51
|
Cai H, Bao Y, Cheng H, Ge X, Zhang M, Feng X, Zheng Y, He J, Wei Y, Liu C, Li L, Huang L, Wang F, Chen X, Chen P, Yang X. Zinc homeostasis may reverse the synergistic neurotoxicity of heavy metal mixtures in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161699. [PMID: 36682567 DOI: 10.1016/j.scitotenv.2023.161699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal mixtures can cause nerve damage. However, the combined effects of metal mixtures are extremely complex and rarely studied. Zinc (Zn) homeostasis plays an integral role in neural function, but the role of Zn homeostasis in the toxicity of metal mixtures is not well understood. Here, we investigated the combined effects of manganese (Mn), lead (Pb) and arsenic (As) on nerves and the effect of Zn homeostasis on metal toxicity. Caenorhabditis elegans (Maupas, 1900) were exposed to single and multiple metals for 8 days, their movement, behavior, neurons and metal concentration were detected to evaluate the combined effect of metal mixtures. After nematodes were co-treated with metal mixtures and Zn, the nerve function, Zn concentration and redox balance were detected to evaluate the effect of Zn homeostasis on metal toxicity. The results showed that Mn + Pb and Pb + As mixtures induced synergistic toxicity for nematode nerves, which damaged movement, behavior and neurons, and decreased Zn concentration. While Zn supplementation recovered Zn homeostasis and promoted redox balance on nematodes, and then improved the nerve function. Our study demonstrated the combined effects of metal mixtures and the neuroprotective effect of Zn homeostasis. Therefore, assessment of metal mixtures toxicity should consider their interaction and the impacts of essential metals homeostasis.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Guangxi Key Laboratory of Research on Medical Engineering Integration and Innovation, Liuzhou, Guangxi, China
| | - Mengdi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
52
|
Blume B, Schwantes V, Witting M, Hayen H, Schmitt-Kopplin P, Helmer PO, Michalke B. Lipidomic and Metallomic Alteration of Caenorhabditis elegans after Acute and Chronic Manganese, Iron, and Zinc Exposure with a Link to Neurodegenerative Disorders. J Proteome Res 2023; 22:837-850. [PMID: 36594972 DOI: 10.1021/acs.jproteome.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) progresses with the loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain. The superior mechanisms and the cause of this specific localized neurodegeneration is currently unknown. However, experimental evidence indicates a link between PD progression and reactive oxygen species with imbalanced metal homeostasis. Wild-type Caenorhabditis elegans exposed to redox-active metals was used as the model organism to study cellular response to imbalanced metal homeostasis linked to neurodegenerative diseases. Using modern hyphenated techniques such as capillary electrophoresis coupled to inductively coupled plasma mass spectrometry and ultrahigh-performance liquid chromatography mass spectrometry, alterations in the lipidome and metallome were determined in vivo. In contrast to iron, most of the absorbed zinc and manganese were loosely bound. We observed changes in the phospholipid composition for acute iron and manganese exposures, as well as chronic zinc exposure. Furthermore, we focused on the mitochondrial membrane alteration due to its importance in neuronal function. However, significant changes in the inner mitochondrial membrane by determination of cardiolipin species could only be observed for acute iron exposure. These results indicate different intracellular sites of local ROS generation, depending on the redox active metal. Our study combines metallomic and lipidomic alterations as the cause and consequence to enlighten intracellular mechanisms in vivo, associated with PD progression. The mass spectrometry raw data have been deposited to the MassIVE database (https://massive.ucsd.edu) with the identifier MSV000090796 and 10.25345/C51J97C8F.
Collapse
Affiliation(s)
- Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Vera Schwantes
- Institute for Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Michael Witting
- Metabolomics and Proteomics, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Chair of Analytical Food Chemistry, TUM School of Life Science, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Heiko Hayen
- Institute for Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Chair of Analytical Food Chemistry, TUM School of Life Science, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Patrick O Helmer
- Institute for Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| |
Collapse
|
53
|
Li Z, Liu Y, Wei R, Yong VW, Xue M. The Important Role of Zinc in Neurological Diseases. Biomolecules 2022; 13:28. [PMID: 36671413 PMCID: PMC9855948 DOI: 10.3390/biom13010028] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Zinc is one of the most abundant metal ions in the central nervous system (CNS), where it plays a crucial role in both physiological and pathological brain functions. Zinc promotes antioxidant effects, neurogenesis, and immune system responses. From neonatal brain development to the preservation and control of adult brain function, zinc is a vital homeostatic component of the CNS. Molecularly, zinc regulates gene expression with transcription factors and activates dozens of enzymes involved in neuronal metabolism. During development and in adulthood, zinc acts as a regulator of synaptic activity and neuronal plasticity at the cellular level. There are several neurological diseases that may be affected by changes in zinc status, and these include stroke, neurodegenerative diseases, traumatic brain injuries, and depression. Accordingly, zinc deficiency may result in declines in cognition and learning and an increase in oxidative stress, while zinc accumulation may lead to neurotoxicity and neuronal cell death. In this review, we explore the mechanisms of brain zinc balance, the role of zinc in neurological diseases, and strategies affecting zinc for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| |
Collapse
|
54
|
Impact of Maternal and Offspring Dietary Zn Supplementation on Growth Performance and Antioxidant and Immune Function of Offspring Broilers. Antioxidants (Basel) 2022; 11:antiox11122456. [PMID: 36552664 PMCID: PMC9774261 DOI: 10.3390/antiox11122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The current study investigated the effects of the maternal Zn source in conjunction with their offspring’s dietary Zn supplementation on the growth performance, antioxidant status, Zn concentration, and immune function of the offspring. It also explored whether there is an interaction between maternal Zn and their offspring’s dietary Zn. One-day-old Lingnan Yellow-feathered broilers (n = 800) were completely randomized (n = 4) between two maternal dietary supplemental Zn sources [maternal Zn−Gly (oZn) vs. maternal ZnSO4 (iZn)] × two offspring dietary supplemental Zn doses [Zn-unsupplemented control diet (CON), the control diet + 80 mg of Zn/kg of diet as ZnSO4]. oZn increased progeny ADG and decreased offspring mortality across all periods, especially during the late periods (p < 0.05). The offspring diet supplemented with Zn significantly improved ADG and decreased offspring mortality over the whole period compared with the CON group (p < 0.05). There were significant interactions between the maternal Zn source and offspring dietary Zn with regards to progeny mortality during the late phase and across all phases as a whole (p < 0.05). Compared with the iZn group, the oZn treatment significantly increased progeny liver and serum Zn concentrations; antioxidant capacity in the liver, muscle, and serum; and the IgM concentration in serum; while also decreasing progeny serum IL-1 and TNF-α cytokine secretions (p < 0.05). Similar results were observed when the offspring diet was supplemented with Zn compared with the CON group; moreover, adding Zn to the offspring diet alleviated progeny stress by decreasing corticosterone levels in the serum when compared to the CON group (p < 0.05). In conclusion, maternal Zn−Gly supplementation increased progeny performance and decreased progeny mortality and stress by increasing progeny Zn concentration, antioxidant capacity, and immune function compared with the same Zn levels from ZnSO4. Simultaneously, Zn supplementation in the progeny’s diet is necessary for the growth of broilers.
Collapse
|
55
|
Nasiadek M, Stragierowicz J, Kilanowicz A. An Assessment of Metallothionein-Cadmium Binding in Rat Uterus after Subchronic Exposure Using a Long-Term Observation Model. Int J Mol Sci 2022; 23:15154. [PMID: 36499479 PMCID: PMC9738218 DOI: 10.3390/ijms232315154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Cadmium (Cd) is an environmental pollutant known to pose a public health issue. The mechanism of Cd toxicity on the uterus, including the protective role of metallothionein (MT), is still not fully understood. The aim of the study was to evaluate the degree of MT-Cd binding in the uterus of rats exposed per os to Cd at daily doses of 0.09, 0.9, 1.8 and 4.5 mg Cd/kg b.w. for 90 days. To assess the permanence of the bond, the rats were observed over long observation periods: 90 and 180 days after termination of exposure. Additionally, uterine concentration of Zn, Cu, Ca, Mg was determined. Cd leads immediately after exposure to a max. 30-fold increase in the concentration of Cd in the uterus, with only small amounts being bound to MT. After 90 days following termination of exposure, and especially after 180 days, an increase in MT-Cd concentration was noted for the three highest doses; even so, the degree of Cd binding by MT was still small. Additionally, the accumulation of Cd in the uterus disturbs the homeostasis of determined essential elements, manifested by a significant increase in Cu concentration and a decrease in Zn, Mg and Ca, especially 180 days after termination of exposure. The obtained results indicate that MT has only a slight protective role in the uterus and that Cd ions may have harmful effects not related to MT: directly on the uterine tissue, and indirectly by disturbing the homeostasis of its essential elements.
