51
|
Wu D, Ma Y, Cao Y, Zhang T. Mitochondrial toxicity of nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134994. [PMID: 31715400 DOI: 10.1016/j.scitotenv.2019.134994] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 05/11/2023]
Abstract
In recent years, nanomaterials have been widely applied in electronics, food, biomedicine and other fields, resulting in increased human exposure and consequent research focus on their biological and toxic effects. Mitochondria, the main target organelle for nanomaterials (NM), play a critical role in their toxic activities. Several studies to date have shown that nanomaterials cause alterations in mitochondrial morphology, mitochondrial membrane potential, opening of the mitochondrial permeability transition pore (MPTP) and mitochondrial respiratory function, and promote cytochrome C release. An earlier mitochondrial toxicity study of NMs additionally reported induction of mitochondrial dynamic changes. Here, we have reviewed the mitochondrial toxicity of NMs and provided a scientific basis for the contribution of mitochondria to the toxicological effects of different NMs along with approaches to reduce mitochondrial and, consequently, overall toxicity of NMs.
Collapse
Affiliation(s)
- Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
52
|
Pérez-Arizti JA, Ventura-Gallegos JL, Galván Juárez RE, Ramos-Godinez MDP, Colín-Val Z, López-Marure R. Titanium dioxide nanoparticles promote oxidative stress, autophagy and reduce NLRP3 in primary rat astrocytes. Chem Biol Interact 2020; 317:108966. [PMID: 32004531 DOI: 10.1016/j.cbi.2020.108966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used in the food industry, cosmetics, personal care and paints among others. Through occupational exposure and daily consumption, and because of their small size, TiO2-NPs can enter the body through different routes such as oral, dermal and inhalation, and accumulate in multiple organs including the brain. TiO2-NPs cause severe damage to many cell types, however their effects in the central nervous system remain largely unexplored. Therefore, in the present study we determined the cytotoxic effect of TiO2-NPs on rat astrocytes. We tested the oxidant properties of TiO2-NPs through DTT depletion, and measured oxidative stress-induced damage in mitochondria, through oxidation of 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) and loss of mitochondrial membrane potential (ΔΨm) with Mitotracker Green FM. We further examined oxidative stress-derived responses such as IκB-α degradation by Western Blot, NF-κB translocation by EMSA, autophagy induction by LC3-II levels, and expression of the inflammasome protein NLRP3. TiO2-NPs showed high oxidant properties and induced strong oxidative stress in astrocytes following their internalization, causing mitochondrial damage detected by ΔΨm loss. Responses against oxidative damage such as NF-κB translocation and autophagy were induced and NLRP3 protein expression was downregulated, indicating lower inflammasome-mediated responses in astrocytes. These results support TiO2-NPs cytotoxicity in astrocytes, cells that play key roles in neuronal homeostasis and their dysfunction can lead to neurological disorders including cognitive impairment and memory loss.
Collapse
Affiliation(s)
- José Antonio Pérez-Arizti
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - José Luis Ventura-Gallegos
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico; Departamento de Medicina Genómica y Toxicología Ambiental IIB, Universidad Nacional Autónoma de México, Mexico
| | | | | | - Zaira Colín-Val
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico.
| |
Collapse
|
53
|
Taylor AT, Iraganje E, Lai EPC. A method for the separation of TiO 2 nanoparticles from Water through encapsulation with lecithin liposomes followed by adsorption onto poly(L-lysine) coated glass surfaces. Colloids Surf B Biointerfaces 2020; 187:110732. [PMID: 31911038 DOI: 10.1016/j.colsurfb.2019.110732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Increasing use of nanomaterials in the consumer and pharmaceutical industries has led to emerging contamination by released nanoparticles in wastewater and drinking water, causing major concerns for public health. Titanium dioxide (TiO2) nanoparticles are one of the major nanoparticles of growing concern with a strong need for efficient removal. In this work, removal of TiO2 nanoparticles from water was investigated by first coating with polydopamine (PDA) and then encapsulating within lecithin liposomes for adsorption onto poly-l-lysine (PLL) coated glass surfaces. The PLL coating was confirmed using atomic force microscopy, with a thickness of 30 nm. An average percent removal of 58% with a standard deviation of 18% was obtained for concentrations ranging from 5 mg/L to 125 mg/L following capture experiments. This method provides a promising solution to alleviate the potential health hazard caused by TiO2 nanoparticles. It is minimally affected by such water quality variables as alkalinity, ionic strength and humic acid. No coagulation, flocculation and sedimentation stages are necessary.
Collapse
Affiliation(s)
- Adam T Taylor
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Elysee Iraganje
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
54
|
Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health-a Review. Biol Trace Elem Res 2020; 193:118-129. [PMID: 30982201 PMCID: PMC6914717 DOI: 10.1007/s12011-019-01706-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/19/2019] [Indexed: 01/18/2023]
Abstract
Recently, an increased interest in nanotechnology applications can be observed in various fields (medicine, materials science, pharmacy, environmental protection, agriculture etc.). Due to an increasing scope of applications, the exposure of humans to nanoparticles (NPs) is inevitable. A number of studies revealed that after inhalation or oral exposure, NPs accumulate in, among other places, the lungs, alimentary tract, liver, heart, spleen, kidneys and cardiac muscle. In addition, they disturb glucose and lipid homeostasis in mice and rats. In a wide group of nanoparticles currently used on an industrial scale, titanium dioxide nanoparticles-TiO2 NPs-are particularly popular. Due to their white colour, TiO2 NPs are commonly used as a food additive (E 171). The possible risk to health after consuming food containing nanoparticles has been poorly explored but it is supposed that the toxicity of nanoparticles depends on their size, morphology, rate of migration and amount consumed. Scientific databases inform that TiO2 NPs can induce inflammation due to oxidative stress. They can also have a genotoxic effect leading to, among others, apoptosis or chromosomal instability. This paper gives a review of previous studies concerning the effects of exposure to TiO2 NPs on a living organism (human, animal). This information is necessary in order to demonstrate potential toxicity of inorganic nanoparticles on human health.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland.
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031, Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| |
Collapse
|
55
|
The mTOR/GCLc/GSH Pathway Mediates the Dose-Dependent Bidirectional Regulation of ROS Induced by TiO 2NPs in Neurogenic Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019. [DOI: 10.1155/2019/7621561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective. The effect of TiO2NP exposure on the nervous system and the underlying mechanism remain unclear. The antioxidant effect of TiO2NPs at a low dose was newly found in our study, which was different from the effect at high dose. This study is aimed at exploring the mechanism underlying the antioxidant effects of TiO2NPs at low dose and the induction of ROS accumulation by TiO2NPs at high dose in neurogenic cell lines.Methods. We measured the changes in key molecules in the ROS regulation pathway by western blotting, flow cytometry, and commercial assay kits, and these key molecules were further evaluated to verify their interactions and roles using SH-SY5Y, U251, and SK-N-SH cell lines treated with TiO2NPs.Results. Our results showed that the weak antioxidant effect at low dose was caused by mTOR/GCLc-induced GSH overproduction and GSH-Px activity impairment. ROS accumulation at high dose was caused by a mTOR/GCLc-mediated decrease in GSH production, GSH-Px activity impairment, and dramatic ROS production. Furthermore, we found that the ROS species were mainly O2-⋅, and that SOD played a crucial role in reducing O2-⋅levels before the mTOR protein was activated.Conclusion. We revealed the mechanism underlying the bidirectional regulation of ROS induced by TiO2NPs at different doses in neurogenic cell lines. Our study emphasized the potential neurotoxic effects of NPs at low dose, which should arouse concern about their safety.
Collapse
|
56
|
Han Y, Shi W, Rong J, Zha S, Guan X, Sun H, Liu G. Exposure to Waterborne nTiO 2 Reduces Fertilization Success and Increases Polyspermy in a Bivalve Mollusc: A Threat to Population Recruitment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12754-12763. [PMID: 31596577 DOI: 10.1021/acs.est.9b03675] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fertilization success is crucial for the population recruitment of an organism. However, little is known about the threat of nanoparticles (NPs) to the fertilization of broadcast spawners. Therefore, the effects of nTiO2 on fertilization success, polyspermy rate, sperm velocity, gametic DNA damage, sperm-egg collision probability, gamete fusion, and oocyte ultrastructure were investigated in a broadcast spawning bivalve, Tegillarca granosa. The results obtained show that fertilization success significantly decreased, whereas polyspermy risk markedly increased upon nTiO2 exposure. In addition, nTiO2 exposure led to a significant reduction in sperm swimming velocity, which would subsequently constrain gamete collisions. In addition, nTiO2 exposure resulted in a significant decline in gamete fusion per collision along with aggravated DNA damage in gametes. Furthermore, ultrastructural analysis illustrated the attachment of nTiO2 to the oocyte surface, which subsequently resulted in microvillus disassociation and plasma membrane damage. In conclusion, the results obtained suggest a significant threat from NP pollution to the recruitment of broadcast spawning invertebrates.
