51
|
Bortoluzzi VT, Dutra Filho CS, Wannmacher CMD. Oxidative stress in phenylketonuria-evidence from human studies and animal models, and possible implications for redox signaling. Metab Brain Dis 2021; 36:523-543. [PMID: 33580861 DOI: 10.1007/s11011-021-00676-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/24/2021] [Indexed: 01/11/2023]
Abstract
Phenylketonuria (PKU) is one of the commonest inborn error of amino acid metabolism. Before mass neonatal screening was possible, and the success of introducing diet therapy right after birth, the typical clinical finds in patients ranged from intellectual disability, epilepsy, motor deficits to behavioral disturbances and other neurological and psychiatric symptoms. Since early diagnosis and treatment became widespread, usually only those patients who do not strictly follow the diet present psychiatric, less severe symptoms such as anxiety, depression, sleep pattern disturbance, and concentration and memory problems. Despite the success of low protein intake in preventing otherwise severe outcomes, PKU's underlying neuropathophysiology remains to be better elucidated. Oxidative stress has gained acceptance as a disturbance implicated in the pathogenesis of PKU. The conception of oxidative stress has evolved to comprehend how it could interfere and ultimately modulate metabolic pathways regulating cell function. We summarize the evidence of oxidative damage, as well as compromised antioxidant defenses, from patients, animal models of PKU, and in vitro experiments, discussing the possible clinical significance of these findings. There are many studies on oxidative stress and PKU, but only a few went further than showing macromolecular damage and disturbance of antioxidant defenses. In this review, we argue that these few studies may point that oxidative stress may also disturb redox signaling in PKU, an aspect few authors have explored so far. The reported effect of phenylalanine on the expression or activity of enzymes participating in metabolic pathways known to be responsive to redox signaling might be mediated through oxidative stress.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil.
| | - Carlos Severo Dutra Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| |
Collapse
|
52
|
Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. BIOLOGY 2021; 10:253. [PMID: 33804844 PMCID: PMC8063797 DOI: 10.3390/biology10040253] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute to telomeric attrition and also plays an important role in the development of certain age-related diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and biochemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review scientific evidence that supports the association between OxS with telomere length (TL) dynamics and the relationship with MetS components in aging. It was analysed whether each MetS component affects the telomere length separately or if they all affect it together. Likewise, this review provides a summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the development of age-related diseases, and finally, how the lifestyles can affect telomere length.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| |
Collapse
|
53
|
Segovia-Roldan M, Diez ER, Pueyo E. Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8876792. [PMID: 33791076 PMCID: PMC7984894 DOI: 10.1155/2021/8876792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Aging comes with gradual loss of functions that increase the vulnerability to disease, senescence, and death. The mechanisms underlying these processes are linked to a prolonged imbalance between damage and repair. Damaging mechanisms include oxidative stress, mitochondrial dysfunction, chronodisruption, inflammation, and telomere attrition, as well as genetic and epigenetic alterations. Several endogenous tissue repairing mechanisms also decrease. These alterations associated with aging affect the entire organism. The most devastating manifestations involve the cardiovascular system and may lead to lethal cardiac arrhythmias. Together with structural remodeling, electrophysiological and intercellular communication alterations during aging predispose to arrhythmic events. Despite the knowledge on repairing mechanisms in the cardiovascular system, effective antiaging strategies able to reduce the risk of arrhythmias are still missing. Melatonin is a promising therapeutic candidate due to its pleiotropic actions. This indoleamine regulates chronobiology and endocrine physiology. Of relevance, melatonin is an antiaging, antioxidant, antiapoptotic, antiarrhythmic, immunomodulatory, and antiproliferative molecule. This review focuses on the protective effects of melatonin on age-induced cardiac functional and structural alterations, potentially becoming a new fountain of youth for the heart.
Collapse
Affiliation(s)
- Margarita Segovia-Roldan
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| | | | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| |
Collapse
|
54
|
Lavandera JV, Reus V, Saín J, Bernal CA, González MA. Dietary n-9, n-6 and n-3 fatty acids modulate the oxidative stress in brain and liver of mice. Effect of trans fatty acids supplementation. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-200508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND: Arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids interaction affects brain structure and function. Unsaturated fatty acids (UFAs) generate oxygenated lipid-derived eicosanoids which modulate the inflammatory response. The presence of trans fatty acids (TFA) in neuronal membranes can favor to generation of pro-oxidant metabolites. OBJECTIVE: This study evaluated the effect of supplementation with TFA to diets containing different proportions of FA, on the oxidative stress (OS) generation and the inflammatory response in mice brain and liver. METHODS: CF1 mice were fed diets (16 weeks) with olive (O), corn (C) or rapeseed (R) oils. OS parameters and gene expression of some key liver and brain enzymes involved in OS production were evaluated. RESULTS: In brain and liver, lipoperoxidation was increased and catalase activity was decreased in C. In brain, glutathione was diminished by supplementation with TFA in all diets and histological sections showed lymphocytes in O and C. In liver, decreased amount of lipid vacuoles and increased of cyclooxygenase-1 (COX-1) and PPARγ mRNA levels were observed in R and Rt. IL-1b and IL-6 in serum were augmented in O and Ot. CONCLUSIONS: Rapeseed oil could have protective effects on the development of OS and inflammation, while TFA supplementation did not showed marked effects on these parameters.
Collapse
Affiliation(s)
- Jimena Verónica Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Verónica Reus
- Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Juliana Saín
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Claudio Adrian Bernal
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marcela Aida González
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
55
|
Abstract
Thirty-five years ago, Sies and colleagues insightfully described the universal phenomenon that the generation of reactive oxygen species could modify macromolecules in living organisms, resulting in a wide range of measurable damage. They used the term "oxidative stress" to define the loss of the balance between oxidants and antioxidants in favor of the former. After decades of research, it became increasingly clear that cells are not simply passive receivers of oxidative modification but can act dynamically to resist and adapt to oxidants. Furthermore, many redox-sensitive pathways have been identified wherein certain oxidants (mainly hydrogen peroxide and nitric oxide) are used as messenger molecules to transduce the signals required for these adaptations. Since the turn of the century, redox signaling has developed into a vibrant multidisciplinary field of biology. To reflect the evolution of the study in this field, the definition of oxidative stress is postulated to define a state in which the pro-oxidative processes overwhelm cellular antioxidant defense due to the disruption of redox signaling and adaptation.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Dongwook Yeo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
56
|
The effects of fermentation with lactic acid bacteria on the antioxidant and anti-glycation properties of edible cyanobacteria and microalgae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
57
|
Zhu La ALT, Pierce K, Liu W, Gao S, Bu D, Ma L. Supplementation with Schizochytrium sp. enhances growth performance and antioxidant capability of dairy calves before weaning. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
Jain SK, Parsanathan R, Levine SN, Bocchini JA, Holick MF, Vanchiere JA. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic Biol Med 2020; 161:84-91. [PMID: 33038530 PMCID: PMC7539020 DOI: 10.1016/j.freeradbiomed.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
There is a marked variation in mortality risk associated with COVID-19 infection in the general population. Low socioeconomic status and other social determinants have been discussed as possible causes for the higher burden in African American communities compared with white communities. Beyond the social determinants, the biochemical mechanism that predisposes individual subjects or communities to the development of excess and serious complications associated with COVID-19 infection is not clear. Virus infection triggers massive ROS production and oxidative damage. Glutathione (GSH) is essential and protects the body from the harmful effects of oxidative damage from excess reactive oxygen radicals. GSH is also required to maintain the VD-metabolism genes and circulating levels of 25-hydroxyvitamin D (25(OH)VD). Glucose-6-phosphate dehydrogenase (G6PD) is necessary to prevent the exhaustion and depletion of cellular GSH. X-linked genetic G6PD deficiency is common in the AA population and predominantly in males. Acquired deficiency of G6PD has been widely reported in subjects with conditions of obesity and diabetes. This suggests that individuals with G6PD deficiency are vulnerable to excess oxidative stress and at a higher risk for inadequacy or deficiency of 25(OH)VD, leaving the body unable to protect its 'oxidative immune-metabolic' physiological functions from the insults of COVID-19. An association between subclinical interstitial lung disease with 25(OH)VD deficiencies and GSH deficiencies has been previously reported. We hypothesize that the overproduction of ROS and excess oxidative damage is responsible for the impaired immunity, secretion of the cytokine storm, and onset of pulmonary dysfunction in response to the COVID-19 infection. The co-optimization of impaired glutathione redox status and excess 25(OH)VD deficiencies has the potential to reduce oxidative stress, boost immunity, and reduce the adverse clinical effects of COVID-19 infection in the AA population.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Rajesh Parsanathan