Collapse
Affiliation(s)
- Marzenna Nasiadek
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | | | | |
Collapse
|
56
|
Kumar N, Kumar S, Singh AK, Gite A, Patole PB, Thorat ST. Exploring mitigating role of zinc nanoparticles on arsenic, ammonia and temperature stress using molecular signature in fish. J Trace Elem Med Biol 2022; 74:127076. [PMID: 36126543 DOI: 10.1016/j.jtemb.2022.127076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The pollution and climate change in aquatic ecosystems are major problems threatening the aquatic organisms for existence in the recent timeline, which promotes the extinction of the fish species. However, the present study dealt with zinc nanoparticles (Zn-NPs) in mitigating arsenic, ammonia and high temperature stresses in Pangasianodon hypophthalmus. MATERIALS AND METHODS To studying different gene expressions, an experiment was conducted to mitigate the multiple stressors using dietary Zn-NPs at 0, 2, 4, and 6 mg kg-1 diets. In the present investigation, the gene expressions studies were performed for growth hormone regulator 1 (GHR1), growth hormone regulator β (GHRβ), growth hormone (GR) in liver and gill tissue as well as myostatin (MYST) and somatostatin (SMT) in the muscle tissue. The anti-oxidative genes CAT, SOD and GPx in liver and gill tissues were also analysed. Expression studies for stress responsive heat shock protein gene (HSP70), DNA damage inducible protein, inducible nitric oxide synthase (iNOS), immune related genes such as interleukin (IL), tumour necrosis factor (TNFα), toll like receptor (TLR) and immunoglobulin were performed. At the end of the experiment the fish were infected with Aeromonas hydrophila to evaluate the immunomodulatory role of Zn-NPs. RESULTS In the present investigation, the growth hormone regulator 1 (GHR1), growth hormone regulator β (GHRβ), growth hormone (GR) in liver and gill as well as myostatin (MYST) and somatostatin (SMT) in muscle were noticeably altered, whereas, Zn-NPs at 4 mg kg-1 diet improved gene expressions. The anti-oxidant gene viz. CAT, SOD and GPx in liver and gill tissues were upregulated by stressors such as As, NH3, NH3+T. As+T and As+NH3+T. Therefore, anti-oxidant genes were noticeably improved with dietary Zn-NPs diet. The stress protein gene (HSP70), DNA damage inducible protein, inducible nitric oxide synthase (iNOS) was significantly upregulated, whereas, Zn-NPs diet was applied to the corrected gene regulation. Similarly, immune related genes such as interleukin (IL), tumour necrosis factor (TNFα), toll like receptor (TLR) and immunoglobulin were highly affected by stressors. Dietary Zn-NPs at 4 mg kg-1 diet was improved all the immune related gene expression and mitigate arsenic, ammonia and high temperature stress in fish. CONCLUSION The present investigation revealed that Zn-NPs at 4.0 mg kg-1 diet has enormous potential to modulates arsenic, ammonia and high temperature stress, and protect against pathogenic infections in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India.
| | - Satish Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | | |
Collapse
|
57
|
Pandey P, Kumar M, Kumar V, Kushwaha R, Vaswani S, Kumar A, Singh Y, Shukla PK. The Dietary Supplementation of Copper and Zinc Nanoparticles Improves Health Condition of Young Dairy Calves by Reducing the Incidence of Diarrhoea and Boosting Immune Function and Antioxidant Activity. Biol Trace Elem Res 2022:10.1007/s12011-022-03481-3. [PMID: 36370333 DOI: 10.1007/s12011-022-03481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
This study was conducted to evaluate the effect of nano copper (nano Cu) and nano zinc (nano Zn) supplementation on the biomarkers of immunity and antioxidant and health status attributes in young dairy calves. Twenty-four young cattle calves were randomly assigned into four groups (6 calves per group) on a body weight and age basis for a period of 120 days. The feeding regimen was the same in all the groups except that these were supplemented with 0.0 mg nano Cu and nano Zn (control), 10 mg nano Cu (nanoCu10), 32 mg nano Zn (nanoZn32), and a combination of nano Cu and nano Zn (nanoCu10 + nanoZn32) per kg dry matter (DM) basis in four respective groups. Supplementation of nano Cu along with nano Zn improves immune response which was evidenced from higher immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), total immunoglobulin (TIg), and Zn sulphate turbidity (ZST) units and lower plasma concentrations of tumour necrosis factor-α (TNF-α) and cortisol in the nanoCu10 + nanoZn32 group. There was no effect of treatment on the plasma concentrations of immunoglobulin E (IgE) and interferon-gamma (IFN-γ). Antioxidant status was also better in the nanoCu10 + nanoZn32 group as evidenced by lower concentrations of malondialdehyde (MDA) and higher activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), ceruloplasmin (Cp), and total antioxidant status (TAS). However, treatment did not exert any effect on catalase (CAT) activity. Although the nano Cu or nano Zn supplementation, either alone or in combination, did not exert any effect on growth performance or body condition score (BCS), the frequency of diarrhoea and incidence of diarrhoea were lower, while faecal consistency score (FCS) and attitude score were better in the nanoCu10 + nanoZn32 groups. In the control group, one calf was found affected with joint illness and two calves were found affected with navel illness. During the experimental period, none of the calves in all four groups were found to be affected by pneumonia. The findings of this study revealed that dietary supplementation of nano Cu in combination with nano Zn improved the health status of young dairy calves by improving immunity and antioxidant status.
Collapse
Affiliation(s)
- Pooja Pandey
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Muneendra Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
| | - Vinod Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Raju Kushwaha
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Shalini Vaswani
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Avinash Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Yajuvendra Singh
- Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Pankaj Kumar Shukla
- Department of Poultry Science, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| |
Collapse
|
58
|
Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T. Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxid Redox Signal 2022; 37:679-703. [PMID: 35088601 PMCID: PMC9618394 DOI: 10.1089/ars.2021.0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the development of chronic noncommunicable diseases. Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation of stress hormone signaling, inflammation, and oxidative stress. Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health, with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock system is provided. Future Directions: Finally, we discuss the potential of preventive strategies or "chrono" therapy for cardioprotection. Antioxid. Redox Signal. 37, 679-703.
Collapse
Affiliation(s)
- Andreas Daiber
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Katie Frenis
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Aoife B. Kilgallen
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Linda W. Van Laake
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Omar Hahad
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
59
|
Romero-Calderón AG, Alvarez-Legorreta T, Rendón von Osten J, González-Jáuregui M, Cedeño-Vázquez JR. Stress responses in captive Crocodylus moreletii associated with metal exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119685. [PMID: 35764186 DOI: 10.1016/j.envpol.2022.119685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution by metals has repercussions on wildlife health. It is known that some metals can have an influence on the neuroendocrine stress response, and at the same time, metals have pro-oxidant effects that can overwhelm the antioxidant system and cause oxidative stress. This study evaluates the association of metals with neuroendocrine stress activity and biomarkers of oxidative stress in 42 captive female Morelet's crocodiles (Crocodylus moreletii). We measured five metals of ecotoxicological importance (Hg, Cd, Pb, Cu and Zn), and three biomarkers of the oxidative stress response in the liver: glutathione (GSH) and glutathione disulfide (GSSG) as markers for antioxidant system and thiobarbituric acid reactive substances (TBARS) for oxidative damage. We also measured one biomarker of the neuroendocrine response to stress: corticosterone (B) in blood plasma. The mean ± SD concentrations of metals in the liver expressed in μg/g (dw) were: Cd: 0.004 ± 0.003, Hg: 0.014 ± 0.019, Cu: 0.017 ± 0.013, Zn: 0.043 ± 0.035, Pb: 0.16 ± 0.256. The mean ± SD of GSH was 0.42 ± 0.35 nmol/mg protein, the mean ± SD of GSSG was 0.24 ± 0.20 nmol/mg protein, the mean ± SD concentrations of TBARS were 0.36 ± 0.21 nmol/mg protein, and the mean ± SD of B was 393.57 ± 405.14 pg/mL. Hg presented a significant negative relationship with corticosterone. Cd had a negative relationship with both GSH and GSSG; meanwhile, Zn showed a negative relationship with TBARS levels, could be a protective element against hepatic oxidative damage. Finally, B had negative relationship with oxidative damage. The connection found between Hg and the neuroendocrine stress response, as well as the correlations of Cd and Zn with oxidative damage and antioxidant activity should be studied further, given their toxicological importance and implications for the conservation of C. moreletii and other crocodilians.
Collapse
Affiliation(s)
- A G Romero-Calderón
- Department of Sustainability Sciences. El Colegio de la Frontera Sur (ECOSUR), Av. Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico.
| | - T Alvarez-Legorreta
- Department of Sustainability Sciences. El Colegio de la Frontera Sur (ECOSUR), Av. Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico.
| | - J Rendón von Osten
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroes de Nacozari 480, Universidad Autónoma de Campeche, 24070, Campeche, Mexico.
| | - M González-Jáuregui
- Centro de Estudios de Desarrollo Sustentable y Aprovechamiento de la Vida Silvestre (CEDESU), Av. Héroes de Nacozari 480, Universidad Autónoma de Campeche, 24070, Campeche, Mexico.
| | - J R Cedeño-Vázquez
- Department of Systematics and Aquatic Ecology. El Colegio de la Frontera Sur (ECOSUR), Av. Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico.
| |
Collapse
|
60
|
Sevgiler Y, Atli G. Sulfoxaflor, Zn 2+ and their combinations disrupt the antioxidant and osmoregulatory (Ca 2+-ATPase) system in Daphnia magna. J Trace Elem Med Biol 2022; 73:127035. [PMID: 35872469 DOI: 10.1016/j.jtemb.2022.127035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND The oxidative- and osmoregulatory stress-inducing potential of binary mixtures of sulfoxaflor (SUL), a recently developed sulfoximine insecticide, and Zn2+ was aimed to evaluate in Daphnia magna with different exposure regimes. METHODS Animals were exposed to different SUL concentrations (1.25, 2.5, 10, and 25 mg/L) for 7 days. In vivo 48 h and in vitro effects of single and binary mixtures of SUL (25 and 50 mg/L) and Zn2+ (40 µg/L) were also determined. Furthermore, Ca2+-ATPase, oxidative stress biomarkers (catalase, CAT; superoxide dismutase, SOD; glutathione peroxidase, GPX; glutathione S-transferase, GST; reduced glutathione, GSH; thiobarbituric acid reactive substances, TBARS), and morphometric characteristics were measured. RESULTS Variable response patterns were observed due to exposure duration and regime, toxicant type, and concentration. Marked effects of SUL were observed, especially in subacute exposure, and 25 mg/L SUL concentration can be considered as a threshold level. Stimulation of GST activity was the most typical response, followed by declined SOD activity and GSH levels. GPX activity and TBARS levels responded differently depending upon the exposure type. Subacute and in vitro effects of SUL and Zn2+ produced similar responses except for some cases. Ca2+-ATPase activity was altered differently upon subchronic duration, though inhibited by in vitro SUL+Zn effect. Subchronic SUL exposure increased body weight and length up to 25 mg/L, contrary to the observed decrease at higher concentrations. CONCLUSIONS Single and binary mixtures of SUL and Zn2+ caused damage to the antioxidant and osmoregulatory system due to their oxidative potential on cellular targets (biomarkers). The current data emphasized that investigating the SUL toxicity with the Zn2+ combination based on the multi-biomarker approach is essential in the realistic evaluation of SUL toxicity in toxicological research.
