51
|
Marugán C, Sanz‐Gómez N, Ortigosa B, Monfort‐Vengut A, Bertinetti C, Teijo A, González M, Alonso de la Vega A, Lallena MJ, Moreno‐Bueno G, de Cárcer G. TPX2 overexpression promotes sensitivity to dasatinib in breast cancer by activating YAP transcriptional signaling. Mol Oncol 2024; 18:1531-1551. [PMID: 38357786 PMCID: PMC11161735 DOI: 10.1002/1878-0261.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer aggressiveness, providing genetic plasticity and tumor heterogeneity that allows the tumor to evolve and adapt to stress conditions. CIN is considered a cancer therapeutic biomarker because healthy cells do not exhibit CIN. Despite recent efforts to identify therapeutic strategies related to CIN, the results obtained have been very limited. CIN is characterized by a genetic signature where a collection of genes, mostly mitotic regulators, are overexpressed in CIN-positive tumors, providing aggressiveness and poor prognosis. We attempted to identify new therapeutic strategies related to CIN genes by performing a drug screen, using cells that individually express CIN-associated genes in an inducible manner. We find that the overexpression of targeting protein for Xklp2 (TPX2) enhances sensitivity to the proto-oncogene c-Src (SRC) inhibitor dasatinib due to activation of the Yes-associated protein 1 (YAP) pathway. Furthermore, using breast cancer data from The Cancer Genome Atlas (TCGA) and a cohort of cancer-derived patient samples, we find that both TPX2 overexpression and YAP activation are present in a significant percentage of cancer tumor samples and are associated with poor prognosis; therefore, they are putative biomarkers for selection for dasatinib therapy.
Collapse
Grants
- 2018-20I114 Spanish National Research Council (CSIC)
- 2021-AEP035 Spanish National Research Council (CSIC)
- 2022-20I018 Spanish National Research Council (CSIC)
- FJC2020-044620-I Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2019-104644RB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2021-125705OB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2022-136854OB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- RTI2018-095496-B-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- CB16/12/00295 Instituto de Salud Carlos III - CIBERONC
- LABAE16017DECA Spanish Association Against Cancer (AECC) Scientific Foundation
- POSTD234371SANZ Spanish Association Against Cancer (AECC) Scientific Foundation
- PROYE19036MOR Spanish Association Against Cancer (AECC) Scientific Foundation
- Spanish National Research Council (CSIC)
- Spanish Association Against Cancer (AECC) Scientific Foundation
Collapse
Affiliation(s)
- Carlos Marugán
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- Discovery Chemistry Research and TechnologyEli Lilly and CompanyMadridSpain
| | - Natalia Sanz‐Gómez
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- Translational Cancer Research Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Alberto Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Ana Monfort‐Vengut
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Cristina Bertinetti
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Ana Teijo
- Pathology DepartmentMD Anderson Cancer CenterMadridSpain
| | - Marta González
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Alicia Alonso de la Vega
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - María José Lallena
- Discovery Chemistry Research and TechnologyEli Lilly and CompanyMadridSpain
| | - Gema Moreno‐Bueno
- Translational Cancer Research Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Alberto Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- MD Anderson International FoundationMadridSpain
- Biomedical Cancer Research Network (CIBERONC)MadridSpain
- CSIC Conexión‐Cáncer Hub (https://conexion‐cancer.csic.es)
| | - Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- CSIC Conexión‐Cáncer Hub (https://conexion‐cancer.csic.es)
| |
Collapse
|
52
|
Reis-Cunha JL, Pimenta-Carvalho SA, Almeida LV, Coqueiro-Dos-Santos A, Marques CA, Black JA, Damasceno J, McCulloch R, Bartholomeu DC, Jeffares DC. Ancestral aneuploidy and stable chromosomal duplication resulting in differential genome structure and gene expression control in trypanosomatid parasites. Genome Res 2024; 34:441-453. [PMID: 38604731 PMCID: PMC11067883 DOI: 10.1101/gr.278550.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Aneuploidy is widely observed in both unicellular and multicellular eukaryotes, usually associated with adaptation to stress conditions. Chromosomal duplication stability is a tradeoff between the fitness cost of having unbalanced gene copies and the potential fitness gained from increased dosage of specific advantageous genes. Trypanosomatids, a family of protozoans that include species that cause neglected tropical diseases, are a relevant group to study aneuploidies. Their life cycle has several stressors that could select for different patterns of chromosomal duplications and/or losses, and their nearly universal use of polycistronic transcription increases their reliance on gene expansion/contraction, as well as post-transcriptional control as mechanisms for gene expression regulation. By evaluating the data from 866 isolates covering seven trypanosomatid genera, we have revealed that aneuploidy tolerance is an ancestral characteristic of trypanosomatids but has a reduced occurrence in a specific monophyletic clade that has undergone large genomic reorganization and chromosomal fusions. We have also identified an ancient chromosomal duplication that was maintained across these parasite's speciation, named collectively as the trypanosomatid ancestral supernumerary chromosome (TASC). TASC has most genes in the same coding strand, is expressed as a disomic chromosome (even having four copies), and has increased potential for functional variation, but it purges highly deleterious mutations more efficiently than other chromosomes. The evidence of stringent control over gene expression in this chromosome suggests that these parasites have adapted to mitigate the fitness cost associated with this ancient chromosomal duplication.
Collapse
Affiliation(s)
- João L Reis-Cunha
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom;
| | - Samuel A Pimenta-Carvalho
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Laila V Almeida
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Anderson Coqueiro-Dos-Santos
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Jeziel Damasceno
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Daniella C Bartholomeu
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Daniel C Jeffares
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
53
|
Lynch AR, Bradford S, Zhou AS, Oxendine K, Henderson L, Horner VL, Weaver BA, Burkard ME. A survey of chromosomal instability measures across mechanistic models. Proc Natl Acad Sci U S A 2024; 121:e2309621121. [PMID: 38588415 PMCID: PMC11032477 DOI: 10.1073/pnas.2309621121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/25/2024] [Indexed: 04/10/2024] Open
Abstract
Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, six-centromere FISH, bulk transcriptomics, and single-cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples significantly correlated (R = 0.72; P < 0.001) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also significantly correlate (R = 0.76; P < 0.001) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, scDNAseq detects CIN with high sensitivity, and significantly correlates with imaging methods (R = 0.82; P < 0.001). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate the comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division. This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.
Collapse
Affiliation(s)
- Andrew R. Lynch
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
| | - Shermineh Bradford
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
| | - Amber S. Zhou
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
| | - Kim Oxendine
- Cytogenetic and Molecular Genetic Services Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI53706
| | - Les Henderson
- Cytogenetic and Molecular Genetic Services Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI53706
| | - Vanessa L. Horner
- Cytogenetic and Molecular Genetic Services Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI53706
| | - Beth A. Weaver
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI53705
| | - Mark E. Burkard
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
- Division of Hematology Oncology and Palliative Care, Department of Medicine University of Wisconsin–Madison, Madison, WI53705
| |
Collapse
|
54
|
Rojas J, Hose J, Auguste Dutcher H, Place M, Wolters JF, Hittinger CT, Gasch AP. Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588778. [PMID: 38645209 PMCID: PMC11030387 DOI: 10.1101/2024.04.09.588778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
Collapse
Affiliation(s)
- Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John F Wolters
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chris Todd Hittinger
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
55
|
Korhan P, Bağırsakçı E, Islakoğlu YÖ, Solmaz G, Sarıkaya B, Nart D, Yılmaz F, Atabey N. MASLD-mimicking microenvironment drives an aggressive phenotype and represses IDH2 expression in hepatocellular carcinoma. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim: Hepatocellular carcinoma (HCC) in patients with Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD) is expected to be a significant public health issue in the near future. Therefore, understanding the tumor microenvironment interactions in MASLD-induced HCC is crucial, and the development of relevant preclinical models is needed. Hence, we aimed to determine the effects of a MASLD-mimicking microenvironment (ME) on the aggressiveness of HCC cells and identify target genes that drive HCC by developing a 3D-in vitro co-culture system.
Methods: A 3D co-culture system mimicking the MASLD-ME was created with LX-2 liver stellate cells embedded in 3D collagen gel in the lower and SNU-449 HCC cells on the upper parts of Boyden chambers, and cells were grown in an optimized metabolic medium (MM). The effects of NAFLD-ME on motility, sphere formation, proliferation, and cell cycle of SNU-449 cells were tested by Boyden chamber, 3D sphere formation, XTT, and Flow cytometry, respectively. The protein expression/activation profiles of motile SNU-449 cells that passed the membrane toward NAFLD-ME or control condition were investigated using a multiplex protein profiling system DigiWest and confirmed with RT-PCR, WB, and Flow cytometry. IDH2 levels were examined in primary human HCC and adjacent liver tissues by IHC and in TCGA and CPTAC cohorts by bioinformatics tools.
Results: MM treatment increased fat accumulation, motility, and spheroid formation of both SNU-449 and LX-2 cells. MASLD-ME induced activation of LX2 cells, leading to the formation of bigger colonies with many intrusions compared to related controls. DigiWest analysis showed that metabolism-related proteins such as IDH2 were the most affected molecules in SNU-449 cells that migrated toward the MASLD-ME compared to those that migrated toward the control condition. Downregulation of IDH2 expression was confirmed in SNU-449 cells grown in MASLD-ME, in primary HCC tumor samples by IHC, and in HCC patient cohorts by bioinformatics analysis.
Conclusion: This study reports the potential involvement of MASLD-ME in the downregulation of IDH2 expression and promoted motility and colonization capacity of HCC cells. The 3D MASLD model presented in this study may be useful in investigating the mechanistic roles of MASLD-ME in HCC.