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Steve N Levine
- School of Medicine, Section of Endocrinology & Metabolism, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Joseph A Bocchini
- Department of Pediatrics, Tulane University, 2508 Bert Kouns Industrial Loop, Suite 103, Shreveport, LA 71118, USA
| | - Michael F Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Vitamin D, Skin, and Bone Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - John A Vanchiere
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
59
|
Anticancer Properties of Platinum Nanoparticles and Retinoic Acid: Combination Therapy for the Treatment of Human Neuroblastoma Cancer. Int J Mol Sci 2020; 21:ijms21186792. [PMID: 32947930 PMCID: PMC7554966 DOI: 10.3390/ijms21186792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. The different treatments available for neuroblastoma are challenged by high rates of resistance, recurrence, and progression, most notably in advanced cases and highly malignant tumors. Therefore, the development of more targeted therapies, which are biocompatible and without undesired side effects, is highly desirable. The mechanisms of actions of platinum nanoparticles (PtNPs) and retinoic acid (RA) in neuroblastoma have remained unclear. In this study, the anticancer effects of PtNPs and RA on neuroblastoma were assessed. We demonstrated that treatment of SH-SY5Y cells with the combination of PtNPs and RA resulted in improved anticancer effects. The anticancer effects of the two compounds were mediated by cytotoxicity, oxidative stress (OS), mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and apoptosis-associated networks. Cytotoxicity was confirmed by leakage of lactate dehydrogenase (LDH) and intracellular protease, and oxidative stress increased the level of reactive oxygen species (ROS), 4-hydroxynonenal (HNE), malondialdehyde (MDA), and nitric oxide (NO), and protein carbonyl content (PCC). The combination of PtNPs and RA caused mitochondrial dysfunction by decreasing the mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, number of mitochondria, and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Endoplasmic reticulum-mediated stress and apoptosis were confirmed by upregulation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4), p53, Bax, and caspase-3 and down regulation of B-cell lymphoma 2 (BCl-2). PtNPs and RA induced apoptosis, and oxidative DNA damage was evident by the accumulation of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG). Finally, PtNPs and RA increased the differentiation and expression of differentiation markers. Differentiated SH-SY5Y cells pre-treated with PtNPs or RA or the combination of both were more sensitive to the cytotoxic effect of cisplatin than undifferentiated cells. To our knowledge, this is the first study to demonstrate the effect of the combination of PtNPs and RA in neuroblastoma cells. PtNPs may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. The results of this study provide a rationale for clinical evaluation of the combination of PtNPs and RA for the treatment of children suffering from high-risk neuroblastoma.
Collapse
|
60
|
Pro-Aging Effects of Xanthine Oxidoreductase Products. Antioxidants (Basel) 2020; 9:antiox9090839. [PMID: 32911634 PMCID: PMC7555004 DOI: 10.3390/antiox9090839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
The senescence process is the result of a series of factors that start from the genetic constitution interacting with epigenetic modifications induced by endogenous and environmental causes and that lead to a progressive deterioration at the cellular and functional levels. One of the main causes of aging is oxidative stress deriving from the imbalance between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their scavenging through antioxidants. Xanthine oxidoreductase (XOR) activities produce uric acid, as well as reactive oxygen and nitrogen species, which all may be relevant to such equilibrium. This review analyzes XOR activity through in vitro experiments, animal studies and clinical reports, which highlight the pro-aging effects of XOR products. However, XOR activity contributes to a regular level of ROS and RNS, which appears essential for the proper functioning of many physiological pathways. This discourages the use of therapies with XOR inhibitors, unless symptomatic hyperuricemia is present.
Collapse
|
61
|
Li N, Lv S, Ma Y, Liu N, Wang S, Zhou D. In vitro antioxidant and anti-aging properties of swim bladder peptides from Atlantic cod (Gadus morhua). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1807565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Na Li
- Yellow Sea Fisheries Research Institute, Qingdao, China
| | - Shiwei Lv
- Yellow Sea Fisheries Research Institute, Qingdao, China
| | - Yujie Ma
- Yellow Sea Fisheries Research Institute, Qingdao, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Qingdao, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Qingdao, China
| |
Collapse
|
62
|
Ricciarelli R, Azzi A, Zingg JM. Reduction of senescence-associated beta-galactosidase activity by vitamin E in human fibroblasts depends on subjects' age and cell passage number. Biofactors 2020; 46:665-674. [PMID: 32479666 DOI: 10.1002/biof.1636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Cell senescence is due to the permanent cell cycle arrest that occurs as a result of the inherent limited replicative capacity toward the Hayflick limit (replicative senescence), or in response to various stressors (stress-induced premature senescence, SIPS). With the acquisition of the senescence-associated secretory phenotype (SASP), cells release several molecules (cytokines, proteases, lipids), and express the senescence-associated beta-galactosidase (SA-β-Gal). Here we tested whether vitamin E affects SA-β-Gal in an in vitro model of cell ageing. Skin fibroblasts from human subjects of different age (1, 13, 29, 59, and 88 years old) were cultured until they reached replicative senescence. At different passages (Passages 2, 9, 13, and 16), these cells were treated with vitamin E for 24 hr. Vitamin E reduced SA-β-Gal in all cells at passage 16, but at earlier passage numbers it reduced SA-β-Gal only in cells isolated from the oldest subjects. Therefore, short time treatment with vitamin E decreases SA-β-Gal in cells both from young and old subjects when reaching replicative senescence; but in cells isolated from older subjects, a decrease in SA-β-Gal by vitamin E occurs also at earlier passage numbers. The possible role of downregulation of CD36 by vitamin E, a scavenger receptor essential for initiation of senescence and SASP, is discussed.
Collapse
Affiliation(s)
- Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Angelo Azzi
- Sackler School of Graduate Biomedical Pharmacology and Drug Development Program, Tufts University, Boston, Massachusetts, USA
| | - Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
63
|
Effects of resistance exercise training on redox homeostasis in older adults. A systematic review and meta-analysis. Exp Gerontol 2020; 138:111012. [PMID: 32615210 DOI: 10.1016/j.exger.2020.111012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Resistance exercise training (RET) has proven effective at reducing the risk of chronic disease in older populations, and it appears to regulate redox homeostasis. AIMS To determine the effects of RET on redox homeostasis in older people. STUDY DESIGN A systematic review and meta-analysis of randomized clinical trials identified by searching MEDLINE, Web of Science, EMBASE, Sportdiscus, LILACS, CENTRAL and CINAHL. We included studies of subjects aged 65 years or older, with or without pathologies, and including RET metrics with quantified molecular oxidation and antioxidant capacity outcomes. RESULTS Fifteen studies were included in this review. Agreement between reviewers reached a kappa value of 0.725. There were a total of 614 participants, with an average age of 68.1 years. Five (for molecular oxidation markers) and three (for antioxidant capacity markers) studies included data that quantified the effects of RET on homeostasis redox. The results of the meta-analysis showed that there were no differences in the molecular oxidation markers (SMD = -0.26; 95% CI = -0.57 to 0.05; P = 0.10; I2 = 0%) and antioxidant capacity markers (SMD = 0.53; 95% CI = -0.20 to 1.26; P = 0.16; I2 = 71.5%) in healthy older people after a RET of 8-24 weeks compared to non-intervention. CONCLUSIONS Based on a small number of studies of low methodological quality, this systematic review with meta-analysis suggests that RET is not effective at reducing molecular oxidation markers in healthy older people. More research is needed on the effects of RET on redox homeostasis in older people. PROSPERO REGISTRATION NUMBER CRD42019121529.
Collapse
|
64
|
Kontoghiorghes GJ, Kontoghiorghe CN. Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020; 9:E1456. [PMID: 32545424 PMCID: PMC7349684 DOI: 10.3390/cells9061456] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world's population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.
