51
|
Deiana M, Josse P, Dalinot C, Osmolovskyi A, Marqués PS, Castán JMA, Abad Galán L, Allain M, Khrouz L, Maury O, Le Bahers T, Blanchard P, Dabos-Seignon S, Monnereau C, Sabouri N, Cabanetos C. Site-selected thionated benzothioxanthene chromophores as heavy-atom-free small-molecule photosensitizers for photodynamic therapy. Commun Chem 2022; 5:142. [PMID: 36697939 PMCID: PMC9814739 DOI: 10.1038/s42004-022-00752-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/07/2022] [Indexed: 01/27/2023] Open
Abstract
Photodynamic therapy is a clinically approved anticancer modality that employs a light-activated agent (photosensitizer) to generate cytotoxic reactive oxygen species (ROS). There is therefore a growing interest for developing innovative photosensitizing agents with enhanced phototherapeutic performances. Herein, we report on a rational design synthetic procedure that converts the ultrabright benzothioxanthene imide (BTI) dye into three heavy-atom-free thionated compounds featuring close-to-unit singlet oxygen quantum yields. In contrast to the BTI, these thionated analogs display an almost fully quenched fluorescence emission, in agreement with the formation of highly populated triplet states. Indeed, the sequential thionation on the BTI scaffold induces torsion of its skeleton reducing the singlet-triplet energy gaps and enhancing the spin-orbit coupling. These potential PSs show potent cancer-cell ablation under light irradiation while remaining non-toxic under dark condition owing to a photo-cytotoxic mechanism that we believe simultaneously involves singlet oxygen and superoxide species, which could be both characterized in vitro. Our study demonstrates that this simple site-selected thionated platform is an effective strategy to convert conventional carbonyl-containing fluorophores into phototherapeutic agents for anticancer PDT.
Collapse
Affiliation(s)
- Marco Deiana
- grid.12650.300000 0001 1034 3451Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Pierre Josse
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Clément Dalinot
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Artem Osmolovskyi
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Pablo Simón Marqués
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - José María Andrés Castán
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Laura Abad Galán
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Magali Allain
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Lhoussain Khrouz
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Olivier Maury
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Tangui Le Bahers
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Philippe Blanchard
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Sylvie Dabos-Seignon
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Cyrille Monnereau
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Nasim Sabouri
- grid.12650.300000 0001 1034 3451Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Clément Cabanetos
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France ,grid.15444.300000 0004 0470 5454IRL CNRS 2002, 2BFUEL, CNRS -Yonsei University, Seoul, South Korea
| |
Collapse
|
52
|
Zhao Y, Sun M, Zhao Y, Wang L, Lu D, Ma J. Electrified ceramic membrane actuates non-radical mediated peroxymonosulfate activation for highly efficient water decontamination. WATER RESEARCH 2022; 225:119140. [PMID: 36167000 DOI: 10.1016/j.watres.2022.119140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Electrified ceramic membranes (ECMs) achieve high water decontamination efficiency mainly through implementing in situ radical-mediated oxidation in membrane filtration, whereas ECMs leveraging non-radical pathways are rarely explored. Herein, we demonstrated a Janus ECM realizing ultra-efficient micropollutant (MP) removal via electro-activating peroxymonosulfate (PMS) in a fast, flow-through single-pass electro-filtration. The Janus ECM features two separate palladium (Pd) functionalized electrocatalytic reaction zones engineered on its two sides. We confirmed that the PMS/electro-filtration system induced non-radical pathways for MP degradation, including singlet oxygenation and mediating direct electron transfer (DET) from MP to PMS. Under the design of the ECM featuring dual electrocatalytic reaction zones in the ceramic membrane intrapores, the Janus ECM showed over one-fold increase in micropollutant removal rate as 94.5% and lower electric energy consumption as 1.78 Wh g-1 MP in the PMS electro-activation process, as compared with the conventional ECM assembly implementing only half-cell reaction. This finding manifested the Janus ECM configuration advantage for maximizing the PMS electro-activation efficiency via singlet oxygenation intensification and direct usage of cathode for DET mediation. The Janus ECM boosted the PMS electro-activation and water decontamination efficiency by enhancing the convective mass transfer and the spatial confinement effect. Our work demonstrated a high-efficiency PMS electro-activation method based on electro-filtration and maximized the non-radical mediated PMS oxidation for MP removal, expanding the ECM filtration strategies for water decontamination.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
53
|
Yao S, Ye J, Xia J, Hu Y, Zhao X, Xie J, Lin K, Cui C. Inactivation and photoreactivation of bla NDM-1-carrying super-resistant bacteria by UV, chlorination and UV/chlorination. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129549. [PMID: 35868090 DOI: 10.1016/j.jhazmat.2022.129549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The excessive dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to a majority of clinical β-lactam antibiotics, has created a major public health problem worldwide. Herein, a blaNDM-1-carrying (plasmid encoded) super-resistant bacterium, Acinetobacter sp. CS-2, was selected to reveal its mechanisms of inactivation and photoreactivation during UV, chlorination and UV/chlorination disinfection. The inactivated CS-2 underwent a certain photoreactivation after UV and chlorination. The logistic model precisely fitted the data obtained in the photoreactivation experiments by UV treatment, with the estimated kinetic parameters Sm (0.530%-12.071%) and k2 (0.0009-0.0471). The photoreactivation of Acinetobacter sp. CS-2 was observed when treated by chlorination at a dosage of 0.5 mg/L with a survival ratio of 34.04%. UV/chlorination not only resulted in the high-efficiency reduction of CS-2 but also effectively controlled its photoreactivation with a survival ratio of 0%- 0.87%. UV/chlorination showed great advantages in causing the irreversible destruction of bacterial surface structures by making the cell membranes wrinkled and incomplete compared with UV disinfection. The singlet oxygen (1O2) generated during UV/chlorination treatment played a vital role in blaNDM-1 removal. This study proposed new insights into the mechanism of inactivation and the characteristics of photoreactivation for the super-resistant bacteria by UV, chlorination and UV/chlorination.
Collapse
Affiliation(s)
- Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianfeng Ye
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jing Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuetao Zhao
- Center for Disease Control & Prevention of Xuhui, Shanghai 200237, China
| | - Jianhao Xie
- Children's Hospital of Fudan University, Shanghai 200233, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai environmental protection key laboratory on environmental standard and risk management of chemical pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
54
|
Yi Q, Li Y, Dai R, Li X, Li Z, Wang Z. Efficient removal of neonicotinoid by singlet oxygen dominated MoS x/ceramic membrane-integrated Fenton-like process. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129672. [PMID: 36104901 DOI: 10.1016/j.jhazmat.2022.129672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Removal of neonicotinoids (NEOs) from contaminated water is of great importance for both ecological environment and human health. However, conventional Fenton process might be insufficient for NEOs removal due to short lifetime for generated HO• and limited Fe3+/Fe2+ redox cycle. Advancing Fenton process to produce singlet oxygen can be an effective route to improve its efficacy for NEOs removal. Herein, we developed a molybdenum sulfide modified ceramic membrane-integrated Fenton-like system to achieve efficient catalytic removal of NEOs. The reduced Mo0 and Mo4+ could promote the reduction process of Fe3+ to Fe2+, improving the activation efficiency of hydrogen peroxide (H2O2) and the generation of superoxide radical (O2•-). Consequently, the coexisting Mo6+ reacted with O2•- to generate 1O2. The membrane enabled the pollutants to adequately contact oxidants due to the enhanced convective mass transfer. The functionalized membrane exhibited stable catalytic performance for clothianidin (CLO, a kind of NEOs, 10 mg/L) removal (degradation efficiency > 85%). The presence of 1O2 enabled the dechlorination and hydroxylation of CLO and thus reduced the toxicity of wastewater. Our work sheds light on the use of functionalized ceramic membrane integrated catalytic Fenton system for effective environmental remediation.