Collapse
Affiliation(s)
- Yusuf Sevgiler
- Adiyaman University, Faculty of Science and Letters, Department of Biology, Adiyaman, Turkey.
| | - Gülüzar Atli
- Çukurova University, Vocational School of İmamoğlu, Adana, Turkey; Çukurova University, Biotechnology Center, Adana, Turkey.
| |
Collapse
|
61
|
Silva SVE, Gallia MC, da Luz JRD, de Rezende AA, Bongiovanni GA, Araujo-Silva G, Almeida MDG. Antioxidant Effect of Coenzyme Q10 in the Prevention of Oxidative Stress in Arsenic-Treated CHO-K1 Cells and Possible Participation of Zinc as a Pro-Oxidant Agent. Nutrients 2022; 14:nu14163265. [PMID: 36014770 PMCID: PMC9412518 DOI: 10.3390/nu14163265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is an imbalance between levels of reactive oxygen species (ROS) and antioxidant enzymes. Compounds with antioxidant properties, such as coenzyme Q10 (CoQ10), can reduce cellular imbalance caused by an increase in ROS. CoQ10 participates in modulating redox homeostasis due to its antioxidant activity and its preserving mitochondrial functions. Thus, the present study demonstrated the protective effects of CoQ10 against oxidative stress and cytotoxicity induced by arsenic (As). Antioxidant capacity, formation of hydroperoxides, generation of ROS, and the effect on cellular viability of CoQ10, were investigated to determine the protective effect of CoQ10 against As and pro-oxidant compounds, such as zinc. Cell viability assays showed that CoQ10 is cytoprotective under cellular stress conditions, with potent antioxidant activity, regardless of the concentration tested. Zn, when used at higher concentrations, can increase ROS and show a pro-oxidant effect causing cell damage. The cytotoxic effect observed for As, Zn, or the combination of both could be prevented by CoQ10, without any decrease in its activity at cellular levels when combined with Zn.
Collapse
Affiliation(s)
- Saulo Victor e Silva
- Post-Graduation Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, Federal University of the Rio Grande do Norte (UFRN), Natal 59012570, Brazil
| | - María Celeste Gallia
- Institute of Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN), National Council for Scientific and Technical Research (CONICET), School of Agricultural Sciences, Neuquén 8300, Argentina
| | - Jefferson Romáryo Duarte da Luz
- Post-Graduation Program in Health Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, UFRN, Natal 59012570, Brazil
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900070, Brazil
| | - Adriana Augusto de Rezende
- Post-Graduation Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, Federal University of the Rio Grande do Norte (UFRN), Natal 59012570, Brazil
- Post-Graduation Program in Health Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, UFRN, Natal 59012570, Brazil
| | - Guillermina Azucena Bongiovanni
- Institute of Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN), National Council for Scientific and Technical Research (CONICET), School of Agricultural Sciences, Neuquén 8300, Argentina
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900070, Brazil
| | - Maria das Graças Almeida
- Post-Graduation Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, Federal University of the Rio Grande do Norte (UFRN), Natal 59012570, Brazil
- Post-Graduation Program in Health Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, UFRN, Natal 59012570, Brazil
- Sciences Center, UFRN, Natal 59012570, Brazil
- Correspondence:
| |
Collapse
|
62
|
Martins MDPSC, de Carvalho VBL, Rodrigues LARL, Oliveira ASDSS, Arcanjo DDR, dos Santos MAP, Machado JSR, e Martins MDCDC, Rocha MDM. Effects of zinc supplementation on glycemic control and oxidative stress in experimental diabetes: A systematic review. Clin Nutr ESPEN 2022; 51:28-36. [DOI: 10.1016/j.clnesp.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 12/09/2022]
|
63
|
Abd El-Ghany WA. A perspective review on the effect of different forms of zinc on poultry production of poultry with special reference to the hazardous effects of misuse. CABI REVIEWS 2022; 2022. [DOI: 10.1079/cabireviews202217013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractZinc (Zn) is a unique micro-mineral because it is an essential component in many enzymes such as superoxide dismutase, carbonic anhydrase, and alkaline phosphatase, as well as being important for regulation of proteins and lipids metabolism, and sex hormones. This mineral is applied in poultry production in three forms; inorganic, organic, and nanoparticle form. The nano-form of Zn is preferable in application to other conventional forms with regard to absorption, bioavailability, and efficacy. Broilers fed on diets supplemented with Zn showed improvement of growth performance, carcass meat yield, and meat quality. In addition, Zn plays an important role in enhancing of both cellular and humeral immune responses, beside its antimicrobial and antioxidant activities. In laying hens, dietary addition of Zn improves the eggshell quality and the quantity of eggs. Moreover, Zn has a vital role in breeders in terms of improving the egg production, fertility, hatchability, embryonic development, and availability of the hatched chicks. Therefore, this review article is focused on the effects of using Zn on the performance and immunity of poultry, as well as its antimicrobial and antioxidant properties with special reference to the hazardous effects of the misusing of this mineral.
Collapse
Affiliation(s)
- Wafaa A. Abd El-Ghany
- Address: Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
64
|
Mittag A, Singer A, Hoera C, Westermann M, Kämpfe A, Glei M. Impact of in vitro digested zinc oxide nanoparticles on intestinal model systems. Part Fibre Toxicol 2022; 19:39. [PMID: 35644618 PMCID: PMC9150335 DOI: 10.1186/s12989-022-00479-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO NP) offer beneficial properties for many applications, especially in the food sector. Consequently, as part of the human food chain, they are taken up orally. The toxicological evaluation of orally ingested ZnO NP is still controversial. In addition, their physicochemical properties can change during digestion, which leads to an altered biological behaviour. Therefore, the aim of our study was to investigate the fate of two different sized ZnO NP (< 50 nm and < 100 nm) during in vitro digestion and their effects on model systems of the intestinal barrier. Differentiated Caco-2 cells were used in mono- and coculture with mucus-producing HT29-MTX cells. The cellular uptake, the impact on the monolayer barrier integrity and cytotoxic effects were investigated after 24 h exposure to 123–614 µM ZnO NP. Results
In vitro digested ZnO NP went through a morphological and chemical transformation with about 70% free zinc ions after the intestinal phase. The cellular zinc content increased dose-dependently up to threefold in the monoculture and fourfold in the coculture after treatment with digested ZnO NP. This led to reactive oxygen species but showed no impact on cellular organelles, the metabolic activity, and the mitochondrial membrane potential. Only very small amounts of zinc (< 0.7%) reached the basolateral area, which is due to the unmodified transepithelial electrical resistance, permeability, and cytoskeletal morphology. Conclusions Our results reveal that digested and, therefore, modified ZnO NP interact with cells of an intact intestinal barrier. But this is not associated with serious cell damage.
Collapse
|
65
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
66
|
Chronic Intestinal Disorders in Humans and Pets: Current Management and the Potential of Nutraceutical Antioxidants as Alternatives. Animals (Basel) 2022; 12:ani12070812. [PMID: 35405802 PMCID: PMC8996831 DOI: 10.3390/ani12070812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Chronic disorders of the intestinal tract (CID) are characterized by signs of inflammation of the intestine for a period of at least three weeks. Both humans and pets can be affected by these disorders. Different therapeutic approaches can be selected to treat patients and the use of natural products has been increased in the last decade, since oxidative stress plays a key role in the progression of the chronic intestinal disorders. In this review, the antioxidant proprieties of several natural products with potential for treatment of CID in human and veterinary medicine are highlighted. Unfortunately, few clinical trials report the use of these products for treating CID in humans and none in animals. Abstract Chronic intestinal disorders (CID) are characterized by persistent, or recurrent gastrointestinal (GI) signs present for at least three weeks. In human medicine, inflammatory bowel disease (IBD) is a group of chronic GI diseases and includes Crohn’s disease (CD) and ulcerative colitis (UC). On the other hand, the general term chronic enteropathies (CE) is preferred in veterinary medicine. Different therapeutic approaches to these diseases are used in both humans and pets. This review is focused on the use of traditional therapies and nutraceuticals with specific antioxidant properties, for the treatment of CID in humans and animal patients. There is strong evidence of the antioxidant properties of the nutraceuticals included in this review, but few studies report their use for treating CID in humans and none in animals. Despite this fact, the majority of the nutraceuticals described in the present article could be considered as promising alternatives for the regular treatment of CID in human and veterinary medicine.
Collapse
|
67
|
The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7714542. [PMID: 35047109 PMCID: PMC8763515 DOI: 10.1155/2022/7714542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.
Collapse
|
68
|
Reddy SS, Addi UR, Pullakhandam R, Reddy GB. Dietary Zinc deficiency disrupts skeletal muscle proteostasis and mitochondrial biology in rats. Nutrition 2022; 98:111625. [DOI: 10.1016/j.nut.2022.111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/30/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
69
|
Cunha RDDS, Costa GL, Pinto URC, Ferezin JJS, Cunha PHJD, Fioravanti MCS. Erythrogram and oxidative stress in confined cattle fed with Brachiaria sp hay and supplemented with antioxidants. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-70611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Brachiaria sp contains sporidesmin that can be oxidized by lipoperoxidation and cause oxidative stress. In the present study we evaluated the effects of different antioxidants on lipoperoxidation of erythrocytes from Nelore cattle fed with Brachiaria sp hay. The experimental design was entirely randomized, in which 40 whole male cattle were divided into five treatments (G1: control - no supplementation; G2: selenium and vitamin E supplementation; G3: zinc supplementation; G4: selenium supplementation and G5: vitamin E supplementation) and allocated in feedlot pens for 105 days. The samples heparinized and withethylenediaminetetraacetic acid (EDTA) were obtained every 28 days for hematological and oxidative stress evaluation (0, 28 56, 84 and 105 days). In the erythrogram total erythrocyte count, hemoglobin, and hematocrit (Ht) were measured. For the evaluation of oxidative stress, in order to analyze the characteristics of the erythrocyte membrane, the thiobarbituric acid reactive substances (TBARS), total glutathione (GSH-T), glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) were determined. The results showed that regardless of the treatment there was no oxidative stress during the experimental confinement period and that the joint association of selenium and vitamin E in the bovine diet provided a lower incidence of deleterious alterations on erythrocytes.
