51
|
Gomes-Neto JC, Pavlovikj N, Korth N, Naberhaus SA, Arruda B, Benson AK, Kreuder AJ. Salmonella enterica induces biogeography-specific changes in the gut microbiome of pigs. Front Vet Sci 2023; 10:1186554. [PMID: 37781286 PMCID: PMC10537282 DOI: 10.3389/fvets.2023.1186554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Swine are a major reservoir of an array of zoonotic Salmonella enterica subsp. enterica lineage I serovars including Derby, Typhimurium, and 4,[5],12:i:- (a.k.a. Monophasic Typhimurium). In this study, we assessed the gastrointestinal (GI) microbiome composition of pigs in different intestinal compartments and the feces following infection with specific zoonotic serovars of S. enterica (S. Derby, S. Monophasic, and S. Typhimurium). 16S rRNA based microbiome analysis was performed to assess for GI microbiome changes in terms of diversity (alpha and beta), community structure and volatility, and specific taxa alterations across GI biogeography (small and large intestine, feces) and days post-infection (DPI) 2, 4, and 28; these results were compared to disease phenotypes measured as histopathological changes. As previously reported, only S. Monophasic and S. Typhimurium induced morphological alterations that marked an inflammatory milieu restricted to the large intestine in this experimental model. S. Typhimurium alone induced significant changes at the alpha- (Simpson's and Shannon's indexes) and beta-diversity levels, specifically at the peak of inflammation in the large intestine and feces. Increased community dispersion and volatility in colonic apex and fecal microbiomes were also noted for S. Typhimurium. All three Salmonella serovars altered community structure as measured by co-occurrence networks; this was most prominent at DPI 2 and 4 in colonic apex samples. At the genus taxonomic level, a diverse array of putative short-chain fatty acid (SCFA) producing bacteria were altered and often decreased during the peak of inflammation at DPI 2 and 4 within colonic apex and fecal samples. Among all putative SCFA producing bacteria, Prevotella showed a broad pattern of negative correlation with disease scores at the peak of inflammation. In addition, Prevotella 9 was found to be significantly reduced in all Salmonella infected groups compared to the control at DPI 4 in the colonic apex. In conclusion, this work further elucidates that distinct swine-related zoonotic serovars of S. enterica can induce both shared (high resilience) and unique (altered resistance) alterations in gut microbiome biogeography, which helps inform future investigations of dietary modifications aimed at increasing colonization resistance against Salmonella through GI microbiome alterations.
Collapse
Affiliation(s)
- Joao Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Natasha Pavlovikj
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nate Korth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samantha A. Naberhaus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bailey Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
52
|
Notting F, Pirovano W, Sybesma W, Kort R. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e16. [PMID: 39295905 PMCID: PMC11406416 DOI: 10.1017/gmb.2023.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2024]
Abstract
The host-intestinal microbiome interaction has gained much scientific attention in the past two decades, boosted by advances in DNA sequencing and cultivation techniques. An accumulating amount of evidence shows that gut microbes play crucial roles in gut homeostasis, immune system education, and are associated with quality-of-life indicators. Beneficial health factors are associated with the digestion of dietary fibres in the colon and the subsequent production of short-chain fatty acids, including acetate, propionate, and butyrate. Coprococcus is a butyrate-producing genus in the phylum Firmicutes, and its abundance is inversely correlated with several neuropsychological and neurodegenerative disorders. Case-control studies provide strong evidence of decreased abundance of Coprococcus spp. in depressed individuals. The species Coprococcus eutactus has the unique capacity to use two separate pathways for butyrate synthesis and has been found to be depleted in children with delayed language development and adults with Parkinson's disease. The combined literature on Coprococcus and the gut microbiota-brain axis points towards enhanced butyrate production and reduced colonisation of pathogenic clades as factors explaining its association with health effects. The genus Coprococcus is a promising candidate for a mental health biomarker and an interesting lead for novel dietary-based preventive therapies for specific neurological disorders.
Collapse
Affiliation(s)
- Fleur Notting
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Walter Pirovano
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Remco Kort
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Penumutchu S, Korry BJ, Hewlett K, Belenky P. Fiber supplementation protects from antibiotic-induced gut microbiome dysbiosis by modulating gut redox potential. Nat Commun 2023; 14:5161. [PMID: 37620319 PMCID: PMC10449846 DOI: 10.1038/s41467-023-40553-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Antibiotic-induced gut dysbiosis (AID) is a frequent and serious side effect of antibiotic use and mitigating this dysbiosis is a critical therapeutic target. We propose that the host diet can modulate the chemical environment of the gut resulting in changes to the structure and function of the microbiome during antibiotic treatment. Gut dysbiosis is typically characterized by increases in aerobic respiratory bacterial metabolism, redox potential, and abundance of Proteobacteria. In this study, we explore dietary fiber supplements as potential modulators of the chemical environment in the gut to reduce this pattern of dysbiosis. Using defined-diets and whole-genome sequencing of female murine microbiomes during diet modulation and antibiotic treatment, we find that fiber prebiotics significantly reduced the impact of antibiotic treatment on microbiome composition and function. We observe reduced abundance of aerobic bacteria as well as metabolic pathways associated with oxidative metabolism. These metatranscriptomic results are corroborated by chemical measurements of eH and pH suggesting that fiber dampens the dysbiotic effects of antibiotics. This work indicates that fiber may act as a potential therapeutic for AID by modulating bacterial metabolism in the gut to prevent an increase in redox potential and protect commensal microbes during antibiotic treatment.