Collapse
Affiliation(s)
- Qiuying Yi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Tongji Advanced Membrane Technology Center, Shanghai 200092, China.
| |
Collapse
|
55
|
Gao J, Ma X, Xu T, Gu Y, Chen X, Chen W, Lu W. Graphitic carbon nitride-based panchromatic composite photocatalysts: Visible light-driven elimination of nicotine and pathogenic microorganisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
56
|
Kong D, Zhao Y, Fan X, Wang X, Li J, Wang X, Nan J, Ma J. Reduced Graphene Oxide Triggers Peracetic Acid Activation for Robust Removal of Micropollutants: The Role of Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11707-11717. [PMID: 35930744 DOI: 10.1021/acs.est.2c02636] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA) serves as a potent and low-toxic oxidant for contaminant removal. Radical-mediated catalytic PAA oxidation processes are typically non-selective, rendering weakened oxidation efficacy under complex water matrices. Herein, we explored the usage of reduced graphene oxide (rGO) for PAA activation via a non-radical pathway. Outperforming the most catalytic PAA oxidation systems, the rGO-PAA system exhibits near-complete removal of typical micropollutants (MPs) within a short time (<2 min). Non-radical direct electron transfer (DET) from MPs to PAA plays a decisive role in the MP degradation, where accelerated DET is achieved by a higher potential of the rGO-PAA reactive surface complexes. Benefitting from DET, the rGO-PAA system shows robust removal of multiple MPs under complex water matrices and with low toxicity. Notably, in the DET regime, the electrostatic attraction of rGO to both PAA and target MP is a critical prerequisite for achieving efficient oxidation, depending on the conditions of solution pH and MP pKa. A heatmap model building on such an electrostatic interaction is further established as guidance for regulating the performance of the DET-mediated PAA oxidation systems. Overall, our work unveils the imperative role of DET for rGO-activated PAA oxidation, expanding the knowledge of PAA-based water treatment strategies.
Collapse
Affiliation(s)
- Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinru Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianshi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxuan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoxiong Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
57
|
Xu C, Liu Q, Wei M, Guo S, Fang Y, Ni Z, Yang X, Zhang S, Qiu R. Co@CoO encapsulated with N-doped carbon nanotubes activated peroxymonosulfate for efficient purification of organic wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
58
|
Caging and photo-triggered uncaging of singlet oxygen by excited state engineering of electron donor-acceptor-linked molecular sensors. Sci Rep 2022; 12:11371. [PMID: 35790770 PMCID: PMC9256616 DOI: 10.1038/s41598-022-15054-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Singlet oxygen (1O2), one of the most sought-after species in oxidative chemical reactions and photodynamic cancer therapy, is activated and neutralized in the atmosphere and living cells. It is essential to see "when" and "where" 1O2 is produced and delivered to understand and utilize it. There is an increasing demand for molecular sensor tools to capture, store, and supply 1O2, controlled by light and engineered singlet and triplet states, indicating the 1O2-capturing-releasing state. Here, we demonstrate the outstanding potential of an aminocoumarin-methylanthracene-based electron donor–acceptor molecule (1). Spectroscopic measurements confirm the formation of an endoperoxide (1-O2) which is not strongly fluorescent and remarkably different from previously reported 1O2 sensor molecules. Moreover, the photoexcitation on the dye in 1-O2 triggers fluorescence enhancement by the oxidative rearrangement and a competing 1O2 release. The unique ability of 1 will pave the way for the spatially and temporally controlled utilization of 1O2 in various areas such as chemical reactions and phototherapies.
Collapse
|
59
|
Ashraf A, Liu G, Yousaf B, Arif M, Ahmed R, Rashid A, Riaz L, Rashid MS. Phyto-mediated photocatalysis: a critical review of in-depth base to reactive radical generation for erythromycin degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32513-32544. [PMID: 35190984 DOI: 10.1007/s11356-022-19119-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Erythromycin (ERY), designated as a risk-prioritized macrolide antibiotic on the 2015 European Union watch list, is the third most commonly used antibiotic, most likely due to its ability to inhibit the protein. ERY has revealed record-high aquatic concentrations threatening the entire ecosystem and hence demands priority remedial measures. The inefficiency of various conventional ERY degradation methodologies opened up a gateway to advanced technologies. The conventional approach comprising of a chemically formulated, single photocatalyst has a major drawback of creating multiple environmental stresses. In this context, photocatalysis is grabbing tremendous attention as an efficient and cost-effective antibiotic treatment approach. Several studies have ascertained that ZnO, TiO2, Fe3O4, and rGO nanoparticles possess remarkable pollution minimizing operational capabilities. Additionally, composites are found much more effective in antibiotic removal than single nanoparticles. In this review, an attempt has been made to provide a comprehensive baseline for efficient reactive radical production by a phyto-mediated composite kept under a certain source of irradiation. Considerable efforts have been directed towards the in-depth investigation of rGO-embedded, phyto-mediated ZnO/TiO2/Fe3O4 photocatalyst fabrication for efficient ERY degradation, undergoing green photocatalysis. This detailed review provides photocatalytic nanocomposite individualities along with a hypothetical ERY degradation mechanism. It is assumed that derived information presented here will provoke innovative ideas for water purification incorporating green photocatalysis, initiating the construction of high-performance biogenic hierarchical nanocatalysts.
Collapse
Affiliation(s)
- Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
60
|
Liu P, Li H, Wu J, Wu X, Shi Y, Yang Z, Huang K, Guo X, Gao S. Polystyrene microplastics accelerated photodegradation of co-existed polypropylene via photosensitization of polymer itself and released organic compounds. WATER RESEARCH 2022; 214:118209. [PMID: 35219184 DOI: 10.1016/j.watres.2022.118209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Combined pollution consisted of various types of microplastics (MPs) was extensively detected in the environment; however, little is known about their interaction on degradation behavior during exposure in sunlight. This study investigated the effects of polystyrene (PS) MPs and mechanisms on photodegradation of pure and commercial polypropylene (PP) MPs co-existed in aquatic environment. Results showed that PS MPs significantly accelerated photodegradation of co-existed PP, including faster oxidation and fragmentation. Photodegradation route of PP MPs such as the reaction priority of partial chemical bindings was even altered with the presence of PS MPs, highlighting the important role of PS in photodegradation process of PP. Analysis of leachate and free radical indicated that the critical effects were derived from photosensitization of PS polymer itself and its released dissolved organic matter (PS-DOM); here, more important role of PS itself in initial period and that of PS-DOM in later period. Among generated ROS, OH· was the key species for accelerating photodegradation of PP by PS itself and its released DOM, which were generated from the reaction of polymer radical with dissolved oxygen. The findings firstly reveal the important role of PS in photodegradation of co-existed MPs and suggested the shorter duration of (micro)plastics in combined system than that in the single, which provide useful information to assess environmental behavior and fate of MPs more holistically.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Huang Li
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Jiajun Wu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Zeyuan Yang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Kerang Huang
- Division of Laboratory Safety and Services, Northwest A & F University, Yangling, 712100, China
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
61
|
Wei W, Mazzotta F, Lieberwirth I, Landfester K, Ferguson CTJ, Zhang KAI. Aerobic Photobiocatalysis Enabled by Combining Core-Shell Nanophotoreactors and Native Enzymes. J Am Chem Soc 2022; 144:7320-7326. [PMID: 35363487 PMCID: PMC9052756 DOI: 10.1021/jacs.2c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biocatalysis has become a powerful tool in synthetic chemistry, where enzymes are used to produce highly selective products under mild conditions. Using photocatalytically regenerated cofactors in synergistic combination with enzymes in a cascade fashion offers an efficient synthetic route to produce specific compounds. However, the combination of enzymes and photocatalysts has been limited due to the rapid degradation of the biomaterials by photogenerated reactive oxygen species, which denature and deactivate the enzymatic material. Here, we design core-shell structured porous nano-photoreactors for highly stable and recyclable photobiocatalysis under aerobic conditions. The enzymatic cofactor NAD+ from NADH can be efficiently regenerated by the photoactive organosilica core, while photogenerated active oxygen species are trapped and deactivated through the non-photoactive shell, protecting the enzymatic material. The versatility of these photocatalytic core-shell nanoreactors was demonstrated in tandem with two different enzymatic systems, glycerol dehydrogenase and glucose 1-dehydrogenase, where long-term enzyme stability was observed for the core-shell photocatalytic system.