Collapse
|
70
|
Cunha RDDS, Costa GL, Pinto URC, Ferezin JJS, Cunha PHJD, Fioravanti MCS. Eritrograma e estresse oxidativo em bovinos confinados alimentados com feno de Brachiaria sp. e suplementados com antioxidantes. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-70611p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo As Brachiaria sp contêm esporidesminas que podem ser oxidadas por lipoperoxidação e ocasionar estresse oxidativo. No presente estudo foram avaliados os efeitos de diferentes antioxidantes na lipoperoxidação dos eritrócitos de bovinos da raça Nelore, alimentados com feno de Brachiaria sp. O delineamento experimental foi inteiramente casualizado, em que 40 bovinos machos, inteiros, foram divididos, em cinco tratamentos (G1: controle - sem suplementação; G2: suplementação de selênio e vitamina E; G3: suplementação de zinco; G4: suplementação de selênio e G5: suplementação de vitamina E) e alocados em baias de confinamento, por 105 dias. As amostras de plasma heparinizado ou com ácido etilenodiamino tetra-acético (EDTA) foram obtidas a cada 28 dias para avaliação hematológica e de estresse oxidativo (0, 28 56, 84 e 105 dias). No eritrograma foi mensurado a contagem total de eritrócitos, a hemoglobina e o volume globular (VG). Para a avaliação do estresse oxidativo, com o objetivo de analisar as características da membrana do eritrócito foram determinadas as substâncias reativas ao ácido tiobarbitúrico (TBARS), glutationa total (GSH-T), glutationa peroxidase (GSH-Px), catalase (CAT) e superóxido dismutase (SOD). Os resultados demonstraram que independente do tratamento não houve estresse oxidativo durante o período do confinamento experimental e que a associação conjunta de selênio e vitamina E na dieta dos bovinos proporcionaram menor incidência de alterações deletérias sobre os eritrócitos.
Collapse
|
71
|
Pacheco W, Patiño D, Vargas J, Gulizia J, Macklin K, Biggs T. Effect of partial replacement of inorganic zinc and manganese with zinc methionine and manganese methionine on live performance and breast myopathies of broilers. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
72
|
Kucková K, Grešáková L, Takácsová M, Kandričáková A, Chrastinová L, Polačiková M, Cieslak A, Ślusarczyk S, Čobanová K. Changes in the Antioxidant and Mineral Status of Rabbits After Administration of Dietary Zinc and/or Thyme Extract. Front Vet Sci 2021; 8:740658. [PMID: 34746281 PMCID: PMC8569448 DOI: 10.3389/fvets.2021.740658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
This study was aimed at determining the impact of organic zinc (Zn) and thyme extract (TE) administration, given alone or together for 6 weeks, on the antioxidant and mineral status (Zn, Cu, Fe, and Mn) in the plasma and tissues of growing rabbits. A total of 96 rabbits of age 35 days were randomly assigned to one of four treatment groups: a control group (C), a Zn group supplemented with dietary zinc (50 mg/kg), a TE group receiving thyme extract applied in drinking water (1 ml/L), and a Zn + TE group treated with both additives. Lipid peroxidation in the plasma was influenced by Zn intake and in the kidney was affected by both the Zn and TE treatment (P < 0.05). Zn supplementation led to a significant increase in glutathione peroxidase activity (P = 0.017), total antioxidant capacity (P = 0.009) and total thiol groups level (P = 0.047) in the kidney, with the highest values occurring in rabbits receiving the combination Zn + TE. Administration of TE influenced Zn content in the kidney (P < 0.001), while zinc intake decreased Cu concentration in muscle (P = 0.021). In conclusion, the simultaneous administration of organic Zn and TE positively affected the antioxidant response of kidneys and can be used for improving the antioxidant status of growing rabbits.
Collapse
Affiliation(s)
- Katarína Kucková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| | - L'ubomíra Grešáková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| | - Margaréta Takácsová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| | - Anna Kandričáková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| | - L'ubica Chrastinová
- National Agricultural and Food Centre, Research Institute for Animal Production, Luzianky, Slovakia
| | - Mária Polačiková
- National Agricultural and Food Centre, Research Institute for Animal Production, Luzianky, Slovakia
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Botany, Medical University of Wroclaw, Wroclaw, Poland
| | - Klaudia Čobanová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| |
Collapse
|
73
|
Lin J, Xu L, Yang J, Wang Z, Shen X. Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. STRESS BIOLOGY 2021; 1:11. [PMID: 37676535 PMCID: PMC10441901 DOI: 10.1007/s44154-021-00008-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 09/08/2023]
Abstract
Bacteria inhabit diverse and dynamic environments, where nutrients may be limited and toxic chemicals can be prevalent. To adapt to these stressful conditions, bacteria have evolved specialized protein secretion systems, such as the type VI secretion system (T6SS) to facilitate their survival. As a molecular syringe, the T6SS expels various effectors into neighboring bacterial cells, eukaryotic cells, or the extracellular environment. These effectors improve the competitive fitness and environmental adaption of bacterial cells. Although primarily recognized as antibacterial weapons, recent studies have demonstrated that T6SSs have functions beyond interspecies competition. Here, we summarize recent research on the role of T6SSs in microbiome modulation, pathogenesis, and stress resistance.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
74
|
Garla R, Sharma N, Kaushal N, Garg ML. Effect of Zinc on Hepatic and Renal Tissues of Chronically Arsenic Exposed Rats: A Biochemical and Histopathological Study. Biol Trace Elem Res 2021; 199:4237-4250. [PMID: 33389622 DOI: 10.1007/s12011-020-02549-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Consumption of arsenic-contaminated drinking water has become major global health concern. One of the major mechanism responsible for the toxicity of arsenicals is the generation of oxidative stress. Zinc, a nutritional antioxidant, plays key role in maintaining various cellular pathways. The present study was aimed at elucidating the effects of zinc supplementation on hepatic and renal tissue damage caused by arsenic exposure to rats. Rats were randomly divided into four experimental groups: control; As administered; Zn supplemented; combined zinc; and arsenic supplemented. Arsenic exposure resulted in significantly elevated accumulation of arsenic in the liver and kidney tissue. In the liver, exposure to arsenic reduced the levels of reduced glutathione (GSH), total glutathione (TG), redox ratio, and the activity of superoxide dismutase (SOD), whereas lipid peroxidation (LPO), inflammation markers, and nitric oxide (NO) levels were elevated with no significant change in catalase (CAT) activity. Arsenic exposure also enhanced the serum levels of liver functional indices and histological abnormalities in liver sections. In the kidney, a significant increase in NO levels and decrease in SOD activity was observed, with no significant changes in the rest of the parameters. The administration of zinc- to arsenic-intoxicated animals significantly improved their hepatic function parameters, arsenic burden, and histological changes which were associated with the restoration of enzymatic and non-enzymatic antioxidant defense system as compared to their intoxicated counterparts. In the kidney also, the NO levels and SOD activity were restored. This data reveals that zinc is effective in ameliorating the toxic effects inflicted by chronic arsenic toxicity.
Collapse
Affiliation(s)
- Roobee Garla
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Nikita Sharma
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India
| | - Naveen Kaushal
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India
| | - Mohan Lal Garg
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
75
|
Olechno E, Puścion-Jakubik A, Socha K, Zujko ME. Coffee Infusions: Can They Be a Source of Microelements with Antioxidant Properties? Antioxidants (Basel) 2021; 10:antiox10111709. [PMID: 34829580 PMCID: PMC8614647 DOI: 10.3390/antiox10111709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023] Open
Abstract
Coffee is a beverage that is very popular all over the world. Its pro-health effect has been demonstrated in many publications. This drink can counteract the effects of oxidative stress thanks to its antioxidant properties. The aim of this study was to collect data on the content of microelements with antioxidant activity (manganese, zinc, copper, iron) in coffee infusions, taking into account various factors. The study considered publications from the years 2000–2020 found in Google Scholar and PubMed databases. It was noted that coffee can provide up to 13.7% of manganese requirements per serving, up to 4.0% and 3.1% of zinc requirements for women and men, up to 2.7% and 2.1% of copper requirements for women and men, and up to 0.4% and 0.6% of iron requirements for women and men. Coffee infusions can also be a source of fluoride (up to 2.5%), chromium (up to 0.4% of daily intake for women and 0.2% for men), and cobalt (up to 0.1%). There are no data in the literature regarding the content of selenium in coffee infusions. The origin of coffee beans and the type of water used (especially regarding fluoride) may have an impact on the content of minerals in infusions. The brewing method does not seem to play an important role. As it is a very popular beverage, coffee can additionally enrich the diet with such micronutrients as manganese, zinc, and copper. This seems beneficial due to their antioxidant properties, however the bioavailability of these elements of coffee should be taken into account. It seems necessary to carry out more research in this area.
Collapse
Affiliation(s)
- Ewa Olechno
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
- Correspondence: ; Tel.: +48-8574-854-69
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| |
Collapse
|
76
|
Slobodian MR, Petahtegoose JD, Wallis AL, Levesque DC, Merritt TJS. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. TOXICS 2021; 9:269. [PMID: 34678965 PMCID: PMC8540122 DOI: 10.3390/toxics9100269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals if they are not. While essential metal ions have been well studied in many eukaryotic species, less is known about the effects of non-essential metals, even though essential and non-essential metals are often chemically similar and can bind to the same biological ligands. Insects are often exposed to a variety of contaminated environments and associated essential and non-essential metal toxicity, but many questions regarding their response to toxicity remain unanswered. Drosophila melanogaster is an excellent insect model species in which to study the effects of toxic metal due to the extensive experimental and genetic resources available for this species. Here, we review the current understanding of the impact of a suite of essential and non-essential metals (Cu, Fe, Zn, Hg, Pb, Cd, and Ni) on the D. melanogaster metal response system, highlighting the knowledge gaps between essential and non-essential metals in D. melanogaster. This review emphasizes the need to use multiple metals, multiple genetic backgrounds, and both sexes in future studies to help guide future research towards better understanding the effects of metal contamination in general.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. S. Merritt
- Faculty of Science and Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada; (M.R.S.); (J.D.P.); (A.L.W.); (D.C.L.)
| |
Collapse
|
77
|
Abstract
Metal homeostasis in the central nervous system (CNS) is a crucial component of healthy brain function, because metals serve as enzymatic cofactors and are key components of intra- and inter-neuronal signaling. Metal dysregulation wreaks havoc on neural networks via induction and proliferation of pathological pathways that cause oxidative stress, synaptic impairment, and ultimately, cognitive deficits. Thus, exploration of metal biology in relation to neurodegenerative pathology is essential in pursuing novel therapies for Alzheimer's Disease and other neurodegenerative disorders. This review covers mechanisms of action of aluminum, iron, copper, and zinc ions with respect to the progressive, toxic accumulation of extracellular β-amyloid plaques and intracellular hyperphosphorylated neurofibrillary tau tangles that characterizes Alzheimer's Disease, with the goal of evaluating the therapeutic potential of metal ion interference in neurodegenerative disease prevention and treatment. As neuroscientific interest in the role of metals in neurodegeneration escalates-in large part due to emerging evidence substantiating the interplay between metal imbalances and neuropathology-it becomes clear that the use of metal chelating agents may be a viable method for ameliorating Alzheimer's Disease pathology, as its etiology remains obscure. We conclude that, although metal therapies can potentially deter neurodegenerative processes, the most promising treatments will remain elusive until further understanding of neurodegenerative etiology is achieved. New research directions may best be guided by animal models of neurodegeneration, which reveal specific insights into biological mechanisms underlying dementia.