Collapse
Affiliation(s)
- Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Katharine Hewlett
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
54
|
Roggiani S, Zama D, D’Amico F, Rocca A, Fabbrini M, Totaro C, Pierantoni L, Brigidi P, Turroni S, Lanari M. Gut, oral, and nasopharyngeal microbiota dynamics in the clinical course of hospitalized infants with respiratory syncytial virus bronchiolitis. Front Cell Infect Microbiol 2023; 13:1193113. [PMID: 37680746 PMCID: PMC10482328 DOI: 10.3389/fcimb.2023.1193113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and hospitalization in infants worldwide. The nasopharyngeal microbiota has been suggested to play a role in influencing the clinical course of RSV bronchiolitis, and some evidence has been provided regarding oral and gut microbiota. However, most studies have focused on a single timepoint, and none has investigated all three ecosystems at once. Methods Here, we simultaneously reconstructed the gut, oral and nasopharyngeal microbiota dynamics of 19 infants with RSV bronchiolitis in relation to the duration of hospitalization (more or less than 5 days). Fecal samples, oral swabs, and nasopharyngeal aspirates were collected at three timepoints (emergency room admission, discharge and six-month follow-up) and profiled by 16S rRNA amplicon sequencing. Results Interestingly, all ecosystems underwent rearrangements over time but with distinct configurations depending on the clinical course of bronchiolitis. In particular, infants hospitalized for longer showed early and persistent signatures of unhealthy microbiota in all ecosystems, i.e., an increased representation of pathobionts and a depletion of typical age-predicted commensals. Discussion Monitoring infant microbiota during RSV bronchiolitis and promptly reversing any dysbiotic features could be important for prognosis and long-term health.
Collapse
Affiliation(s)
- Sara Roggiani
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Zama
- Paediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Rocca
- Paediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Totaro
- Specialty School of Pediatrics, University of Bologna, Bologna, Italy
| | - Luca Pierantoni
- Paediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marcello Lanari
- Paediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
55
|
Yip AYG, King OG, Omelchenko O, Kurkimat S, Horrocks V, Mostyn P, Danckert N, Ghani R, Satta G, Jauneikaite E, Davies FJ, Clarke TB, Mullish BH, Marchesi JR, McDonald JAK. Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites. Nat Commun 2023; 14:5094. [PMID: 37607936 PMCID: PMC10444851 DOI: 10.1038/s41467-023-40872-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
The intestine is the primary colonisation site for carbapenem-resistant Enterobacteriaceae (CRE) and serves as a reservoir of CRE that cause invasive infections (e.g. bloodstream infections). Broad-spectrum antibiotics disrupt colonisation resistance mediated by the gut microbiota, promoting the expansion of CRE within the intestine. Here, we show that antibiotic-induced reduction of gut microbial populations leads to an enrichment of nutrients and depletion of inhibitory metabolites, which enhances CRE growth. Antibiotics decrease the abundance of gut commensals (including Bifidobacteriaceae and Bacteroidales) in ex vivo cultures of human faecal microbiota; this is accompanied by depletion of microbial metabolites and enrichment of nutrients. We measure the nutrient utilisation abilities, nutrient preferences, and metabolite inhibition susceptibilities of several CRE strains. We find that CRE can use the nutrients (enriched after antibiotic treatment) as carbon and nitrogen sources for growth. These nutrients also increase in faeces from antibiotic-treated mice and decrease following intestinal colonisation with carbapenem-resistant Escherichia coli. Furthermore, certain microbial metabolites (depleted upon antibiotic treatment) inhibit CRE growth. Our results show that killing gut commensals with antibiotics facilitates CRE colonisation by enriching nutrients and depleting inhibitory microbial metabolites.