Collapse
|
56
|
Pelster MS, Silverman IM, Schonhoft JD, Johnson A, Selenica P, Ulanet D, Rimkunas V, Reis-Filho JS. Post-therapy emergence of an NBN reversion mutation in a patient with pancreatic acinar cell carcinoma. NPJ Precis Oncol 2024; 8:82. [PMID: 38561473 PMCID: PMC10985087 DOI: 10.1038/s41698-024-00497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024] Open
Abstract
Pancreatic acinar cell carcinoma (PACC) is a rare form of pancreatic cancer that commonly harbors targetable alterations, including activating fusions in the MAPK pathway and loss-of-function (LOF) alterations in DNA damage response/homologous recombination DNA repair-related genes. Here, we describe a patient with PACC harboring both somatic biallelic LOF of NBN and an activating NTRK1 fusion. Upon disease progression following 13 months of treatment with folinic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX), genomic analysis of a metastatic liver biopsy revealed the emergence of a novel reversion mutation restoring the reading frame of NBN. To our knowledge, genomic reversion of NBN has not been previously reported as a resistance mechanism in any tumor type. The patient was treated with, but did not respond to, targeted treatment with a selective NTRK inhibitor. This case highlights the complex but highly actionable genomic landscape of PACC and underlines the value of genomic profiling of rare tumor types such as PACC.
Collapse
Affiliation(s)
| | | | | | | | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
57
|
Jin T, Ding L, Chen J, Zou X, Xu T, Xuan Z, Wang S, Chen J, Wang W, Zhu C, Zhang Y, Huang P, Pan Z, Ge M. BUB1/KIF14 complex promotes anaplastic thyroid carcinoma progression by inducing chromosome instability. J Cell Mol Med 2024; 28:e18182. [PMID: 38498903 PMCID: PMC10948175 DOI: 10.1111/jcmm.18182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.
Collapse
Affiliation(s)
- Tiefeng Jin
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Lingling Ding
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jianqiang Chen
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Wei Wang
- Department of Pathology, Laboratory Medicine CenterZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Chaozhuang Zhu
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouChina
- Clinical Research Center for Cancer of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
58
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
59
|
Mallick S, Choi Y, Taylor AM, Cosper PF. Human Papillomavirus-Induced Chromosomal Instability and Aneuploidy in Squamous Cell Cancers. Viruses 2024; 16:501. [PMID: 38675844 PMCID: PMC11053578 DOI: 10.3390/v16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. CIN is defined as a continuous rate of chromosome missegregation events over the course of multiple cell divisions. CIN causes aneuploidy, a state of abnormal chromosome content differing from a multiple of the haploid. Human papillomavirus (HPV) is a well-known cause of squamous cancers of the oropharynx, cervix, and anus. The HPV E6 and E7 oncogenes have well-known roles in carcinogenesis, but additional genomic events, such as CIN and aneuploidy, are often required for tumor formation. HPV+ squamous cancers have an increased frequency of specific types of CIN, including polar chromosomes. CIN leads to chromosome gains and losses (aneuploidies) specific to HPV+ cancers, which are distinct from HPV- cancers. HPV-specific CIN and aneuploidy may have implications for prognosis and therapeutic response and may provide insight into novel therapeutic vulnerabilities. Here, we review HPV-specific types of CIN and patterns of aneuploidy in squamous cancers, as well as how this impacts patient prognosis and treatment.
Collapse
Affiliation(s)
- Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Yeseo Choi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
60
|
Wang Z, Xia Y, Mills L, Nikolakopoulos AN, Maeser N, Dehm SM, Sheltzer JM, Sun R. Evolving copy number gains promote tumor expansion and bolster mutational diversification. Nat Commun 2024; 15:2025. [PMID: 38448455 PMCID: PMC10918155 DOI: 10.1038/s41467-024-46414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
The timing and fitness effect of somatic copy number alterations (SCNA) in cancer evolution remains poorly understood. Here we present a framework to determine the timing of a clonal SCNA that encompasses multiple gains. This involves calculating the proportion of time from its last gain to the onset of population expansion (lead time) as well as the proportion of time prior to its first gain (initiation time). Our method capitalizes on the observation that a genomic segment, while in a specific copy number (CN) state, accumulates point mutations proportionally to its CN. Analyzing 184 whole genome sequenced samples from 75 patients across five tumor types, we commonly observe late gains following early initiating events, occurring just before the clonal expansion relevant to the sampling. These include gains acquired after genome doubling in more than 60% of cases. Notably, mathematical modeling suggests that late clonal gains may contain final-expansion drivers. Lastly, SCNAs bolster mutational diversification between subpopulations, exacerbating the circle of proliferation and increasing heterogeneity.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- School of Data Science, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, China
| | - Yunong Xia
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lauren Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Athanasios N Nikolakopoulos
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nicole Maeser
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | | | - Ruping Sun
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
61
|
Garrison Z, Clister T, Bleem E, Berry EG, Kulkarni RP. Comparison of Immunotherapy versus Targeted Therapy Effectiveness in BRAF-Mutant Melanoma Patients and Use of cGAS Expression and Aneuploidy as Potential Prognostic Biomarkers. Cancers (Basel) 2024; 16:1027. [PMID: 38473384 DOI: 10.3390/cancers16051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BRAF-mutant melanoma patients can be treated with targeted therapy or immunotherapies, and it is not clear which should be provided first. Targeted treatments do not work in up to one-third of cases, while immunotherapies may only be effective in up to 60% and come with a high risk of immune-related side effects. Determining which treatment to provide first is thus of critical importance. Recent studies suggest that chromosomal instability and aneuploidy and cyclic GMP-AMP synthase (cGAS) can act as biomarkers for cancer severity and patient outcome. Neither potential biomarker has been extensively studied in melanoma. We examined 20 BRAF-mutant melanomas treated with immunotherapy or targeted therapy and measured chromosomal aneuploidy and cGAS expression levels. Treatment type, aneuploidy, and cGAS expression were correlated with progression-free survival (PFS) in these patients. Those treated with immunotherapy first had significantly better outcomes than those treated with targeted therapy, suggesting immunotherapy should be strongly considered as the first-line therapy for patients bearing BRAF-mutant melanoma. We found that there was no correlation of aneuploidy with outcome while there was some positive correlation of cGAS levels with PFS. Further studies are needed to confirm these findings and to test other potential biomarkers.
Collapse
Affiliation(s)
- Zachary Garrison
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Terri Clister
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eric Bleem
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth G Berry
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Rajan P Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
| |
Collapse
|
62
|
Kohanovski I, Pontz M, Vande Zande P, Selmecki A, Dahan O, Pilpel Y, Yona AH, Ram Y. Aneuploidy Can Be an Evolutionary Diversion on the Path to Adaptation. Mol Biol Evol 2024; 41:msae052. [PMID: 38427813 PMCID: PMC10951435 DOI: 10.1093/molbev/msae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Aneuploidy is common in eukaryotes, often leading to decreased fitness. However, evidence from fungi and human tumur cells suggests that specific aneuploidies can be beneficial under stressful conditions and facilitate adaptation. In a previous evolutionary experiment with yeast, populations evolving under heat stress became aneuploid, only to later revert to euploidy after beneficial mutations accumulated. It was therefore suggested that aneuploidy is a "stepping stone" on the path to adaptation. Here, we test this hypothesis. We use Bayesian inference to fit an evolutionary model with both aneuploidy and mutation to the experimental results. We then predict the genotype frequency dynamics during the experiment, demonstrating that most of the evolved euploid population likely did not descend from aneuploid cells, but rather from the euploid wild-type population. Our model shows how the beneficial mutation supply-the product of population size and beneficial mutation rate-determines the evolutionary dynamics: with low supply, much of the evolved population descends from aneuploid cells; but with high supply, beneficial mutations are generated fast enough to outcompete aneuploidy due to its inherent fitness cost. Our results suggest that despite its potential fitness benefits under stress, aneuploidy can be an evolutionary "diversion" rather than a "stepping stone": it can delay, rather than facilitate, the adaptation of the population, and cells that become aneuploid may leave less descendants compared to cells that remain diploid.
Collapse
Affiliation(s)
- Ilia Kohanovski
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Computer Science, Reichman University, Herzliya, Israel
| | - Martin Pontz
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Avihu H Yona
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
63
|
Bhatia S, Khanna KK, Duijf PHG. Targeting chromosomal instability and aneuploidy in cancer. Trends Pharmacol Sci 2024; 45:210-224. [PMID: 38355324 DOI: 10.1016/j.tips.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Cancer development and therapy resistance are driven by chromosomal instability (CIN), which causes chromosome gains and losses (i.e., aneuploidy) and structural chromosomal alterations. Technical limitations and knowledge gaps have delayed therapeutic targeting of CIN and aneuploidy in cancers. However, our toolbox for creating and studying aneuploidy in cell models has greatly expanded recently. Moreover, accumulating evidence suggests that seven conventional antimitotic chemotherapeutic drugs achieve clinical response by inducing CIN instead of mitotic arrest, although additional anticancer activities may also contribute in vivo. In this review, we discuss these recent developments. We also highlight new discoveries, which together show that 25 chromosome arm aneuploidies (CAAs) may be targetable by 36 drugs across 14 types of cancer. Collectively, these advances offer many new opportunities to improve cancer treatment.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Pascal H G Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
64
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in pancreatic cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580539. [PMID: 38410481 PMCID: PMC10896345 DOI: 10.1101/2024.02.15.580539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Allison V. Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
65
|
Joy J, Fusari E, Milán M. Aneuploidy-induced cellular behaviors: Insights from Drosophila. Dev Cell 2024; 59:295-307. [PMID: 38320484 DOI: 10.1016/j.devcel.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/09/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
A balanced gene complement is crucial for proper cell function. Aneuploidy, the condition of having an imbalanced chromosome set, alters the stoichiometry of gene copy numbers and protein complexes and has dramatic consequences at the cellular and organismal levels. In humans, aneuploidy is associated with different pathological conditions including cancer, microcephaly, mental retardation, miscarriages, and aging. Over the last century, Drosophila has provided a valuable system for studying the consequences of systemic aneuploidies. More recently, it has contributed to the identification and molecular dissection of aneuploidy-induced cellular behaviors and their impact at the tissue and organismal levels. In this perspective, we review this active field of research, first by comparing knowledge from yeast, mouse, and human cells, then by highlighting the contributions of Drosophila. The aim of these discussions was to further our understanding of the functional interplay between aneuploidy, cell physiology, and tissue homeostasis in human development and disease.