Collapse
Affiliation(s)
- Yu Han
- College of Animal Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Wei Shi
- College of Animal Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Jiahuan Rong
- College of Animal Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Shanjie Zha
- College of Animal Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Xiaofan Guan
- College of Animal Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Hongxiang Sun
- College of Animal Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Guangxu Liu
- College of Animal Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
57
|
Jiang Y, Yu X, Su C, Zhao L, Shi Y. Chitosan nanoparticles induced the antitumor effect in hepatocellular carcinoma cells by regulating ROS-mediated mitochondrial damage and endoplasmic reticulum stress. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:747-756. [PMID: 30873872 DOI: 10.1080/21691401.2019.1577876] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, numerous studies have confirmed the role of chitosan nanoparticles (CS NPs) as a promising drug delivery carrier for improving the efficiency of anticancer drug in the treatment of cancer. However, the possible biological effects of CS NPs on tumour cells and underlying mechanisms are still unclear. Recently, reactive oxygen species (ROS)-mediated cell apoptosis has been implicated in the regulation of cell death. In this study, we found that CS NPs induced the massive generation of ROS and resulted in apoptosis of hepatocellular carcinoma cells (SMMC-7721) through activating the mitochondrial pathway and endoplasmic reticulum stress. These results suggest an important role of ROS in CS NPs-induced cancer cell death.
Collapse
Affiliation(s)
- Yibing Jiang
- a School of Pharmacy , Jinzhou Medical University , Jinzhou , P. R. China
| | - Xiwei Yu
- a School of Pharmacy , Jinzhou Medical University , Jinzhou , P. R. China
| | - Chang Su
- b School of Veterinary Medicine , Jinzhou Medical University , Jinzhou , P. R. China
| | - Liang Zhao
- a School of Pharmacy , Jinzhou Medical University , Jinzhou , P. R. China
| | - Yijie Shi
- a School of Pharmacy , Jinzhou Medical University , Jinzhou , P. R. China
| |
Collapse
|
58
|
Merino JJ, Cabaña-Muñoz ME, Toledano Gasca A, Garcimartín A, Benedí J, Camacho-Alonso F, Parmigiani-Izquierdo JM. Elevated Systemic L-Kynurenine/L-Tryptophan Ratio and Increased IL-1 Beta and Chemokine (CX3CL1, MCP-1) Proinflammatory Mediators in Patients with Long-Term Titanium Dental Implants. J Clin Med 2019; 8:jcm8091368. [PMID: 31480733 PMCID: PMC6780981 DOI: 10.3390/jcm8091368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/04/2023] Open
Abstract
Titanium is the mean biocompatible metal found in dental titanium alloys (Ti-6Al-4V). The safety of certain dental biomaterial amalgams has been questioned in patients. The levels of several systemic cytokines (interleukin (IL)-1 beta, IL-4: pg/mL) and chemokines (monocyte chemoattractant protein-1 (MCP-1), soluble fractalkine (CX3CL1: pg/mL) were determined using ELISA and compared between these study groups. The study included 30 controls without dental materials (cont), 57 patients with long-term titanium dental implants plus amalgams (A + I group) as well as 55 patients with long-term dental amalgam alone (A group). All patients (except controls) have had dental titanium implants (Ti-6Al-4V) and/or amalgams for at least 10 years (average: 15 years). We evaluated whether systemic levels of cytokines/chemokines, kyn/L-trp ratio and aromatic amino acid levels (HPLC: mM/L, Phe, L-Trp, His, Treo) could be altered in patients with long-term dental titanium and/or amalgams. These systemic markers were evaluated in 142 patients. The A + I group had higher L-Kynurenine/L-Tryptophan ratios than patients with long-term dental amalgam fillings alone (A). In addition, levels of IL-1 Beta cytokine, CX3CL1 and MCP-1 chemokines were higher in the A + I group than in the A group (A). The increased L-kyn/L-trp ratio and MCP-1 and fractalkine receptor (CX3CR1) elevations could suggest enhanced chemotactic responses by these chemokines in the A + I group.
Collapse
Affiliation(s)
- José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), c/Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
- Centro CIROM, Centro de Implantología y Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain.
| | | | | | - Alba Garcimartín
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), c/Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), c/Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
59
|
Hu Q, Zhao F, Fan M, He C, Yang X, Huang Z, Fu Z. The influence of titanium dioxide nanoparticles on their cellular response to macrophage cells. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:42-52. [PMID: 31082463 DOI: 10.1016/j.cbpc.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
As the most widely application of nanomaterials in biology and medicine, their interaction with biological system and the afterwards cellular responses would be addressed. Here, the agglomerate states of two kinds of TiO2 NPs in culture medium were characterized and the cluster specific cellular responses in RAW264.7 cells were investigated. Owing to the smaller aggregates and more positively charged surface, 21 nm TiO2 NPs exhibited higher cytotoxicity, which correlated with their ability to cause damage to mitochondria. While for 35 nm TiO2 NPs, higher level of cell autophagy and stronger pro-inflammatory immune response were observed, which are responsible for their lower cytotoxicity. These results suggest that physiochemical properties of TiO2 NPs in culture medium are important factor affecting their cellular response to RAW264.7 cells.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Mengqi Fan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Chao He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Xiaole Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Zeming Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China.
| |
Collapse
|
60
|
Chen CY, Lee YH, Chang SH, Tsai YF, Fang JY, Hwang TL. Oleic acid-loaded nanostructured lipid carrier inhibit neutrophil activities in the presence of albumin and alleviates skin inflammation. Int J Nanomedicine 2019; 14:6539-6553. [PMID: 31496699 PMCID: PMC6701617 DOI: 10.2147/ijn.s208489] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Aim This paper reports on the incorporation of oleic acid (OA) within nanostructured lipid carriers (OA-NLC) to improve the anti-inflammatory effects in the presence of albumin. Materials and methods NLCs produced via hot high-shear homogenization/ultrasonication were characterized in terms of particle size, zeta potential, and toxicity. We examined the effects of OA-NLC on neutrophil activities. Dermatologic therapeutic potential was also elucidated by using a murine model of leukotriene B4-induced skin inflammation. Results In the presence of albumin, OA-NLC but not free OA inhibited superoxide generation and elastase release. Topical administration of OA-NLC alleviated neutrophil infiltration and severity of skin inflammation. Conclusion OA incorporated within NLC can overcome the interference of albumin, which would undermine the anti-inflammatory effects of OA. OA-NLC has potential therapeutic effects in topical ointments.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ying-Hsuan Lee
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.,Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| |
Collapse
|
61
|
Tuck CJ, Biesiekierski JR, Schmid-Grendelmeier P, Pohl D. Food Intolerances. Nutrients 2019; 11:nu11071684. [PMID: 31336652 PMCID: PMC6682924 DOI: 10.3390/nu11071684] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Food intolerances are estimated to affect up to 20% of the population but complete understanding of diagnosis and management is complicated, given presentation and non-immunological mechanisms associated vary greatly. This review aims to provide a scientific update on common food intolerances resulting in gastrointestinal and/or extra-intestinal symptoms. FODMAP sensitivity has strong evidence supporting its mechanisms of increased osmotic activity and fermentation with the resulting distention leading to symptoms in those with visceral hypersensitivity. For many of the other food intolerances reviewed including non-coeliac gluten/wheat sensitivity, food additives and bioactive food chemicals, the findings show that there is a shortage of reproducible well-designed double-blind, placebo-controlled studies, making understanding of the mechanisms, diagnosis and management difficult. Enzyme deficiencies have been proposed to result in other food sensitivities including low amine oxidase activity resulting in histamine intolerance and sucrase-isomaltase deficiency resulting in reduced tolerance to sugars and starch. Lack of reliable diagnostic biomarkers for all food intolerances result in an inability to target specific foods in the individual. As such, a trial-and-error approach is used, whereby suspected food constituents are reduced for a short-period and then re-challenged to assess response. Future studies should aim to identify biomarkers to predict response to dietary therapies.
Collapse
Affiliation(s)
- Caroline J Tuck
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, ON K7L 2V7, Canada
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne 3086, Australia
| | - Jessica R Biesiekierski
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne 3086, Australia
| | - Peter Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital Zurich, 8091 Zurich Switzerland and Christine-Kühne Center for Allergy Research and Education CK-CARE, 7265 Davos, Switzerland
| | - Daniel Pohl
- Department of Gastroenterology, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
62
|
Bengalli R, Ortelli S, Blosi M, Costa A, Mantecca P, Fiandra L. In Vitro Toxicity of TiO 2:SiO 2 Nanocomposites with Different Photocatalytic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1041. [PMID: 31330895 PMCID: PMC6669742 DOI: 10.3390/nano9071041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023]
Abstract
The enormous technological relevance of titanium dioxide (TiO2) nanoparticles (NPs) and the consequent concerns regarding potentially hazardous effects that exposure during production, use, and disposal can generate, encourage material scientists to develop and validate intrinsically safe design solution (safe-by-design). Under this perspective, the encapsulation in a silica dioxide (SiO2) matrix could be an effective strategy to improve TiO2 NPs safety, preserving photocatalytic and antibacterial properties. In this work, A549 cells were used to investigate the toxic effects of silica-encapsulated TiO2 having different ratios of TiO2 and SiO2 (1:1, 1:3, and 3:1). NPs were characterized by electron microscopy and dynamic light scattering, and cell viability, oxidative stress, morphological changes, and cell cycle alteration were evaluated. Resulting data demonstrated that NPs with lower content of SiO2 are able to induce cytotoxic effects, triggered by oxidative stress and resulting in cell necrosis and cell cycle alteration. The physicochemical properties of NPs are responsible for their toxicity. Particles with small size and high stability interact with pulmonary cells more effectively, and the different ratio among silica and titania plays a crucial role in the induced cytotoxicity. These results strengthen the need to take into account a safe(r)-by-design approach in the development of new nanomaterials for research and manufacturing.