Collapse
Affiliation(s)
- George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus;
| | | |
Collapse
|
65
|
Liu R, Fu Z, Zhang F, Mao Q, Luan C, Han X, Xue J, Wang D, Qin S, Hao F. Effect of yellow rice wine on anti-aging ability in aged mice induced by d-galactose. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
66
|
Antioxidant Action and In Vivo Anti-Inflammatory and Antinociceptive Activities of Myrciaria floribunda Fruit Peels: Possible Involvement of Opioidergic System. Adv Pharmacol Pharm Sci 2020; 2020:1258707. [PMID: 32399519 PMCID: PMC7201827 DOI: 10.1155/2020/1258707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/21/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022] Open
Abstract
This work evaluated the antioxidant properties and in vivo antinociceptive and anti-inflammatory effects of extracts obtained from fruit peels of Myrciaria floribunda (H. West ex Willd.) O. Berg (Myrtaceae). This plant is popularly known in Brazil as Cambuí or camboim. Different extracts were submitted to comparative analysis to determine the content of selected phytochemical classes (levels of total phenols, flavonoids, and monomeric anthocyanins) and the in vitro antioxidant potentials. The extract with higher potential was selected for in vivo evaluation of its antinociceptive and anti-inflammatory action. Finally, the chemical characterization of this extract was performed by high-performance liquid chromatography (HPLC). MfAE (extract obtained using acetone as solvent) showed the higher levels of phenols (296 mg GAE/g) and anthocyanins contents (35.65 mg Cy-3-glcE/g) that were associated with higher antioxidant activity. MfAE also exhibited in vivo anti-inflammatory and analgesic propertiers. This fraction inhibited the inflammatory and neurogenic phases of pain, and this effect was reversed by naloxone (suggesting the involvement of opioidergic system). MfAE reduced the abdominal contortions induced by acetic acid. The HPLC analysis revealed the presence of gallic acid (and its derivatives) and ellagic acid. Taken together, these data support the use of M. floribunda fruit peels for development of functional foods and nutraceutics.
Collapse
|
67
|
Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Zavadskiy SP, Kuz'menko AN, Terentiev AA. Dual Character of Reactive Oxygen, Nitrogen, and Halogen Species: Endogenous Sources, Interconversions and Neutralization. BIOCHEMISTRY (MOSCOW) 2020; 85:S56-S78. [PMID: 32087054 DOI: 10.1134/s0006297920140047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress resulting from accumulation of reactive oxygen, nitrogen, and halogen species (ROS, RNS, and RHS, respectively) causes the damage of cells and biomolecules. However, over the long evolutionary time, living organisms have developed the mechanisms for adaptation to oxidative stress conditions including the activity of the antioxidant system (AOS), which maintains low intracellular levels of RONS (ROS and RNS) and RHS. Moreover, living organisms have adapted to use low concentrations of these electrophiles for the regulation of cell functions through the reversible post-translational chemical modifications of redox-sensitive amino acid residues in intracellular effectors of signal transduction pathways (protein kinases and protein phosphatases), transcription factors, etc. An important fine-tuning mechanism that ensures involvement of RONS and RHS in the regulation of physiological processes is interconversion between different reactive species. This review focuses on the complex networks of interacting RONS and RHS types and their endogenous sources, such as NOX family of NADPH oxidases, complexes I and III of the mitochondrial electron transport chain, NO synthases, cytochrome P450-containing monooxygenase system, xanthine oxidoreductase, and myeloperoxidases. We highlight that kinetic parameters of reactions involving RONS and RHS determine the effects of these reactive species on cell functions. We also describe the functioning of enzymatic and non-enzymatic AOS components and the mechanisms of RONS and RHS scavenging under physiological conditions. We believe that analysis of interactions between RONS and relationships between different endogenous sources of these compounds will contribute to better understanding of their role in the maintenance of cell redox homeostasis as well as initiation and progression of diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - I M Mokhosoev
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - T I Mel'nikova
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - S P Zavadskiy
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - A N Kuz'menko
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - A A Terentiev
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
68
|
Liu L, Sha XY, Wu YN, Chen MT, Zhong JX. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen Res 2020; 15:1526-1531. [PMID: 31997818 PMCID: PMC7059572 DOI: 10.4103/1673-5374.274349] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The accumulation of excessive reactive oxygen species can exacerbate any injury of retinal tissue because free radicals can trigger lipid peroxidation, protein damage and DNA fragmentation. Increased oxidative stress is associated with the common pathological process of many eye diseases, such as glaucoma, diabetic retinopathy and ischemic optic neuropathy. Many studies have demonstrated that Lycium barbarum polysaccharides (LBP) protects against oxidative injury in numerous cells and tissues. For the model of hypoxia we used cultured retinal ganglion cells and induced hypoxia by incubating with 200 µM cobalt chloride (CoCl2) for 24 hours. To investigate the protective effect of LBP and its mechanism of action against oxidative stress injury, the retinal tissue was pretreated with 0.5 mg/mL LBP for 24 hours. The results of flow cytometric analysis showed LBP could effectively reduce the CoCl2-induced retinal ganglion cell apoptosis, inhibited the generation of reactive oxygen species and the reduction of mitochondrial membrane potential. These findings suggested that LBP could protect retinal ganglion cells from CoCl2-induced apoptosis by reducing mitochondrial membrane potential and reactive oxygen species.
Collapse
Affiliation(s)
- Lian Liu
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao-Yuan Sha
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Ning Wu
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Meng-Ting Chen
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
69
|
Spickett CM. Formation of Oxidatively Modified Lipids as the Basis for a Cellular Epilipidome. Front Endocrinol (Lausanne) 2020; 11:602771. [PMID: 33408694 PMCID: PMC7779974 DOI: 10.3389/fendo.2020.602771] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
While often regarded as a subset of metabolomics, lipidomics can better be considered as a field in its own right. While the total number of lipid species in biology may not exceed the number of metabolites, they can be modified chemically and biochemically leading to an enormous diversity of derivatives, many of which retain the lipophilic properties of lipids and thus expand the lipidome greatly. Oxidative modification by radical oxygen species, either enzymatically or chemically, is one of the major mechanisms involved, although attack by non-radical oxidants also occurs. The modified lipids typically contain more oxygens in the form of hydroxyl, epoxide, carbonyl and carboxylic acid groups, and nitration, nitrosylation, halogenation or sulfation can also occur. This article provides a succinct overview of the types of species formed, the reactive compounds involved and the specific molecular sites that they react with, and the biochemical or chemical mechanisms involved. In many cases, these modifications reduce the stability of the lipid, and breakdown products are formed, which themselves have interesting properties such as the ability to react with other biomolecules. Publications on the biological effects of modified lipids are growing rapidly, supporting the concept that some of these biomolecules have potential signaling and regulatory effects. The question therefore arises whether modified lipids represent an "epilipidome", analogous to the epigenetic modifications that can control gene expression.
Collapse
|
70
|
Han L, Li J, Li J, Pan C, Xiao Y, Lan X, Wang M. Activation of AMPK/Sirt3 pathway by phloretin reduces mitochondrial ROS in vascular endothelium by increasing the activity of MnSOD via deacetylation. Food Funct 2020; 11:3073-3083. [PMID: 32195489 DOI: 10.1039/c9fo02334h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a dihydrochalcone, phloretin was reported to effectively attenuate palmitic acid (PA)-induced oxidative stress in endothelial cells.
Collapse
Affiliation(s)
- Lin Han
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- P. R. China
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing
| | - Jie Li
- College of Animal Science and Technology
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Jia Li
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Chuaying Pan
- College of Animal Science and Technology
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yao Xiao
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Xianyong Lan
- College of Animal Science and Technology
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Min Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
71
|
Markiewicz E, Idowu OC. DNA damage in human skin and the capacities of natural compounds to modulate the bystander signalling. Open Biol 2019; 9:190208. [PMID: 31847786 PMCID: PMC6936251 DOI: 10.1098/rsob.190208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Human skin is a stratified organ frequently exposed to sun-generated ultraviolet radiation (UVR), which is considered one of the major factors responsible for DNA damage. Such damage can be direct, through interactions of DNA with UV photons, or indirect, mainly through enhanced production of reactive oxygen species that introduce oxidative changes to the DNA. Oxidative stress and DNA damage also associate with profound changes at the cellular and molecular level involving several cell cycle and signal transduction factors responsible for DNA repair or irreversible changes linked to ageing. Crucially, some of these factors constitute part of the signalling known for the induction of biological changes in non-irradiated, neighbouring cells and defined as the bystander effect. Network interactions with a number of natural compounds, based on their known activity towards these biomarkers in the skin, reveal the capacity to inhibit both the bystander signalling and cell cycle/DNA damage molecules while increasing expression of the anti-oxidant enzymes. Based on this information, we discuss the likely polypharmacology applications of the natural compounds and next-generation screening technologies in improving the anti-oxidant and DNA repair capacities of the skin.