Collapse
Affiliation(s)
- Nikita Das
- Division of Neurotoxicology HFT-132, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - James Raymick
- Division of Neurotoxicology HFT-132, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology HFT-132, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
78
|
Serebryany E, Thorn DC, Quintanar L. Redox chemistry of lens crystallins: A system of cysteines. Exp Eye Res 2021; 211:108707. [PMID: 34332989 PMCID: PMC8511183 DOI: 10.1016/j.exer.2021.108707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
The nuclear region of the lens is metabolically quiescent, but it is far from inert chemically. Without cellular renewal and with decades of environmental exposures, the lens proteome, lipidome, and metabolome change. The lens crystallins have evolved exquisite mechanisms for resisting, slowing, adapting to, and perhaps even harnessing the effects of these cumulative chemical modifications to minimize the amount of light-scattering aggregation in the lens over a lifetime. Redox chemistry is a major factor in these damages and mitigating adaptations, and as such, it is likely to be a key component of any successful therapeutic strategy for preserving or rescuing lens transparency, and perhaps flexibility, during aging. Protein redox chemistry is typically mediated by Cys residues. This review will therefore focus primarily on the Cys-rich γ-crystallins of the human lens, taking care to extend these findings to the β- and α-crystallins where pertinent.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - David C Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Liliana Quintanar
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| |
Collapse
|
79
|
Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 2021; 3:1290-1301. [PMID: 34663974 PMCID: PMC8889622 DOI: 10.1038/s42255-021-00483-8] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Cellular senescence entails a permanent proliferative arrest, coupled to multiple phenotypic changes. Among these changes is the release of numerous biologically active molecules collectively known as the senescence-associated secretory phenotype, or SASP. A growing body of literature indicates that both senescence and the SASP are sensitive to cellular and organismal metabolic states, which in turn can drive phenotypes associated with metabolic dysfunction. Here, we review the current literature linking senescence and metabolism, with an eye toward findings at the cellular level, including both metabolic inducers of senescence and alterations in cellular metabolism associated with senescence. Additionally, we consider how interventions that target either metabolism or senescent cells might influence each other and mitigate some of the pro-aging effects of cellular senescence. We conclude that the most effective interventions will likely break a degenerative feedback cycle by which cellular senescence promotes metabolic diseases, which in turn promote senescence.
Collapse
Affiliation(s)
- Christopher D Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, CA, USA.
- Buck Institute for Research on Aging, Novato, CA, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
80
|
Chen P, Chen B, He M, Hu B. Combined effects of different sizes of ZnO and ZIF-8 nanoparticles co-exposure with Cd 2+ on HepG2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147402. [PMID: 33975099 DOI: 10.1016/j.scitotenv.2021.147402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal and nanoparticles (NPs) emitted in the environment have attracted worldwide attention. But the combined effect of NPs and heavy metals is still unclear. In this study, the combined effect of zinc-based NPs and Cd2+ on HepG2 cells was investigated by combining biological indicator detection methods with time-resolved inductively coupled plasma mass spectrometry (TRA-ICP-MS) single cell analysis, and the combined effect of Zn2+ and Cd2+ was also investigated for a comparison. High-dose of ZnO or ZIF-8 NPs co-exposure with Cd2+ would reduce the cell viability while low-dose of ZnO or ZIF-8 NPs co-exposure with Cd2+showed antagonism and the particle size has no remarkable effect on the combined toxicity. In the antagonism, Zn2+ would increase cellular Zn amount through increasing the expression of ZIP8 and ZIP14 transporters to manage the ROS generation, but the zinc-based NPs would decrease expression of these transporters to decrease cellular Cd amount to help maintain the cell viability. Thus, we should hold a dialectical thinking about the pollution of NPs emissions in the environment.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
81
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Sadeghsoltani F, Hassanpour P, Qujeq D, Rashtchizadeh N, Ghorbanihaghjo A. Zinc and Selenium in Inflammatory Bowel Disease: Trace Elements with Key Roles? Biol Trace Elem Res 2021; 199:3190-3204. [PMID: 33098076 DOI: 10.1007/s12011-020-02444-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that may emerge at a young age and often lasts for life. It often goes through phases of recurrence and remission and has a devastating effect on quality of life. The exact etiology of the disease is still unclear, but it appears that an inappropriate immune response to intestinal flora bacteria in people with a genetic predisposition may cause the disease. Managing inflammatory bowel disease is still a serious challenge. Oxidative stress and free radicals appear to be involved in the pathogenesis of this disease, and a number of studies have suggested the use of antioxidants as a therapeutic approach. The antioxidant and anti-inflammatory properties of some trace elements have led some of the research to focus on studying these trace elements in inflammatory bowel disease. Zinc and selenium are among the most important trace elements that have significant anti-inflammatory and antioxidant properties. Some studies have shown the importance of these trace elements in inflammatory bowel disease. In this review, we have attempted to provide a comprehensive overview of the findings of these studies and to gather current knowledge about the association of these trace elements with the inflammatory process and inflammatory bowel disease.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Nadereh Rashtchizadeh
- Connective Tissue Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, P.O. Box 14711, Tabriz, 5166614711, Iran.
| |
Collapse
|
82
|
Michalke B, Berthele A, Venkataramani V. Simultaneous Quantification and Speciation of Trace Metals in Paired Serum and CSF Samples by Size Exclusion Chromatography-Inductively Coupled Plasma-Dynamic Reaction Cell-Mass Spectrometry (SEC-DRC-ICP-MS). Int J Mol Sci 2021; 22:8892. [PMID: 34445607 PMCID: PMC8396360 DOI: 10.3390/ijms22168892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transition metals play a crucial role in brain metabolism: since they exist in different oxidation states they are involved in ROS generation, but they are also co-factors of enzymes in cellular energy metabolism or oxidative defense. METHODS Paired serum and cerebrospinal fluid (CSF) samples were analyzed for iron, zinc, copper and manganese as well as for speciation using SEC-ICP-DRC-MS. Brain extracts from Mn-exposed rats were additionally analyzed with SEC-ICP-DRC-MS. RESULTS The concentration patterns of transition metal size fractions were correlated between serum and CSF: Total element concentrations were significantly lower in CSF. Fe-ferritin was decreased in CSF whereas a LMW Fe fraction was relatively increased. The 400-600 kDa Zn fraction and the Cu-ceruloplasmin fraction were decreased in CSF, by contrast the 40-80 kDa fraction, containing Cu- and Zn-albumin, relatively increased. For manganese, the α-2-macroglobulin fraction showed significantly lower concentration in CSF, whereas the citrate Mn fraction was enriched. Results from the rat brain extracts supported the findings from human paired serum and CSF samples. CONCLUSIONS Transition metals are strictly controlled at neural barriers (NB) of neurologic healthy patients. High molecular weight species are down-concentrated along NB, however, the Mn-citrate fraction seems to be less controlled, which may be problematic under environmental load.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany;
| | - Vivek Venkataramani
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
- Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| |
Collapse
|
83
|
Francis Stuart SD, Villalobos AR. GSH and Zinc Supplementation Attenuate Cadmium-Induced Cellular Stress and Stimulation of Choline Uptake in Cultured Neonatal Rat Choroid Plexus Epithelia. Int J Mol Sci 2021; 22:ijms22168857. [PMID: 34445563 PMCID: PMC8396310 DOI: 10.3390/ijms22168857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Choroid plexus (CP) sequesters cadmium and other metals, protecting the brain from these neurotoxins. These metals can induce cellular stress and modulate homeostatic functions of CP, such as solute transport. We previously showed in primary cultured neonatal rat CP epithelial cells (CPECs) that cadmium induced cellular stress and stimulated choline uptake at the apical membrane, which interfaces with cerebrospinal fluid in situ. Here, in CPECs, we characterized the roles of glutathione (GSH) and Zinc supplementation in the adaptive stress response to cadmium. Cadmium increased GSH and decreased the reduced GSH-to-oxidized GSH (GSSG) ratio. Heat shock protein-70 (Hsp70), heme oxygenase (HO-1), and metallothionein (Mt-1) were induced along with the catalytic and modifier subunits of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis. Inhibition of GCL by l-buthionine sulfoximine (BSO) enhanced stress protein induction and stimulation of choline uptake by cadmium. Zinc alone did not induce Hsp70, HO-1, or GCL subunits, or modulate choline uptake. Zinc supplementation during cadmium exposure attenuated stress protein induction and stimulation of choline uptake; this effect persisted despite inhibition of GSH synthesis. These data indicated up-regulation of GSH synthesis promotes adaptation to cadmium-induced cellular stress in CP, but Zinc may confer cytoprotection independent of GSH.