Collapse
Affiliation(s)
- Rossella Bengalli
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy.
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Anna Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| | - Luisa Fiandra
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| |
Collapse
|
63
|
Heidari Z, Mohammadipour A, Haeri P, Ebrahimzadeh-bideskan A. The effect of titanium dioxide nanoparticles on mice midbrain substantia nigra. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:745-751. [PMID: 32373295 PMCID: PMC7196354 DOI: 10.22038/ijbms.2019.33611.8018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/16/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Widely used Titanium dioxide nanoparticles (TiO2) enter into the body and cause various organ damages. Therefore, we aimed to study the effect of TiO2 on the substantia nigra of midbrain. MATERIALS AND METHODS 40 male BALB/c mice were randomly divided into five groups: three groups received TiO2 at doses of 10, 25, and 50 mg/kg, the fourth group received normal saline for 45 days by gavage, and control group (without intervention). Then, Motor tests including pole and hanging tests were done to investigate motor disorders. The animal brain was removed for histological purposes. Accordingly, immunohistochemistry was performed to detect tyrosine hydroxylase positive cells, and then toluidine blue staining was done to identify dark neurons in the substantia nigra. Eventually, the total number of these neurons were counted using stereological methods in different groups. RESULTS The results showed that the time recorded for mice to turn completely downward on the pole in the TiO2-50 group increased and also the time recorded for animals to hang on the wire in the hanging test significantly decreased (P<0.05) in comparison with other groups. Also, the average number of tyrosine hydroxylase positive neurons in TiO2-25 and TiO2-50 groups significantly decreased as compared to the TiO2-10 and control groups (P<0.05). The total number of dark neurons in the TiO2-25 and TiO2-50 groups was substantially higher than the TiO2-10, control and normal saline groups (P<0.05). CONCLUSION Our findings indicated that TiO2, depending on dose, can cause the destruction of dopaminergic neurons and consequently increase the risk of Parkinson's disease.
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Haeri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
64
|
Ge D, Du Q, Ran B, Liu X, Wang X, Ma X, Cheng F, Sun B. The neurotoxicity induced by engineered nanomaterials. Int J Nanomedicine 2019; 14:4167-4186. [PMID: 31239675 PMCID: PMC6559249 DOI: 10.2147/ijn.s203352] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Engineered nanomaterials (ENMs) have been widely used in various fields due to their novel physicochemical properties. However, the use of ENMs has led to an increased exposure in humans, and the safety of ENMs has attracted much attention. It is universally acknowledged that ENMs could enter the human body via different routes, eg, inhalation, skin contact, and intravenous injection. Studies have proven that ENMs can cross or bypass the blood-brain barrier and then access the central nervous system and cause neurotoxicity. Until now, diverse in vivo and in vitro models have been developed to evaluate the neurotoxicity of ENMs, and oxidative stress, inflammation, DNA damage, and cell death have been identified as being involved. However, due to various physicochemical properties of ENMs and diverse study models in existing studies, it remains challenging to establish the structure-activity relationship of nanomaterials in neurotoxicity. In this paper, we aimed to review current studies on ENM-induced neurotoxicity, with an emphasis on the molecular and cellular mechanisms involved. We hope to provide a rational material design strategy for ENMs when they are applied in biomedical or other engineering applications.
Collapse
Affiliation(s)
- Dan Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Qiqi Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingqing Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xingyu Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| |
Collapse
|
65
|
Vita AA, Royse EA, Pullen NA. Nanoparticles and danger signals: Oral delivery vehicles as potential disruptors of intestinal barrier homeostasis. J Leukoc Biol 2019; 106:95-103. [PMID: 30924969 DOI: 10.1002/jlb.3mir1118-414rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/27/2022] Open
Abstract
Gut immune system homeostasis involves diverse structural interactions among resident microbiota, the protective mucus layer, and a variety of cells (intestinal epithelial, lymphoid, and myeloid). Due to the substantial surface area in direct contact with an "external" environment and the diversity of xenobiotic, abiotic, and self-interactions coordinating to maintain gut homeostasis, there is enhanced potential for the generation of endogenous danger signals when this balance is lost. Here, we focus on the potential generation and reception of damage in the gut resulting from exposure to nanoparticles (NPs), common food and drug additives. Specifically, we describe recent evidence in the literature showing that certain NPs are potential generators of damage-associated molecular patterns, as well as potential immune-stimulating molecular patterns themselves.
Collapse
Affiliation(s)
- Alexandra A Vita
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Emily A Royse
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Nicholas A Pullen
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| |
Collapse
|
66
|
Logozzi M, Mizzoni D, Bocca B, Di Raimo R, Petrucci F, Caimi S, Alimonti A, Falchi M, Cappello F, Campanella C, Bavisotto CC, David S, Bucchieri F, Angelini DF, Battistini L, Fais S. Human primary macrophages scavenge AuNPs and eliminate it through exosomes. A natural shuttling for nanomaterials. Eur J Pharm Biopharm 2019; 137:23-36. [PMID: 30779978 DOI: 10.1016/j.ejpb.2019.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/02/2023]
Abstract
The use of nanomaterials is increasing but the real risk associated with their use in humans has to be defined. In fact, nanomaterials tend to accumulate in organs over a long period of time and are slowly degraded or eliminated by the body. Exosomes are nanovesicles actively shuttle molecules, including chemical products and metals, through the body. Macrophages scavenge the body from both organic and inorganic substances, and they use to release high amounts of exosomes. We hypothesized that macrophages may have a role in eliminating nanomaterials through their exosomes. We treated human primary macrophages with 20 nm gold nanoparticles (AuNPs), analyzing the presence of AuNPs in both cells and the released exosomes by the implementation of different techniques, including SP-ICP-MS and NTA. We showed that macrophages endocytosed AuNPs and released them through exosomes. Our study on one hand provide the evidence for a new methodology in the early identification of the nanomaterials levels in exposed subjects. On the other hand we depict a way our body shuttle virtually intact nanoparticles through macrophage-released exosomes.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Francesco Petrucci
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Caimi
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Alimonti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy
| | - Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy; Institute of Biophysics, National Research Council, 90143 Palermo, Italy
| | - Sabrina David
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
67
|
Huerta-García E, Ramos-Godinez MDP, López-Saavedra A, Alfaro-Moreno E, Gómez-Crisóstomo NP, Colín-Val Z, Sánchez-Barrera H, López-Marure R. Internalization of Titanium Dioxide Nanoparticles Is Mediated by Actin-Dependent Reorganization and Clathrin- and Dynamin-Mediated Endocytosis in H9c2 Rat Cardiomyoblasts. Chem Res Toxicol 2019; 32:578-588. [DOI: 10.1021/acs.chemrestox.8b00284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Elizabeth Huerta-García
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma Tabasco, Comalcalco, Tabasco 86040, México
| | | | | | - Ernesto Alfaro-Moreno
- Man-Technology-Environment research centre (MTM), Örebro University and Institute of Environmental Health, Karolinska Institute, SE-70182 Örebro, Sweden
| | | | - Zaira Colín-Val
- Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México 14080, México
| | - Helen Sánchez-Barrera
- Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México 14080, México
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México 14080, México
| |
Collapse
|
68
|
Louro H, Saruga A, Santos J, Pinhão M, Silva MJ. Biological impact of metal nanomaterials in relation to their physicochemical characteristics. Toxicol In Vitro 2019; 56:172-183. [PMID: 30707927 DOI: 10.1016/j.tiv.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; Toxicogenomics and Human Health (ToxOmics), Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal; PToNANO, Lisbon, Portugal.
| | - Andreia Saruga
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Joana Santos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Mariana Pinhão
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; Toxicogenomics and Human Health (ToxOmics), Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal; PToNANO, Lisbon, Portugal
| |
Collapse
|
69
|
Serra A, Letunic I, Fortino V, Handy RD, Fadeel B, Tagliaferri R, Greco D. INSIdE NANO: a systems biology framework to contextualize the mechanism-of-action of engineered nanomaterials. Sci Rep 2019; 9:179. [PMID: 30655578 PMCID: PMC6336851 DOI: 10.1038/s41598-018-37411-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Engineered nanomaterials (ENMs) are widely present in our daily lives. Despite the efforts to characterize their mechanism of action in multiple species, their possible implications in human pathologies are still not fully understood. Here we performed an integrated analysis of the effects of ENMs on human health by contextualizing their transcriptional mechanism-of-action with respect to drugs, chemicals and diseases. We built a network of interactions of over 3,000 biological entities and developed a novel computational tool, INSIdE NANO, to infer new knowledge about ENM behavior. We highlight striking association of metal and metal-oxide nanoparticles and major neurodegenerative disorders. Our novel strategy opens possibilities to achieve fast and accurate read-across evaluation of ENMs and other chemicals based on their biosignatures.