Collapse
Affiliation(s)
- Wenxin Wei
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Francesca Mazzotta
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,
| | - Calum T. J. Ferguson
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,
| | - Kai A. I. Zhang
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,Department
of Materials Science, Fudan University, 200433 Shanghai, People’s Republic of China,;
| |
Collapse
|
62
|
Shen L, Chen Z, Kang J, Yan P, Shen J, Wang B, Zhao S, Bi L, Wang S, Cheng Y. N-nitrosodimethylamine formation during oxidation of N,N-dimethylhydrazine compounds by peroxymonosulfate: Kinetics, reactive species, mechanism and influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128191. [PMID: 35033910 DOI: 10.1016/j.jhazmat.2021.128191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
This study found that peroxymonosulfate (PMS) oxidation without activation has the potential to generate a suspected human carcinogen, N-nitrosodimethylamine (NDMA), in water containing N,N-dimethylhydrazine compounds. Considerable amounts of NDMA formed from three compounds by PMS oxidation were observed. 1,1,1',1'-Tetramethyl-4,4'-(methylene-di-p-phenylene) disemicarbazide (TMDS), which is an industrial antiyellowing agent and light stabilizer, was used as a representative to elucidate the kinetics, transformation products, mechanism and NDMA formation pathways of PMS oxidation. TMDS degradation and NDMA formation involved direct PMS oxidation and singlet oxygen (1O2) oxidation. The oxidation by PMS/1O2 was pH-dependent, which was related to the pH-dependent characteristics of the reactive oxygen species and intermediates. The degradation mechanism of TMDS mainly included the side chain cleavage, dealkylation, and O-addition. NDMA was generated from TMDS mainly via O-addition and 1,1-dimethylhydrazine (UDMH) generation. The cleavage of amide nitrogen in O-addition products and primary amine nitrogen in UDMH are likely the key steps in NDMA generation. The results emphasized that the formation of harmful by-products should be taken into account when assessing the feasibility of PMS oxidation.
Collapse
Affiliation(s)
- Linlu Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lanbo Bi
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shuyu Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yizhen Cheng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
63
|
Maldonado-Carmona N, Villandier N, Ouk TS, Launay Y, Calliste CA, Wiehe A, Leroy-Lhez S. Effect of the phenyl substituent's position on the encapsulation of porphyrins inside lignin nanoparticles: Photophysical and antibacterial properties. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
64
|
Neven L, Barich H, Ching HYV, Khan SU, Colomier C, Patel HH, Gorun SM, Verbruggen S, Van Doorslaer S, De Wael K. Correlation between the Fluorination Degree of Perfluorinated Zinc Phthalocyanines, Their Singlet Oxygen Generation Ability, and Their Photoelectrochemical Response for Phenol Sensing. Anal Chem 2022; 94:5221-5230. [PMID: 35316027 DOI: 10.1021/acs.analchem.1c04357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV-vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural-activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.
Collapse
Affiliation(s)
- Liselotte Neven
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,BIMEF Research Group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hanan Barich
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - H Y Vincent Ching
- BIMEF Research Group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Shahid U Khan
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Christopher Colomier
- Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, 400 South Orange Ave, New Jersey 07079, United States
| | - Hemantbhai H Patel
- Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, 400 South Orange Ave, New Jersey 07079, United States
| | - Sergiu M Gorun
- Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, 400 South Orange Ave, New Jersey 07079, United States
| | - Sammy Verbruggen
- DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sabine Van Doorslaer
- BIMEF Research Group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
65
|
Regulating Crystal Facets of MnO2 for Enhancing Peroxymonosulfate Activation to Degrade Pollutants: Performance and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
On the catalyst surface, crystal facets with different surface atom arrangements and diverse physicochemical properties lead to distinct catalytic activity. Acquiring a highly reactive facet through surface regulation is an efficient strategy to promote the oxidative decomposition of wastewater organic pollutants via peroxymonosulfate (PMS) activation. However, the mechanism through which crystal facets affect PMS activation is still unclear. In this study, three facet-engineered α-MnO2 with different exposed facets were prepared via a facile hydrothermal route. The prepared 310-MnO2 exhibited superior PMS activation performance to 100-MnO2 and 110-MnO2. Moreover, the 310-MnO2/PMS oxidative system was active over a wide pH range and highly resistant to interfering substances from wastewater. These advantages of the 310-MnO2/PMS system make it highly promising for practical wastewater treatment. Based on quenching experiments, electron paramagnetic resonance (EPR) analysis, solvent exchange, and electrochemical measurements, mediated electron transfer was found to be the dominant nonradical pathway for p-chloroaniline (PCA) degradation. A sulfhydryl group (-SH) masking experiment showed that the highly exposed Mn atoms on the 310-MnO2 surface were sites of PMS activation. In addition, density functional theory (DFT) calculations confirmed that the dominant {310} facet promoted adsorption/activation of PMS, which favored the formation of more metastable complexes on the α-MnO2 surface. The reaction mechanism obtained here clarifies the relationship between PMS activation and crystal facets. This study provides significant insights into the rational design of high-performance catalysts for efficient water remediation.
Collapse
|
66
|
Jin L, You S, Duan X, Yao Y, Yang J, Liu Y. Peroxymonosulfate activation by Fe 3O 4-MnO 2/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127111. [PMID: 34526271 DOI: 10.1016/j.jhazmat.2021.127111] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic peroxymonosulfate (PMS) activation is a promising advanced oxidation process for the degradation of micropollutants. Herein, we developed an electroactive carbon nanotube (CNT) filter functionalized with Fe3O4-MnO2 hybrid (Fe3O4-MnO2/CNT) to activate PMS towards ultrafast degradation of sulfamethoxazole (SMX). SMX was completely degraded via a single-pass through the nanohybrid filter (τ < 2 s). The ultrafast degradation kinetics were maintained across a wide pH range (from 3.0 to 8.0), in complicated matrices (e.g., tap water, lake water, WWTP effluent and pharmaceutical wastewater), and for the degradation of various persistent micropollutants. Compared with a conventional batch reactor, the flow-through operation provides an 9.2-fold higher SMX degradation kinetics by virtue of the convection-enhanced mass transport (1.47 vs. 0.16 min-1). The efficient redox cycle of Fe2+/Fe3+ and Mn2+/Mn4+ facilitate the PMS activation to generate SO4•- under electric field. Meanwhile, the ketonic groups on the CNT provide active sites for the generation of 1O2. Both experimental and theoretical results revealed the superior activity of nanohybrid filter associated with the synergistic effects among Fe, Mn, CNT and electric field. Therefore, the electrocatalytic filter based PMS activation system provides a green strategy for the remediation of micropollutants in a sustainable manner.
Collapse
Affiliation(s)
- Limin Jin
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, SA, Australia
| | - Yuan Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
67
|
Li W, Zhang Y, Cheng X, Wang J, Yang B, Guo H. Amino-modified metal–organic frameworks as peroxymonosulfate catalyst for bisphenol AF decontamination: ROS generation, degradation pathways, and toxicity evaluation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
68
|
Reply to "A resurrection of the Haber-Weiss reaction". Nat Commun 2022; 13:395. [PMID: 35046406 PMCID: PMC8770504 DOI: 10.1038/s41467-021-27824-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022] Open
|
69
|
Koppenol WH. A resurrection of the Haber-Weiss reaction. Nat Commun 2022; 13:396. [PMID: 35046395 PMCID: PMC8770562 DOI: 10.1038/s41467-021-27823-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Willem H Koppenol
- Emeritus, Swiss Federal Institute of Technology, Zürich, Switzerland. .,, Schwändibergstrasse 25, 8784, Braunwald, Switzerland.
| |
Collapse
|
70
|
Ren W, Cheng C, Shao P, Luo X, Zhang H, Wang S, Duan X. Origins of Electron-Transfer Regime in Persulfate-Based Nonradical Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:78-97. [PMID: 34932343 DOI: 10.1021/acs.est.1c05374] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Persulfate-based nonradical oxidation processes (PS-NOPs) are appealing in wastewater purification due to their high efficiency and selectivity for removing trace organic contaminants in complicated water matrices. In this review, we showcased the recent progresses of state-of-the-art strategies in the nonradical electron-transfer regimes in PS-NOPs, including design of metal and metal-free heterogeneous catalysts, in situ/operando characterization/analytical techniques, and insights into the origins of electron-transfer mechanisms. In a typical electron-transfer process (ETP), persulfate is activated by a catalyst to form surface activated complexes, which directly or indirectly interact with target pollutants to finalize the oxidation. We discussed different analytical techniques on the fundamentals and tactics for accurate analysis of ETP. Moreover, we demonstrated the challenges and proposed future research strategies for ETP-based systems, such as computation-enabled molecular-level investigations, rational design of catalysts, and real-scenario applications in the complicated water environment. Overall, this review dedicates to sharpening the understanding of ETP in PS-NOPs and presenting promising applications in remediation technology and green chemistry.
