair morphogenesis by regulating associated gene expression. Furthermore, potential lncRNAs associated with DNA methylation on target genes were delineated. This study enriches the regulatory network and molecular mechanisms on hair morphogenesis.
Collapse
|
97
|
Chen Y, Fan Z, Wang X, Mo M, Zeng SB, Xu RH, Wang X, Wu Y. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res Ther 2020; 11:144. [PMID: 32245516 PMCID: PMC7118821 DOI: 10.1186/s13287-020-01650-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cultured epidermal stem cells (Epi-SCs) and skin-derived precursors (SKPs) were capable of reconstituting functional hair follicles after implantation, while the signaling pathways that regulate neogenic hair follicle formation are poorly investigated. In this study, we aimed to understand the interactions between Epi-SCs and SKPs during skin organoid formation and to uncover key signal pathways crucial for de novo hair follicle regeneration. Methods To track their fate after transplantation, Epi-SCs derived from neonatal C57BL/6 mice were labeled with tdTomato, and SKPs were isolated from neonatal C57BL/6/GFP mice. A mixture of Epi-SCs-tdTomato and SKPs-EGFP in Matrigel was observed under two-photon microscope in culture and after implantation into excisional wounds in nude mice, to observe dynamic migrations of the cells during hair follicle morphogenesis. Signaling communications between the two cell populations were examined by RNA-Seq analysis. Potential signaling pathways revealed by the analysis were validated by targeting the pathways using specific inhibitors to observe a functional loss in de novo hair follicle formation. Results Two-photon microscopy analysis indicated that when Epi-SCs and SKPs were mixed in Matrigel and cultured, they underwent dynamic migrations resulting in the formation of a bilayer skin-like structure (skin organoid), where Epi-SCs positioned themselves in the outer layer; when the mixture of Epi-SCs and SKPs was grafted into excisional wounds in nude mice, a bilayer structure resembling the epidermis and the dermis formed at the 5th day, and de novo hair follicles generated subsequently. RNA-Seq analysis of the two cell types after incubation in mixture revealed dramatic alterations in gene transcriptome, where PI3K-Akt signaling pathway in Epi-SCs was significantly upregulated; meanwhile, elevated expressions of several growth factors and cytokine potentially activating PI3K were found in SKPs, suggesting active reciprocal communications between them. In addition, inhibition of PI3K or Akt by specific inhibitors markedly suppressed the hair follicle regeneration mediated by Epi-SCs and SKPs. Conclusions Our data indicate that the PI3K-Akt signaling pathway plays a crucial role in de novo hair follicle regeneration, and the finding may suggest potential therapeutic applications in enhancing hair regeneration.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhimeng Fan
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoxiao Wang
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Miaohua Mo
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Shu Bin Zeng
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xusheng Wang
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. .,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. .,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China.
| |
Collapse
|
98
|
Hagner A, Shin W, Sinha S, Alpaugh W, Workentine M, Abbasi S, Rahmani W, Agabalyan N, Sharma N, Sparks H, Yoon J, Labit E, Cobb J, Dobrinski I, Biernaskie J. Transcriptional Profiling of the Adult Hair Follicle Mesenchyme Reveals R-spondin as a Novel Regulator of Dermal Progenitor Function. iScience 2020; 23:101019. [PMID: 32289736 PMCID: PMC7155209 DOI: 10.1016/j.isci.2020.101019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
The adult hair follicle (HF) undergoes successive regeneration driven by resident epithelial stem cells and neighboring mesenchyme. Recent work described the existence of HF dermal stem cells (hfDSCs), but the genetic regulation of hfDSCs and their daughter cell lineages in HF regeneration remains unknown. Here we prospectively isolate functionally distinct mesenchymal compartment in the HF (dermal cup [DC; includes hfDSCs] and dermal papilla) and define the transcriptional programs involved in hfDSC function and acquisition of divergent mesenchymal fates. From this, we demonstrate cross-compartment mesenchymal signaling within the HF niche, whereby DP-derived R-spondins act to stimulate proliferation of both hfDSCs and epithelial progenitors during HF regeneration. Our findings describe unique transcriptional programs that underlie the functional heterogeneity among specialized fibroblasts within the adult HF and identify a novel regulator of mesenchymal progenitor function during tissue regeneration.