Collapse
Affiliation(s)
- Jery Joy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Elena Fusari
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys, 23, 08010 Barcelona, Spain.
| |
Collapse
|
66
|
Baker TM, Waise S, Tarabichi M, Van Loo P. Aneuploidy and complex genomic rearrangements in cancer evolution. NATURE CANCER 2024; 5:228-239. [PMID: 38286829 PMCID: PMC7616040 DOI: 10.1038/s43018-023-00711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.
Collapse
Affiliation(s)
- Toby M Baker
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
67
|
Villagomez FR, Lang J, Webb P, Neville M, Woodruff ER, Bitler BG. Claudin-4 modulates autophagy via SLC1A5/LAT1 as a tolerance mechanism for genomic instability in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576263. [PMID: 38293054 PMCID: PMC10827183 DOI: 10.1101/2024.01.18.576263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Genome instability is key for tumor heterogeneity and derives from defects in cell division and DNA damage repair. Tumors show tolerance for this characteristic, but its accumulation is regulated somehow to avoid catastrophic chromosomal alterations and cell death. Claudin-4 is upregulated and closely associated with genome instability and worse patient outcome in ovarian cancer. This protein is commonly described as a junctional protein participating in processes such as cell proliferation and DNA repair. However, its biological association with genomic instability is still poorly-understood. Here, we used CRISPRi and a claudin mimic peptide (CMP) to modulate the cladudin-4 expression and its function, respectively in in-vitro (high-grade serous carcinoma cells) and in-vivo (patient-derived xenograft in a humanized-mice model) systems. We found that claudin-4 promotes a protective cellular-mechanism that links cell-cell junctions to genome integrity. Disruption of this axis leads to irregular cellular connections and cell cycle that results in chromosomal alterations, a phenomenon associated with a novel functional link between claudin-4 and SLC1A5/LAT1 in regulating autophagy. Consequently, claudin-4's disruption increased autophagy and associated with engulfment of cytoplasm-localized DNA. Furthermore, the claudin-4/SLC1A5/LAT1 biological axis correlates with decrease ovarian cancer patient survival and targeting claudin-4 in-vivo with CMP resulted in increased niraparib (PARPi) efficacy, correlating with increased tumoral infiltration of T CD8+ lymphocytes. Our results show that the upregulation of claudin-4 enables a mechanism that promotes tolerance to genomic instability and immune evasion in ovarian cancer; thus, suggesting the potential of claudin-4 as a translational target for enhancing ovarian cancer treatment.
Collapse
|
68
|
Raleigh D, Nguyen M, Chen W, Zakimi N, Mirchia K, Lucas CH. Pan-cancer copy number variant analysis identifies optimized size thresholds and co-occurrence models for individualized risk-stratification. RESEARCH SQUARE 2024:rs.3.rs-3443805. [PMID: 38260689 PMCID: PMC10802684 DOI: 10.21203/rs.3.rs-3443805/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chromosome instability leading to accumulation of copy number gains or losses is a hallmark of cancer. Copy number variant (CNV) signatures are increasingly used for clinical risk-stratification, but size thresholds for defining CNVs are variable and the biological or clinical implications of CNV size heterogeneity or co-occurrence patterns are incompletely understood. Here we analyze CNV and clinical data from 565 meningiomas and 9,885 tumors from The Cancer Genome Atlas (TCGA) to develop tumor-and chromosome-specific CNV size-dependent and co-occurrence models for clinical outcomes. Our results reveal prognostic CNVs with optimized size thresholds and co-occurrence patterns that refine risk-stratification across a diversity of human cancers.
Collapse
|
69
|
Tadić V, Zhang W, Brozovic A. The high-grade serous ovarian cancer metastasis and chemoresistance in 3D models. Biochim Biophys Acta Rev Cancer 2024; 1879:189052. [PMID: 38097143 DOI: 10.1016/j.bbcan.2023.189052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most frequent and aggressive type of epithelial ovarian cancer, with high recurrence rate and chemoresistance being the main issues in its clinical management. HGSOC is specifically challenging due to the metastatic dissemination via spheroids in the ascitic fluid. The HGSOC spheroids represent the invasive and chemoresistant cellular fraction, which is impossible to investigate in conventional two-dimensional (2D) monolayer cell cultures lacking critical cell-to-cell and cell-extracellular matrix interactions. Three-dimensional (3D) HGSOC cultures, where cells aggregate and exhibit relevant interactions, offer a promising in vitro model of peritoneal metastasis and multicellular drug resistance. This review summarizes recent studies of HGSOC in 3D culture conditions and highlights the role of multicellular HGSOC spheroids and ascitic environment in HGSOC metastasis and chemoresistance.
Collapse
Affiliation(s)
- Vanja Tadić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia
| | - Wei Zhang
- Department of Engineering Mechanics, Dalian University of Technology, Linggong Road 2, Dalian CN-116024, China
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia.
| |
Collapse
|
70
|
Molina O, Ortega-Sabater C, Thampi N, Fernández-Fuentes N, Guerrero-Murillo M, Martínez-Moreno A, Vinyoles M, Velasco-Hernández T, Bueno C, Trincado JL, Granada I, Campos D, Giménez C, Boer JM, den Boer ML, Calvo GF, Camós M, Fuster JL, Velasco P, Ballerini P, Locatelli F, Mullighan CG, Spierings DCJ, Foijer F, Pérez-García VM, Menéndez P. Chromosomal instability in aneuploid acute lymphoblastic leukemia associates with disease progression. EMBO Mol Med 2024; 16:64-92. [PMID: 38177531 PMCID: PMC10897411 DOI: 10.1038/s44321-023-00006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Chromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX). We report higher rates of CIN across aneuploid than in euploid cB-ALL that strongly correlate with intraclonal chr-CNH and overall survival in mice. This association was further supported by in silico mathematical modeling. Moreover, mass-spectrometry analyses of cB-ALL-PDX revealed a "CIN signature" enriched in mitotic-spindle regulatory pathways, which was confirmed by RNA-sequencing of a large cohort of cB-ALL samples. The link between the presence of CIN in aneuploid cB-ALL and disease progression opens new possibilities for patient stratification and offers a promising new avenue as a therapeutic target in cB-ALL treatment.
Collapse
Affiliation(s)
- Oscar Molina
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain.
| | - Carmen Ortega-Sabater
- Mathematical Oncology Laboratory, Department of Mathematics & Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Namitha Thampi
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Narcís Fernández-Fuentes
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mercedes Guerrero-Murillo
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Alba Martínez-Moreno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Talía Velasco-Hernández
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan L Trincado
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain
| | - Isabel Granada
- Hematology Service, Institut Català d'Oncologia (ICO)-Hospital Germans Trias i Pujol, Badalona, Spain
- Josep Carreras Leukemia Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | | | - Judith M Boer
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monique L den Boer
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology and Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Gabriel F Calvo
- Mathematical Oncology Laboratory, Department of Mathematics & Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mireia Camós
- Hematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumor Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose-Luis Fuster
- Pediatric Hematology and Oncology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Pablo Velasco
- Pediatric Oncology and Hematology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Paola Ballerini
- AP-HP, Service of Pediatric Hematology, Hopital Armand Trousseau, Paris, France
| | - Franco Locatelli
- Bambino Gesù Children's Hospital, Catholic University of Sacred Heart, Rome, Italy
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diana C J Spierings
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Víctor M Pérez-García
- Mathematical Oncology Laboratory, Department of Mathematics & Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
- Red Española de Terápias Avanzadas (TERAV), Instituto de Salud Carlos III, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Department of Biomedicine. School of Medicine, University of Barcelona, Barcelona, Spain.
- Spanish Cancer Research Network (CIBERONC), ISCIII, Barcelona, Spain.
| |
Collapse
|
71
|
Tijhuis AE, Foijer F. Characterizing chromosomal instability-driven cancer evolution and cell fitness at a glance. J Cell Sci 2024; 137:jcs260199. [PMID: 38224461 DOI: 10.1242/jcs.260199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Chromosomal instability (CIN), an increased rate of chromosome segregation errors during mitosis, is a hallmark of cancer cells. CIN leads to karyotype differences between cells and thus large-scale heterogeneity among individual cancer cells; therefore, it plays an important role in cancer evolution. Studying CIN and its consequences is technically challenging, but various technologies have been developed to track karyotype dynamics during tumorigenesis, trace clonal lineages and link genomic changes to cancer phenotypes at single-cell resolution. These methods provide valuable insight not only into the role of CIN in cancer progression, but also into cancer cell fitness. In this Cell Science at a Glance article and the accompanying poster, we discuss the relationship between CIN, cancer cell fitness and evolution, and highlight techniques that can be used to study the relationship between these factors. To that end, we explore methods of assessing cancer cell fitness, particularly for chromosomally unstable cancer.