Collapse
Affiliation(s)
- Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA5005, Australia
| | - Cheng Cheng
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA5005, Australia
| |
Collapse
|
71
|
Marchi RC, Campos IA, Santana VT, Carlos RM. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
72
|
Shao S, Cui J, Li L, Wang M, Zhang P, Cui J, Hu C, Zhao Y. Rapid pollutant degradation by peroxymonosulfate via an unusual mediated-electron transfer pathway under spatial-confinement. RSC Adv 2022; 12:5236-5244. [PMID: 35425551 PMCID: PMC8981504 DOI: 10.1039/d1ra08954d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
Nano-confinement systems offer various extraordinary chemical/physical properties, due to the spatial restriction and the electronic interaction between the confined species and the surrounding medium. They are, therefore, providing rich opportunities for the design of efficient catalytic reaction systems for pollutant removal. Herein, a highly efficient mediated-electron transfer pathway is identified on a spatially-confined zero valent cobalt for abatement of the organic pollutants by PMS. The catalyst showed efficient catalytic performance in both batch and a flow reactor for degradation of various pollutants, e.g., a degradation reaction constant of 0.052 s−1 for sulfamethoxazole and 0.041 s−1 for BPA. Regulated by the spatial-confinement, a distinctive inverse relationship between PMS decomposition rate and the electron density of the pollutant molecule was experimentally substantiated, e.g., in the presence of the electron-rich sulfamethoxazole, PMS decomposed slower than that with BPA, while in the presence of electron deficient diphenhydramine, PMS decomposed faster than that with BPA. The unique reaction mechanism endows the spatially-confined cobalt with the capability of eliminating the priority pollutants in the complex water matrix with pervasive halide ions and natural organic matter (NOM) via PMS activation. A highly efficient mediated-electron transfer process of PMS activation on Co was achieved by construction of a spatially-confined reaction environment.![]()
Collapse
Affiliation(s)
- Siting Shao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Jiahao Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Lina Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Mingqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Jianguo Cui
- Baotou Research Institute of Rare Earths, 014030 Baotou, P. R. China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Yubao Zhao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, 510006 Guangzhou, P. R. China
| |
Collapse
|
73
|
Sajjad F, Han Y, Bao L, Yan Y, O Shea D, Wang L, Chen Z. The improvement of biocompatibility by incorporating porphyrins into carbon dots with photodynamic effects and pH sensitivities. J Biomater Appl 2021; 36:1378-1389. [PMID: 34968148 DOI: 10.1177/08853282211050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photodynamic therapy (PDT) is a promising new treatment for cancer; however, the hydrophobic interactions and poor solubility in water of photosensitizers limit the use in clinic. Nanoparticles especially carbon dots have attracted the attention of the world's scientists because of their unique properties such as good solubility and biocompatibility. In this paper, we integrated carbon dots with different porphyrins to improve the properties of porphyrins and evaluated their efficacy as PDT drugs. The spectroscopic characteristics of porphyrins nano-conjugates were studied. Singlet oxygen generation rate and the light- and dark-induced toxicity of the conjugates were studied. Our results showed that the covalent interaction between CDs and porphyrins has improved the biocompatibility. The synthesized conjugates also inherit the pH sensitivity of the carbon dots, while the conjugation also decreases the hemolysis ratio making them a promising candidate for PDT. The incorporation of carbon dots into porphyrins improved their biocompatibility by reducing toxicity.
Collapse
Affiliation(s)
| | - Yiping Han
- Shanghai Changhai Hospital, Shanghai, China
| | - Leilei Bao
- Shanghai Changhai Hospital, Shanghai, China
| | - Yijia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | - Donal O Shea
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | | | | |
Collapse
|
74
|
Shao P, Jing Y, Duan X, Lin H, Yang L, Ren W, Deng F, Li B, Luo X, Wang S. Revisiting the Graphitized Nanodiamond-Mediated Activation of Peroxymonosulfate: Singlet Oxygenation versus Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16078-16087. [PMID: 34633787 DOI: 10.1021/acs.est.1c02042] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphitized nanodiamonds (ND) exhibit outstanding capability in activating peroxymonosulfate (PMS) for the removal of aqueous organic micropollutants (OMPs). However, controversial observation and interpretation regarding the effect of graphitization degree on ND's activity and the role of singlet oxygen (1O2) in OMP degradation need to be clarified. Herein, we investigated graphitized ND-mediated PMS activation. Experiments show that the activity of ND increases first and then decreases with the monotonically increased graphitization degree. Further experimental and theoretical studies unveil that the intensified surface graphitization alters the degradation mechanism from singlet oxygenation to an electron-transfer pathway. Moreover, for the first time, we applied a self-constructed, time-resolved phosphorescence detection system to provide direct evidence for 1O2 production in the PMS-based system. This work not only elucidates the graphitization degree-dependent activation mechanism of PMS but also provides a reliable detection system for in situ analysis of 1O2 in future studies.
Collapse
Affiliation(s)
- Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yunpeng Jing
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huiyun Lin
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Fang Deng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Buhong Li
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
75
|
Trenker S, Grunenberg L, Banerjee T, Savasci G, Poller LM, Muggli KIM, Haase F, Ochsenfeld C, Lotsch BV. A flavin-inspired covalent organic framework for photocatalytic alcohol oxidation. Chem Sci 2021; 12:15143-15150. [PMID: 34909156 PMCID: PMC8612393 DOI: 10.1039/d1sc04143f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Covalent organic frameworks (COFs) offer a number of key properties that predestine them to be used as heterogeneous photocatalysts, including intrinsic porosity, long-range order, and light absorption. Since COFs can be constructed from a practically unlimited library of organic building blocks, these properties can be precisely tuned by choosing suitable linkers. Herein, we report the construction and use of a novel COF (FEAx-COF) photocatalyst, inspired by natural flavin cofactors. We show that the functionality of the alloxazine chromophore incorporated into the COF backbone is retained and study the effects of this heterogenization approach by comparison with similar molecular photocatalysts. We find that the integration of alloxazine chromophores into the framework significantly extends the absorption spectrum into the visible range, allowing for photocatalytic oxidation of benzylic alcohols to aldehydes even with low-energy visible light. In addition, the activity of the heterogeneous COF photocatalyst is less dependent on the chosen solvent, making it more versatile compared to molecular alloxazines. Finally, the use of oxygen as the terminal oxidant renders FEAx-COF a promising and “green” heterogeneous photocatalyst. In this manuscript, we report the development of a novel alloxazine COF inspired by naturally occurring flavin cofactors for photoredox catalysis.![]()
Collapse
Affiliation(s)
- Stefan Trenker
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany
| | - Lars Grunenberg
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Tanmay Banerjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Gökcen Savasci
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany.,Karlsruhe Institute of Technology (KIT), IFG - Institute for Functional Interfaces Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Laura M Poller
- Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Katharina I M Muggli
- Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Frederik Haase
- Karlsruhe Institute of Technology (KIT), IFG - Institute for Functional Interfaces Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Christian Ochsenfeld
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany.,e-conversion Cluster of Excellence Lichtenbergstr. 4a, 85748 Garching Germany
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany.,e-conversion Cluster of Excellence Lichtenbergstr. 4a, 85748 Garching Germany
| |
Collapse
|
76
|
Pham VL, Kim DG, Ko SO. Catalytic degradation of acetaminophen by Fe and N Co-doped multi-walled carbon nanotubes. ENVIRONMENTAL RESEARCH 2021; 201:111535. [PMID: 34192558 DOI: 10.1016/j.envres.2021.111535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
An Fe and N co-doped carbon nanotube (CNT) (Fe/N-CNT) was successfully prepared using a simple hydrothermal method. CNT, Fe doped CNTs (Fe-CNT), N doped CNTs (N-CNT), and Fe/N-CNT were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and zeta potential analysis. The catalytic activities of the materials were investigated via pharmaceutical (acetaminophen, ACT) degradation using persulfate (PS). The ACT removal rate was in the order: Fe-CNT > N-CNT > Fe-CNT > CNT, for 30 min with 10 mg/L ACT, 0.05 g/L materials, and 0.08 mM PS. The doped N existed as pyridinic-N, pyrrolic-N/N-Fe, graphitic-N, and oxidized-N, while the doped Fe existed as Fe-N, FeO/Fe3O4, and Fe2O3/FeOOH at the edge. The rates of ACT removal and PS decomposition were well correlated with pyrrolic-N/N-Fe. The ACT removal in the Fe/N-CNT + PS system was as high as >98.4% and was not significantly affected by the initial pH of 2.0-8.2 and ten consecutive uses. However, natural organic matter (NOM) inhibited ACT removal by the accumulation on Fe/N-CNT. The results of ACT removal in the presence of radical scavengers, PS decomposition, and cyclic voltammetry showed that the ACT removal was dominantly attributed to a non-radical pathway with the accelerated electron transfer from ACT to PS through the Fe/N-CNT. The results in this study strongly suggest that the Fe/N-CNT + PS system is an excellent process for the degradation of refractory organic pollutants in various water matrices with improved performance and stability attributed by non-radical pathway.