Collapse
|
72
|
Garza-Lombó C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R. Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem 2019; 24:1305-1316. [PMID: 31748979 DOI: 10.1007/s00775-019-01740-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
Arsenic is a metalloid found in groundwater as a byproduct of soil/rock erosion and industrial and agricultural processes. This xenobiotic elicits its toxicity through different mechanisms, and it has been identified as a toxicant that affects virtually every organ or tissue in the body. In the central nervous system, exposure to arsenic can induce cognitive dysfunction. Furthermore, iAs has been linked to several neurological disorders, including neurodevelopmental alterations, and is considered a risk factor for neurodegenerative disorders. However, the exact mechanisms involved are still unclear. In this review, we aim to appraise the neurotoxic effects of arsenic and the molecular mechanisms involved. First, we discuss the epidemiological studies reporting on the effects of arsenic in intellectual and cognitive function during development as well as studies showing the correlation between arsenic exposure and altered cognition and mental health in adults. The neurotoxic effects of arsenic and the potential mechanisms associated with neurodegeneration are also reviewed including data from experimental models supporting epidemiological evidence of arsenic as a neurotoxicant. Next, we focused on recent literature regarding arsenic metabolism and the molecular mechanisms that begin to explain how arsenic damages the central nervous system including, oxidative stress, energy failure and mitochondrial dysfunction, epigenetics, alterations in neurotransmitter homeostasis and synaptic transmission, cell death pathways, and inflammation. Outlining the specific mechanisms by which arsenic alters the cell function is key to understand the neurotoxic effects that convey cognitive dysfunction, neurodevelopmental alterations, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
73
|
Use of S1QELs and S3QELs to link mitochondrial sites of superoxide and hydrogen peroxide generation to physiological and pathological outcomes. Biochem Soc Trans 2019; 47:1461-1469. [DOI: 10.1042/bst20190305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Changes in mitochondrial superoxide and hydrogen peroxide production may contribute to various pathologies, and even aging, given that over time and in certain conditions, they damage macromolecules and disrupt normal redox signalling. Mitochondria-targeted antioxidants such as mitoQ, mitoVitE, and mitoTEMPO have opened up the study of the importance of altered mitochondrial matrix superoxide/hydrogen peroxide in disease. However, the use of such tools has caveats and they are unable to distinguish precise sites of production within the reactions of substrate oxidation and the electron transport chain. S1QELs are specific small-molecule Suppressors of site IQElectron Leak and S3QELs are specific small-molecule Suppressors of site IIIQoElectron Leak; they prevent superoxide/hydrogen production at specific sites without affecting electron transport or oxidative phosphorylation. We discuss the benefits of using S1QELs and S3QELs as opposed to mitochondria-targeted antioxidants, mitochondrial poisons, and genetic manipulation. We summarise pathologies in which site IQ in mitochondrial complex I and site IIIQo in mitochondrial complex III have been implicated using S1QELs and S3QELs.
Collapse
|
74
|
Hu C, Zhao L, Tao J, Li L. Protective role of melatonin in early-stage and end-stage liver cirrhosis. J Cell Mol Med 2019; 23:7151-7162. [PMID: 31475778 PMCID: PMC6815834 DOI: 10.1111/jcmm.14634] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/13/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is composed of hepatocytes, cholangiocytes, Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells (HSCs) and dendritic cells; all these functional and interstitial cells contribute to the synthesis and secretion functions of liver tissue. However, various hepatotoxic factors including infection, chemicals, high‐fat diet consumption, surgical procedures and genetic mutations, as well as biliary tract diseases such as sclerosing cholangitis and bile duct ligation, ultimately progress into liver cirrhosis after activation of fibrogenesis. Melatonin (MT), a special hormone isolated from the pineal gland, participates in regulating multiple physiological functions including sleep promotion, circadian rhythms and neuroendocrine processes. Current evidence shows that MT protects against liver injury by inhibiting oxidation, inflammation, HSC proliferation and hepatocyte apoptosis, thereby inhibiting the progression of liver cirrhosis. In this review, we summarize the circadian rhythm of liver cirrhosis and its potential mechanisms as well as the therapeutic effects of MT on liver cirrhosis and earlier‐stage liver diseases including liver steatosis, nonalcoholic fatty liver disease and liver fibrosis. Given that MT is an antioxidative and anti‐inflammatory agent that is effective in eliminating liver injury, it is a potential agent with which to reverse liver cirrhosis in its early stage.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingfei Zhao
- Kidney Disease Center, College of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Tao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
75
|
Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants (Basel) 2019; 8:antiox8070235. [PMID: 31336672 PMCID: PMC6680731 DOI: 10.3390/antiox8070235] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signalling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide.
Collapse
|
76
|
Surai PF, Kochish II, Fisinin VI, Juniper DT. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals (Basel) 2019; 9:E462. [PMID: 31331084 PMCID: PMC6680431 DOI: 10.3390/ani9070462] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
In commercial animals production, productive stress can negatively impact health status and subsequent productive and reproductive performance. A great body of evidence has demonstrated that as a consequence of productive stress, an overproduction of free radicals, disturbance of redox balance/signaling, and oxidative stress were observed. There is a range of antioxidants that can be supplied with animal feed to help build and maintain the antioxidant defense system of the body responsible for prevention of the damaging effects of free radicals and the toxic products of their metabolism. Among feed-derived antioxidants, selenium (Se) was shown to have a special place as an essential part of 25 selenoproteins identified in animals. There is a comprehensive body of research in monogastric species that clearly shows that Se bioavailability within the diet is very much dependent on the form of the element used. Organic Se, in the form of selenomethionine (SeMet), has been reported to be a much more effective Se source when compared with mineral forms such as sodium selenite or selenate. It has been proposed that one of the main advantages of organic Se in pig and poultry nutrition is the non-specific incorporation of SeMet into general body proteins, thus forming an endogenous Se reserve that can be utilized during periods of stress for additional synthesis of selenoproteins. Responses in ruminant species to supplementary Se tend to be much more variable than those reported in monogastric species, and much of this variability may be a consequence of the different fates of Se forms in the rumen following ingestion. It is likely that the reducing conditions found in the rumen are responsible for the markedly lower assimilation of inorganic forms of Se, thus predisposing selenite-fed animals to potential Se inadequacy that may in turn compromise animal health and production. A growing body of evidence demonstrates that organic Se has a number of benefits, particularly in dairy and beef animals; these include improved Se and antioxidant status and better Se transfer via the placenta, colostrum, and milk to the newborn. However, there is a paucity in the data concerning molecular mechanisms of SeMet assimilation, metabolism and selenoprotein synthesis regulation in ruminant animals, and as such, further investigation is required.
Collapse
Affiliation(s)
- Peter F Surai
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia.
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Godollo, Hungary.
| | - Ivan I Kochish
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Vladimir I Fisinin
- All-Russian Institute of Poultry Husbandry, 141311 Sergiev Posad, Russia
| | - Darren T Juniper
- Animal, Dairy, Food Chain Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| |
Collapse
|
77
|
Yurova MN, Tyndyk ML, Popovich IG, Golubev AG, Anisimov VN. Gender Specificity of the Effect of Neonatal Melatonin Administration on Lifespan and Age-Associated Pathology in 129/Sv Mice. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Kontoghiorghes GJ, Kontoghiorghe CN. Prospects for the introduction of targeted antioxidant drugs for the prevention and treatment of diseases related to free radical pathology. Expert Opin Investig Drugs 2019; 28:593-603. [DOI: 10.1080/13543784.2019.1631284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science Technology, Environment and Medicine, Limassol, Cyprus
| | | |
Collapse
|
79
|
Kozakiewicz M, Kornatowski M, Krzywińska O, Kędziora-Kornatowska K. Changes in the blood antioxidant defense of advanced age people. Clin Interv Aging 2019; 14:763-771. [PMID: 31118597 PMCID: PMC6507109 DOI: 10.2147/cia.s201250] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction: Since 1956 there have been numerous scientific articles about free radical theory of aging which both confirm and deny the theory. Due to oxygen metabolism, there are relatively high concentrations of molecular oxygen in human cells, especially in mitochondria. Under normal physiological conditions, a small fraction of oxygen is constantly converted to ROS, such as superoxide radical (O2-•), H2O2, and related metabolites. Aim of the study: The aim of this work was to show the relation between the activity of main antioxidative enzymes and the age of the examined patients. Materials and methods: The analysis of antioxidant defense was performed on the blood samples from 184 "aged" individuals aged 65-90+ years, and compared to the blood samples of 37 individuals just about at the beginning of aging, aged 55-59 years. Results: The statistically significant decreases of Zn,Cu-superoxide dismutase (SOD-1), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were observed in elderly people in comparison with the control group. Moreover, an inverse correlation between the activities of SOD-1, CAT, and GSH-Px and the age of the examined persons was found. No age-related changes in glutathione reductase activities and malondialdehyde concentrations were observed. Conclusion: Lower activities of fundamental antioxidant enzymes in the erythrocytes of elderly people, which indicate the impairment of antioxidant defense in the aging organism and the intensity of peroxidative lipid structures, were observed.