Collapse
Affiliation(s)
- Andréa E Tijhuis
- European Research Institute for the Biology of Ageing , University Medical Center Groningen, University of Groningen,9713 AV Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing , University Medical Center Groningen, University of Groningen,9713 AV Groningen, The Netherlands
| |
Collapse
|
72
|
Wang M, Phan S, Hayes BH, Discher DE. Genetic heterogeneity in p53-null leukemia increases transiently with spindle assembly checkpoint inhibition and is not rescued by p53. Chromosoma 2024; 133:77-92. [PMID: 37256347 PMCID: PMC10828900 DOI: 10.1007/s00412-023-00800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Chromosome gains or losses often lead to copy number variations (CNV) and loss of heterozygosity (LOH). Both quantities are low in hematologic "liquid" cancers versus solid tumors in data of The Cancer Genome Atlas (TCGA) that also shows the fraction of a genome affected by LOH is ~ one-half of that with CNV. Suspension cultures of p53-null THP-1 leukemia-derived cells conform to these trends, despite novel evidence here of genetic heterogeneity and transiently elevated CNV after perturbation. Single-cell DNAseq indeed reveals at least 8 distinct THP-1 aneuploid clones with further intra-clonal variation, suggesting ongoing genetic evolution. Importantly, acute inhibition of the mitotic spindle assembly checkpoint (SAC) produces CNV levels that are typical of high-CNV solid tumors, with subsequent cell death and down-selection to novel CNV. Pan-cancer analyses show p53 inactivation associates with aneuploidy, but leukemias exhibit a weaker trend even though p53 inactivation correlates with poor survival. Overexpression of p53 in THP-1 does not rescue established aneuploidy or LOH but slightly increases cell death under oxidative or confinement stress, and triggers p21, a key p53 target, but without affecting net growth. Our results suggest that factors other than p53 exert stronger pressures against aneuploidy in liquid cancers, and identifying such CNV suppressors could be useful across liquid and solid tumor types.
Collapse
Affiliation(s)
- Mai Wang
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven Phan
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brandon H Hayes
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dennis E Discher
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
73
|
Kandala S, Ramos M, Voith von Voithenberg L, Diaz-Jimenez A, Chocarro S, Keding J, Brors B, Imbusch CD, Sotillo R. Chronic chromosome instability induced by Plk1 results in immune suppression in breast cancer. Cell Rep 2023; 42:113266. [PMID: 37979172 DOI: 10.1016/j.celrep.2023.113266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 11/20/2023] Open
Abstract
Chromosome instability (CIN) contributes to resistance to therapies and tumor evolution. Although natural killer (NK) cells can eliminate cells with complex karyotypes, high-CIN human tumors have an immunosuppressive phenotype. To understand which CIN-associated molecular features alter immune recognition during tumor evolution, we overexpress Polo-like kinase 1 (Plk1) in a Her2+ breast cancer model. These high-CIN tumors activate a senescence-associated secretory phenotype (SASP), upregulate PD-L1 and CD206, and induce non-cell-autonomous nuclear factor κB (NF-κβ) signaling, facilitating immune evasion. Single-cell RNA sequencing from pre-neoplastic mammary glands unveiled the presence of Arg1+ macrophages, NK cells with reduced effector functions, and increased resting regulatory T cell infiltration. We further show that high PLK1-expressing human breast tumors display gene expression patterns associated with SASP, NF-κβ signaling, and immune suppression. These findings underscore the need to understand the immune landscape in CIN tumors to identify more effective therapies, potentially combining immune checkpoint or NF-κβ inhibitors with current treatments.
Collapse
Affiliation(s)
- Sridhar Kandala
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lena Voith von Voithenberg
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alberto Diaz-Jimenez
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Johanna Keding
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
74
|
Bao-Caamano A, Costa-Fraga N, Cayrefourcq L, Rodriguez-Casanova A, Muinelo-Romay L, López-López R, Alix-Panabières C, Díaz-Lagares A. Epigenomic reprogramming of therapy-resistant circulating tumor cells in colon cancer. Front Cell Dev Biol 2023; 11:1291179. [PMID: 38188020 PMCID: PMC10771310 DOI: 10.3389/fcell.2023.1291179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Therapy resistance is a major challenge in colorectal cancer management. Epigenetic changes, such as DNA methylation, in tumor cells are involved in the development of acquired resistance during treatment. Here, we characterized the DNA methylation landscape of colon circulating tumor cells (CTCs) during cancer progression and therapy resistance development. To this aim, we used nine permanent CTC lines that were derived from peripheral blood samples of a patient with metastatic colon cancer collected before treatment initiation (CTC-MCC-41) and during treatment and cancer progression (CTC-MCC-41.4 and CTC-MCC-41.5 [A-G]). We analyzed the DNA methylome of these nine CTC lines using EPIC arrays and also assessed the association between DNA methylation and gene expression profiles. We confirmed DNA methylation and gene expression results by pyrosequencing and RT-qPCR, respectively. The global DNA methylation profiles were different in the pre-treatment CTC line and in CTC lines derived during therapy resistance development. These resistant CTC lines were characterized by a more hypomethylated profile compared with the pre-treatment CTC line. Most of the observed DNA methylation differences were localized at CpG-poor regions and some in CpG islands, shore regions and promoters. We identified a distinctive DNA methylation signature that clearly differentiated the pre-treatment CTC line from the others. Of note, the genes involved in this signature were associated with cancer-relevant pathways, including PI3K/AKT, MAPK, Wnt signaling and metabolism. We identified several epigenetically deregulated genes associated with therapy resistance in CTCs, such as AP2M1. Our results bring new knowledge on the epigenomic landscape of therapy-resistant CTCs, providing novel mechanisms of resistance as well as potential biomarkers and therapeutic targets for advanced CRC management.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells–The Liquid Biopsy Lab, University Medical Center of Montpellier, Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research, Maladies infectieuses et vecteurs: génétique, èvolution et contrôle, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells–The Liquid Biopsy Lab, University Medical Center of Montpellier, Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research, Maladies infectieuses et vecteurs: génétique, èvolution et contrôle, University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
75
|
Chen F, Zhao D, Huang Y, Wen X, Feng S. Synergetic impact of combined navoximod with cisplatin mitigates chemo-immune resistance via blockading IDO1 + CAFs-secreted Kyn/AhR/IL-6 and pol ζ-prevented CIN in human oral squamous cell carcinoma. Life Sci 2023; 335:122239. [PMID: 37944638 DOI: 10.1016/j.lfs.2023.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent aggressive form of HNSC and treated with platinum-based chemotherapy as initial therapy. However, the development of acquired resistance and neurotoxicity to platinum agents poses a significant challenge to treat locally advanced OSCC. Notably, IDO1+ CAFs could promote immunosuppressive TME for OSCC progression. Therefore, we developed a potent IDO1 inhibitor navoximod to overcome chemo-immune resistance via an antitumor immune effect synergized with cisplatin in SCC-9 co-cultured IDO1+/IDO1- CAFs and SCC-7/IDO1+ CAFs-inoculated mice. The in vitro biological assays on IDO1+ CAFs co-cultured OSCC cancer cells supported that combined navoximod with cisplatin could mitigate chemo-immune resistance through blockading IDO1+ CAFs-secreted kynurenine (Kyn)-aryl hydrocarbon receptor (AhR)-IL-6 via suppressing p-STAT3/NF-κB signals and ceasing AhR-induced loss of pol ζ-caused chromosomal instability (CIN). Moreover, the combination elicited antitumor immunity via reducing IDO1+ CAFs-secreted Kyn/AhR and conferring pol ζ in SCC-7/IDO1+ CAFs-inoculated BALB/c mice. Meanwhile, the combination could block cisplatin-induced neurotoxicity and not interfere with chemotherapy. Taken together, the study investigated the promising therapeutic potential of combined navoximod with cisplatin to mitigate tumoral immune resistance via alleviating IDO1+ CAFs-secreted immune-suppression and CIN-caused cisplatin resistance, providing a paradigm for combined chemo-immunotherapy to prolong survival in patients with OSCC.
Collapse
Affiliation(s)
- Feihong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shicheng Feng
- School of Medicine, Southeast University, Nanjing 211189, PR China; Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
76
|
Taluri S, Oza VH, Soelter TM, Fisher JL, Lasseigne BN. Inferring chromosomal instability from copy number aberrations as a measure of chromosomal instability across human cancers. Cancer Rep (Hoboken) 2023; 6:e1902. [PMID: 37680168 PMCID: PMC10728508 DOI: 10.1002/cnr2.1902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cancer is a complex disease that is the second leading cause of death in the United States. Despite research efforts, the ability to manage cancer and select optimal therapeutic responses for each patient remains elusive. Chromosomal instability (CIN) is primarily a product of segregation errors wherein one or many chromosomes, in part or whole, vary in number. CIN is an enabling characteristic of cancer, contributes to tumor-cell heterogeneity, and plays a crucial role in the multistep tumorigenesis process, especially in tumor growth and initiation and in response to treatment. AIMS Multiple studies have reported different metrics for analyzing copy number aberrations as surrogates of CIN from DNA copy number variation data. However, these metrics differ in how they are calculated with respect to the type of variation, the magnitude of change, and the inclusion of breakpoints. Here we compared metrics capturing CIN as either numerical aberrations, structural aberrations, or a combination of the two across 33 cancer data sets from The Cancer Genome Atlas (TCGA). METHODS AND RESULTS Using CIN inferred by methods in the CINmetrics R package, we evaluated how six copy number CIN surrogates compared across TCGA cohorts by assessing each across tumor types, as well as how they associate with tumor stage, metastasis, and nodal involvement, and with respect to patient sex. CONCLUSIONS We found that the tumor type impacts how well any two given CIN metrics correlate. While we also identified overlap between metrics regarding their association with clinical characteristics and patient sex, there was not complete agreement between metrics. We identified several cases where only one CIN metric was significantly associated with a clinical characteristic or patient sex for a given tumor type. Therefore, caution should be used when describing CIN based on a given metric or comparing it to other studies.