Collapse
Affiliation(s)
- Samantha D. Francis Stuart
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Alice R. Villalobos
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-806-743-2057
| |
Collapse
|
84
|
Xu C, Wen J, Yang H, You Y, Zhan D, Yu J, Fu L, Zhang T, Liu Y, Yan T. Factors Influencing Early Serum Uric Acid Fluctuation After Bariatric Surgery in Patients with Hyperuricemia. Obes Surg 2021; 31:4356-4362. [PMID: 34309788 DOI: 10.1007/s11695-021-05579-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE In the short-term after bariatric surgery, the incidence of gout flare was increased. Patients with hyperuricemia are among the high-risk group of postoperative gout attacks. The drastic fluctuation of uric acid is a risk factor for gout flare. This study aimed to explore factors that influenced the magnitudes of serum uric acid (sUA) fluctuation post-surgery in patients with hyperuricemia. MATERIALS AND METHODS One hundred and sixty-five patients with preoperative hyperuricemia undergoing bariatric surgery were reviewed. Pre- and postoperative parameters were collected at baseline and each follow-up point. Univariable and multiple linear regression analyses were performed to explore independent factors that influenced the magnitudes of sUA change. RESULTS The sUA significantly declined from 489.4 ± 93.7 to 372.6 ± 101.4 μmmol/L in 1 day after surgery, then increased to 531.6 ± 175.5 μmmol/L at 1-month follow-up, and then dropped to 415.2 ± 105.6 and 396.5 ± 114.2 μmmol/L at 3-month and 6-month follow-up, respectively. Preoperative estimated glomerular filtration rate (eGFR), glycated hemoglobin (HbA1c), magnesium (Mg), sex, and the change of zinc concentration during the first month are significantly related to magnitudes of sUA fluctuation in the short-term post-surgery period. Multiple linear regression analyses showed preoperative eGFR and HbA1c independently influenced the magnitudes of sUA change at 1 day after surgery; sex, the change of zinc concentration, and HbA1c at 1-month follow-up independently influenced the magnitudes of sUA change at 1-month follow-up. CONCLUSION Preoperative eGFR, HbA1c, sex, and the change of zinc concentration postoperative are independent factors affecting the magnitude of the fluctuation. Large-scale studies are warranted to support these findings.
Collapse
Affiliation(s)
- Chenxin Xu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Jun Wen
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Huawu Yang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Yueting You
- Department of Cardiovascular Disease, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Cardiovascular Disease Research Institute of Chengdu, Chengdu, Sichuan, China
| | - Dafang Zhan
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Jiahui Yu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Luo Fu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China. .,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.
| | - Tong Yan
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China. .,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.
| |
Collapse
|
85
|
Mititelu-Tartau L, Bogdan M, Pricop DA, Buca BR, Pauna AM, Dijmarescu LA, Pelin AM, Pavel LL, Popa GE. Assessment of the In Vivo Release and Biocompatibility of Novel Vesicles Containing Zinc in Rats. Molecules 2021; 26:molecules26134101. [PMID: 34279441 PMCID: PMC8271654 DOI: 10.3390/molecules26134101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
This paper is focused on the in vivo release and biocompatibility evaluation in rats of some novel systems entrapping zinc chloride in lipid vesicles. The particles were prepared by zinc chloride immobilization inside lipid vesicles made using phosphatidylcholine, stabilized with 0.5% chitosan solution, and dialyzed for 10 h to achieve a neutral pH. The submicrometric systems were physico-chemically characterized. White Wistar rats, assigned into four groups of six animals each, were treated orally with a single dose, as follows: Group I (control): deionized water 0.3 mL/100 g body weight; Group II (Zn): 2 mg/kg body weight (kbw) zinc chloride; Group III (LV-Zn): 2 mg/kbw zinc chloride in vesicles; Group IV (LVC-Zn): 2 mg/kbw zinc chloride in vesicles stabilized with chitosan. Haematological, biochemical, and immune parameters were assessed after 24 h and 7 days, and then liver fragments were collected for histopathological examination. The use of zinc submicrometric particles-especially those stabilized with chitosan-showed a delayed zinc release in rats. No substantial changes to blood parameters, plasma biochemical tests, serum complement activity, or peripheral neutrophils phagocytic capacity were noted; moreover, the tested substances did not induce liver architectural disturbances. The obtained systems provided a delayed release of zinc, and showed good biocompatibility in rats.
Collapse
Affiliation(s)
- Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.-T.); (B.R.B.); (A.-M.P.)
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Correspondence: (M.B.); (D.A.P.)
| | - Daniela Angelica Pricop
- Department of Physics, Faculty of Physics, “Al. I. Cuza” University, 700506 Iasi, Romania
- Correspondence: (M.B.); (D.A.P.)
| | - Beatrice Rozalina Buca
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.-T.); (B.R.B.); (A.-M.P.)
| | - Ana-Maria Pauna
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.-T.); (B.R.B.); (A.-M.P.)
| | - Lorena Anda Dijmarescu
- Department of Obstetrics-Gynecology, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Ana-Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800010 Galati, Romania;
| | - Liliana Lacramioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800010 Galati, Romania;
| | - Gratiela Eliza Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
86
|
Stenberg P, Roth B, Ohlsson B. Zinc as a modulator of transglutaminase activity - Laboratory and pathophysiological aspects. J Transl Autoimmun 2021; 4:100110. [PMID: 34195588 PMCID: PMC8233124 DOI: 10.1016/j.jtauto.2021.100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/17/2023] Open
Abstract
For a whole century, citrate has been used as an in vitro anticoagulant via chelation of calcium. Later, also EDTA was introduced as an anticoagulant. An often overlooked fact is that zinc is bound to citrate and EDTA with affinities much greater than that for calcium, imposing problems in biomedical research. In vivo, proteins of the S100 family are released from leukocytes and known to bind calcium. Some of them, e.g., calprotectin, also chelate zinc. Thus, at an inflamed site, the ratio between Ca2+ and Zn2+ is changed. This mechanism is of importance for the modulation of the activation of a fascinating family of post-translationally acting calcium-dependent thiol enzymes, the transglutaminases, which are inhibited by zinc. This presentation illustrates the complexity of in vitro studies with zinc. Moreover, it exemplifies the role of Zn2+ in pathophysiological situations such as celiac disease and neurodegeneration. Citrate, EDTA and DTT bind zinc as well as calcium. At inflammation, calprotectin binds Zn2+, which leads to low concentrations of the ion. Zn2+ inhibits the activation of transglutaminases and peptidylarginine deiminases.
Collapse
Affiliation(s)
- Pål Stenberg
- Lund University, Skåne University Hospital Malmö, Clinical Coagulation Research Unit, Malmö, Sweden
| | - Bodil Roth
- Lund University, Skåne University Hospital Malmö, Department of Internal Medicine, Malmö, Sweden
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital Malmö, Department of Internal Medicine, Malmö, Sweden
| |
Collapse
|
87
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
88
|
Supasai S, Adamo AM, Mathieu P, Marino RC, Hellmers AC, Cremonini E, Oteiza PI. Gestational zinc deficiency impairs brain astrogliogenesis in rats through multistep alterations of the JAK/STAT3 signaling pathway. Redox Biol 2021; 44:102017. [PMID: 34049221 PMCID: PMC8167189 DOI: 10.1016/j.redox.2021.102017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 10/27/2022] Open
Abstract
We previously showed that zinc (Zn) deficiency affects the STAT3 signaling pathway in part through redox-regulated mechanisms. Given that STAT3 is central to the process of astrogliogenesis, this study investigated the consequences of maternal marginal Zn deficiency on the developmental timing and key mechanisms of STAT3 activation, and its consequences on astrogliogenesis in the offspring. This work characterized the temporal profile of cortical STAT3 activation from the mid embryonic stage up to young adulthood in the offspring from dams fed a marginal Zn deficient diet (MZD) throughout gestation and until postnatal day (P) 2. All rats were fed a Zn sufficient diet (control) from P2 until P56. Maternal zinc deficiency disrupted cortical STAT3 activation at E19 and P2. This was accompanied by altered activation of JAK2 kinase due to changes in PTP1B phosphatase activity. The underlying mechanisms mediating the adverse impact of a decreased Zn availability on STAT3 activation in the offspring brain include: (i) impaired PTP1B degradation via the ubiquitin/proteasome pathway; (ii) tubulin oxidation, associated decreased interactions with STAT3 and consequent impaired nuclear translocation; and (iii) decreased nuclear STAT3 acetylation. Zn deficiency-associated decreased STAT3 activation adversely impacted astrogliogenesis, leading to a lower astrocyte number in the early postnatal and adult brain cortex. Thus, a decreased availability of Zn during early development can have a major and irreversible adverse effect on astrogliogenesis, in part via multistep alterations in the STAT3 pathway.
Collapse
Affiliation(s)
- Suangsuda Supasai
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Ana M Adamo
- Department of Biological Chemistry and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia Mathieu
- Department of Biological Chemistry and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Regina C Marino
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Adelaide C Hellmers
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Eleonora Cremonini
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
89
|
Dow A, Sule P, O’Donnell TJ, Burger A, Mattila JT, Antonio B, Vergara K, Marcantonio E, Adams LG, James N, Williams PG, Cirillo JD, Prisic S. Zinc limitation triggers anticipatory adaptations in Mycobacterium tuberculosis. PLoS Pathog 2021; 17:e1009570. [PMID: 33989345 PMCID: PMC8121289 DOI: 10.1371/journal.ppat.1009570] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn2+) availability as a likely driver of bacterial phenotypic heterogeneity in vivo. Zn2+ sequestration is part of "nutritional immunity", where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn2+-limitation is an environmental cue sensed by Mtb, as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn2+-limited Mtb in vivo. Prolonged Zn2+ limitation leads to numerous physiological changes in vitro, including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn2+-limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn2+-limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn2+ availability likely plays a key role during early interactions with host cells.