Collapse
Affiliation(s)
- Van Luan Pham
- Department of Civil Engineering, Kyung Hee University, 1732, Deakyungdaero, Yongin, 17104, Republic of Korea.
| | - Do Gun Kim
- Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea.
| | - Seok Oh Ko
- Department of Civil Engineering, Kyung Hee University, 1732, Deakyungdaero, Yongin, 17104, Republic of Korea.
| |
Collapse
|
77
|
Wu J, Gao Y, Guo T, Luo N, Li G, An T. Insights into the Photodegradation of the Contact Allergen Fragrance Cinnamyl Alcohol: Kinetics, Mechanism, and Toxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2705-2714. [PMID: 34255880 DOI: 10.1002/etc.5156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Fragrances can cause general health issues, and special concerns exist surrounding the issue of skin safety. Cinnamyl alcohol (CAL) is a frequent fragrance contact allergen that has various toxic effects on indiscriminate animals. In the present study, the photodegradation transformation mechanism of CAL and toxicity evolution during this process were examined. The results showed that CAL (50 μM) can be completely degraded after 90-min ultraviolet (UV) irradiation with a degradation rate of 0.086 min-1 . Increased toxicity on bioluminescent bacteria was observed during this process, with lethality increasing from 10.6% (0 min) to 50.2% (90 min) under UV light irradiation. Further, the photodegradation mechanisms of CAL were explored to find the reason behind the increased toxicity observed. Laser flash photolysis and quenching experiments showed that O2•- , 1 O2 , and • OH were mainly responsible for CAL photodegradation, together with 3 CAL* and eaq- . The 5 main photodegradation products were cinnamyl aldehyde, benzaldehyde, benzenepropanal, cinnamic acid, and toluene, as identified using gas chromatography-mass spectrometry and liquid chromatography-quadrupole-time-of-flight-mass spectrometry. Once exposed to air, CAL was found to be easily oxidized to cinnamyl aldehyde and subsequently to cinnamic acid by O2•- - or 1 O2 -mediated pathways, leading to increased toxicity. Benzaldehyde exhibited bioreactive toxicity, increasing the toxicity through • OH-mediated pathways. Theoretical prediction of skin irritation indicated that cinnamyl aldehyde (0.83), benzenepropanal (0.69), cinnamyl aldehyde (0.69), and benzaldehyde (0.70) were higher than CAL (0.63), which may cause a profound impact on an individual's health and well-being. Overall, the present study advances the understanding of the photodegradation processes and health impacts of fragrance ingredients. Environ Toxicol Chem 2021;40:2705-2714. © 2021 SETAC.
Collapse
Affiliation(s)
- Junji Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Teng Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
78
|
Guo X, Rabeah J, Sun R, Wang D, Mejía E. Fluorescent Hybrid Porous Polymers as Sustainable Heterogeneous Photocatalysts for Cross-Dehydrogenative Coupling Reactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42889-42897. [PMID: 34467763 DOI: 10.1021/acsami.1c12377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A series of hybrid porous polymers (HPPs) based on polyhedral oligomeric silsesquioxane (POSS) were synthesized, characterized, and successfully used as metal-free heterogeneous photocatalysts for cross-dehydrogenative coupling reactions (CDC), for which the aza-Henry coupling of tetrahydroisoquinolines and nitroalkanes was studied as the model reaction. The reactions run smoothly at room temperature under visible (blue) light irradiation using gaseous oxygen as an oxidant under atmospheric pressure. These novel metal-free heterogeneous photocatalysts can be readily recovered and reused without a significant loss of reactivity. Mechanistic investigations revealed the intermediacy of 1O2, obtained from 3O2 sensitization (energy transfer) by the photoexcited catalyst.
Collapse
Affiliation(s)
- Xuewen Guo
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Jabor Rabeah
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Ruixue Sun
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dengxu Wang
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Esteban Mejía
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, Rostock 18059, Germany
| |
Collapse
|
79
|
Wu X, Liu P, Wang H, Huang H, Shi Y, Yang C, Gao S. Photo aging of polypropylene microplastics in estuary water and coastal seawater: Important role of chlorine ion. WATER RESEARCH 2021; 202:117396. [PMID: 34246992 DOI: 10.1016/j.watres.2021.117396] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Photo aging of microplastics (MPs) in water environment are relevant to free radical associated polymer chain reaction, and various photo chemical reactive constitutes (i.e., Cl-, Br-, NO3-, CO32-, and natural organic matters) would affect the reaction, leading to a great difference in the photo aging mechanism of MPs between freshwater and seawater system. This study investigated light induced photo aging process of polypropylene (PP) MPs in ultrapure water, estuary water, and seawater. Results revealed that the aging rate of PP MPs was significantly decreased in estuary water and seawater compared with that in ultrapure water, leading to a longer resistance time after emission in marine environment. Besides, lower carbonyl index was found with the increased aqueous Cl- concentration, highlighting the important role of Cl- in the inhibitory effect for PP MPs aging process in seawater. This is due to the formation of Cl2•- in seawater which could react with HO2• and prevent the formation of O2•-, thus inhibit the photo aging process of PP MPs under light irradiation. The finding in this study clearly indicates the impact of the water matrices on the photo aging rate of MPs in natural water.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment,Northwest A & F University, Yangling, 712100, China
| | - Hanyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Changfu Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
80
|
Sun P, Liu H, Feng M, Zhang X, Fang Y, Zhai Z, Sharma VK. Dual nonradical degradation of acetaminophen by peroxymonosulfate activation with highly reusable and efficient N/S co-doped ordered mesoporous carbon. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118697] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
81
|
Wu Y, Wu J, Wong WY. A new near-infrared phosphorescent iridium(III) complex conjugated to a xanthene dye for mitochondria-targeted photodynamic therapy. Biomater Sci 2021; 9:4843-4853. [PMID: 33998610 DOI: 10.1039/d1bm00128k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iridium(iii) complexes are potent candidates for photodynamic therapy (PDT), but some key drawbacks still hamper clinical translation, such as poor operability in the phototherapeutic window, high dark toxicity, and low reactive oxygen species (ROS) production efficiency. In this work, a near-infrared phosphorescent Ir(iii) complex conjugated to a xanthene dye, NIR-Ir-XE, is reported with highly favourable properties for mitochondria-targeted imaging and cancer phototherapy. The generation of the triplet excited state of a xanthene moiety endows the NIR-Ir-XE to form singlet oxygen (1O2) for use as a photodynamic therapy agent after irradiation with visible light. Compared with the xanthene-free Ir(iii) counterpart (NIR-Ir-bpy), the xanthene-modified cyclometalated Ir(iii) photosensitizer NIR-Ir-XE exhibits higher 1O2 generation efficiency, negligible dark toxicity and a better therapeutic effect. Importantly, a clear correlation between cell death and intracellular generation of 1O2 derived from NIR-Ir-XE after light irradiation was demonstrated. The corresponding in vivo photo-antitumor performance was further demonstrated to be effective in tumor-bearing mice. The observed properties of NIR-Ir-XE qualify it as a promising PDT agent.