Collapse
Affiliation(s)
- Andrew Hagner
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Wisoo Shin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Whitney Alpaugh
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sepideh Abbasi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Natacha Agabalyan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nilesh Sharma
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Holly Sparks
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jessica Yoon
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John Cobb
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
99
|
Shue YT, Lee KT, Walters BW, Ong HB, Silvaraju S, Lam WJ, Lim CY. Dynamic shifts in chromatin states differentially mark the proliferative basal cells and terminally differentiated cells of the developing epidermis. Epigenetics 2020; 15:932-948. [PMID: 32175801 DOI: 10.1080/15592294.2020.1738028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications on nucleosomal histones represent a key epigenetic regulatory mechanism to mediate the complex gene expression, DNA replication, and cell cycle changes that occur in embryonic cells undergoing lineage specification, maturation, and differentiation during development. Here, we investigated the dynamics of 13 key histone marks in epidermal cells at three distinct stages of embryonic skin development and identified significant changes that corresponded with the maturation of the proliferative basal epidermal cells and terminally differentiated cells in the stratified layers. In particular, H3K4me3 and H3K27ac were accumulated and became more prominent in the basal cells at later stages of epidermal development, while H3K27me3 was found to be low in the basal cells but highly enriched in the differentiated suprabasal cell types. Constitutive heterochromatin marked by H4K20me3 was also significantly elevated in differentiated epidermal cells at late gestation stages, which exhibited a concomitant loss of H4K16 acetylation. These differential chromatin profiles were established in the embryonic skin by gestation day 15 and further amplified at E18 and in postnatal skin. Our results reveal the dynamic chromatin states that occur as epidermal progenitor cells commit to the lineage and differentiate into the different cells of the stratified epidermis and provide insight to the underlying epigenetic pathways that support normal epidermal development and homoeostasis.
Collapse
Affiliation(s)
- Yan Ting Shue
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Kang Ting Lee
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Benjamin William Walters
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore.,Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester , Manchester, UK
| | - Hui Binn Ong
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Shaktheeshwari Silvaraju
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Wei Jun Lam
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Chin Yan Lim
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
100
|
Villani RM, Johnson A, Galbraith JA, Baz B, Handoko HY, Walker GJ, Khosrotehrani K. Murine dorsal hair type is genetically determined by polymorphisms in candidate genes that influence BMP and WNT signalling. Exp Dermatol 2020; 29:450-461. [PMID: 32145039 DOI: 10.1111/exd.14090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
Mouse dorsal coat hair types, guard, awl, auchene and zigzag, develop in three consecutive waves. To date, it is unclear if these hair types are determined genetically through expression of specific factors or can change based on their mesenchymal environment. We undertook a novel approach to this question by studying individual hair type in 67 Collaborative Cross (CC) mouse lines and found significant variation in the proportion of each type between strains. Variation in the proportion of zigzag, awl and auchene, but not guard hair, was largely due to germline genetic variation. We utilised this variation to map a quantitative trait locus (QTL) on chromosome 12 that appears to influence a decision point switch controlling the propensity for either second (awl and auchene) or third wave (zigzag) hairs to develop. This locus contains two strong candidates, Sostdc1 and Twist1, each of which carry several ENCODE regulatory variants, specific to the causal allele, that can influence gene expression, are expressed in the developing hair follicle, and have been previously reported to be involved in regulating human and murine hair behaviour, but not hair subtype determination. Both of these genes are likely to play a part in hair type determination via regulation of BMP and/or WNT signalling.
Collapse
Affiliation(s)
- Rehan M Villani
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ayaka Johnson
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jack A Galbraith
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Betoul Baz
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Herlina Y Handoko
- QIMRBerghofer Institute of Medical Research, Brisbane, QLD, Australia
| | - Graeme J Walker
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kiarash Khosrotehrani
- Experimental Dermatology Group, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|