Collapse
Affiliation(s)
- Mariusz Kozakiewicz
- Nicolaus Copernicus University in Torun Ludwig Rydygier Collegium Medicum in Bydgoszcz, Department of Food Chemistry, Bydgoszcz, Poland
| | - Maciej Kornatowski
- Nicolaus Copernicus University in Torun Ludwig Rydygier Collegium Medicum in Bydgoszcz, Department and Clinic of Geriatrics, Bydgoszcz, Poland
| | - Olga Krzywińska
- Nicolaus Copernicus University in Torun Ludwig Rydygier Collegium Medicum in Bydgoszcz, Department of Food Chemistry, Bydgoszcz, Poland
| | - Kornelia Kędziora-Kornatowska
- Nicolaus Copernicus University in Torun Ludwig Rydygier Collegium Medicum in Bydgoszcz, Department and Clinic of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
80
|
The role of catalases in the prevention/promotion of oxidative stress. J Inorg Biochem 2019; 197:110699. [PMID: 31055214 DOI: 10.1016/j.jinorgbio.2019.110699] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022]
Abstract
Catalases, heme enzymes which catalyze decomposition of hydrogen peroxide to water and molecular oxygen, are important members of the antioxidant defense system of cells of almost all aerobic organisms. However, recent studies suggest that catalase may be involved in various other processes in the cell. The paper provides a review of reactions of catalases with their main substrate, hydrogen peroxide, and with oxidizing species such as hydroxyl radical, superoxide, nitric oxide, peroxynitrite, hypochlorous acid, and singlet oxygen. A number of these individuals are formed under oxidative eustress (good stress) as well as distress (bad stress), while others only under conditions of oxidative distress. Potential biological significance of the reactions of mammalian as well as bacterial catalases with oxidizing species is discussed. The majority of these reactions inhibit catalase. Authors emphasize that catalase inhibition, which may lead to significant increase of the local concentration of hydrogen peroxide, may be detrimental to the neighboring tissues, but in some pathological states (e.g. the defense directed against pathogenic bacteria rich in catalase, or induction of apoptosis of cancer cells which possess membrane-associated catalase) it may be beneficial for the host organism.
Collapse
|
81
|
SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat Commun 2019; 10:1886. [PMID: 31015456 PMCID: PMC6478744 DOI: 10.1038/s41467-019-09897-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Intermittent food deprivation (fasting, IF) improves mood and cognition and protects neurons against excitotoxic degeneration in animal models of epilepsy and Alzheimer’s disease (AD). The mechanisms by which neuronal networks adapt to IF and how such adaptations impact neuropathological processes are unknown. We show that hippocampal neuronal networks adapt to IF by enhancing GABAergic tone, which is associated with reduced anxiety-like behaviors and improved hippocampus-dependent memory. These neuronal network and behavioral adaptations require the mitochondrial protein deacetylase SIRT3 as they are abolished in SIRT3-deficient mice and wild type mice in which SIRT3 is selectively depleted from hippocampal neurons. In the AppNL-G-F mouse model of AD, IF reduces neuronal network hyperexcitability and ameliorates deficits in hippocampal synaptic plasticity in a SIRT3-dependent manner. These findings demonstrate a role for a mitochondrial protein deacetylase in hippocampal neurons in behavioral and GABAergic synaptic adaptations to IF. Intermittent fasting has been shown to have beneficial effects on hippocampal function in rodents, but the underlying mechanism is not fully understood. Here the authors show that the mitochondrial protein SIRT3 contributes to the beneficial cognitive and synaptic effects of intermittent fasting in mice.
Collapse
|
82
|
Liu J, Zhu H, Premnauth G, Earnest KG, Hahn P, Gray G, Queenan JA, Prevette LE, AbdulSalam SF, Kadekaro AL, Merino EJ. UV cell stress induces oxidative cyclization of a protective reagent for DNA damage reduction in skin explants. Free Radic Biol Med 2019; 134:133-138. [PMID: 30605714 DOI: 10.1016/j.freeradbiomed.2018.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 12/29/2018] [Indexed: 01/09/2023]
Abstract
UV irradiation is a major driver of DNA damage and ultimately skin cancer. UV exposure leads to persistent radicals that generate ROS over prolonged periods of time. Toward the goal of developing long-lasting antioxidants that can penetrate skin, we have designed a ROS-initiated protective (RIP) reagent that, upon reaction with ROS (antioxidant activity), self-cyclizes and then releases the natural product apocynin. Apocynin is a known antioxidant and inhibitor of NOX oxidase enzymes. A key phenol on the compound 1 controls ROS-initiated cyclization and makes 1 responsive to ROS with a EC50 comparable to common antioxidants in an ABTS assay. In an in vitro DNA nicking assay, the RIP reagent prevented DNA strand breaks. In cell-based assays, the reagent was not cytotoxic, apocynin was released only in cells treated with UVR, reduced UVR-induced cell death, and lowered DNA lesion formation. Finally, topical treatment of human skin explants with the RIP reagent reduced UV-induced DNA damage as monitored by quantification of cyclobutane dimer formation and DNA repair signaling via TP53. The reagent was more effective than administration of a catalase antioxidant on skin explants. This chemistry platform will expand the types of ROS-activated motifs and enable inhibitor release for potential use as a long-acting sunscreen.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Haizhou Zhu
- Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Gurdat Premnauth
- Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Chemistry, University of St. Thomas, St. Paul, MN, USA; Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kaylin G Earnest
- Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Patricia Hahn
- Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - George Gray
- Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Jack A Queenan
- Department of Chemistry, University of St. Thomas, St. Paul, MN, USA
| | - Lisa E Prevette
- Department of Chemistry, University of St. Thomas, St. Paul, MN, USA
| | - Safnas F AbdulSalam
- Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Ana Luisa Kadekaro
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Edward J Merino
- Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
83
|
He S, Yu M, Sun H, Zhang Z, Zhu Y, Zhao J, Tang M, Cao Y. Potential effects of dietary Maillard reaction products derived from 1 to 3 kDa soybean peptides on the aging ICR mice. Food Chem Toxicol 2019; 125:62-70. [PMID: 30597219 DOI: 10.1016/j.fct.2018.12.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/26/2022]
Abstract
Effects of Maillard reaction products derived from 1 to 3 kDa soybean peptides (MRPF3) on aging ICR mice were investigated. Seven animal groups were established for 5 weeks, including one normal group and six D-galactose (1000 mg kg-1/day) treated groups. Aging control was D-galactose + saline solution, and positive controls were D-galactose + ascorbic acid (Vc) (400 mg kg-1/day) and oligofructose (400 mg kg-1/day), respectively, while the test groups are D-galactose + high (800 mg kg-1/day), medium (400 mg kg-1/day) and low (200 mg kg-1/day) doses of MRPF3. Compared with the aging controls, food intake, body weights and organ indexes returned to normal after feeding with MRPF3, and the color of feces as well as the fluorescence intensity of urine increased. The content of malondialdehyde (MDA) in the liver significantly decreased with the intake of MRPF3, and the activities of SOD and GSH-Px and the total antioxidant capacity of serum significantly increased. The abundance ratio of Bacteroidetes and Firmicutes significantly decreased in MRPF3 groups, and the abundance of Lactobacillus significantly increased, while potentially pathogenic bacteria such as Porphyromonadaceae significantly decreased. Our results showed that MRPF3 might offer a potent retardation potential for aging.