Collapse
Affiliation(s)
- Yongquan Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China and Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Shiyuan South Road, Ganzhou 341000, P. R. China
| | - Jie Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Shiyuan South Road, Ganzhou 341000, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
82
|
Zong Y, Shao Y, Zeng Y, Shao B, Xu L, Zhao Z, Liu W, Wu D. Enhanced Oxidation of Organic Contaminants by Iron(II)-Activated Periodate: The Significance of High-Valent Iron-Oxo Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7634-7642. [PMID: 33706511 DOI: 10.1021/acs.est.1c00375] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Potassium periodate (PI, KIO4) was readily activated by Fe(II) under acidic conditions, resulting in the enhanced abatement of organic contaminants in 2 min, with the decay ratios of the selected pollutants even outnumbered those in the Fe(II)/peroxymonosulfate and Fe(II)/peroxydisulfate processes under identical conditions. Both 18O isotope labeling techniques using methyl phenyl sulfoxide (PMSO) as the substrate and X-ray absorption near-edge structure spectroscopy provided conclusive evidences for the generation of high-valent iron-oxo species (Fe(IV)) in the Fe(II)/PI process. Density functional theory calculations determined that the reaction of Fe(II) with PI followed the formation of a hydrogen bonding complex between Fe(H2O)62+ and IO4(H2O)-, ligand exchange, and oxygen atom transfer, consequently generating Fe(IV) species. More interestingly, the unexpected detection of 18O-labeled hydroxylated PMSO not only favored the simultaneous generation of ·OH but also demonstrated that ·OH was indirectly produced through the self-decay of Fe(IV) to form H2O2 and the subsequent Fenton reaction. In addition, IO4- was not transformed into the undesired iodine species (i.e., HOI, I2, and I3-) but was converted to nontoxic iodate (IO3-). This study proposed an efficient and environmental friendly process for the rapid removal of emerging contaminants and enriched the understandings on the evolution mechanism of ·OH in Fe(IV)-mediated processes.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Yufei Shao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Yunqiao Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Binbin Shao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
83
|
Nwahara N, Adeniyi O, Mashazi P, Nyokong T. Visible light responsive TiO2 - graphene oxide nanosheets - Zn phthalocyanine ternary heterojunction assisted photoelectrocatalytic degradation of Orange G. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
84
|
Xu X, Zhang Y, Zhou S, Huang R, Huang S, Kuang H, Zeng X, Zhao S. Activation of persulfate by MnOOH: Degradation of organic compounds by nonradical mechanism. CHEMOSPHERE 2021; 272:129629. [PMID: 33486458 DOI: 10.1016/j.chemosphere.2021.129629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Advanced oxidation processes (AOPs) based on persulfate (PS) has attracted great attention due to its high efficiency for degradation of organic pollutants. Manganese-based materials have been considered as the desirable catalysts for in-situ chemical oxidation since they are abundant in the earth's crust and environment-friendly. In this study, manganese oxyhydroxide (MnOOH) was used as an activator for PS to degrade p-chloroaniline (PCA) from wastewater. The effects of MnOOH dosage, PS dosage and initial pH on PCA degradation performance were studied. Experimental results showed that PCA degradation efficiency was enhanced by higher MnOOH and PS addition, and the degradation efficiency was slightly inhibited as the initial pH increased from 3 to 9. MnOOH showed excellent stability and reusability when used as the activator of PS. In addition, a comprehensive study was conducted to determine the PS activation mechanism. The results revealed that PS activation by MnOOH followed a nonradical mechanism. No 1O2 was generated, and the main active substance in the reaction was the activated PS molecule on the surface of MnOOH. The hydroxyl group on the catalyst surface acted as a bridge connecting PS and the catalyst, leading to the activation of PS. The intermediates during PCA degradation were also analyzed, and three possible degradation pathways of PCA were proposed. This study expects to deepen the understanding of the PS activation mechanism by manganese oxide, and provides technical support for the practical application of AOPs of manganese-based materials for wastewater treatment.
Collapse
Affiliation(s)
- Xiaomin Xu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510640, China
| | - Yongqing Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510640, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; School of Environment and Energy, State Key Laboratory of Pulp and Paper, South China University of Technology, Guangzhou, Guangzhou, 510006, China.
| | - Shaoqi Zhou
- Guizhou Academy of Sciences, Shanxi Road 1, Guiyang, 550001, China
| | - Renfeng Huang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510640, China
| | - Shaobin Huang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510640, China
| | - Hainan Kuang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510640, China
| | - Xianlin Zeng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510640, China
| | - Shuaifei Zhao
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3216, Australia
| |
Collapse
|
85
|
Sajjada F, Liua XY, Yanb YJ, Zhoua XP, Chena ZL. The Photodynamic Anti-Tumor Effects of New PPa-CDs Conjugate with pH Sensitivity and Improved Biocompatibility. Anticancer Agents Med Chem 2021; 22:1286-1295. [PMID: 33992066 DOI: 10.2174/1871520621666210513162457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photodynamic therapy has been increasingly used to cope with the alarming problem of cancer. Porphyrins and its derivatives are widely used as potent photosensitizers (PS) for PDT. However, hydrophobicity of porphyrins poses a challenge for their use in clinics, while most of the carbon dots (CDs) are known for good biocompatibility, solubility, and pH sensitivity. OBJECTIVE To improve the properties/biocompatibility of the pyropheophorbide-α for PDT. METHODS PPa-CD conjugate was synthesized through covalent interaction using amide condensation. The structure of synthesized conjugate was confirmed by TEM, 1HNMR, and FTIR. The absorption and emission spectra were studied. In vitro, cytotoxicity of the conjugate was examined in the Human esophageal cancer cell line (Eca-109). RESULTS The results showed that the fluorescence of the drug was increased from its precursor. CD based conjugate could generate ROS as well as enhanced the biocompatibility by decreasing the cytotoxicity. The conjugated drug also showed pH sensitivity in different solutions. CONCLUSION The dark toxicity, as well as hemocompatibility, were improved.
Collapse
Affiliation(s)
- Faiza Sajjada
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xu-Ying Liua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yanb
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, 200433, China
| | - Xing-Ping Zhoua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Zhi-Long Chena
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| |
Collapse
|
86
|
Maldonado-Carmona N, Ouk TS, Villandier N, Calliste CA, Calvete MJF, Pereira MM, Leroy-Lhez S. Photophysical and Antibacterial Properties of Porphyrins Encapsulated inside Acetylated Lignin Nanoparticles. Antibiotics (Basel) 2021; 10:513. [PMID: 33946390 PMCID: PMC8147155 DOI: 10.3390/antibiotics10050513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
Lignin has recently attracted the attention of the scientific community, as a suitable raw material for biomedical applications. In this work, acetylated lignin was used to encapsulate five different porphyrins, aiming to preserve their photophysical properties, and for further use as antibacterial treatment. The obtained nanoparticles were physically characterized, through dynamic light scattering size measurement, polydispersity index and zeta potential values. Additionally, the photophysical properties of the nanoparticles, namely UV-vis absorption, fluorescence emission, singlet oxygen production and photobleaching, were compared with those of the free porphyrins. It was found that all the porphyrins were susceptible to encapsulation, with an observed decrease in their fluorescence quantum yield and singlet oxygen production. These nanoparticles were able to exert an effective photodynamic bactericide effect (blue-LED light, 450-460 nm, 15 J/cm2) on Staphylococcus aureus and Escherichia coli. Furthermore, it was achieved a photodynamic bactericidal activity on an encapsulated lipophillic porphyrin, where the free porphyrin failed to diminish the bacterial survival. In this work it was demonstrated that acetylated lignin encapsulation works as a universal, cheap and green material for the delivery of porphyrins, while preserving their photophysical properties.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060 Limoges, France; (N.M.-C.); (T.-S.O.); (N.V.)
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (M.J.F.C.); (M.M.P.)
| | - Tan-Sothea Ouk
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060 Limoges, France; (N.M.-C.); (T.-S.O.); (N.V.)
| | - Nicolas Villandier
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060 Limoges, France; (N.M.-C.); (T.-S.O.); (N.V.)
| | - Claude Alain Calliste
- PEIRENE Laboratory, Faculty of Pharmacy, University of Limoges, 87025 Limoges, France;
| | - Mário J. F. Calvete
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (M.J.F.C.); (M.M.P.)
| | - Mariette M. Pereira
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (M.J.F.C.); (M.M.P.)
| | - Stéphanie Leroy-Lhez
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060 Limoges, France; (N.M.-C.); (T.-S.O.); (N.V.)
| |
Collapse
|
87
|
Kanpittaya K, Teerakapong A, Morales NP, Hormdee D, Priprem A, Weera-archakul W, Damrongrungruang T. Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans. Molecules 2021; 26:2405. [PMID: 33919066 PMCID: PMC8122479 DOI: 10.3390/molecules26092405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% (w/w) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm2 and yield of 72 J/cm2. The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue® toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers, Candida albicans (ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit Candida albicans similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% (w/w) nano-titanium dioxide exerted the highest inhibitory effect on Candida albicans.
Collapse
Affiliation(s)
- Kasama Kanpittaya
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (A.T.); (D.H.)
- Dental Department, Chumphae Hospital, Khon Kaen 40130, Thailand
| | - Aroon Teerakapong
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (A.T.); (D.H.)