Collapse
Affiliation(s)
- Angela Serra
- NeuRoNe Lab, DISA-MIS, University of Salerno, Salerno, Italy.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Institute of Biosciences and Medical Technologies, University of Tampere, Tampere, Finland
| | | | - Vittorio Fortino
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Institute of Biosciences and Medical Technologies, University of Tampere, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Biomedicine Institute, University of Eastern Finland, Kuopio, Finland
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Dario Greco
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland. .,Institute of Biosciences and Medical Technologies, University of Tampere, Tampere, Finland. .,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
70
|
Kumar Babele P. Zinc oxide nanoparticles impose metabolic toxicity by de-regulating proteome and metabolome in Saccharomyces cerevisiae. Toxicol Rep 2018; 6:64-73. [PMID: 30581761 PMCID: PMC6297892 DOI: 10.1016/j.toxrep.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Untargeted proteomic and metabolic approaches provide complete toxicity assessment. ZnO-NPs de-regulate the proteome and metabolome of S. cerevisiae. ZnO-NPs affect the key metabolites of central metabolic pathways. Protein and/or metabolite can be used as biomarker specific to the ZnO-NPs induced toxicity.
As zinc oxide nanoparticles are being increasingly used in various applications, it is important to assess their potential toxic implications. Stress responses and adaptations are primarily controlled by modulation in cellular proteins (enzyme) and concentration of metabolites. To date proteomics or metabolomics applications in nanotoxicity assessment have been applied to a restricted extent. Here we utilized 2DE and 1H NMR based proteomics and metabolomics respectively to delineate the toxicity mechanism of zinc oxide nanoparticles (ZnO-NPs) in budding yeast S. cerevisiae. We found that the physiological and metabolic processes were altered in the S. cerevisiae upon ZnO-NPs exposure. Almost 40% proteins were down-regulated in ZnO-NPs (10 mg L−1) exposed cell as compared to control. Metabolomics and system biology based pathway analysis, revealed that ZnO-NPs repressed a wide range of key metabolites involved in central carbon metabolism, cofactors synthesis, amino acid and fatty acid biosynthesis, purines and pyrimidines, nucleoside and nucleotide biosynthetic pathways. These metabolic changes may be associated with the energy metabolism, antioxidation, DNA and protein damage and membrane stability. We concluded that untargeted proteomic and metabolic approaches provide more complete measurements and suggest probable molecular mechanisms of nanomaterials toxicity.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
71
|
Zeman T, Loh EW, Čierný D, Šerý O. Penetration, distribution and brain toxicity of titanium nanoparticles in rodents' body: a review. IET Nanobiotechnol 2018; 12:695-700. [PMID: 30104440 PMCID: PMC8676074 DOI: 10.1049/iet-nbt.2017.0109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
Titanium dioxide (TiO2) has been vastly used commercially, especially as white pigment in paints, colorants, plastics, coatings, cosmetics. Certain industrial uses TiO2 in diameter <100 nm. There are three common exposure routes for TiO2: (i) inhalation exposure, (ii) exposure via gastrointestinal tract, (iii) dermal exposure. Inhalation and gastrointestinal exposure appear to be the most probable ways of exposure, although nanoparticle (NP) penetration is limited. However, the penetration rate may increase substantially when the tissue is impaired. When TiO2 NPs migrate into the circulatory system, they can be distributed into all tissues including brain. In brain, TiO2 lead to oxidative stress mediated by the microglia phagocytic cells which respond to TiO2 NPs by the production and release of superoxide radicals that convert to multiple reactive oxygen species (ROS). The ROS production may also cause the damage of blood-brain barrier which then becomes more permeable for NPs. Moreover, several studies have showed neuron degradation and the impairment of spatial recognition memory and learning abilities in laboratory rodent exposed to TiO2 NPs.
Collapse
Affiliation(s)
- Tomáš Zeman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - El-Wui Loh
- Center for Evidence - based Health Care, Taipei Medical University - Shuang Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Daniel Čierný
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine in Martin, Kollárova 2, 03659 Martin, Slovak Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00 Brno, Czech Republic.
| |
Collapse
|
72
|
Valentini X, Deneufbourg P, Paci P, Rugira P, Laurent S, Frau A, Stanicki D, Ris L, Nonclercq D. Morphological alterations induced by the exposure to TiO 2 nanoparticles in primary cortical neuron cultures and in the brain of rats. Toxicol Rep 2018; 5:878-889. [PMID: 30175048 PMCID: PMC6118103 DOI: 10.1016/j.toxrep.2018.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/17/2022] Open
Abstract
Nowadays, nanoparticles (NPs) of titanium dioxide (TiO2) are abundantly produced. TiO2 NPs are present in various food products, in paints, cosmetics, sunscreens and toothpastes. However, the toxicity of TiO2 NPs on the central nervous system has been poorly investigated until now. The aim of this study was to evaluate the toxicity of TiO2 NPs on the central nervous system in vitro and in vivo. In cell cultures derived from embryonic cortical brain of rats, a significant decrease in neuroblasts was observed after 24 to 96 h of incubation with TiO2 NPs (5 to 20 μg/ml). This phenomenon resulted from an inhibition of neuroblast proliferation and a concomitant increase in apoptosis. In the same time, a gliosis, characterized by an increase in proliferation of astrocytes and the hypertrophy of microglial cells, occurred. The phagocytosis of TiO2 NPs by microgliocytes was also observed. In vivo, after intraperitoneal injection, the TiO2 NPs reached the brain through the blood brain barrier and the nanoparticles promoted various histological injuries such as cellular lysis, neuronal apoptosis, and inflammation. A reduction of astrocyte population was observed in some brain area such as plexiform zone, cerebellum and subependymal area. An oxidative stress was also detected by immunohistochemistry in neurons of hippocampus, cerebellum and in subependymal area. In conclusion, our study demonstrated clearly the toxic impact of TiO2 NPs on rat brain and neuronal cells and pointed about not yet referenced toxicity impacts of TiO2 such as the reduction of neuroblast proliferation both in vitro and in vivo.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- ATP, adenosine triphosphate
- BBB, blood-brain barrier
- Brain
- BrdU, 5-Bromo-2′-deoxyuridine
- CNS, central nervous system
- Cell culture
- DLS, dynamic light scattering
- FBS, fetal bovine serum
- GFAP, glial fibrillary acidic protein
- HBSS, Hank's balanced salt solution
- IL-10, interleukin-10
- IL-1β, interleukin-1β
- IP, intraperitoneal
- MAP2, microtubule-associated protein 2
- MDA, malondialdehyde
- NMDA, N-methyl-D-aspartate
- NO, nitric oxide
- NOS, nitric oxide synthase
- NPs, nanoparticles
- Nanoparticles
- Oxidative stress
- Proliferation
- ROS, reactive oxygen species
- SEM, standard error of the mean
- TNF-α, tumor necrosis factor-α
Collapse
Affiliation(s)
- Xavier Valentini
- Laboratory of Histology, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Pauline Deneufbourg
- Laboratory of Neurosciences, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Paula Paci
- Laboratory of Neurosciences, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Pascaline Rugira
- Laboratory of Histology, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Sophie Laurent
- Laboratory of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Institute for Health Sciences and Technology, Institute of Biosciences, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), B-6041 Gosselies, Belgium
| | - Annica Frau
- Laboratory of Histology, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Dimitri Stanicki
- Laboratory of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Institute for Health Sciences and Technology, Institute of Biosciences, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Laurence Ris
- Laboratory of Neurosciences, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Denis Nonclercq
- Laboratory of Histology, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
- Corresponding author at: 6, Avenue du Champ de Mars, Mons, 7000, Belgium.
| |
Collapse
|
73
|
Xiang X, Gao T, Zhang BR, Jiang FL, Liu Y. Surface functional groups affect CdTe QDs behavior at mitochondrial level. Toxicol Res (Camb) 2018; 7:1071-1080. [PMID: 30542601 DOI: 10.1039/c8tx00160j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
Quantum dots (QDs) are used in the bio-medical area because of their excellent optical properties. Their biomedical utilization has remained a serious biosecurity concern. Cytotoxicity experiments have shown that QD toxicity is connected to the properties of the QDs. In this paper, the toxicity of QDs was studied from the aspect of surface functional groups at the mitochondrial level. Three types of ligands, thioglycollic acid (TGA), mercaptoethylamine (MEA) and l-cysteine (l-Cys), which have similar structures but different functional groups were used to coat CdTe QDs. The effects of the three types of CdTe QDs on mitochondria were then observed. The experimental results showed the three types of CdTe QDs could impair mitochondrial respiration, destroy membrane potential and induce mitochondrial swelling. Interestingly, MEA-CdTe QDs showed similar effects on membrane potential and mitochondrial swelling as did l-Cys-CdTe QDs, while TGA-CdTe QDs showed stronger effects than that of the two other QDs. Moreover, the three types of CdTe QDs showed significantly different effects on mitochondrial membrane fluidity. MEA-CdTe QDs decreased mitochondrial membrane fluidity, l-Cys-CdTe QDs showed no obvious influence on mitochondrial membrane fluidity and TGA-CdTe QDs increased mitochondrial membrane fluidity. The interaction mechanism of CdTe QDs on mitochondrial permeability transition (MPT) pores as well as Cd2+ release by CdTe QDs were checked to determine the reason for their different effects on mitochondria. The results showed that the impact of the three types of CdTe QDs on mitochondria was not only related to the released metal ion, but also to their interaction with MPT pore proteins. This work emphasizes the importance of surface functional groups in the behavior of CdTe QDs at the sub-cellular level.