Collapse
Affiliation(s)
- Sasha Taluri
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
77
|
Lakhani AA, Thompson SL, Sheltzer JM. Aneuploidy in human cancer: new tools and perspectives. Trends Genet 2023; 39:968-980. [PMID: 37778926 PMCID: PMC10715718 DOI: 10.1016/j.tig.2023.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Chromosome copy number imbalances, otherwise known as aneuploidies, are a common but poorly understood feature of cancer. Here, we describe recent advances in both detecting and manipulating aneuploidies that have greatly advanced our ability to study their role in tumorigenesis. In particular, new clustered regularly interspaced short palindromic repeats (CRISPR)-based techniques have been developed that allow the creation of isogenic cell lines with specific chromosomal changes, thereby facilitating experiments in genetically controlled backgrounds to uncover the consequences of aneuploidy. These approaches provide increasing evidence that aneuploidy is a key driver of cancer development and enable the identification of multiple dosage-sensitive genes encoded on aneuploid chromosomes. Consequently, measuring aneuploidy may inform clinical prognosis, while treatment strategies that target aneuploidy could represent a novel method to counter malignant growth.
Collapse
Affiliation(s)
- Asad A Lakhani
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring, Harbor, NY 11724, USA
| | | | | |
Collapse
|
78
|
Wang H, Lin M, Chen G, Xiao Z, Shuai X. Nanodrug regulates ROS homeostasis via enhancing fatty acid oxidation and inhibiting autophagy to overcome tumor drug resistance. Biomater Sci 2023; 11:7179-7187. [PMID: 37740286 DOI: 10.1039/d3bm01139a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The treatment of drug-resistant tumors poses a significant challenge in the field of tumor therapy. Disrupting the homeostasis of reactive oxygen species (ROS) within tumor cells may represent a pivotal strategy for overcoming the prevalent issue of drug resistance. However, the restricted sustainability of ROS generation and the increased autophagy capacity exhibited by tumor cells hinder the application of ROS-based therapies. In this study, we developed liposome nanoparticles (Ato/CQ@L) for co-encapsulation of atorvastatin (Ato), an activator of AMP-activated protein kinase (AMPK), and chloroquine (CQ), an autophagy inhibitor. Upon internalization by tumor cells, Ato upregulated carnitine palmitoyltransferase 1(CPT1) concentration and promoted fatty acid oxidation (FAO) within the tumor cells. The process of FAO coupled with an abundance of fatty acid substrates, facilitates a sustained generation of ROS production. Concurrently, a positive feedback loop is established between escalated concentration of ROS and AMPK protein levels, resulting in a persistent elevation in ROS levels. In addition, CQ disrupted lysosomes, leading to an increased lysosomal pH and reducing autophagy in tumor cells. In both in vivo and in vitro experiments, the Ato/CQ@L treatment group exhibited a considerable enhancement in tumor cell apoptosis, validating the efficacy of this combined therapy. In summary, the combined therapy involving Ato and CQ addresses the inherent limitations of conventional ROS therapy, which include insufficient ROS production and increased autophagy. This approach holds significant potential as a treatment strategy for drug-resistant triple-negative breast cancer.
Collapse
Affiliation(s)
- HaiYang Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gengjia Chen
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zecong Xiao
- Nanomedicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
79
|
Barrio L, Gaspar AE, Muzzopappa M, Ghosh K, Romao D, Clemente-Ruiz M, Milán M. Chromosomal instability-induced cell invasion through caspase-driven DNA damage. Curr Biol 2023; 33:4446-4457.e5. [PMID: 37751744 DOI: 10.1016/j.cub.2023.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/28/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
Chromosomal instability (CIN), an increased rate of changes in chromosome structure and number, is observed in most sporadic human carcinomas with high metastatic activity. Here, we use a Drosophila epithelial model to show that DNA damage, as a result of the production of lagging chromosomes during mitosis and aneuploidy-induced replicative stress, contributes to CIN-induced invasiveness. We unravel a sub-lethal role of effector caspases in invasiveness by enhancing CIN-induced DNA damage and identify the JAK/STAT signaling pathway as an activator of apoptotic caspases through transcriptional induction of pro-apoptotic genes. We provide evidence that an autocrine feedforward amplification loop mediated by Upd3-a cytokine with homology to interleukin-6 and a ligand of the JAK/STAT signaling pathway-contributes to amplifying the activation levels of the apoptotic pathway in migrating cells, thus promoting CIN-induced invasiveness. This work sheds new light on the chromosome-signature-independent effects of CIN in metastasis.
Collapse
Affiliation(s)
- Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ana-Elena Gaspar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Mariana Muzzopappa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Kaustuv Ghosh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Daniela Romao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marta Clemente-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
80
|
Lin JJ, Lin CL, Chen CC, Lin YH, Cho DY, Chen X, Chen DC, Chen HY. Unlocking Colchicine's Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention. Cancers (Basel) 2023; 15:5031. [PMID: 37894398 PMCID: PMC10605746 DOI: 10.3390/cancers15205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Liver cancer and notably hepatocellular carcinoma (HCC), results in significantly high mortality rates worldwide. Chronic hepatitis and fatty liver, recognized precursors, underscore the imperative need for effective preventive strategies. This study explores colchicine, traditionally acknowledged for its anti-inflammatory properties and investigates its potential in liver cancer prevention. Methods: Utilizing the iHi Data Platform of China Medical University Hospital, Taiwan, this study analyzed two decades of medical data, incorporating 10,353 patients each in the Colchicine and Non-Colchicine cohorts, to investigate the association between colchicine use and liver cancer risk. Results: The study identified that colchicine users exhibited a 19% reduction in liver cancer risk, with a multivariable-adjusted odds ratio of 0.81 after accounting for confounding variables. Additionally, the influence of gender and comorbidities like diabetes mellitus on liver cancer risk was identified, corroborating the existing literature. A notable finding was that the prolonged use of colchicine was associated with improved outcomes, indicating a potential dose-response relationship. Conclusions: This study proposes a potential new role for colchicine in liver cancer prevention, extending beyond its established anti-inflammatory applications. While the findings are promising, further research is essential to validate these results. This research may serve as a foundation for future studies, aiming to further explore colchicine's role via clinical trials and in-depth investigations, potentially impacting preventive strategies for liver cancer.
Collapse
Affiliation(s)
- Jung-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Hsiang Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Hung-Yao Chen
- School of Medicine, China Medical University, Taichung 404, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
81
|
Sauer CM, Hall JA, Couturier DL, Bradley T, Piskorz AM, Griffiths J, Sawle A, Eldridge MD, Smith P, Hosking K, Reinius MAV, Morrill Gavarró L, Mes-Masson AM, Ennis D, Millan D, Hoyle A, McNeish IA, Jimenez-Linan M, Martins FC, Tischer J, Vias M, Brenton JD. Molecular landscape and functional characterization of centrosome amplification in ovarian cancer. Nat Commun 2023; 14:6505. [PMID: 37845213 PMCID: PMC10579337 DOI: 10.1038/s41467-023-41840-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is characterised by poor outcome and extreme chromosome instability (CIN). Therapies targeting centrosome amplification (CA), a key mediator of chromosome missegregation, may have significant clinical utility in HGSOC. However, the prevalence of CA in HGSOC, its relationship to genomic biomarkers of CIN and its potential impact on therapeutic response have not been defined. Using high-throughput multi-regional microscopy on 287 clinical HGSOC tissues and 73 cell lines models, here we show that CA through centriole overduplication is a highly recurrent and heterogeneous feature of HGSOC and strongly associated with CIN and genome subclonality. Cell-based studies showed that high-prevalence CA is phenocopied in ovarian cancer cell lines, and that high CA is associated with increased multi-treatment resistance; most notably to paclitaxel, the commonest treatment used in HGSOC. CA in HGSOC may therefore present a potential driver of tumour evolution and a powerful biomarker for response to standard-of-care treatment.
Collapse
Affiliation(s)
- Carolin M Sauer
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK.
| | - James A Hall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Thomas Bradley
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Anna M Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Jacob Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Philip Smith
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Karen Hosking
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Marika A V Reinius
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
- Cambridge University Hospital NHS Foundation Trust and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Lena Morrill Gavarró
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Anne-Marie Mes-Masson
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Darren Ennis
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - David Millan
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Aoisha Hoyle
- Department of Pathology, University Hospital Monklands. NHS Lanarkshire, Airdrie, UK
| | - Iain A McNeish
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Mercedes Jimenez-Linan
- Cambridge University Hospital NHS Foundation Trust and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Filipe Correia Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
- Cambridge University Hospital NHS Foundation Trust and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Julia Tischer
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Maria Vias
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, CB2 0RE, UK.