Collapse
Affiliation(s)
- Shudong He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, 236500, Anhui, China
| | - Min Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Hanju Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd, Jieshou, 236500, Anhui, China.
| | - Zuoyong Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China; Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Jinlong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Mingming Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China; Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
84
|
Wang J, Konishi T. Nuclear factor (erythroid-derived 2)-like 2 antioxidative response mitigates cytoplasmic radiation-induced DNA double-strand breaks. Cancer Sci 2019; 110:686-696. [PMID: 30561156 PMCID: PMC6361566 DOI: 10.1111/cas.13916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 12/27/2022] Open
Abstract
It has been reported that DNA double-strand breaks (DSB) can be induced by cytoplasm irradiation, and that both reactive free radicals and mitochondria are involved in DSB formation. However, the cellular antioxidative responses that are stimulated and the biological consequences of cytoplasmic irradiation remain unknown. Using the Single Particle Irradiation system to Cell (SPICE) proton microbeam facility at the National Institute of Radiological Sciences ([NIRS] Japan), the response of nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidative signaling to cytoplasmic irradiation was studied in normal human lung fibroblast WI-38 cells. Cytoplasmic irradiation stimulated the localization of NRF2 to the nucleus and the expression of its target protein, heme oxygenase 1. Activation of NRF2 by tert-butylhydroquinone mitigated the levels of DSB induced by cytoplasmic irradiation. Mitochondrial fragmentation was also promoted by cytoplasmic irradiation, and treatment with mitochondrial division inhibitor 1 (Mdivi-1) suppressed cytoplasmic irradiation-induced NRF2 activation and aggravated DSB formation. Furthermore, p53 contributed to the induction of mitochondrial fragmentation and activation of NRF2, although the expression of p53 was significantly downregulated by cytoplasmic irradiation. Finally, mitochondrial superoxide (MitoSOX) production was enhanced under cytoplasmic irradiation, and use of the MitoSOX scavenger mitoTEMPOL indicated that MitoSOX caused alterations in p53 expression, mitochondrial dynamics, and NRF2 activation. Overall, NRF2 antioxidative response is suggested to play a key role against genomic DNA damage under cytoplasmic irradiation. Additionally, the upstream regulators of NRF2 provide new clues on cytoplasmic irradiation-induced biological processes and prevention of radiation risks.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,SPICE-NIRS Research Core, International Open Laboratory, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Teruaki Konishi
- SPICE-NIRS Research Core, International Open Laboratory, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,Department of Basic Medical Sciences for Radiation Damages, NIRS, QST, Chiba, Japan
| |
Collapse
|
85
|
Ciesielska S, Bil P, Gajda K, Poterala-Hejmo A, Hudy D, Rzeszowska-Wolny J. Cell type-specific differences in redox regulation and proliferation after low UVA doses. PLoS One 2019; 14:e0205215. [PMID: 30682016 PMCID: PMC6347369 DOI: 10.1371/journal.pone.0205215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/04/2019] [Indexed: 01/09/2023] Open
Abstract
Ultraviolet A (UVA) radiation is harmful for living organisms but in low doses may stimulate cell proliferation. Our aim was to examine the relationships between exposure to different low UVA doses, cellular proliferation, and changes in cellular reactive oxygen species levels. In human colon cancer (HCT116) and melanoma (Me45) cells exposed to UVA doses comparable to environmental, the highest doses (30–50 kJ/m2) reduced clonogenic potential but some lower doses (1 and 10 kJ/m2) induced proliferation. This effect was cell type and dose specific. In both cell lines the levels of reactive oxygen species and nitric oxide fluctuated with dynamics which were influenced differently by UVA; in Me45 cells decreased proliferation accompanied the changes in the dynamics of H2O2 while in HCT116 cells those of superoxide. Genes coding for proteins engaged in redox systems were expressed differently in each cell line; transcripts for thioredoxin, peroxiredoxin and glutathione peroxidase showed higher expression in HCT116 cells whereas those for glutathione transferases and copper chaperone were more abundant in Me45 cells. We conclude that these two cell types utilize different pathways for regulating their redox status. Many mechanisms engaged in maintaining cellular redox balance have been described. Here we show that the different cellular responses to a stimulus such as a specific dose of UVA may be consequences of the use of different redox control pathways. Assays of superoxide and hydrogen peroxide level changes after exposure to UVA may clarify mechanisms of cellular redox regulation and help in understanding responses to stressing factors.
Collapse
Affiliation(s)
- Sylwia Ciesielska
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Patryk Bil
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Karolina Gajda
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Aleksandra Poterala-Hejmo
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Dorota Hudy
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Joanna Rzeszowska-Wolny
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
- * E-mail:
| |
Collapse
|
86
|
Qin X, Li N, Zhang M, Lin S, Zhu J, Xiao D, Cui W, Zhang T, Lin Y, Cai X. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. NANOSCALE 2019; 11:20667-20675. [PMID: 31642452 DOI: 10.1039/c9nr07171g] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinal ischemia-reperfusion (I/R) injuries are involved in the universal pathological processes of many ophthalmic diseases, including glaucoma, diabetic retinopathy, and retinal arterial occlusion.
Collapse
|
87
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|
88
|
Golubev A, Hanson AD, Gladyshev VN. A Tale of Two Concepts: Harmonizing the Free Radical and Antagonistic Pleiotropy Theories of Aging. Antioxid Redox Signal 2018; 29:1003-1017. [PMID: 28874059 PMCID: PMC6104246 DOI: 10.1089/ars.2017.7105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/09/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The two foremost concepts of aging are the mechanistic free radical theory (FRT) of how we age and the evolutionary antagonistic pleiotropy theory (APT) of why we age. Both date from the late 1950s. The FRT holds that reactive oxygen species (ROS) are the principal contributors to the lifelong cumulative damage suffered by cells, whereas the APT is generally understood as positing that genes that are good for young organisms can take over a population even if they are bad for the old organisms. Recent Advances: Here, we provide a common ground for the two theories by showing how aging can result from the inherent chemical reactivity of many biomolecules, not just ROS, which imposes a fundamental constraint on biological evolution. Chemically reactive metabolites spontaneously modify slowly renewable macromolecules in a continuous way over time; the resulting buildup of damage wrought by the genes coding for enzymes that generate such small molecules eventually masquerades as late-acting pleiotropic effects. In aerobic organisms, ROS are major agents of this damage but they are far from alone. CRITICAL ISSUES Being related to two sides of the same phenomenon, these theories should be compatible. However, the interface between them is obscured by the FRT mistaking a subset of damaging processes for the whole, and the APT mistaking a cumulative quantitative process for a qualitative switch. FUTURE DIRECTIONS The manifestations of ROS-mediated cumulative chemical damage at the population level may include the often-observed negative correlation between fitness and the rate of its decline with increasing age, further linking FRT and APT. Antioxid. Redox Signal. 29, 1003-1017.
Collapse
Affiliation(s)
- Alexey Golubev
- Department of Carcinogenesis and Oncogerontology, Petrov Research Institute of Oncology, Saint Petersburg, Russia
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow Russia
| |
Collapse
|
89
|
Wang L, Chen HC, Yang X, Tao JJ, Liang G, Wu JZ, Wu WC, Wang Y, Song ZM, Zhang X. The novel chalcone analog L2H17 protects retinal ganglion cells from oxidative stress-induced apoptosis. Neural Regen Res 2018; 13:1665-1672. [PMID: 30127130 PMCID: PMC6126127 DOI: 10.4103/1673-5374.237140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 01/28/2023] Open
Abstract
Chalcone is a plant metabolite widely found in fruits, vegetables, spices and tea, and has anti-tumor, anti-inflammation, immunomodulation, antibacterial and anti-oxidation activities, as well as many other pharmacological and biological effects. Our team has shown that its analogs have antioxidant activity, and oxidative stress is a pathological hallmark of retinal ischemia/reperfusion injury that can lead to retinal damage and visual loss. This investigation aims to identify a chalcone that protects retinal ganglion cells in vitro from the effects of oxidative stress and examine its mechanism. Rat retinal ganglion cell-5 cells were pretreated with chalcones and then exposed to tert-butyl hydroperoxide that causes oxidative damage. Controls received dimethyl sulfoxide only or tert-butyl hydroperoxide in dimethyl sulfoxide. Only (E)-3,4-dihydroxy-2'-methylether ketone (L2H17), of the five chalcone analogs, markedly increased the survival rate of oxidatively injured RGC-5 cells. Thus, subsequent experiments only analyzed the results of the L2H17 intervention. Cell viability and apoptosis were measured. Intracellular superoxide dismutase and reactive oxygen species levels were used to assess induced oxidative stress. The mechanism of action by L2H17 was explored by measuring the ER stress/UPR pathway and the expression and localization of Nrf2. All results demonstrated that L2H17 could reduce the apoptosis of oxidatively injured cells, inhibit caspase-3 activity, increase Bcl-2 expression, decrease Bad expression, increase the activity of superoxide dismutase, inhibit the production of reactive oxygen species, increase Nrf2 immunoreactivity, and reduce the activating transcription factor 4, phospho-eukaryotic initiation factor 2 and CHOP expression. L2H17 protects retinal ganglion cells induced by oxidative stress by regulating Nrf2, which indicates that it has the potential to become a drug for retinal ischemia/reperfusion.