Collapse
Affiliation(s)
- Xun Xiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667
| | - Tao Gao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667
| | - Bo-Rui Zhang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; ; Tel: +86-27-68756667.,College of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , PR China.,College of Chemistry and Material Science , Guangxi Teachers Education University , Nanning , 530001 , PR China
| |
Collapse
|
74
|
Alcalde LA, de Freitas BS, Machado GDB, de Freitas Crivelaro PC, Dornelles VC, Gus H, Monteiro RT, Kist LW, Bogo MR, Schröder N. Iron chelator deferiprone rescues memory deficits, hippocampal BDNF levels and antioxidant defenses in an experimental model of memory impairment. Biometals 2018; 31:927-940. [PMID: 30117045 DOI: 10.1007/s10534-018-0135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/12/2018] [Indexed: 12/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a key role in neural development and physiology, as well as in pathological states. Post-mortem studies demonstrate that BDNF is reduced in the brains of patients affected by neurodegenerative diseases. Iron accumulation has also been associated to the pathogenesis of neurodegenerative diseases. In rats, iron overload induces persistent memory deficits, increases oxidative stress and apoptotic markers, and decreases the expression of the synaptic marker, synaptophysin. Deferiprone (DFP) is an oral iron chelator used for the treatment of systemic iron overload disorders, and has recently been tested for Parkinson's disease. Here, we investigated the effects of iron overload on BDNF levels and on mRNA expression of genes encoding TrkB, p75NTR, catalase (CAT) and NQO1. We also aimed at investigating the effects of DFP on iron-induced impairments. Rats received iron or vehicle at postnatal days 12-14 and when adults, received chronic DFP or water (vehicle). Recognition memory was tested 19 days after the beginning of chelation therapy. BDNF measurements and expression analyses in the hippocampus were performed 24 h after the last day of DFP treatment. DFP restored memory and increased hippocampal BDNF levels, ameliorating iron-induced effects. Iron overload in the neonatal period reduced, while treatment with DFP was able to rescue, the expression of antioxidant enzymes CAT and NQO1.
Collapse
Affiliation(s)
- Luisa Azambuja Alcalde
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Gustavo Dalto Barroso Machado
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Pedro Castilhos de Freitas Crivelaro
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Victoria Campos Dornelles
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Henrique Gus
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Ricardo Tavares Monteiro
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Mauricio Reis Bogo
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Nadja Schröder
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil. .,National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, 71605-001, Brazil.
| |
Collapse
|
75
|
Huerta-García E, Zepeda-Quiroz I, Sánchez-Barrera H, Colín-Val Z, Alfaro-Moreno E, Ramos-Godinez MDP, López-Marure R. Internalization of Titanium Dioxide Nanoparticles Is Cytotoxic for H9c2 Rat Cardiomyoblasts. Molecules 2018; 23:molecules23081955. [PMID: 30082584 PMCID: PMC6222559 DOI: 10.3390/molecules23081955] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO₂ NPs) are widely used in industry and daily life. TiO₂ NPs can penetrate into the body, translocate from the lungs into the circulation and come into contact with cardiac cells. In this work, we evaluated the toxicity of TiO₂ NPs on H9c2 rat cardiomyoblasts. Internalization of TiO₂ NPs and their effect on cell proliferation, viability, oxidative stress and cell death were assessed, as well as cell cycle alterations. Cellular uptake of TiO₂ NPs reduced metabolic activity and cell proliferation and increased oxidative stress by 19-fold measured as H₂DCFDA oxidation. TiO₂ NPs disrupted the plasmatic membrane integrity and decreased the mitochondrial membrane potential. These cytotoxic effects were related with changes in the distribution of cell cycle phases resulting in necrotic death and autophagy. These findings suggest that TiO₂ NPs exposure represents a potential health risk, particularly in the development of cardiovascular diseases via oxidative stress and cell death.
Collapse
Affiliation(s)
- Elizabeth Huerta-García
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| | - Iván Zepeda-Quiroz
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| | - Helen Sánchez-Barrera
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| | - Zaira Colín-Val
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| | - Ernesto Alfaro-Moreno
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden.
| | - María Del Pilar Ramos-Godinez
- Departamento de Microscopía Electrónica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Colonia Sección XVI, Tlalpan, C.P. 14080 Ciudad de México, Mexico.
| | - Rebeca López-Marure
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| |
Collapse
|
76
|
Rai M, Ingle AP, Paralikar P, Anasane N, Gade R, Ingle P. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Appl Microbiol Biotechnol 2018; 102:6827-6839. [PMID: 29948111 DOI: 10.1007/s00253-018-9145-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/25/2023]
Abstract
Ginger (Zingiber officinale Rosc.) is a tropical plant cultivated all over the world due to its culinary and medicinal properties. It is one of the most important spices commonly used in food, which increases its commercial value. However, soft rot (rhizome rot) is a common disease of ginger caused by fungi such as Pythium and Fusarium spp. It is the most destructive disease of ginger, which can reduce the production by 50 to 90%. Application of chemical fungicides is considered as an effective method to control soft rot of ginger but extensive use of fungicides pose serious risk to environmental and human health. Therefore, the development of ecofriendly and economically viable alternative approaches for effective management of soft rot of ginger such diseases is essentially required. An acceptable approach that is being actively investigated involves nanotechnology, which can potentially be used to control Pythium and Fusarium. The present review is aimed to discuss worldwide status of soft rot associated with ginger, the traditional methods available for the management of Pythium and Fusarium spp. and most importantly, the role of various nanomaterials in the management of soft rot of ginger. Moreover, possible antifungal mechanisms for chemical fungicides, biological agents and nanoparticles have also been discussed.
Collapse
Affiliation(s)
- Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India.
| | - Avinash P Ingle
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, Sao Paulo, Brazil
| | - Priti Paralikar
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India
| | - Netravati Anasane
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India
| | - Rajendra Gade
- Department of Plant Pathology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India
| | - Pramod Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India
| |
Collapse
|
77
|
Chen Q, Wang N, Zhu M, Lu J, Zhong H, Xue X, Guo S, Li M, Wei X, Tao Y, Yin H. TiO 2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biol 2018; 15:266-276. [PMID: 29294438 PMCID: PMC5752088 DOI: 10.1016/j.redox.2017.12.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in food and cosmetics but the health impact of human exposure remains poorly defined. Emerging evidence suggests that TiO2 NPs may elicit immune responses by acting on macrophages. Our proteomic study showed that treatment of macrophages with TiO2 NPs led to significant re-organization of cell membrane and activation of inflammation. These observations were further corroborated with transmission electron microscopy (TEM) experiments, which demonstrated that TiO2 NPs were trapped inside of multi-vesicular bodies (MVB) through endocytotic pathways. TiO2 NP caused significant mitochondrial dysfunction by increasing levels of mitochondrial reactive oxygen species (ROS), decreasing ATP generation, and decreasing metabolic flux in tricarboxylic acid (TCA) cycle from 13C-labelled glutamine using GC-MS-based metabolic flux analysis. Further lipidomic analysis showed that TiO2 NPs significantly decreased levels of cardiolipins, an important class of mitochondrial phospholipids for maintaining proper function of electron transport chains. Furthermore, TiO2 NP exposure activates inflammatory responses by increasing mRNA levels of TNF-α, iNOS, and COX-2. Consistently, our targeted metabolomic analysis showed significantly increased production of COX-2 metabolites including PGD2, PGE2, and 15d-PGJ2. In addition, TiO2 NP also caused significant attenuation of phagocytotic function of macrophages. In summary, our studies utilizing multiple powerful omic techniques suggest that human exposure of TiO2 NPs may have profound impact on macrophage function through activating inflammatory responses and causing mitochondrial dysfunction without physical presence in mitochondria.
Collapse
Affiliation(s)
- Qun Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Ningning Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Mingjiang Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jianhong Lu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Huiqin Zhong
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Xinli Xue
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Shuoyuan Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Xinben Wei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Yongzhen Tao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
78
|
Guo Z, Martucci NJ, Liu Y, Yoo E, Tako E, Mahler GJ. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model. Nanotoxicology 2018; 12:485-508. [PMID: 29668341 DOI: 10.1080/17435390.2018.1463407] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of nanomaterials to enhance properties of food and improve delivery of orally administered drugs has become common, but the potential health effects of these ingested nanomaterials remain unknown. The goal of this study is to characterize the properties of silicon dioxide (SiO2) nanoparticles (NP) that are commonly used in food and food packaging, and to investigate the effects of physiologically realistic doses of SiO2 NP on gastrointestinal (GI) health and function. In this work, an in vitro model composed of Caco-2 and HT29-MTX co-cultures, which represent absorptive and goblet cells, was used. The model was exposed to well-characterized SiO2 NP for acute (4 h) and chronic (5 d) time periods. SiO2 NP exposure significantly affected iron (Fe), zinc (Zn), glucose, and lipid nutrient absorption. Brush border membrane intestinal alkaline phosphatase (IAP) activity was increased in response to nano-SiO2. The barrier function of the intestinal epithelium, as measured by transepithelial electrical resistance, was significantly decreased in response to chronic exposure. Gene expression and oxidative stress formation analysis showed NP altered the expression levels of nutrient transport proteins, generated reactive oxygen species, and initiated pro-inflammatory signaling. SiO2 NP exposure damaged the brush border membrane by decreasing the number of intestinal microvilli, which decreased the surface area available for nutrient absorption. SiO2 NP exposure at physiologically relevant doses ultimately caused adverse outcomes in an in vitro model.