- Laser in Dentistry Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Doosadee Hormdee
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (A.T.); (D.H.)
| | - Aroonsri Priprem
- Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Wilawan Weera-archakul
- Division of Dental Public Health, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Teerasak Damrongrungruang
- Laser in Dentistry Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Academic Services, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
88
|
Song H, Liu Z, Guan Z, Yang F, Xia D, Li D. Efficient persulfate non-radical activation of electron-rich copper active sites induced by oxygen on graphitic carbon nitride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143127. [PMID: 33162135 DOI: 10.1016/j.scitotenv.2020.143127] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Peroxymonosulfate (PMS) non-radical reactions possess high catalytic activity for specific pollutants under complex water environments. However, the synthesis of high-performance catalysts and the discussion of non-radical reaction mechanisms are still unsatisfactory. Here, a novel and efficient non-radical catalyst (O-CuCN) was successfully assembled using the scheme of Copper (Cu) and oxygen (O) co-doping. The O element with great electronegativity induces graphite carbon nitride (g-C3N4) to act as a medium to change the phase properties and electron density distribution of g-C3N4, and provides a support for the targeting of Cu. Cu is introduced into g-C3N4 as an active site in the phase structure, and an electron-rich center with the Cu site is formed, which forms a metastable intermediate after the adsorption of PMS by Cu as the active site. The new catalyst O-CuCN has outstanding activity in the PMS system, and its degradation rate for bisphenol A (BPA) is increased by more than 20 times compared to that of g-C3N4, and it has excellent environmental tolerance and stability. This work demonstrates that the formation of metastable intermediates and the initiation of effective non-radical reactions can be achieved by constructing differentiated electron density structures.
Collapse
Affiliation(s)
- Hui Song
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Zhuang Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Fan Yang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, 430073, PR China.
| |
Collapse
|
89
|
He J, Wan Y, Zhou W. ZIF-8 derived Fe‒N coordination moieties anchored carbon nanocubes for efficient peroxymonosulfate activation via non-radical pathways: Role of FeN x sites. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124199. [PMID: 33097349 DOI: 10.1016/j.jhazmat.2020.124199] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Developing high-efficient hybrids carbon catalysts for PMS-based advanced oxidation process (AOPs) are crucial in the field of environmental remediation. In this work, novel carbon nanocubes (xFe‒N‒C) with three-dimensional porous structure and abundant well-dispersed FeNx sites were obtained via a skillful cage-encapsulated-precursor pyrolysis strategy. The as-synthesized xFe‒N‒C exhibited superb activity for phenol degradation by activating peroxymonosulfate (PMS). Besides, the catalytic system not only possessed good recycling performance, wide pH adaptation and relatively low activation energy, but also had high resistance to environmental interference. Singlet oxygen (1O2) dominated non-radical process was responsible for phenol degradation rather than traditional radical pathways. Impressively, the doping level of Fe could regulate FeNx contents in catalysts, and the catalytic activity of xFe‒N‒C was greatly enhanced with increasing FeNx contents. Based on density functional theory calculations (DFT), the introduction of FeNx sites regulated the electronic structure of catalysts. Such electron-deficient Fe center acted as electron acceptor to receive electrons transmitted by the adsorbed PMS, thus generating highly reactive 1O2 for rapid phenol oxidation. This work provides a new insight into the innovation in transition metal-nitrogen hybrid carbon catalysts and highlights the pivotal roles of FeNx sites in 1O2 generation during PMS activation process.
Collapse
Affiliation(s)
- Jingjing He
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Wan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenjun Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
90
|
Copper-oxygen synergistic electronic reconstruction on g-C3N4 for efficient non-radical catalysis for peroxydisulfate and peroxymonosulfate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117957] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
91
|
Solís RR, Dinc Ö, Fang G, Nadagouda MN, Dionysiou DD. Activation of inorganic peroxides with magnetic graphene for the removal of antibiotics from wastewater. ENVIRONMENTAL SCIENCE. NANO 2021; 8:960-977. [PMID: 34336222 PMCID: PMC8318091 DOI: 10.1039/d0en01280g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic graphene catalysts were prepared for the removal of antibiotics (sulfamethoxazole, norfloxacin, tetracycline and flumequine) from water. Different proportions of magnetite-graphene from 1:0 to 0:1 were considered to study the catalytic activation of inorganic peroxides, i.e. peroxymonosulfate (PMS), peroxydisulfate and hydrogen peroxide. The presence of graphene was mainly responsible for the activation, which was most effective in the presence of PMS. A ratio of 20% of magnetite in the solid was enough to achieve complete degradation of antibiotics with high recovery by application of a magnetic field. The performance of the catalyst was further evaluated in a simulated urban wastewater, studying the main parameters affecting the process and the stability in sequential reuses. The non-radical mechanism during the catalytic activation of PMS was hypothesized from kinetic scavenging probes tests. The electron transfer was suggested as the mechanism of the reaction from electron paramagnetic resonance analysis in the presence of D2O. The prepared magnetic catalyst showed high catalytic activity and stability to remove antibiotics from water.
Collapse
Affiliation(s)
- Rafael R Solís
- Environmental Engineering and Science Program, Department Chemical and Environmental Engineering, University of Cincinnati, 45221, Cincinnati, Ohio, USA
| | - Özge Dinc
- Environmental Engineering and Science Program, Department Chemical and Environmental Engineering, University of Cincinnati, 45221, Cincinnati, Ohio, USA
- Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences-Turkey, 34668, Uskudar, Istanbul, Turkey
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, PR China
| | - Mallikarjuna N Nadagouda
- U. S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 45268, Cincinnati, Ohio, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department Chemical and Environmental Engineering, University of Cincinnati, 45221, Cincinnati, Ohio, USA
| |
Collapse
|
92
|
Mendoza C, Désert A, Chateau D, Monnereau C, Khrouz L, Lerouge F, Andraud C, Monbaliu JCM, Parola S, Heinrichs B. Au nanobipyramids@mSiO 2 core-shell nanoparticles for plasmon-enhanced singlet oxygen photooxygenations in segmented flow microreactors. NANOSCALE ADVANCES 2020; 2:5280-5287. [PMID: 36132037 PMCID: PMC9416853 DOI: 10.1039/d0na00533a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/28/2020] [Indexed: 05/21/2023]
Abstract
The plasmonic features of gold nanomaterials provide intriguing optical effects which can find potential applications in various fields. These effects depend strongly on the size and shape of the metal nanostructures. For instance, Au bipyramids (AuBPs) exhibit intense and well-defined plasmon resonance, easily tunable by controlling their aspect ratio, which can act synergistically with chromophores for enhancing their photophysical properties. In Rose Bengal-nanoparticle systems it is now well established that the control of the dye-to-nanoparticle distance ranging from 10 to 20 nm as well as spectral overlaps is crucial to achieve appropriate coupling between the plasmon resonance and the dye, thus affecting its ability to generate singlet oxygen (1O2). We have developed AuBPs@mSiO2 core-shell nanostructures that provide control over the distance between the metal surface and the photosensitizers for improving the production of 1O2 (metal-enhanced 1O2 production - ME1O2). A drastic enhancement of 1O2 generation is evidenced for the resulting AuBPs and AuBPs@mSiO2 in the presence of Rose Bengal, using a combination of three indirect methods of 1O2 detection, namely in operando Electron Paramagnetic Resonance (EPR) with 2,2,6,6-tetramethylpiperidine (TEMP) as a chemical trap, photooxygenation of the fluorescence probe anthracene-9,10-dipropionic acid (ADPA), and photooxygenation of methionine to methionine sulfoxide in a segmented flow microreactor.