- Cambridge University Hospital NHS Foundation Trust and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
82
|
Cui Z, Zou F, Wang R, Wang L, Cheng F, Wang L, Pan R, Guan X, Zheng N, Wang W. Integrative bioinformatics analysis of WDHD1: a potential biomarker for pan-cancer prognosis, diagnosis, and immunotherapy. World J Surg Oncol 2023; 21:309. [PMID: 37759234 PMCID: PMC10523704 DOI: 10.1186/s12957-023-03187-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although WD repeat and high-mobility group box DNA binding protein 1 (WDHD1) played an essential role in DNA replication, chromosome stability, and DNA damage repair, the panoramic picture of WDHD1 in human tumors remains unclear. Hence, this study aims to comprehensively characterize WDHD1 across 33 human cancers. METHODS Based on publicly available databases such as TCGA, GTEx, and HPA, we used a bioinformatics approach to systematically explore the genomic features and biological functions of WDHD1 in pan-cancer. RESULTS WDHD1 mRNA levels were significantly increased in more than 20 types of tumor tissues. Elevated WDHD1 expression was associated with significantly shorter overall survival (OS) in 10 tumors. Furthermore, in uterine corpus endometrial carcinoma (UCEC) and liver hepatocellular carcinoma (LIHC), WDHD1 expression was significantly associated with higher histological grades and pathological stages. In addition, WDHD1 had a high diagnostic value among 16 tumors (area under the ROC curve [AUC] > 0.9). Functional enrichment analyses suggested that WDHD1 probably participated in many oncogenic pathways such as E2F and MYC targets (false discovery rate [FDR] < 0.05), and it was involved in the processes of DNA replication and DNA damage repair (p.adjust < 0.05). WDHD1 expression also correlated with the half-maximal inhibitory concentrations (IC50) of rapamycin (4 out of 10 cancers) and paclitaxel (10 out of 10 cancers). Overall, WDHD1 was negatively associated with immune cell infiltration and might promote tumor immune escape. Our analysis of genomic alterations suggested that WDHD1 was altered in 1.5% of pan-cancer cohorts and the "mutation" was the predominant type of alteration. Finally, through correlation analysis, we found that WDHD1 might be closely associated with tumor heterogeneity, tumor stemness, mismatch repair (MMR), and RNA methylation modification, which were all processes associated with the tumor progression. CONCLUSIONS Our pan-cancer analysis of WDHD1 provides valuable insights into the genomic characterization and biological functions of WDHD1 in human cancers and offers some theoretical support for the future use of WDHD1-targeted therapies, immunotherapies, and chemotherapeutic combinations for the management of tumors.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nini Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
83
|
Andrade JR, Gallagher AD, Maharaj J, McClelland SE. Disentangling the roles of aneuploidy, chromosomal instability and tumour heterogeneity in developing resistance to cancer therapies. Chromosome Res 2023; 31:28. [PMID: 37721639 PMCID: PMC10506951 DOI: 10.1007/s10577-023-09737-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Aneuploidy is defined as the cellular state of having a number of chromosomes that deviates from a multiple of the normal haploid chromosome number of a given organism. Aneuploidy can be present in a static state: Down syndrome individuals stably maintain an extra copy of chromosome 21 in their cells. In cancer cells, however, aneuploidy is usually present in combination with chromosomal instability (CIN) which leads to a continual generation of new chromosomal alterations and the development of intratumour heterogeneity (ITH). The prevalence of cells with specific chromosomal alterations is further shaped by evolutionary selection, for example, during the administration of cancer therapies. Aneuploidy, CIN and ITH have each been individually associated with poor prognosis in cancer, and a wealth of evidence suggests they contribute, either alone or in combination, to cancer therapy resistance by providing a reservoir of potential resistant states, or the ability to rapidly evolve resistance. A full understanding of the contribution and interplay between aneuploidy, CIN and ITH is required to tackle therapy resistance in cancer patients. However, these characteristics often co-occur and are intrinsically linked, presenting a major challenge to defining their individual contributions. Moreover, their accurate measurement in both experimental and clinical settings is a technical hurdle. Here, we attempt to deconstruct the contribution of the individual and combined roles of aneuploidy, CIN and ITH to therapy resistance in cancer, and outline emerging approaches to measure and disentangle their roles as a step towards integrating these principles into cancer therapeutic strategy.
Collapse
Affiliation(s)
- Joana Reis Andrade
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M6BQ, England
| | - Annie Dinky Gallagher
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M6BQ, England
| | - Jovanna Maharaj
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M6BQ, England
| | | |
Collapse
|
84
|
Vande Zande P, Zhou X, Selmecki A. The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress. Annu Rev Microbiol 2023; 77:341-361. [PMID: 37307856 PMCID: PMC10599402 DOI: 10.1146/annurev-micro-041320-112443] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal species have dynamic genomes and often exhibit genomic plasticity in response to stress. This genome plasticity often comes with phenotypic consequences that affect fitness and resistance to stress. Fungal pathogens exhibit genome plasticity in both clinical and agricultural settings and often during adaptation to antifungal drugs, posing significant challenges to human health. Therefore, it is important to understand the rates, mechanisms, and impact of large genomic changes. This review addresses the prevalence of polyploidy, aneuploidy, and copy number variation across diverse fungal species, with special attention to prominent fungal pathogens and model species. We also explore the relationship between environmental stress and rates of genomic changes and highlight the mechanisms underlying genotypic and phenotypic changes. A comprehensive understanding of these dynamic fungal genomes is needed to identify novel solutions for the increase in antifungal drug resistance.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
85
|
Roy S, Zaker A, Mer A, D’Amours D. Large-scale phenogenomic analysis of human cancers uncovers frequent alterations affecting SMC5/6 complex components in breast cancer. NAR Cancer 2023; 5:zcad047. [PMID: 37705607 PMCID: PMC10495288 DOI: 10.1093/narcan/zcad047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer cells often experience large-scale alterations in genome architecture because of DNA damage and replication stress. Whether mutations in core regulators of chromosome structure can also lead to cancer-promoting loss in genome stability is not fully understood. To address this question, we conducted a systematic analysis of mutations affecting a global regulator of chromosome biology -the SMC5/6 complex- in cancer genomics cohorts. Analysis of 64 959 cancer samples spanning 144 tissue types and 199 different cancer genome studies revealed that the SMC5/6 complex is frequently altered in breast cancer patients. Patient-derived mutations targeting this complex associate with strong phenotypic outcomes such as loss of ploidy control and reduced overall survival. Remarkably, the phenotypic impact of several patient mutations can be observed in a heterozygous context, hence providing an explanation for a prominent role of SMC5/6 mutations in breast cancer pathogenesis. Overall, our findings suggest that genes encoding global effectors of chromosome architecture can act as key contributors to cancer development in humans.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Arvin Zaker
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Arvind Mer
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
86
|
Truong MA, Cané-Gasull P, Lens SMA. Modeling specific aneuploidies: from karyotype manipulations to biological insights. Chromosome Res 2023; 31:25. [PMID: 37640903 PMCID: PMC10462580 DOI: 10.1007/s10577-023-09735-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
An abnormal chromosome number, or aneuploidy, underlies developmental disorders and is a common feature of cancer, with different cancer types exhibiting distinct patterns of chromosomal gains and losses. To understand how specific aneuploidies emerge in certain tissues and how they contribute to disease development, various methods have been developed to alter the karyotype of mammalian cells and mice. In this review, we provide an overview of both classic and novel strategies for inducing or selecting specific chromosomal gains and losses in human and murine cell systems. We highlight how these customized aneuploidy models helped expanding our knowledge of the consequences of specific aneuploidies to (cancer) cell physiology.
Collapse
Affiliation(s)
- My Anh Truong
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Paula Cané-Gasull
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
87
|
Rushing BR. Multi-Omics Analysis of NCI-60 Cell Line Data Reveals Novel Metabolic Processes Linked with Resistance to Alkylating Anti-Cancer Agents. Int J Mol Sci 2023; 24:13242. [PMID: 37686047 PMCID: PMC10487847 DOI: 10.3390/ijms241713242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to elucidate the molecular determinants influencing the response of cancer cells to alkylating agents, a major class of chemotherapeutic drugs used in cancer treatment. The study utilized data from the National Cancer Institute (NCI)-60 cell line screening program and employed a comprehensive multi-omics approach integrating transcriptomic, proteomic, metabolomic, and SNP data. Through integrated pathway analysis, the study identified key metabolic pathways, such as cysteine and methionine metabolism, starch and sucrose metabolism, pyrimidine metabolism, and purine metabolism, that differentiate drug-sensitive and drug-resistant cancer cells. The analysis also revealed potential druggable targets within these pathways. Furthermore, copy number variant (CNV) analysis, derived from SNP data, between sensitive and resistant cells identified notable differences in genes associated with metabolic changes (WWOX, CNTN5, DDAH1, PGR), protein trafficking (ARL17B, VAT1L), and miRNAs (MIR1302-2, MIR3163, MIR1244-3, MIR1302-9). The findings of this study provide a holistic view of the molecular landscape and dysregulated pathways underlying the response of cancer cells to alkylating agents. The insights gained from this research can contribute to the development of more effective therapeutic strategies and personalized treatment approaches, ultimately improving patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Blake R. Rushing
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA;
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
88
|
Girish V, Lakhani AA, Thompson SL, Scaduto CM, Brown LM, Hagenson RA, Sausville EL, Mendelson BE, Kandikuppa PK, Lukow DA, Yuan ML, Stevens EC, Lee SN, Schukken KM, Akalu SM, Vasudevan A, Zou C, Salovska B, Li W, Smith JC, Taylor AM, Martienssen RA, Liu Y, Sun R, Sheltzer JM. Oncogene-like addiction to aneuploidy in human cancers. Science 2023; 381:eadg4521. [PMID: 37410869 PMCID: PMC10753973 DOI: 10.1126/science.adg4521] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.