Collapse
Affiliation(s)
- Zhongyuan Guo
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Nicole J Martucci
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Yizhong Liu
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Eusoo Yoo
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Elad Tako
- b Plant, Soil and Nutrition Laboratory , Agricultural Research Services, U.S. Department of Agriculture , Ithaca , NY , USA
| | - Gretchen J Mahler
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| |
Collapse
|
79
|
Ouyang S, Hu X, Zhou Q, Li X, Miao X, Zhou R. Nanocolloids in Natural Water: Isolation, Characterization, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4850-4860. [PMID: 29554418 DOI: 10.1021/acs.est.7b05364] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocolloids are widespread in natural water systems, but their characterization and ecological risks are largely unknown. Herein, tangential flow ultrafiltration (TFU) was used to separate and concentrate nanocolloids from surface waters. Unexpectedly, nanocolloids were present in high concentrations ranging from 3.7 to 7.2 mg/L in the surface waters of the Harihe River in Tianjin City, China. Most of the nanocolloids were 10-40 nm in size, contained various trace metals and polycyclic aromatic hydrocarbons, and exhibited fluorescence properties. Envelopment effects and aggregation of Chlorella vulgaris in the presence of nanocolloids were observed. Nanocolloids entered cells and nanocolloid-exposed cells exhibited stronger plasmolysis, chloroplast damage and more starch grains than the control cells. Moreover, nanocolloids inhibited the cell growth, promoted reactive oxygen species (ROS), reduce the chlorophyll a content and increased the cell permeability. The genotoxicity of nanocolloids was also observed. The metabolomics analysis revealed a significant ( p < 0.05) downregulation of amino acids and upregulation of fatty acids contributing to ROS increase, chlorophyll a decrease and plasmolysis. The present work reveals that nanocolloids, which are different from specific, engineered nanoparticles (e.g., Ag nanoparticles), are present at high concentrations, exhibit an obvious toxicity in environments, and deserve more attention in the future.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xinyu Miao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Ruiren Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| |
Collapse
|
80
|
Jin Y, Chen S, Li N, Liu Y, Cheng G, Zhang C, Wang S, Zhang J. Defect-related luminescent bur-like hydroxyapatite microspheres induced apoptosis of MC3T3-E1 cells by lysosomal and mitochondrial pathways. SCIENCE CHINA-LIFE SCIENCES 2018; 61:464-475. [PMID: 29623549 DOI: 10.1007/s11427-017-9258-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022]
Abstract
When orthopedic joints coated by hydroxyapatite (HA) were implanted in the human body, they release wear debris into the surrounding tissues. The generation and accumulation of wear particles will induce aseptic loosening. However, the potential bioeffect and mechanism of HA-coated orthopedic implants on bone cells are poorly understood. In this study, defect-related luminescent bur-like hydroxyapatite (BHA) microspheres with the average diameter of 7-9 μm which are comparable to that of the wear-debris particles from aseptically loosened HA implants or HA debris have been synthesized by hydrothermal synthesis and the MC3T3-E1 cells were set as a cells model to study the potential bioeffect and mechanism of BHA microspheres. The studies demonstrated that BHA microspheres could be taken into MC3T3-E1 cells via endocytosis involved in micropinocytosis- and clathrin-mediated endocytosis process, and exert cytotoxicity effect. BHA microspheres could induce the cell apoptosis by intracellular production of reactive oxygen species (ROS), which led to not only an increase in the permeability of lysosome and release of cathepsins B, but also mitochondrial dysfunction and DNA damage. Our results provide novel evidence to elucidate their toxicity mechanisms and might be helpful for more reasonable applications of HA-based orthopaedic implants in the future.
Collapse
Affiliation(s)
- Yi Jin
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
- Medical College of Hebei University, Baoding, 071000, China
| | - Shizhu Chen
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Nan Li
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Yajing Liu
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Gong Cheng
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Cuimiao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Shuxiang Wang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
81
|
Mohamed K, Zine K, Fahima K, Abdelfattah E, Sharifudin SM, Duduku K. NiO nanoparticles induce cytotoxicity mediated through ROS generation and impairing the antioxidant defense in the human lung epithelial cells (A549): Preventive effect of Pistacia lentiscus essential oil. Toxicol Rep 2018; 5:480-488. [PMID: 29854619 PMCID: PMC5977410 DOI: 10.1016/j.toxrep.2018.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Nickel oxide nanoparticles (NiO NPs) have attracted increasing attention owing to potential capacity to penetrate to several human cell systems and exert a toxic effect. Elsewhere, the use of medicinal plants today is the form of the most widespread medicine worldwide. Utilizing aromatic plants as interesting source of phytochemicals constitute one of the largest scientific concerns. Thus this study was focused to investigate antioxidant and cytoprotective effects of essential oil of a Mediterranean plant P. lentiscus (PLEO) on NiO NPs induced cytotoxicity and oxidative stress in human lung epithelial cells (A549). The obtained results showed that cell viability was reduced by NiO NPs, who's also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species and reduction of antioxidant enzymes activities. Our results also demonstrated that PLEO contains high amounts in terpinen-4-ol (11.49%), germacrene D (8.64%), α-pinene (5.97%), sabinene (5.19%), caryophyllene (5.10%) and δ-Cadinene (4.86%). PLEO exhibited a potent antioxidant capacity by cell viability improving, ROS scavenging and enhancing the endogenous antioxidant system against NiO NPs in this model of cells. The present work demonstrated, for the first time, the protective activity of PLEO against cell oxidative damage induced by NiO NPs. It was suggested that this plant essential oil could be use as a cells protector.
Collapse
Affiliation(s)
- Khiari Mohamed
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, 23000 Annaba, Algeria.,Phytochemical Laboratory, Department of Chemical Engineering, Faculty of Engineering, University Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| | - Kechrid Zine
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, 23000 Annaba, Algeria
| | - Klibet Fahima
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, 23000 Annaba, Algeria
| | - Elfeki Abdelfattah
- Laboratory of Ecophysiology Animal, Faculty of Science, University of Sfax, 3038 Sfax, Tunisia
| | - Shaarani Md Sharifudin
- Faculty of Food Science and Nutrition, University Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Krishnaiah Duduku
- Phytochemical Laboratory, Department of Chemical Engineering, Faculty of Engineering, University Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| |
Collapse
|
82
|
Li YS, Ootsuyama Y, Kawasaki Y, Morimoto Y, Higashi T, Kawai K. Oxidative DNA damage in the rat lung induced by intratracheal instillation and inhalation of nanoparticles. J Clin Biochem Nutr 2018; 62:238-241. [PMID: 29892162 PMCID: PMC5990410 DOI: 10.3164/jcbn.17-70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022] Open
Abstract
Nanoparticles are widely used as useful industrial materials. Therefore, their possible adverse health effects must be appraised. We assessed and compared the oxidative DNA damage caused by four different nanoparticles (TiO2, NiO, ZnO and CeO2). The effects of the administration methods, intratracheal instillation and inhalation, were also evaluated. Rats were subjected to intratracheal instillations or 4 weeks of inhalation exposure to the nanoparticles, and the 8-hydroxydeoxyguanosine (8-OHdG) levels in the lung were analyzed by an HPLC-EC detector method. The 8-OHdG levels were increased in a dose-dependent manner with the inhalation of NiO. ZnO also increased the 8-OHdG levels with inhalation. In comparison with the control, the 8-OHdG levels were significantly and persistently higher with the CeO2 nanoparticle administration, by both intratracheal instillation and inhalation. In contrast, there were no significant differences in the 8-OHdG levels between the control and TiO2 nanoparticle-treated groups, with either intratracheal instillation or inhalation during the observation period. These results indicated that NiO, ZnO and CeO2 nanoparticles generate significant amounts of free radicals, and oxidative stress may be responsible for the lung injury caused by these nanoparticles. In addition, both intratracheal instillation and inhalation exposure induced similar tendencies of oxidative DNA damage with these nanoparticles.