Collapse
Affiliation(s)
- Lei Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Huai-Cheng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xi Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jian-Jian Tao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jian-Zhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wen-Can Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zong-Ming Song
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
90
|
Sampson N, Brunner E, Weber A, Puhr M, Schäfer G, Szyndralewiez C, Klocker H. Inhibition of Nox4-dependent ROS signaling attenuates prostate fibroblast activation and abrogates stromal-mediated protumorigenic interactions. Int J Cancer 2018; 143:383-395. [PMID: 29441570 PMCID: PMC6067067 DOI: 10.1002/ijc.31316] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/18/2017] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
Abstract
Carcinoma-associated fibroblasts (CAFs) play a key onco-supportive role during prostate cancer (PCa) development and progression. We previously reported that the reactive oxygen species (ROS)-producing enzyme NADPH oxidase 4 (Nox4) is essential for TGFβ1-mediated activation of primary prostate human fibroblasts to a CAF-like phenotype. This study aimed to further investigate the functional relevance of prostatic Nox4 and determine whether pharmacological inhibition of stromal Nox4 abrogates paracrine-mediated PCa-relevant processes. RNA in situ hybridization revealed significantly elevated Nox4 mRNA levels predominantly in the peri-tumoral stroma of clinical PCa with intense stromal Nox4 staining adjacent to tumor foci expressing abundant TGFβ protein levels. At pharmacologically relevant concentrations, the Nox1/Nox4 inhibitor GKT137831 attenuated ROS production, CAF-associated marker expression and migration of TGFβ1-activated but not nonactivated primary human prostate fibroblasts. Similar effects were obtained upon shRNA-mediated silencing of Nox4 but not Nox1 indicating that GKT137831 primarily abrogates TGFβ1-driven fibroblast activation via Nox4 inhibition. Moreover, inhibiting stromal Nox4 abrogated the enhanced proliferation and migration of PCa cell lines induced by TGFβ1-activated prostate fibroblast conditioned media. These effects were not restricted to recombinant TGFβ1 as conditioned media from PCa cell lines endogenously secreting high TGFβ1 levels induced fibroblast activation in a stromal Nox4- and TGFβ receptor-dependent manner. Importantly, GKT137831 also attenuated PCa cell-driven fibroblast activation. Collectively, these findings suggest the TGFβ-Nox4 signaling axis is a key interface to dysregulated reciprocal stromal-epithelial interactions in PCa pathophysiology and provide a strong rationale for further investigating the applicability of Nox4 inhibition as a stromal-targeted approach to complement current PCa treatment modalities.
Collapse
Affiliation(s)
- Natalie Sampson
- Department of Urology, Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | - Elena Brunner
- Department of Urology, Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | - Anja Weber
- Department of Urology, Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | - Martin Puhr
- Department of Urology, Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | - Georg Schäfer
- Division of PathologyMedical University of InnsbruckInnsbruckAustria
| | | | - Helmut Klocker
- Department of Urology, Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
91
|
Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid Redox Signal 2018; 28:1669-1703. [PMID: 29402131 PMCID: PMC5962337 DOI: 10.1089/ars.2017.7272] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. CRITICAL ISSUES In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. FUTURE DIRECTIONS Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska.,2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Yanahi Posadas
- 3 Departamentos de Farmacología y de, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México .,4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - Liliana Quintanar
- 4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - María E Gonsebatt
- 2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Rodrigo Franco
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska
| |
Collapse
|
92
|
Rudolf J, Raad H, Taieb A, Rezvani HR. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis. Antioxid Redox Signal 2018; 28:1238-1261. [PMID: 28990413 DOI: 10.1089/ars.2017.7282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Skin protects the body from dehydration, pathogens, and external mutagens. NADPH oxidases are central components for regulating the cellular redox balance. There is increasing evidence indicating that reactive oxygen species (ROS) generated by members of this enzyme family play important roles in the physiology and pathophysiology of the skin. Recent Advances: NADPH oxidases are active producers of ROS such as superoxide and hydrogen peroxide. Different isoforms are found in virtually all tissues. They play pivotal roles in normal cell homeostasis and in the cellular responses to various stressors. In particular, these enzymes are integral parts of redox-sensitive prosurvival and proapoptotic signaling pathways, in which they act both as effectors and as modulators. However, continuous (re)activation of NADPH oxidases can disturb the redox balance of cells, in the worst-case scenario in a permanent manner. Abnormal NADPH oxidase activity has been associated with a wide spectrum of diseases, as well as with aging and carcinogenesis. CRITICAL ISSUES Sunlight with its beneficial and deleterious effects induces the activation of NADPH oxidases in the skin. Evidence for the important roles of this enzyme family in skin cancer and skin aging, as well as in many chronic skin diseases, is now emerging. FUTURE DIRECTIONS Understanding the precise roles of NADPH oxidases in normal skin homeostasis, in the cellular responses to solar radiation, and during carcinogenesis will pave the way for their validation as therapeutic targets not only for the prevention and treatment of skin cancers but also for many other skin-related disorders. Antioxid. Redox Signal. 28, 1238-1261.
Collapse
Affiliation(s)
- Jana Rudolf
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Houssam Raad
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Alain Taieb
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,3 Service de Dermatologie Adulte et Pédiatrique , CHU de Bordeaux, Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| | - Hamid Reza Rezvani
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
93
|
Zhao H, Li J, Zhao J, Chen Y, Ren C, Chen Y. Antioxidant effects of compound walnut oil capsule in mice aging model induced by D-galactose. Food Nutr Res 2018; 62:1371. [PMID: 29720929 PMCID: PMC5917419 DOI: 10.29219/fnr.v62.1371] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 02/03/2023] Open
Abstract
Background Many plant original foods have been shown beneficial effects in humans. In the previous work, we have developed a compound capsule which contains major constituents of walnut oil and grape seed extract. Objective To investigate the antioxidant effects of the Compound Walnut Oil Capsule (WOC) in aging model induced by D-gal. Design 70 C57BL/6J mice were randomly divided into seven groups. Mice in normal group received daily subcutaneous injection of saline while the control group, WOC groups, Vitamin C (VC) group and pure walnut oil group received daily subcutaneous injection of D-galactose (D-gal) for 8 weeks. Total antioxidant capacity (T-AOC), super dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in serum, liver and brain were determined. The expression of Heme Oxygenase (HO-1), iNOS and Klotho in liver and brain were obtained. Results WOC could improve the pathologic lesions caused by oxidative stress and significantly enhance the T-AOC, increase the activities of SOD, GSH-Px and decrease the contents of MDA in serum, liver and brain. Also, the WOC could obviously up-regulate the expression of HO-1 and Klotho and down-regulate the expression of iNOS. Conclusion WOC can be used as an anti-aging food for its effectively eliminating free radicals, enhancing the antioxidant capacity and alleviating the damages of oxidative stress.