Collapse
Affiliation(s)
- Vishruth Girish
- Yale University School of Medicine, New Haven, CT 06511
- Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | | | | | | | | | | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Sophia N. Lee
- Yale University School of Medicine, New Haven, CT 06511
| | | | | | | | - Charles Zou
- Yale University School of Medicine, New Haven, CT 06511
| | | | - Wenxue Li
- Yale University School of Medicine, New Haven, CT 06511
| | - Joan C. Smith
- Yale University School of Medicine, New Haven, CT 06511
| | | | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Yansheng Liu
- Yale University School of Medicine, New Haven, CT 06511
| | - Ruping Sun
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | | |
Collapse
|
89
|
Nelson L, Barnes BM, Tighe A, Littler S, Coulson-Gilmer C, Golder A, Desai S, Morgan RD, McGrail JC, Taylor SS. Exploiting a living biobank to delineate mechanisms underlying disease-specific chromosome instability. Chromosome Res 2023; 31:21. [PMID: 37592171 PMCID: PMC10435626 DOI: 10.1007/s10577-023-09731-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
Chromosome instability (CIN) is a cancer hallmark that drives tumour heterogeneity, phenotypic adaptation, drug resistance and poor prognosis. High-grade serous ovarian cancer (HGSOC), one of the most chromosomally unstable tumour types, has a 5-year survival rate of only ~30% - largely due to late diagnosis and rapid development of drug resistance, e.g., via CIN-driven ABCB1 translocations. However, CIN is also a cell cycle vulnerability that can be exploited to specifically target tumour cells, illustrated by the success of PARP inhibitors to target homologous recombination deficiency (HRD). However, a lack of appropriate models with ongoing CIN has been a barrier to fully exploiting disease-specific CIN mechanisms. This barrier is now being overcome with the development of patient-derived cell cultures and organoids. In this review, we describe our progress building a Living Biobank of over 120 patient-derived ovarian cancer models (OCMs), predominantly from HGSOC. OCMs are highly purified tumour fractions with extensive proliferative potential that can be analysed at early passage. OCMs have diverse karyotypes, display intra- and inter-patient heterogeneity and mitotic abnormality rates far higher than established cell lines. OCMs encompass a broad-spectrum of HGSOC hallmarks, including a range of p53 alterations and BRCA1/2 mutations, and display drug resistance mechanisms seen in the clinic, e.g., ABCB1 translocations and BRCA2 reversion. OCMs are amenable to functional analysis, drug-sensitivity profiling, and multi-omics, including single-cell next-generation sequencing, and thus represent a platform for delineating HGSOC-specific CIN mechanisms. In turn, our vision is that this understanding will inform the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Samantha Littler
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Camilla Coulson-Gilmer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Anya Golder
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Sudha Desai
- Department of Histopathology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Robert D Morgan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Joanne C McGrail
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
90
|
Hoffman TE, Nangia V, Ryland C, Passanisi VJ, Armstrong C, Yang C, Spencer SL. Multiple cancers escape from multiple MAPK pathway inhibitors and use DNA replication stress signaling to tolerate aberrant cell cycles. Sci Signal 2023; 16:eade8744. [PMID: 37527351 PMCID: PMC10704347 DOI: 10.1126/scisignal.ade8744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Many cancers harbor pro-proliferative mutations of the mitogen-activated protein kinase (MAPK) pathway. In BRAF-driven melanoma cells treated with BRAF inhibitors, subpopulations of cells escape drug-induced quiescence through a nongenetic manner of adaptation and resume slow proliferation. Here, we found that this phenomenon is common to many cancer types driven by EGFR, KRAS, or BRAF mutations in response to multiple, clinically approved MAPK pathway inhibitors. In 2D cultures and 3D spheroid models of various cancer cell lines, a subset of cells escaped drug-induced quiescence within 4 days to resume proliferation. These "escapee" cells exhibited DNA replication deficits, accumulated DNA lesions, and mounted a stress response that depended on the ataxia telangiectasia and RAD3-related (ATR) kinase. We further identified that components of the Fanconi anemia (FA) DNA repair pathway are recruited to sites of mitotic DNA synthesis (MiDAS) in escapee cells, enabling successful completion of cell division. Analysis of patient tumor samples and clinical data correlated disease progression with an increase in DNA replication stress response factors. Our findings suggest that many MAPK pathway-mutant cancers rapidly escape drug action and that suppressing early stress tolerance pathways may achieve more durable clinical responses to MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Timothy E. Hoffman
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Varuna Nangia
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, University of Colorado-Anschutz Medical School, Aurora, CO, 80045, USA
| | - C. Ryland
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Victor J. Passanisi
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Claire Armstrong
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Chen Yang
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sabrina L. Spencer
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
91
|
Pan F, Chocarro S, Ramos M, Chen Y, Alonso de la Vega A, Somogyi K, Sotillo R. FOXM1 is critical for the fitness recovery of chromosomally unstable cells. Cell Death Dis 2023; 14:430. [PMID: 37452072 PMCID: PMC10349069 DOI: 10.1038/s41419-023-05946-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Tumor progression and evolution are frequently associated with chromosomal instability (CIN). Tumor cells often express high levels of the mitotic checkpoint protein MAD2, leading to mitotic arrest and cell death. However, some tumor cells are capable of exiting mitosis and consequently increasing CIN. How cells escape the mitotic arrest induced by MAD2 and proliferate with CIN is not well understood. Here, we explored loss-of-function screens and drug sensitivity tests associated with MAD2 levels in aneuploid cells and identified that aneuploid cells with high MAD2 levels are more sensitive to FOXM1 depletion. Inhibition of FOXM1 promotes MAD2-mediated mitotic arrest and exacerbates CIN. Conversely, elevating FOXM1 expression in MAD2-overexpressing human cell lines reverts prolonged mitosis and rescues mitotic errors, cell death and proliferative disadvantages. Mechanistically, we found that FOXM1 facilitates mitotic exit by inhibiting the spindle assembly checkpoint (SAC) and the expression of Cyclin B. Notably, we observed that FOXM1 is upregulated upon aneuploid induction in cells with dysfunctional SAC and error-prone mitosis, and these cells are sensitive to FOXM1 knockdown, indicating a novel vulnerability of aneuploid cells.
Collapse
Affiliation(s)
- Fan Pan
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Yuanyuan Chen
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany.
- German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
92
|
Cheng A, Xu T, You W, Wang T, Zhang D, Guo H, Zhang H, Pan X, Wang Y, Liu L, Zhang K, Shi J, Yao X, Guo J, Yang Z. A mitotic NADPH upsurge promotes chromosome segregation and tumour progression in aneuploid cancer cells. Nat Metab 2023; 5:1141-1158. [PMID: 37349486 DOI: 10.1038/s42255-023-00832-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Redox metabolites have been observed to fluctuate through the cell cycle in cancer cells, but the functional impacts of such metabolic oscillations remain unknown. Here, we uncover a mitosis-specific nicotinamide adenine dinucleotide phosphate (NADPH) upsurge that is essential for tumour progression. Specifically, NADPH is produced by glucose 6-phosphate dehydrogenase (G6PD) upon mitotic entry, which neutralizes elevated reactive oxygen species (ROS) and prevents ROS-mediated inactivation of mitotic kinases and chromosome missegregation. Mitotic activation of G6PD depends on the phosphorylation of its co-chaperone protein BAG3 at threonine 285, which results in dissociation of inhibitory BAG3. Blocking BAG3T285 phosphorylation induces tumour suppression. A mitotic NADPH upsurge is present in aneuploid cancer cells with high levels of ROS, while nearly unobservable in near-diploid cancer cells. High BAG3T285 phosphorylation is associated with worse prognosis in a cohort of patients with microsatellite-stable colorectal cancer. Our study reveals that aneuploid cancer cells with high levels of ROS depend on a G6PD-mediated NADPH upsurge in mitosis to protect them from ROS-induced chromosome missegregation.
Collapse
Affiliation(s)
- Aoxing Cheng
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiyi You
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dongming Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, China
| | - Haiyan Zhang
- Core Facility Centre for Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Pan
- National Center of Biomedical Analysis of China, Beijing, China
| | - Yucai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liu Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jue Shi
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
93
|
Smith JC, Husted S, Pilrose J, Ems-McClung SC, Stout JR, Carpenter RL, Walczak CE. MCAK Inhibitors Induce Aneuploidy in Triple-Negative Breast Cancer Models. Cancers (Basel) 2023; 15:3309. [PMID: 37444419 PMCID: PMC10340532 DOI: 10.3390/cancers15133309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Standard of care for triple-negative breast cancer (TNBC) involves the use of microtubule poisons such as paclitaxel, which are proposed to work by inducing lethal levels of aneuploidy in tumor cells. While these drugs are initially effective in treating cancer, dose-limiting peripheral neuropathies are common. Unfortunately, patients often relapse with drug-resistant tumors. Identifying agents against targets that limit aneuploidy may be a valuable approach for therapeutic development. One potential target is the microtubule depolymerizing kinesin, MCAK, which limits aneuploidy by regulating microtubule dynamics during mitosis. Using publicly available datasets, we found that MCAK is upregulated in triple-negative breast cancer and is associated with poorer prognoses. Knockdown of MCAK in tumor-derived cell lines caused a two- to five-fold reduction in the IC50 for paclitaxel, without affecting normal cells. Using FRET and image-based assays, we screened compounds from the ChemBridge 50 k library and discovered three putative MCAK inhibitors. These compounds reproduced the aneuploidy-inducing phenotype of MCAK loss, reduced clonogenic survival of TNBC cells regardless of taxane-resistance, and the most potent of the three, C4, sensitized TNBC cells to paclitaxel. Collectively, our work shows promise that MCAK may serve as both a biomarker of prognosis and as a therapeutic target.
Collapse
Affiliation(s)
- John C. Smith
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| | - Stefan Husted
- LabCorp Drug Development Indianapolis, Indianapolis, IN 46214, USA;
| | - Jay Pilrose
- Catalent Pharma Solutions Bloomington, Bloomington, IN 47403, USA;
| | - Stephanie C. Ems-McClung
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| | - Jane R. Stout
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| | - Richard L. Carpenter
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| | - Claire E. Walczak
- Medical Sciences, Indiana School of Medicine—Bloomington, Bloomington, IN 47405, USA; (J.C.S.); (S.C.E.-M.); (J.R.S.); (R.L.C.)
| |
Collapse
|
94
|
Lynch AR, Bradford S, Zhou AS, Oxendine K, Henderson L, Horner VL, Weaver BA, Burkard ME. A survey of CIN measures across mechanistic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.544840. [PMID: 37398147 PMCID: PMC10312700 DOI: 10.1101/2023.06.15.544840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, 6-centromere FISH, bulk transcriptomics, and single cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples correlated well (R=0.77; p<0.01) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also correlate well (R=0.77; p<0.01) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, single-cell DNA sequencing (scDNAseq) detects CIN with high sensitivity, and correlates very well with imaging methods (R=0.83; p<0.01). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division (MDD). This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.