Collapse
Affiliation(s)
- Carlos Mendoza
- Nanomaterials, Catalysis & Electrochemistry (NCE), Department of Chemical Engineering, University of Liège B-4000 Liège Belgium
| | - Anthony Désert
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Denis Chateau
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Cyrille Monnereau
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Lhoussain Khrouz
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Fréderic Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Chantal Andraud
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS), Research Unit MolSys, University of Liège B-4000 Liège Belgium
| | - Stéphane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Benoît Heinrichs
- Nanomaterials, Catalysis & Electrochemistry (NCE), Department of Chemical Engineering, University of Liège B-4000 Liège Belgium
| |
Collapse
|
93
|
Bakker MG, Fowler B, Bowman MK, Patience GS. Experimental methods in chemical engineering: Electron paramagnetic resonance spectroscopy‐EPR/ESR. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Martin G. Bakker
- Department of Chemistry and BiochemistryThe University of Alabama Tuscaloosa Alabama USA
| | - Benjamin Fowler
- Department of Chemistry and BiochemistryThe University of Alabama Tuscaloosa Alabama USA
| | - Michael K. Bowman
- Department of Chemistry and BiochemistryThe University of Alabama Tuscaloosa Alabama USA
| | | |
Collapse
|
94
|
Ayed C, Huang W, Kizilsavas G, Landfester K, Zhang KAI. Photocatalytic Partial Oxidation of 5‐Hydroxymethylfurfural (HMF) to 2,5‐Diformylfuran (DFF) Over a Covalent Triazine Framework in Water. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000070] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Cyrine Ayed
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Graduate School for Excellence Materials Science in MainzJohannes Gutenberg University Mainz Staudingerweg 9 55128 Mainz Germany
| | - Wei Huang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Gönül Kizilsavas
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Materials ScienceFudan University Shanghai 200433 China
| |
Collapse
|
95
|
Lee J, von Gunten U, Kim JH. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3064-3081. [PMID: 32062964 DOI: 10.1021/acs.est.9b07082] [Citation(s) in RCA: 1057] [Impact Index Per Article: 211.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reports that promote persulfate-based advanced oxidation process (AOP) as a viable alternative to hydrogen peroxide-based processes have been rapidly accumulating in recent water treatment literature. Various strategies to activate peroxide bonds in persulfate precursors have been proposed and the capacity to degrade a wide range of organic pollutants has been demonstrated. Compared to traditional AOPs in which hydroxyl radical serves as the main oxidant, persulfate-based AOPs have been claimed to involve different in situ generated oxidants such as sulfate radical and singlet oxygen as well as nonradical oxidation pathways. However, there exist controversial observations and interpretations around some of these claims, challenging robust scientific progress of this technology toward practical use. This Critical Review comparatively examines the activation mechanisms of peroxymonosulfate and peroxydisulfate and the formation pathways of oxidizing species. Properties of the main oxidizing species are scrutinized and the role of singlet oxygen is debated. In addition, the impacts of water parameters and constituents such as pH, background organic matter, halide, phosphate, and carbonate on persulfate-driven chemistry are discussed. The opportunity for niche applications is also presented, emphasizing the need for parallel efforts to remove currently prevalent knowledge roadblocks.
Collapse
Affiliation(s)
- Jaesang Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-701, Korea
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Düebendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
96
|
Li H, Tian J, Xiao F, Huang R, Gao S, Cui F, Wang S, Duan X. Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121518. [PMID: 31704121 DOI: 10.1016/j.jhazmat.2019.121518] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Research interests have been recently thrust into the nonradical reactions in persulfate-based advanced oxidation processes (AOPs), whilst the underlying mechanism of the nonradical pathway remains ambiguous especially in metal-based AOPs systems. In this study, we investigated the reactivity of cuprous oxide (Cu2O) for activating peroxymonosulfate (PMS) to decompose diverse organic contaminants. Cu2O exhibited a strong catalytic dependence on the crystal morphology, and cubic Cu2O was more reactive than the octahedral and rhombic dodecahedral structures for catalytic degradation of bisphenol A with PMS. Chemical quenching tests, electron paramagnetic resonance (EPR), solvent exchange and selective oxidation experiment were corporately conducted to illustrate that Cu2O-catalyzed PMS did not produce free radicals or singlet oxygen. In contrast, a surface-confined metastable intermediate would be formed via outer-sphere interactions between PMS and Cu2O, which directly attacked the organic substrate. Such a reaction pathway is intrinsically distinct from the electron-shuttling regime in carbon (or noble metal)/persulfate systems via the conductive surface of the catalyst, and the outer-sphere interactions let the activated PMS demonstrate a higher oxidizing capacity toward organic contaminants. Therefore, this study dedicates to providing new insights into the copper-catalyzed AOPs and vital supplementary to the ongoing dialogue of the nonradical catalysis in persulfate-based oxidation.
Collapse
Affiliation(s)
- Huarui Li
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, PR China
| | - Jiayu Tian
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China.
| | - Feng Xiao
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, PR China
| | - Rui Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, PR China
| | - Shanshan Gao
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, PR China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
97
|
Gao YH, Li MY, Sajjad F, Wang JH, Meharban F, Gadoora MA, Yan YJ, Nyokong T, Chen ZL. Synthesis and pharmacological evaluation of chlorin derivatives for photodynamic therapy of cholangiocarcinoma. Eur J Med Chem 2020; 189:112049. [DOI: 10.1016/j.ejmech.2020.112049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 01/15/2023]
|
98
|
Sun D, Pang X, Cheng Y, Ming J, Xiang S, Zhang C, Lv P, Chu C, Chen X, Liu G, Zheng N. Ultrasound-Switchable Nanozyme Augments Sonodynamic Therapy against Multidrug-Resistant Bacterial Infection. ACS NANO 2020; 14:2063-2076. [PMID: 32022535 DOI: 10.1021/acsnano.9b08667] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ultrasound (US)-driven sonodynamic therapy (SDT) has demonstrated wide application prospects in the eradication of deep-seated bacterial infections due to its noninvasiveness, site-confined irradiation, and high-tissue-penetrating capability. However, the ineffective accumulation of sonosensitizers at the infection site, the hypoxic microenvironment, as well as rapid depletion of oxygen during SDT greatly hamper the therapeutic efficacy of SDT. Herein, an US-switchable nanozyme system was proposed for the controllable generation of catalytic oxygen and sonosensitizer-mediated reactive oxygen species during ultrasound activation, thereby alleviating the hypoxia-associated barrier and augmenting SDT efficacy. This nanoplatform (Pd@Pt-T790) was easily prepared by bridging enzyme-catalytic Pd@Pt nanoplates with the organic sonosensitizer meso-tetra(4-carboxyphenyl)porphine (T790). It was really interesting to find that the modification of T790 onto Pd@Pt could significantly block the catalase-like activity of Pd@Pt, whereas upon US irradiation, the nanozyme activity was effectively recovered to catalyze the decomposition of endogenous H2O2 into O2. Such "blocking and activating" enzyme activity was particularly important for decreasing the potential toxicity and side effects of nanozymes on normal tissues and has potential to realize active, controllable, and disease-loci-specific nanozyme catalytic behavior. Taking advantage of this US-switchable enzyme activity, outstanding accumulation in infection sites, as well as excellent biocompatibility, the Pd@Pt-T790-based SDT nanosystem was successfully applied to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced myositis, and the sonodynamic therapeutic progression was noninvasively monitored by photoacoustic imaging and magnetic resonance imaging. The developed US-switchable nanoenzyme system provides a promising strategy for augmenting sonodynamic eradication of deep-seated bacterial infection actively, controllably, and precisely.
Collapse
Affiliation(s)
- Duo Sun
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Sijin Xiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Chang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
99
|
Takajo T, Kurihara Y, Iwase K, Miyake D, Tsuchida K, Anzai K. Basic Investigations of Singlet Oxygen Detection Systems with ESR for the Measurement of Singlet Oxygen Quenching Activities. Chem Pharm Bull (Tokyo) 2020; 68:150-154. [DOI: 10.1248/cpb.c19-00770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tokuko Takajo
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University
| | | | - Kodai Iwase
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University
| | - Daiki Miyake
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University
| | | | - Kazunori Anzai
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University
| |
Collapse
|
100
|
Li C, Dickson R, Rockstroh N, Rabeah J, Cordes DB, Slawin AMZ, Hünemörder P, Spannenberg A, Bühl M, Mejía E, Zysman-Colman E, Kamer PCJ. Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01221a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Subtle electronic ligand effects have a strong impact on the mechanistic pathway of a photocatalytic coupling reaction.
Collapse
Affiliation(s)
- Chenfei Li
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- KY16 9ST St Andrews
- UK
| | - Robert Dickson
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- KY16 9ST St Andrews
- UK
| | | | - Jabor Rabeah
- Leibniz Institute for Catalysis
- 18059 Rostock
- Germany
| | - David B. Cordes
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- KY16 9ST St Andrews
- UK
| | - Alexandra M. Z. Slawin
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- KY16 9ST St Andrews
- UK
| | | | | | - Michael Bühl
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- KY16 9ST St Andrews
- UK
| | | | - Eli Zysman-Colman
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- KY16 9ST St Andrews
- UK
| | | |
Collapse
|