Collapse
Affiliation(s)
- Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yuko Ootsuyama
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Toshiaki Higashi
- President, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
83
|
Nichols CE, Shepherd DL, Hathaway QA, Durr AJ, Thapa D, Abukabda A, Yi J, Nurkiewicz TR, Hollander JM. Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology 2018; 12:32-48. [PMID: 29243970 PMCID: PMC5777890 DOI: 10.1080/17435390.2017.1416202] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022]
Abstract
Nanotechnology offers innovation in products from cosmetics to drug delivery, leading to increased engineered nanomaterial (ENM) exposure. Unfortunately, health impacts of ENM are not fully realized. Titanium dioxide (TiO2) is among the most widely produced ENM due to its use in numerous applications. Extrapulmonary effects following pulmonary exposure have been identified and may involve reactive oxygen species (ROS). The goal of this study was to determine the extent of ROS involvement on cardiac function and the mitochondrion following nano-TiO2 exposure. To address this question, we utilized a transgenic mouse model with overexpression of a novel mitochondrially-targeted antioxidant enzyme (phospholipid hydroperoxide glutathione peroxidase; mPHGPx) which provides protection against oxidative stress to lipid membranes. MPHGPx mice and littermate controls were exposed to nano-TiO2 aerosols (Evonik, P25) to provide a calculated pulmonary deposition of 11 µg/mouse. Twenty-four hours following exposure, we observed diastolic dysfunction as evidenced by E/A ratios greater than 2 and increased radial strain during diastole in wild-type mice (p < 0.05 for both), indicative of restrictive filling. Overexpression of mPHGPx mitigated the contractile deficits resulting from nano-TiO2 exposure. To investigate the cellular mechanisms associated with the observed cardiac dysfunction, we focused our attention on the mitochondrion. We observed a significant increase in ROS production (p < 0.05) and decreased mitochondrial respiratory function (p < 0.05) following nano-TiO2 exposure which were attenuated in mPHGPx transgenic mice. In summary, nano-TiO2 inhalation exposure is associated with cardiac diastolic dysfunction and mitochondrial functional alterations, which can be mitigated by the overexpression of mPHGPx, suggesting ROS contribution in the development of contractile and bioenergetic dysfunction.
Collapse
Affiliation(s)
- Cody E. Nichols
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Danielle L. Shepherd
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Quincy A. Hathaway
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Andrya J. Durr
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Dharendra Thapa
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Alaeddin Abukabda
- Department of Physiology and Pharmacology; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Jinghai Yi
- Department of Physiology and Pharmacology; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Timothy R. Nurkiewicz
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
- Department of Physiology and Pharmacology; West Virginia University School of Medicine, Morgantown, WV 26506
| | - John M. Hollander
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
84
|
Bencsik A, Lestaevel P, Guseva Canu I. Nano- and neurotoxicology: An emerging discipline. Prog Neurobiol 2018; 160:45-63. [DOI: 10.1016/j.pneurobio.2017.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 09/10/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022]
|
85
|
Lovisolo D, Dionisi M, A. Ruffinatti F, Distasi C. Nanoparticles and potential neurotoxicity: focus on molecular mechanisms. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
86
|
Wu T, Tang M. The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system. Nanomedicine (Lond) 2017; 13:233-249. [PMID: 29199887 DOI: 10.2217/nnm-2017-0270] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the increasing number of neurotoxicological studies on metal-containing nanoparticles (NPs), the NP-induced neuroinflammation has not yet been well understood. This review provides a comprehensive understanding of inflammatory responses to two typical metal-containing NPs, namely silver NPs (Ag-NPs) and titanium dioxide NPs (TiO2-NPs). Ag-NPs and TiO2-NPs could translocate into the CNS through damaged blood-brain barrier, nerve afferent signaling and eye-to-brain ways, and even cell uptake. NPs could stimulate the activation of glial cells to release proinflammatory cytokines and generate reactive oxygen species and nitric oxide production, resulting in the neuroinflammation. The potential mechanisms of Ag-NPs and TiO2-NPs causing inflammation are complex, including several immune response relevant signaling pathways. Some parameters governing their ability to cause neuroinflammation are presented as well.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science & Technology, Southeast University, Nanjing 210009, China.,Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science & Technology, Southeast University, Nanjing 210009, China.,Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing 210009, China
| |
Collapse
|
87
|
Fetterman JL, Sammy MJ, Ballinger SW. Mitochondrial toxicity of tobacco smoke and air pollution. Toxicology 2017; 391:18-33. [PMID: 28838641 PMCID: PMC5681398 DOI: 10.1016/j.tox.2017.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Melissa J Sammy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States.
| |
Collapse
|
88
|
Xiang X, Wu C, Zhang BR, Gao T, Zhao J, Ma L, Jiang FL, Liu Y. The relationship between the length of surface ligand and effects of CdTe quantum dots on the physiological functions of isolated mitochondria. CHEMOSPHERE 2017; 184:1108-1116. [PMID: 28672691 DOI: 10.1016/j.chemosphere.2017.06.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The potential toxicity of Quantum dots (QDs) should be assessed comprehensively for their fast spreading applications. Many studies have shown the toxicity of QDs is associated with their surface ligands. In this work, two analog ligands with one carbon difference, 2-mercaptoacetic acid (TGA) and 3-mercaptopropionic acid (MPA) were used as coating materials in the syntheses of two types of CdTe QDs with similar physicochemical properties. Then the biological effects of QDs on isolated mitochondria were studied. It was found that the two types of QDs could impair mitochondrial respiration and induce mitochondrial permeability transition (MPT). However, as compared with TGA-CdTe QDs, MPA-CdTe QDs had a stronger effect on MPT. The weaker effect of TGA-CdTe QDs on MPT might be owing to their better stability and thus less amount of released Cd2+, which could be further explained by the stronger affinity between the ligand (TGA) and the cadmium complexes in the crystal growth of QDs. These results highlighted the importance of ligands responsible for the toxicity of QDs at the sub-cellular level.
Collapse
Affiliation(s)
- Xun Xiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Can Wu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Bo-Rui Zhang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Tao Gao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jie Zhao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Long Ma
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
89
|
Therapeutic targets in the selective killing of cancer cells by nanomaterials. Clin Chim Acta 2017; 469:53-62. [DOI: 10.1016/j.cca.2017.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/19/2017] [Accepted: 03/19/2017] [Indexed: 12/13/2022]
|
90
|
Ruszkiewicz JA, Pinkas A, Ferrer B, Peres TV, Tsatsakis A, Aschner M. Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol Rep 2017; 4:245-259. [PMID: 28959646 PMCID: PMC5615097 DOI: 10.1016/j.toxrep.2017.05.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023] Open
Abstract
Sunscreen application is the main strategy used to prevent the maladies inflicted by ultraviolet (UV) radiation. Despite the continuously increasing frequency of sunscreen use worldwide, the prevalence of certain sun exposure-related pathologies, mainly malignant melanoma, is also on the rise. In the past century, a variety of protective agents against UV exposure have been developed. Physical filters scatter and reflect UV rays and chemical filters absorb those rays. Alongside the evidence for increasing levels of these agents in the environment, which leads to indirect exposure of wildlife and humans, recent studies suggest a toxicological nature for some of these agents. Reviews on the role of these agents in developmental and endocrine impairments (both pathology and related mechanisms) are based on both animal and human studies, yet information regarding the potential neurotoxicity of these agents is scant. In this review, data regarding the neurotoxicity of several organic filters: octyl methoxycinnamate, benzophenone-3 and −4, 4-methylbenzylidene camphor, 3-benzylidene camphor and octocrylene, and two allowed inorganic filters: zinc oxide and titanium dioxide, is presented and discussed. Taken together, this review advocates revisiting the current safety and regulation of specific sunscreens and investing in alternative UV protection technologies.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Adi Pinkas
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Crete, Greece
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
91
|
Li J, Sang H, Guo H, Popko JT, He L, White JC, Parkash Dhankher O, Jung G, Xing B. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. NANOTECHNOLOGY 2017; 28:155101. [PMID: 28294107 DOI: 10.1088/1361-6528/aa61f3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fungicides have extensively been used to effectively combat fungal diseases on a range of plant species, but resistance to multiple active ingredients has developed in pathogens such as Sclerotinia homoeocarpa, the causal agent of dollar spot on cool-season turfgrasses. Recently, ZnO and Ag nanoparticles (NPs) have received increased attention due to their antimicrobial activities. In this study, the NPs' toxicity and mechanisms of action were investigated as alternative antifungal agents against S. homoeocarpa isolates that varied in their resistance to demethylation inhibitor (DMI) fungicides. S. homoeocarpa isolates were treated with ZnO NPs and ZnCl2 (25-400 μg ml-1) and Ag NPs and AgNO3 (5-100 μg ml-1) to test antifungal activity of the NPs and ions. The mycelial growth of S. homoeocarpa isolates regardless of their DMI sensitivity was significantly inhibited on ZnO NPs (≥200 μg ml-1), Ag NPs (≥25 μg ml-1), Zn2+ ions (≥200 μg ml-1), and Ag+ ions (≥10 μg ml-1) amended media. Expression of stress response genes, glutathione S-transferase (Shgst1) and superoxide dismutase 2 (ShSOD2), was significantly induced in the isolates by exposure to the NPs and ions. In addition, a significant increase in the nucleic acid contents of fungal hyphae, which may be due to stress response, was observed upon treatment with Ag NPs using Raman spectroscopy. We further observed that a zinc transporter (Shzrt1) might play an important role in accumulating ZnO and Ag NPs into the cells of S. homoeocarpa due to overexpression of Shzrt1 significantly induced by ZnO or Ag NPs within 3 h of exposure. Yeast mutants complemented with Shzrt1 became more sensitive to ZnO and Ag NPs as well as Zn2+ and Ag+ ions than the control strain and resulted in increased Zn or Ag content after exposure. This is the first report of involvement of the zinc transporter in the accumulation of Zn and Ag from NP exposure in filamentous plant pathogenic fungi. Understanding the molecular mechanisms of NPs' antifungal activities will be useful in developing effective management strategies to control important pathogenic fungal diseases.