Collapse
Affiliation(s)
- Allexa Dow
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Preeti Sule
- Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, Texas, United States of America
| | - Timothy J. O’Donnell
- Department of Chemistry, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Andrew Burger
- School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Brandi Antonio
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Kevin Vergara
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Endrei Marcantonio
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Philip G. Williams
- Department of Chemistry, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Jeffrey D. Cirillo
- Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, Texas, United States of America
| | - Sladjana Prisic
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
90
|
Hung KC, Wu ZF, Chen JY, Chen IW, Ho CN, Lin CM, Chang YJ, Hsu YR, Feng IJ, Sun CK, Soong TC. Association of Serum Zinc Concentration with Preservation of Renal Function After Bariatric Surgery: a Retrospective Pilot Study. Obes Surg 2021; 30:867-874. [PMID: 31709493 DOI: 10.1007/s11695-019-04260-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although serum zinc level (Zn) is known to impact renal function in patients with diabetes, their correlation following bariatric surgery remains unknown. This study aimed at assessing the association of Zn with estimated glomerular filtration rate (eGFR) after laparoscopic sleeve gastrectomy (LSG). METHODS One hundred and twenty-nine patients in total (mean age, 38.1 ± 10.8; body mass index, 39.1 ± 5.1 kg/m2) with normal preoperative kidney function undergoing LSG at a single tertiary referral center were reviewed. The primary study endpoint was the relationship between Zn and post-LSG eGFR at 12-month follow-up. The secondary outcomes were the associations of percentage weight loss (%WL) with changes in Zn (△Zn) and eGFR (△eGFR). RESULTS The incidence of zinc deficiency was 8.5%, 8.1%, and 29.9% at baseline, post-LSG and one- and 12-month follow-up, respectively. At 12-month follow-up, Zn dropped from 104.1 ± 19.2 to 85.3 ± 38.9 μg/dL (p = 0.001), while eGFR levels decreased from 106.6 ± 10.3 to 102.1 ± 19.4 mL/min per 1.73 m2 (p = 0.025). Zn correlated positively with eGFR at 6-month (r = 0.252, p = 0.037) and 12-month (r = 0.41, p = 0.001) follow-ups. Multiple linear regression analyses including baseline variables of age, sex, BMI, %WL, and diabetes identified Zn and %WL as independent predictors of eGFR at 12-month follow-up. There was no evidence of multicollinearity among these variables. Despite positive association between %WL and △eGFR (r = 0.222, p = 0.031), no correlation was noted between %WL and △Zn (r = - 0.129, p = 0.40). CONCLUSION The results demonstrated a positive relationship between post-LSG serum zinc levels and preservation of renal function among patients with obesity in a surgical setting. Large-scale studies are warranted to support the findings.
Collapse
Affiliation(s)
- Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Zhi-Fu Wu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - I-Wen Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chun-Ning Ho
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Ming Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Jen Chang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Rong Hsu
- Weight Loss and Health Management Center, E-Da Dachang Hospital, No.305, Dachang 1st Rd., Sanmin Dist., Kaohsiung City, 807, Taiwan, Republic of China
| | - I-Jung Feng
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Tien-Chou Soong
- Weight Loss and Health Management Center, E-Da Dachang Hospital, No.305, Dachang 1st Rd., Sanmin Dist., Kaohsiung City, 807, Taiwan, Republic of China. .,Department of Occupation Therapy, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
91
|
Samad N, Sodunke TE, Abubakar AR, Jahan I, Sharma P, Islam S, Dutta S, Haque M. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res 2021; 14:527-550. [PMID: 33679136 PMCID: PMC7930604 DOI: 10.2147/jir.s295377] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The global pandemic from COVID-19 infection has generated significant public health concerns, both health-wise and economically. There is no specific pharmacological antiviral therapeutic option to date available for COVID-19 management. Also, there is an urgent need to discover effective medicines, prevention, and control methods because of the harsh death toll from this novel coronavirus infection. Acute respiratory tract infections, significantly lower respiratory tract infections, and pneumonia are the primary cause of millions of deaths worldwide. The role of micronutrients, including trace elements, boosted the human immune system and was well established. Several vitamins such as vitamin A, B6, B12, C, D, E, and folate; microelement including zinc, iron, selenium, magnesium, and copper; omega-3 fatty acids as eicosapentaenoic acid and docosahexaenoic acid plays essential physiological roles in promoting the immune system. Furthermore, zinc is an indispensable microelement essential for a thorough enzymatic physiological process. It also helps regulate gene-transcription such as DNA replication, RNA transcription, cell division, and cell activation in the human biological system. Subsequently, zinc, together with natural scavenger cells and neutrophils, are also involved in developing cells responsible for regulating nonspecific immunity. The modern food habit often promotes zinc deficiency; as such, quite a few COVID-19 patients presented to hospitals were frequently diagnosed as zinc deficient. Earlier studies documented that zinc deficiency predisposes patients to a viral infection such as herpes simplex, common cold, hepatitis C, severe acute respiratory syndrome coronavirus (SARS-CoV-1), the human immunodeficiency virus (HIV) because of reducing antiviral immunity. This manuscript aimed to discuss the various roles played by zinc in the management of COVID-19 infection.
Collapse
Affiliation(s)
- Nandeeta Samad
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, 700233, Nigeria
| | - Iffat Jahan
- Department of Physiology, Eastern Medical College, Cumilla, Bangladesh
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
92
|
Interactions of zinc- and redox-signaling pathways. Redox Biol 2021; 41:101916. [PMID: 33662875 PMCID: PMC7937829 DOI: 10.1016/j.redox.2021.101916] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc and cellular oxidants such as reactive oxygen species (ROS) each participate in a multitude of physiological functions. There is considerable overlap between the affected events, including signal transduction. While there is no obvious direct connection between zinc and ROS, mainly because the bivalent cation zinc does not change its oxidation state in biological systems, these are linked by their interaction with sulfur, forming the remarkable triad of zinc, ROS, and protein thiols. First, zinc binds to reduced thiols and can be released upon oxidation. Thereby, redox signals are translated into changes in the free zinc concentration, which can act as zinc signals. Second, zinc affects oxidation of thiols in several ways, directly as well as indirectly. A protein incorporating many of these interactions is metallothionein (MT), which is rich in cysteine and capable of binding up to seven zinc ions in its fully reduced state. Zinc binding is diminished after (partial) oxidation, while thiols show increased reactivity in the absence of bound metal ions. Adding still more complexity, the MT promoter is controlled by zinc (via metal regulatory transcription factor 1 (MTF-1)) as well as redox (via nuclear factor erythroid 2-related factor 2 (NRF2)). Many signaling cascades that are important for cell proliferation or apoptosis contain protein thiols, acting as centers for crosstalk between zinc- and redox-signaling. A prominent example for shared molecular targets for zinc and ROS are active site cysteine thiols in protein tyrosine phosphatases (PTP), their activity being downregulated by oxidation as well as zinc binding. Because zinc binding also protects PTP thiols form irreversible oxidation, there is a multi-faceted reciprocal interaction, illustrating that zinc- and redox-signaling are intricately linked on multiple levels.
Collapse
|
93
|
Li S, Yu K, Wu G, Zhang Q, Wang P, Zheng J, Liu ZX, Wang J, Gao X, Cheng H. pCysMod: Prediction of Multiple Cysteine Modifications Based on Deep Learning Framework. Front Cell Dev Biol 2021; 9:617366. [PMID: 33732693 PMCID: PMC7959776 DOI: 10.3389/fcell.2021.617366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
Thiol groups on cysteines can undergo multiple post-translational modifications (PTMs), acting as a molecular switch to maintain redox homeostasis and regulating a series of cell signaling transductions. Identification of sophistical protein cysteine modifications is crucial for dissecting its underlying regulatory mechanism. Instead of a time-consuming and labor-intensive experimental method, various computational methods have attracted intense research interest due to their convenience and low cost. Here, we developed the first comprehensive deep learning based tool pCysMod for multiple protein cysteine modification prediction, including S-nitrosylation, S-palmitoylation, S-sulfenylation, S-sulfhydration, and S-sulfinylation. Experimentally verified cysteine sites curated from literature and sites collected by other databases and predicting tools were integrated as benchmark dataset. Several protein sequence features were extracted and united into a deep learning model, and the hyperparameters were optimized by particle swarm optimization algorithms. Cross-validations indicated our model showed excellent robustness and outperformed existing tools, which was able to achieve an average AUC of 0.793, 0.807, 0.796, 0.793, and 0.876 for S-nitrosylation, S-palmitoylation, S-sulfenylation, S-sulfhydration, and S-sulfinylation, demonstrating pCysMod was stable and suitable for protein cysteine modification prediction. Besides, we constructed a comprehensive protein cysteine modification prediction web server based on this model to benefit the researches finding the potential modification sites of their interested proteins, which could be accessed at http://pcysmod.omicsbio.info. This work will undoubtedly greatly promote the study of protein cysteine modification and contribute to clarifying the biological regulation mechanisms of cysteine modification within and among the cells.
Collapse
Affiliation(s)
- Shihua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Kai Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guandi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Panqin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jichao Wang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xinjiao Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
94
|
Celik C, Gencay A, Ocsoy I. Can food and food supplements be deployed in the fight against the COVID 19 pandemic? Biochim Biophys Acta Gen Subj 2021; 1865:129801. [PMID: 33238195 PMCID: PMC7680693 DOI: 10.1016/j.bbagen.2020.129801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Due to lack of approved drugs and vaccines, the medical world has resorted to older drugs, produced for viral infections and other diseases, as a remedy to combat COVID-19. The accumulating evidence from in vitro and in vivo studies for SARS-CoV and MERS-CoV have demonstrated that several polyphenols found in plants and zinc- polyphenol clusters have been in use as herbal medicines have antiviral activities against viruses with various mechanisms. SCOPE OF REVIEW Curcumin, zinc and zinc-ionophores have been considered as nutraceuticals and nutrients showing great antiviral activities with their medicinal like activities. MAJOR CONCLUSIONS In this work, we discussed the potential prophylactic and/or therapeutic effects of curcumin, zinc and zinc-ionophores in treatment of viral infections including COVID-19. GENERAL SIGNIFICANCE Curcuminoids and Zinc classified as nutraceuticals under GRAS (Generally Recognized As Safe) by FDA can provide complementary treatment for COVID 19 patients with their immunity-boosting and antiviral properties.