Collapse
Affiliation(s)
- Andrew R. Lynch
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
| | - Shermineh Bradford
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
| | - Amber S. Zhou
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
| | - Kim Oxendine
- Wisconsin State Laboratory of Hygiene, University of Wisconsin – Madison, Madison, WI, USA
| | - Les Henderson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin – Madison, Madison, WI, USA
| | - Vanessa L. Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin – Madison, Madison, WI, USA
| | - Beth A. Weaver
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison, WI, USA
| | - Mark E. Burkard
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
- Division of Hematology Oncology and Palliative Care, Department of Medicine, University of Wisconsin – Madison, Madison, WI, USA
| |
Collapse
|
95
|
Smith JC, Husted S, Pilrose J, Ems-McClung SC, Stout JR, Carpenter RL, Walczak CE. MCAK Inhibitors Induce Aneuploidy in Triple Negative Breast Cancer Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543118. [PMID: 37397990 PMCID: PMC10312595 DOI: 10.1101/2023.05.31.543118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Standard of care for triple negative breast cancer (TNBC) involves the use of microtubule poisons like paclitaxel, which are proposed to work by inducing lethal levels of aneuploidy in tumor cells. While these drugs are initially effective in treating cancer, dose-limiting peripheral neuropathies are common. Unfortunately, patients often relapse with drug resistant tumors. Identifying agents against targets that limit aneuploidy may be a valuable approach for therapeutic development. One potential target is the microtubule depolymerizing kinesin, MCAK, which limits aneuploidy by regulating microtubule dynamics during mitosis. Using publicly available datasets, we found that MCAK is upregulated in triple negative breast cancer and is associated with poorer prognoses. Knockdown of MCAK in tumor-derived cell lines caused a two- to five-fold reduction in the IC 50 for paclitaxel, without affecting normal cells. Using FRET and image-based assays, we screened compounds from the ChemBridge 50k library and discovered three putative MCAK inhibitors. These compounds reproduced the aneuploidy-inducing phenotype of MCAK loss, reduced clonogenic survival of TNBC cells regardless of taxane-resistance, and the most potent of the three, C4, sensitized TNBC cells to paclitaxel. Collectively, our work shows promise that MCAK may serve as both a biomarker of prognosis and as a therapeutic target. Simple Summary Triple negative breast cancer (TNBC) is the most lethal breast cancer subtype with few treatment options available. Standard of care for TNBC involves the use of taxanes, which are initially effective, but dose limiting toxicities are common, and patients often relapse with resistant tumors. Specific drugs that produce taxane-like effects may be able to improve patient quality of life and prognosis. In this study we identify three novel inhibitors of the Kinesin-13 MCAK. MCAK inhibition induces aneuploidy; similar to cells treated with taxanes. We demonstrate that MCAK is upregulated in TNBC and is associated with poorer prognoses. These MCAK inhibitors reduce the clonogenic survival of TNBC cells, and the most potent of the three inhibitors, C4, sensitizes TNBC cells to taxanes, similar to the effects of MCAK knockdown. This work will expand the field of precision medicine to include aneuploidy-inducing drugs that have the potential to improve patient outcomes.
Collapse
|
96
|
Hou Z, Lin S, Du T, Wang M, Wang W, You S, Xue N, Liu Y, Ji M, Xu H, Chen X. S-72, a Novel Orally Available Tubulin Inhibitor, Overcomes Paclitaxel Resistance via Inactivation of the STING Pathway in Breast Cancer. Pharmaceuticals (Basel) 2023; 16:ph16050749. [PMID: 37242532 DOI: 10.3390/ph16050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Microtubule-targeting agents are widely used as active anticancer drugs. However, drug resistance always emerges after their long-term use, especially in the case of paclitaxel, which is the cornerstone of all subtypes of breast cancer treatment. Hence, the development of novel agents to overcome this resistance is vital. This study reports on a novel, potent, and orally bioavailable tubulin inhibitor called S-72 and evaluated its preclinical efficacy in combating paclitaxel resistance in breast cancer and the molecular mechanisms behind it. We found that S-72 suppresses the proliferation, invasion and migration of paclitaxel-resistant breast cancer cells in vitro and displays desirable antitumor activities against xenografts in vivo. As a characterized tubulin inhibitor, S-72 typically inhibits tubulin polymerization and further triggers mitosis-phase cell cycle arrest and cell apoptosis, in addition to suppressing STAT3 signaling. Further studies showed that STING signaling is involved in paclitaxel resistance, and S-72 blocks STING activation in paclitaxel-resistant breast cancer cells. This effect further restores multipolar spindle formation and causes deadly chromosomal instability in cells. Our study offers a promising novel microtubule-destabilizing agent for paclitaxel-resistant breast cancer treatment as well as a potential strategy that can be used to improve paclitaxel sensitivity.
Collapse
Affiliation(s)
- Zhenyan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingjin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weida Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shen You
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yichen Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
97
|
Vias M, Morrill Gavarró L, Sauer CM, Sanders DA, Piskorz AM, Couturier DL, Ballereau S, Hernando B, Schneider MP, Hall J, Correia-Martins F, Markowetz F, Macintyre G, Brenton JD. High-grade serous ovarian carcinoma organoids as models of chromosomal instability. eLife 2023; 12:e83867. [PMID: 37166279 PMCID: PMC10174694 DOI: 10.7554/elife.83867] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most genomically complex cancer, characterized by ubiquitous TP53 mutation, profound chromosomal instability, and heterogeneity. The mutational processes driving chromosomal instability in HGSOC can be distinguished by specific copy number signatures. To develop clinically relevant models of these mutational processes we derived 15 continuous HGSOC patient-derived organoids (PDOs) and characterized them using bulk transcriptomic, bulk genomic, single-cell genomic, and drug sensitivity assays. We show that HGSOC PDOs comprise communities of different clonal populations and represent models of different causes of chromosomal instability including homologous recombination deficiency, chromothripsis, tandem-duplicator phenotype, and whole genome duplication. We also show that these PDOs can be used as exploratory tools to study transcriptional effects of copy number alterations as well as compound-sensitivity tests. In summary, HGSOC PDO cultures provide validated genomic models for studies of specific mutational processes and precision therapeutics.
Collapse
Affiliation(s)
- Maria Vias
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Lena Morrill Gavarró
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
- The MRC Weatherall Institute of Molecular MedicineOxfordUnited Kingdom
| | - Carolin M Sauer
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Deborah A Sanders
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Anna M Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | | | - Stéphane Ballereau
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Bárbara Hernando
- Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández AlmagroMadridSpain
| | - Michael P Schneider
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - James Hall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Filipe Correia-Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Geoff Macintyre
- Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández AlmagroMadridSpain
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
98
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
99
|
Hoffman TE, Yang C, Nangia V, Ill CR, Spencer SL. Multiple cancer types rapidly escape from multiple MAPK inhibitors to generate mutagenesis-prone subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533211. [PMID: 36993538 PMCID: PMC10055235 DOI: 10.1101/2023.03.17.533211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Many cancers harbor pro-proliferative mutations of the mitogen-activated protein kinase (MAPK) pathway and many targeted inhibitors now exist for clinical use, but drug resistance remains a major issue. We recently showed that BRAF-driven melanoma cells treated with BRAF inhibitors can non-genetically adapt to drug within 3-4 days to escape quiescence and resume slow proliferation. Here we show that this phenomenon is not unique to melanomas treated with BRAF inhibitors but rather is widespread across many clinical MAPK inhibitors and cancer types driven by EGFR, KRAS, and BRAF mutations. In all treatment contexts examined, a subset of cells can escape drug-induced quiescence within four days to resume proliferation. These escapee cells broadly experience aberrant DNA replication, accumulate DNA lesions, spend longer in G2-M cell cycle phases, and mount an ATR-dependent stress response. We further identify the Fanconi anemia (FA) DNA repair pathway as critical for successful mitotic completion in escapees. Long-term cultures, patient samples, and clinical data demonstrate a broad dependency on ATR- and FA-mediated stress tolerance. Together, these results highlight the pervasiveness with which MAPK-mutant cancers are able to rapidly escape drug and the importance of suppressing early stress tolerance pathways to potentially achieve more durable clinical responses to targeted MAPK pathway inhibitors.
Collapse
|
100
|
Shi YX, Dai PH, Jiang YF, Wang YQ, Liu W. A pan-cancer landscape of centromere proteins in tumorigenesis and anticancer drug sensitivity. Transl Oncol 2023; 31:101658. [PMID: 36944275 PMCID: PMC10036944 DOI: 10.1016/j.tranon.2023.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND During mitosis and meiosis, centromere proteins (CENPs) play a key role in proper chromosome segregation. Abnormal expression of CENPs leads to chromosome instability, which is the main cause of tumorigenesis. METHODS To elucidate the functional characteristics of CENPs in pan-cancer, we comprehensively analyzed the expression landscape of CENPs and their relationships with patient survival, genomic alterations, tumor immunity, tumor microenvironment, and anticancer drug sensitivity. The expression patterns and signaling pathways of CENPs were identified through multiple bioinformatics mining and experimental verification. GEPIA2 and PrognoScan were implemented to evaluate the prognostic value of CENPs. The molecular functions of CENPs in pan-cancer were comprehensively assessed using cBioPortal, GSCA, ImmuCellAI, CellMiner, the ROC plotter tool and TIDE. RESULTS The results showed that CENPs were upregulated in most tumors compared with normal tissues. We confirmed this conclusion by immunohistochemistry and real-time quantitative PCR. Survival analysis revealed a significant association between high CENP expression and a poor prognosis. CENP expression is related to genome alterations, copy number variation, single nucleotide variation and methylation. Among CENP family genes, CENPF and CENPE are mutated at high frequencies in various tumors, while CENPM and CENPA are less frequently mutated. Furthermore, CENPs regulate the tumor mutational burden, stemness, and microsatellite instability, and are associated with tumor immunity. Most importantly, we revealed that CENP family gene expression was correlated with chemosensitivity and immunotherapy responses. CONCLUSION These findings may clarify the role of CENPs in cancer progression and antitumor drug sensitivity and provide evidence for CENPs as a potential target in pan-cancer.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China.
| | - Peng-Hui Dai
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yu-Fei Jiang
- Faculty of Health Sciences, University of Macau, Macau 999078, P.R. China
| | - Yan-Qing Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University/ Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Wen Liu
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|