Collapse
Affiliation(s)
- Junli Li
- Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003, United States of America. School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem. Bioinorg Chem Appl 2017; 2017:4101735. [PMID: 28373829 PMCID: PMC5360948 DOI: 10.1155/2017/4101735] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/08/2017] [Indexed: 01/21/2023] Open
Abstract
Although nanoparticles (NPs) have made incredible progress in the field of nanotechnology and biomedical research and their applications are demanded throughout industrial world particularly over the past decades, little is known about the fate of nanoparticles in ecosystem. Concerning the biosafety of nanotechnology, nanotoxicity is going to be the second most priority of nanotechnology that needs to be properly addressed. This review covers the chemical as well as the biological concerns about nanoparticles particularly titanium dioxide (TiO2) NPs and emphasizes the toxicological profile of TiO2 at the molecular level in both in vitro and in vivo systems. In addition, the challenges and future prospects of nanotoxicology are discussed that may provide better understanding and new insights into ongoing and future research in this field.
Collapse
|
93
|
SMN Mydin RB, Sreekantan S, Hazan R, Farid Wajidi MF, Mat I. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3708048. [PMID: 28337249 PMCID: PMC5350423 DOI: 10.1155/2017/3708048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Abstract
Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.
Collapse
Affiliation(s)
- Rabiatul Basria SMN Mydin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Srimala Sreekantan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 South Seberang Perai, Penang, Malaysia
| | - Roshasnorlyza Hazan
- Materials Technology Group, Industrial Technology Division, Nuclear Malaysia Agency, Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Ishak Mat
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| |
Collapse
|
94
|
Li F, Xu K, Ni M, Wang B, Gu Z, Shen W, Li B. Effect of oxidative phosphorylation signaling pathway on silkworm midgut following exposure to phoxim. ENVIRONMENTAL TOXICOLOGY 2017; 32:167-175. [PMID: 26608777 DOI: 10.1002/tox.22222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Organophosphate pesticides are applied widely in the world for agricultural purposes, and their exposures often resulted in non-cocooning of Bombyx mori in China. Silkworm midgut is the major organ for digestion and nutrient absorption, importantly it is also a barrier against foreign substances and chemical pesticides. The purpose of this study was to determine the mechanism of oxidative injury in silkworm midgut with phoxim induction. The results showed that the transcription level of oxidative phosphorylation signaling pathway genes of midgut under phoxim stress. Digital gene expression (DGE) analysis revealed that 24 electron transport chain (ETC)-related genes were upregulated. Quantitative real time polymerase chain reaction results indicated that the ETC the genes encoding NADH-CoQ1, Succinic-Q, cyt c reductase-S, cyt c oxidase-S, cytochrome c oxidase polypeptide IV, ATP synthase, and vacuolar H+ ATP synthase were all significantly up-regulated by 1.50-, 1.31-, 1.42-, 1.44-, 1.70-, 2.03- and 1.43-fold, respectively. Phoxim induction enhanced the activity of ETC complex in mitochondria, and induced the accumulation of ROS in midgut. These results indicated that trace phoxim enhanced respiration in midgut, and the imbalance between the activity changes of ETC may led to reactive oxygen species accumulation. The ETC of mitochondria may be potential biomarkers of midgut toxicity in B. mori caused by phoxim exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 167-175, 2017.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Kaizun Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Min Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Binbin Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Zhiya Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Weide Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| |
Collapse
|
95
|
Song B, Zhou T, Yang W, Liu J, Shao L. Contribution of oxidative stress to TiO 2 nanoparticle-induced toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:130-140. [PMID: 27771506 DOI: 10.1016/j.etap.2016.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
With the rapid development of nanotechnology, titanium dioxide nanoparticles (TNPs) are widely used in many fields. People in such workplaces or researchers in laboratories are at a higher risk of being exposed to TNPs, so are the consumers. Moreover, increasing evidence revealed that the concentrations of TNPs are elevated in animal organs after systematic exposure and such accumulated TNPs could induce organ dysfunction. Although cellular responses such as oxidative stress, inflammatory response, apoptosis, autophagy, signaling pathways, and genotoxic effects contribute to the toxicity of TNPs, the interrelationship among them remains obscure. Given the pivotal role of oxidative stress, we summarized relevant articles covering the involvement of oxidative stress in TNPs' toxicity and found that TNP-induced oxidative stress might play a central role in toxic mechanisms. However, available data are far from being conclusive and more investigations should be performed to further confirm whether the toxicity of TNPs might be attributed in part to the cascades of oxidative stress. Tackling this uncertain issue may help us to comprehensively understand the interrelationship among toxic cellular responses induced by TNPs and might shed some light on methods to alleviate toxicity of TNPs.
Collapse
Affiliation(s)
- Bin Song
- Guizhou Provincial People's Hospital, Guiyang 550002, China; Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ting Zhou
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - WenLong Yang
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - LongQuan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
96
|
Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress? NANOSCALE RESEARCH LETTERS 2016; 11:291. [PMID: 27295259 PMCID: PMC4905860 DOI: 10.1186/s11671-016-1508-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/30/2016] [Indexed: 05/31/2023]
Abstract
With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.
Collapse
Affiliation(s)
- Bin Song
- />Guizhou Provincial People’s Hospital, Guiyang, 550002 China
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - YanLi Zhang
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - XiaoLi Feng
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Ting Zhou
- />Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - LongQuan Shao
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
97
|
Toxicity assessment of anatase and rutile titanium dioxide nanoparticles: The role of degradation in different pH conditions and light exposure. Toxicol In Vitro 2016; 37:201-210. [DOI: 10.1016/j.tiv.2016.09.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/14/2016] [Accepted: 09/09/2016] [Indexed: 12/27/2022]
|
98
|
Song B, Zhou T, Liu J, Shao L. Involvement of Programmed Cell Death in Neurotoxicity of Metallic Nanoparticles: Recent Advances and Future Perspectives. NANOSCALE RESEARCH LETTERS 2016; 11:484. [PMID: 27813025 PMCID: PMC5095106 DOI: 10.1186/s11671-016-1704-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/24/2016] [Indexed: 05/31/2023]
Abstract
The widespread application of metallic nanoparticles (NPs) or NP-based products has increased the risk of exposure to NPs in humans. The brain is an important organ that is more susceptible to exogenous stimuli. Moreover, any impairment to the brain is irreversible. Recently, several in vivo studies have found that metallic NPs can be absorbed into the animal body and then translocated into the brain, mainly through the blood-brain barrier and olfactory pathway after systemic administration. Furthermore, metallic NPs can cross the placental barrier to accumulate in the fetal brain, causing developmental neurotoxicity on exposure during pregnancy. Therefore, metallic NPs become a big threat to the brain. However, the mechanisms underlying the neurotoxicity of metallic NPs remain unclear. Programmed cell death (PCD), which is different from necrosis, is defined as active cell death and is regulated by certain genes. PCD can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. It is involved in brain development, neurodegenerative disorders, psychiatric disorders, and brain injury. Given the pivotal role of PCD in neurological functions, we reviewed relevant articles and tried to summarize the recent advances and future perspectives of PCD involvement in the neurotoxicity of metallic NPs, with the purpose of comprehensively understanding the neurotoxic mechanisms of NPs.
Collapse
Affiliation(s)
- Bin Song
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Ting Zhou
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - LongQuan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
99
|
De Simone U, Lonati D, Ronchi A, Coccini T. Brief exposure to nanosized and bulk titanium dioxide forms induces subtle changes in human D384 astrocytes. Toxicol Lett 2016; 254:8-21. [DOI: 10.1016/j.toxlet.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
|
100
|
Indirect effects of TiO2 nanoparticle on neuron-glial cell interactions. Chem Biol Interact 2016; 254:34-44. [PMID: 27216632 DOI: 10.1016/j.cbi.2016.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Although, titanium dioxide nanoparticles (TiO2NPs) are nanomaterials commonly used in consumer products, little is known about their hazardous effects, especially on central nervous systems. To examine this issue, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were exposed to 6 nm of 100% anatase TiO2NPs. A lipopolysaccharide (LPS) was pre-treated to activate glial cells before NP treatment for mimicking NP exposure under brain injury. We found that ALT and BV-2 cells took up more NPs than N2a cells and caused lower cell viability. TiO2NPs induced IL-1β in the three cell lines and IL-6 in N2a. LPS-activated BV-2 took up more TiO2NPs than normal BV-2 and released more intra/extracellular reactive oxygen species (ROS), IL-1β, IL-6 and MCP-1 than did activated BV-2. Involvement of clathrin- and caveolae-dependent endocytosis in ALT and clathrin-dependent endocytosis and phagocytosis in BV-2 both had a slow NP translocation rate to lysosome, which may cause slow ROS production (after 24 h). Although TiO2NPs did not directly cause N2a viability loss, by indirect NP exposure to the bottom chamber of LPS-activated BV-2 in the Transwell system, they caused late apoptosis and loss of cell viability in the upper N2a chamber due to H2O2 and/or TNF-α release from BV-2. However, none of the adverse effects in N2a or BV-2 cells was observed when TiO2NPs were exposed to ALT-N2a or ALT-BV-2 co-culture. These results demonstrate that neuron damage can result from TiO2NP-mediated ROS and/or cytokines release from microglia, but not from astrocytes.
Collapse
|