Collapse
Affiliation(s)
- Huandong Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jian Li
- Institute of Biomedical Engineering, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Zhao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Chen
- Institute of Biomedical Engineering, Xiangya Hospital, Central South University, Changsha, China
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Yuxiang Chen
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
94
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
95
|
Fiorani M, Guidarelli A, Capellacci V, Cerioni L, Crinelli R, Cantoni O. The dual role of mitochondrial superoxide in arsenite toxicity: Signaling at the boundary between apoptotic commitment and cytoprotection. Toxicol Appl Pharmacol 2018. [DOI: 10.1016/j.taap.2018.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Antioxidants and Prooxidants: Effects on Health and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1472708. [PMID: 29861825 PMCID: PMC5971338 DOI: 10.1155/2018/1472708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022]
|
97
|
Nilson KA, Lawson CK, Mullen NJ, Ball CB, Spector BM, Meier JL, Price DH. Oxidative stress rapidly stabilizes promoter-proximal paused Pol II across the human genome. Nucleic Acids Res 2017; 45:11088-11105. [PMID: 28977633 PMCID: PMC5737879 DOI: 10.1093/nar/gkx724] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress has pervasive effects on cells but how they respond transcriptionally upon the initial insult is incompletely understood. We developed a nuclear walk-on assay that semi-globally quantifies nascent transcripts in promoter-proximal paused RNA polymerase II (Pol II). Using this assay in conjunction with ChIP-Seq, in vitro transcription, and a chromatin retention assay, we show that within a minute, hydrogen peroxide causes accumulation of Pol II near promoters and enhancers that can best be explained by a rapid decrease in termination. Some of the accumulated polymerases slowly move or ‘creep’ downstream. This second effect is correlated with and probably results from loss of NELF association and function. Notably, both effects were independent of DNA damage and ADP-ribosylation. Our results demonstrate the unexpected speed at which a global transcriptional response can occur. The findings provide strong support for the residence time of paused Pol II elongation complexes being much shorter than estimated from previous studies.
Collapse
Affiliation(s)
- Kyle A Nilson
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.,Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | - Christine K Lawson
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas J Mullen
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher B Ball
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin M Spector
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffery L Meier
- Department of Internal Medicine, University of Iowa and Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.,Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
98
|
Baciou L, Masoud R, Souabni H, Serfaty X, Karimi G, Bizouarn T, Houée Levin C. Phagocyte NADPH oxidase, oxidative stress and lipids: Anti- or pro ageing? Mech Ageing Dev 2017; 172:30-34. [PMID: 29103982 DOI: 10.1016/j.mad.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/29/2017] [Accepted: 11/01/2017] [Indexed: 11/15/2022]
Abstract
The role of NADPH oxidase in ageing is debated because of the dual roles of free radicals, toxic though necessary. In this paper we summarize some results about two aspects linked to the regulation of the activity of phagocyte NADPH oxidase (Nox2), encountered frequently in elderly people: inflammation and hypercholesterolemia. In the presence of a high amount of reactive oxygen species (ROS) created by itself or by any other source, the enzyme activity is mostly lowered. Oxidation of the membrane and/or of one of the cytosolic partners could be responsible for this loss of activity. However using a cell free system, we had also shown that a low amount of ROS could activate this enzyme. Similarly, cholesterol has a similar dual role, either activating or inhibiting. In in vitro cell free system with neutrophil membranes from healthy donors, the addition, as well as the removal of cholesterol, diminishes the Nox2 activity. The activity of Nox2 is lowered in neutrophils of untreated hypercholesterolemic patients. Finally oxysterols (25-hydroxy-cholesterol or 5α, 6α - epoxy-cholesterol) do not induce effects different from that of non-oxidized cholesterol. These findings are in agreement with the Janus role of NADPH oxidase, the main source of non-mitochondrial ROS.
Collapse
Affiliation(s)
- Laura Baciou
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Rawand Masoud
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Hager Souabni
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Xavier Serfaty
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Gilda Karimi
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Tania Bizouarn
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Chantal Houée Levin
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France.
| |
Collapse
|
99
|
Fonseca SF, Padilha NB, Thurow S, Roehrs JA, Savegnago L, de Souza MN, Fronza MG, Collares T, Buss J, Seixas FK, Alves D, Lenardão EJ. Ultrasound-promoted copper-catalyzed synthesis of bis-arylselanyl chrysin derivatives with boosted antioxidant and anticancer activities. ULTRASONICS SONOCHEMISTRY 2017; 39:827-836. [PMID: 28733012 DOI: 10.1016/j.ultsonch.2017.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 05/21/2023]
Abstract
Herein we report the use of ultrasonic irradiation (US) in the synthesis of six new semi-synthetic selenium-containing chrysin derivatives by a simple and effective methodology utilizing CuI as catalyst, in good to excellent yields (60-89%). It was observed that US accelerates the reaction compared to conventional heating with excellent selectivity for diselenylated products. Compounds were tested for their antioxidant and anticancer activities in vitro and it was observed that the presence of selenium in the A-ring of chrysin enhanced both antioxidant and anticancer properties. Semi-synthetic 6,8-bis(o-tolylselanyl)-chrysin 3b has the best radical scavenging activity of DPPH (Imax: 39.79µM) and ABTS+ (IC50: 6.5µM) radicals. Similarly, in the Reactive Species (RS) assay, 3b showed high antioxidant activity in mice cortex (IC50: 5.67µM), whereas 6,8-bis(p-anisoylselanyl)-chrysin 3c was the more active in the hippocampus (IC50: 5.63µM). The Se-chrysins were effective in prevention of lipid peroxidation, highlighting 6,8-bis(p-fluorophenylselanyl)-chrysin 3d in cortex (IC50: 0.54µM) and 3b in hippocampus (IC50: 0.27µM). In addition, 3d was effective in inhibiting human lung adenocarcinoma (A549) cells growth, with a IC50 of 19.9µM after 72h of treatment, while 6,8-bis(p-anisoylselanyl)-chrysin 3c presented the higher antiproliferative activity after 48h of treatment (IC50 of 41.4µM).
Collapse
Affiliation(s)
- Sergio F Fonseca
- Laboratório de Síntese Orgânica Limpa - LASOL, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Nathalia B Padilha
- Laboratório de Síntese Orgânica Limpa - LASOL, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Samuel Thurow
- Laboratório de Síntese Orgânica Limpa - LASOL, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Juliano A Roehrs
- Laboratório de Síntese Orgânica Limpa - LASOL, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN, Universidade Federal de Pelotas - UFPel, 96010-900 Pelotas, RS, Brazil
| | - Maurice N de Souza
- Grupo de Pesquisa em Neurobiotecnologia - GPN, Universidade Federal de Pelotas - UFPel, 96010-900 Pelotas, RS, Brazil
| | - Mariana G Fronza
- Grupo de Pesquisa em Neurobiotecnologia - GPN, Universidade Federal de Pelotas - UFPel, 96010-900 Pelotas, RS, Brazil
| | - Tiago Collares
- Laboratório de Biotecnologia do Câncer, Universidade Federal de Pelotas - UFPel, 96010-900 Pelotas, RS, Brazil
| | - Julieti Buss
- Laboratório de Biotecnologia do Câncer, Universidade Federal de Pelotas - UFPel, 96010-900 Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Laboratório de Biotecnologia do Câncer, Universidade Federal de Pelotas - UFPel, 96010-900 Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
100
|
Flor AC, Wolfgeher D, Wu D, Kron SJ. A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov 2017; 3:17075. [PMID: 29090099 PMCID: PMC5661608 DOI: 10.1038/cddiscovery.2017.75] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/01/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
At their proliferative limit, normal cells arrest and undergo replicative senescence, displaying large cell size, flat morphology, and senescence-associated beta-galactosidase (SA-β-Gal) activity. Normal or tumor cells exposed to genotoxic stress undergo therapy-induced senescence (TIS), displaying a similar phenotype. Senescence is considered a DNA damage response, but cellular heterogeneity has frustrated identification of senescence-specific markers and targets. To explore the senescent cell proteome, we treated tumor cells with etoposide and enriched SA-β-GalHI cells by fluorescence-activated cell sorting (FACS). The enriched TIS cells were compared to proliferating or quiescent cells by label-free quantitative LC-MS/MS proteomics and systems analysis, revealing activation of multiple lipid metabolism pathways. Senescent cells accumulated lipid droplets and imported lipid tracers, while treating proliferating cells with specific lipids induced senescence. Senescent cells also displayed increased lipid aldehydes and upregulation of aldehyde detoxifying enzymes. These results place deregulation of lipid metabolism alongside genotoxic stress as factors regulating cellular senescence.
Collapse
Affiliation(s)
- Amy C Flor
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Don Wolfgeher
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Ding Wu
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| |
Collapse
|