Collapse
Affiliation(s)
- Cagla Celik
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ayse Gencay
- Department of Virology, Faculty of Veterinary, Erciyes University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|
95
|
T6SS Mediated Stress Responses for Bacterial Environmental Survival and Host Adaptation. Int J Mol Sci 2021; 22:ijms22020478. [PMID: 33418898 PMCID: PMC7825059 DOI: 10.3390/ijms22020478] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/25/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial type VI secretion system (T6SS) is a protein secretion apparatus widely distributed in Gram-negative bacterial species. Many bacterial pathogens employ T6SS to compete with the host and to coordinate the invasion process. The T6SS apparatus consists of a membrane complex and an inner tail tube-like structure that is surrounded by a contractile sheath and capped with a spike complex. A series of antibacterial or antieukaryotic effectors is delivered by the puncturing device consisting of a Hcp tube decorated by the VgrG/PAAR complex into the target following the contraction of the TssB/C sheath, which often leads to damage and death of the competitor and/or host cells. As a tool for protein secretion and interspecies interactions, T6SS can be triggered by many different mechanisms to respond to various physiological conditions. This review summarizes our current knowledge of T6SS in coordinating bacterial stress responses against the unfavorable environmental and host conditions.
Collapse
|
96
|
De Grande A, Ducatelle R, Delezie E, Rapp C, De Smet S, Michiels J, Haesebrouck F, Van Immerseel F, Leleu S. Effect of vitamin E level and dietary zinc source on performance and intestinal health parameters in male broilers exposed to a temperature challenge in the finisher period. J Anim Physiol Anim Nutr (Berl) 2020; 105:777-786. [PMID: 33377569 DOI: 10.1111/jpn.13492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
The objective of this study was to evaluate the interaction of zinc source (ZnSO4 vs. zinc amino acid complex) and vitamin E level (50 IU vs. 100 IU) on performance and intestinal health of broilers exposed to a temperature challenge in the finisher period. A total of 1224 day old male Ross 308 broilers were randomly distributed among 4 dietary treatments (9 replicates per treatment). Dietary treatments were organized in a 2 × 2 factorial arrangement: two sources of zinc, 60 mg/kg of Zn as ZnSO4 .7H2 O or 60 mg/kg of Zn as zinc amino acid complexes (ZnAA) combined with two levels of vitamin E (50 or 100 IU/kg). Zinc and vitamin E were added to a wheat/rye-based diet that was designed to create a mild nutritional challenge. From day 28 until day 36 (finisher period), all birds were subjected to chronic cyclic high temperatures (32°C ± 2°C and RH 55-65% for 6 h daily). The combination of ZnAA and 50 IU/kg of vitamin E improved weight gain in the starter (day 0-10), finisher (day 28-36) and overall period (day 0-36) and feed conversion ratio in the starter (day 0-10) and finisher phase (day 28-36). Providing Zn as ZnAA significantly improved villus length and villus/crypt ratio in the starter, grower and finisher period and decreased infiltration of T-lymphocytes and ovotransferrin leakage in the finisher period. In conclusion, providing broilers with a diet supplemented with ZnAA and a vitamin E level of 50 IU/kg, resulted in better growth performance as compared to all other dietary treatments. Interestingly, under the conditions of this study, positive effects of ZnAA on performance did not occur when vitamin E was supplemented at 100 IU/kg in feed. Moreover, providing zinc as zinc amino acid complex improved intestinal health.
Collapse
Affiliation(s)
- Annatachja De Grande
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium.,Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Evelyne Delezie
- Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Merelbeke, Belgium
| | | | - Stefaan De Smet
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Saskia Leleu
- Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Merelbeke, Belgium
| |
Collapse
|
97
|
Król E, Okulicz M, Kupsz J. The Influence of Taurine Supplementation on Serum and Tissular Fe, Zn and Cu Levels in Normal and Diet-Induced Insulin-Resistant Rats. Biol Trace Elem Res 2020; 198:592-601. [PMID: 32172503 PMCID: PMC7561555 DOI: 10.1007/s12011-020-02100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/26/2020] [Indexed: 11/17/2022]
Abstract
Taurine (Tau) is a β-sulphonated amino acid postulated to improve glucose homeostasis in insulin resistance and diabetes. Changes in carbohydrate metabolism are accompanied by oxidative stress, which may disturb the mineral balance. Therefore, the aim of this study was to assess the effect of Tau supplementation on the levels of trace elements in rats fed either a standard (AIN-93M, 4% fat) diet or a modified high-fat diet (30% fat). For 8 weeks, male Wistar rats were fed these diets supplemented with 3% Tau. Taurine supplementation normalized increased serum insulin concentration and insulin resistance index; however, it did not improve serum CRP concentration in high-fat diet fed rats. The high-fat diet supplemented with Tau decreased the renal and splenic Zn levels, but the tissular Fe content did not change. The effect of Tau supplementation on the mineral balance to some extent depended on the fat content in the rats' diet. The high-fat diet supplemented with Tau decreased the rats' splenic Zn levels but increased their femur levels. In the group fed the standard diet, Tau reduced the rats' femur Zn level, whereas their splenic Zn level was comparable. Tau supplementation decreased the renal Cu level and serum ceruloplasmin concentration in the rats fed the standard diet, but this effect was not observed in the rats fed the high-fat diet. In conclusion, supplementary taurine failed to ameliorate disturbances in mineral homeostasis caused by high-fat diet feeding and led to tissular redistribution of Zn and Cu in the rat.
Collapse
Affiliation(s)
- Ewelina Król
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, ul Wojska Polskiego 31, 60-624, Poznan, Poland.
| | - Monika Okulicz
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, ul Wołyńska, Poznan, Poland
| | - Justyna Kupsz
- Department of Physiology, Poznań University of Medical Sciences, ul, ul Święcickiego 6, 61-781, Poznan, Poland
| |
Collapse
|
98
|
Atli G. How metals directly affect the antioxidant status in the liver and kidney of Oreochromis niloticus? An in vitro study. J Trace Elem Med Biol 2020; 62:126567. [PMID: 32505902 DOI: 10.1016/j.jtemb.2020.126567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Metals can disturb the integrity of physiological and biochemical mechanisms in fish. Thus components of defense as an antioxidant system are significant biomarkers due to their vital role in coping with metal stress. The aim of the current study is to investigate the direct effects of Cd, Cu, and Zn sublethal exposures (in vitro) on the antioxidant system parameters in the liver and kidney of Nile tilapia. METHODS The antioxidant enzyme activities and GSH levels were analyzed after in vitro sublethal metal (200 and 400 μg/L Cd, Cu, and Zn) treatments of Oreochromis niloticus liver and kidney supernatants. RESULTS Metals even at lower levels caused significant changes in the levels of antioxidant system parameters due to concentration, metal, and tissue type. GSH metabolism parameters were more responsive to the metal effect. TBARS levels and GPX activity were mostly increased while CAT, SOD, rGSH, and GSH/GSSG levels decreased. The kidney was more affected than the liver in vitro conditions. Cu was more effective in the liver whereas it was Zn for the kidney. Cd caused negative correlations among the antioxidant enzymes. Significant correlations were found between enzymes and GSH levels upon Zn and Cu exposures. CONCLUSIONS Direct metal effects may trigger different response trends due to their nature and tissue differences. The current data provide a knowledge about which antioxidant biomarkers can define better the oxidative stress caused by direct metal effect for further studies including in vivo experiments.
Collapse
Affiliation(s)
- Gülüzar Atli
- Biotechnology Center, Cukurova University, Adana, Turkey; Vocational School of Imamoğlu, Cukurova University, Adana, Turkey.
| |
Collapse
|
99
|
Podkowa A, Kryczyk-Poprawa A, Opoka W, Muszyńska B. Culinary–medicinal mushrooms: a review of organic compounds and bioelements with antioxidant activity. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03646-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractThere are about 3000 species of mushrooms, which have a high amount of substances that are beneficial to human health, such as antioxidants. It is well known that oxidative stress plays an important role in the etiopathogenesis of many diseases, including cancer, cardiovascular disorders, and diseases of the central nervous system. One way to prevent homeostasis disorders that occur as a result of excessive production of pro-oxidative substances is to include the ingredients having antioxidant properties in the diet. Several compounds, such as those with phenolic and indole derivatives as well as carotenoids and some vitamins, exhibit antioxidant activity. These substances are present in many foods, including mushrooms. In addition, they have certain unique compounds that are not found in other sources (e.g., norbadione A). The present work discusses selected ingredients exhibiting antioxidant activity, which are found in various species of mushrooms as wells as describes the content of these compounds in the extracts obtained from mushrooms using artificial digestive juice.
Collapse
|
100
|
The role of labile Zn 2+ and Zn 2+-transporters in the pathophysiology of mitochondria dysfunction in cardiomyocytes. Mol Cell Biochem 2020; 476:971-989. [PMID: 33225416 DOI: 10.1007/s11010-020-03964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
An important energy supplier of cardiomyocytes is mitochondria, similar to other mammalian cells. Studies have demonstrated that any defect in the normal processes controlled by mitochondria can lead to abnormal ROS production, thereby high oxidative stress as well as lack of ATP. Taken into consideration, the relationship between mitochondrial dysfunction and overproduction of ROS as well as the relation between increased ROS and high-level release of intracellular labile Zn2+, those bring into consideration the importance of the events related with those stimuli in cardiomyocytes responsible from cellular Zn2+-homeostasis and responsible Zn2+-transporters associated with the Zn2+-homeostasis and Zn2+-signaling. Zn2+-signaling, controlled by cellular Zn2+-homeostatic mechanisms, is regulated with intracellular labile Zn2+ levels, which are controlled, especially, with the two Zn2+-transporter families; ZIPs and ZnTs. Our experimental studies in mammalian cardiomyocytes and human heart tissue showed that Zn2+-transporters localizes to mitochondria besides sarco(endo)plasmic reticulum and Golgi under physiological condition. The protein levels as well as functions of those transporters can re-distribute under pathological conditions, therefore, they can interplay among organelles in cardiomyocytes to adjust a proper intracellular labile Zn2+ level. In the present review, we aimed to summarize the already known Zn2+-transporters localize to mitochondria and function to stabilize not only the cellular Zn2+ level but also cellular oxidative stress status. In conclusion, one can propose that a detailed understanding of cellular Zn2+-homeostasis and Zn2+-signaling through mitochondria may emphasize the importance of new mitochondria-targeting agents for prevention and/or therapy of cardiovascular dysfunction in humans.
Collapse
|