Collapse
Affiliation(s)
- Alexander Y G Yip
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Olivia G King
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Oleksii Omelchenko
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sanjana Kurkimat
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Victoria Horrocks
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Phoebe Mostyn
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Nathan Danckert
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
| | - Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
- Department of Infectious Disease, Imperial College Healthcare NHS Trust, London, UK
| | - Giovanni Satta
- UCL Centre for Clinical Microbiology, University College London, London, UK
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Frances J Davies
- Department of Infectious Disease, Imperial College Healthcare NHS Trust, London, UK
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, Paddington, London, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
| | - Julie A K McDonald
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
56
|
Horrocks V, King OG, Yip AYG, Marques IM, McDonald JAK. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001377. [PMID: 37540126 PMCID: PMC10482380 DOI: 10.1099/mic.0.001377] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
The human gut microbiota can restrict the growth of pathogens to prevent them from colonizing the intestine ('colonization resistance'). However, antibiotic treatment can kill members of the gut microbiota ('gut commensals') and reduce competition for nutrients, making these nutrients available to support the growth of pathogens. This disturbance can lead to the growth and expansion of pathogens within the intestine (including antibiotic-resistant pathogens), where these pathogens can exploit the absence of competitors and the nutrient-enriched gut environment. In this review, we discuss nutrient competition between the gut microbiota and pathogens. We also provide an overview of how nutrient competition can be harnessed to support the design of next-generation microbiome therapeutics to restrict the growth of pathogens and prevent the development of invasive infections.
Collapse
Affiliation(s)
- Victoria Horrocks
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Olivia G. King
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Alexander Y. G. Yip
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Inês Melo Marques
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Julie A. K. McDonald
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
57
|
Beyhan YE, Yıldız MR. Microbiota and parasite relationship. Diagn Microbiol Infect Dis 2023; 106:115954. [PMID: 37267741 DOI: 10.1016/j.diagmicrobio.2023.115954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/04/2023]
Abstract
The diversity of microbiota is different in each person. Many health problems such as autoimmune diseases, diabetes, cardiovascular diseases, and depression can be caused by microbiota imbalance. Since the parasite needs a host to survive, it interacts closely with the microbiota elements. Blastocystis acts on the inflammatory state of the intestine and may cause various gastrointestinal symptoms, on the contrary, it is more important for gut health because it causes bacterial diversity and richness. Blastocystis is associated with changes in gut microbiota composition, the ultimate indicator of which is the Firmicutes/Bacteroidetes ratio. The Bifidobacterium genus was significantly reduced in IBS patients and Blastocystis, and there is a significant decrease in Faecalibacterium prausnitzii, which has anti-inflammatory properties in Blastocystis infection without IBS. Lactobacillus species reduce the presence of Giardia, and the produced bacteriocins prevent parasite adhesion. The presence of helminths has been strongly associated with the transition from Bacteroidetes to Firmicutes and Clostridia. Contrary to Ascaris, alpha diversity in the intestinal microbiota decreases in chronic Trichuris muris infection, and growth and nutrient metabolism efficiency can be suppressed. Helminth infections indirectly affect mood and behavior in children through their effects on microbiota change. The main and focus of this review is to address the relationship of parasites with microbiota elements and to review the data about what changes they cause. Microbiota studies have gained importance recently and it is thought that it will contribute to the treatment of many diseases as well as in the fight against parasitic diseases in the future.
Collapse
Affiliation(s)
- Yunus E Beyhan
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey.
| | - Muhammed R Yıldız
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey
| |
Collapse
|
58
|
Zhao Z, Wang X, Jiang J, Dong Y, Pan Y, Guan X, Wang B, Gao S, Chen Z, Zhou Z. Adverse effects of polystyrene nanoplastics on sea cucumber Apostichopus japonicus and their association with gut microbiota dysbiosis. CHEMOSPHERE 2023; 330:138568. [PMID: 37019397 DOI: 10.1016/j.chemosphere.2023.138568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
The mariculture environment is a sink of microplastics (MPs) due to its enclosed nature and mass use of plastics. Nanoplastics (NPs) are MPs with a diameter <1 μm that have a more toxic effect on aquatic organisms than other MPs. However, little is known about the underlying mechanisms of NP toxicity on mariculture species. Here, we performed a multi-omics investigation to explore gut microbiota dysbiosis and associated health problems induced by NPs in juvenile sea cucumber Apostichopus japonicus, a commercially and ecologically important marine invertebrate. We observed significant differences in gut microbiota composition after 21 days of NP exposure. Ingestion of NPs significantly increased core gut microbes, especially Rhodobacteraceae and Flavobacteriaceae families. Additionally, gut gene expression profiles were altered by NPs, especially those related to neurological diseases and movement disorders. Correlation and network analyses indicated close relationships between transcriptome changes and gut microbiota variation. Furthermore, NPs induced oxidative stress in sea cucumber intestines, which may be associated with intraspecies variation in Rhodobacteraceae in the gut microbiota. The results suggested that NPs were harmful to the health of sea cucumbers, and they highlighted the importance of the gut microbiota in the responses to NP toxicity in marine invertebrates.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
59
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli R, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542598. [PMID: 37398080 PMCID: PMC10312509 DOI: 10.1101/2023.06.02.542598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Rama Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
60
|
Scheese DJ, Sodhi CP, Hackam DJ. New insights into the pathogenesis of necrotizing enterocolitis and the dawn of potential therapeutics. Semin Pediatr Surg 2023; 32:151309. [PMID: 37290338 PMCID: PMC10330774 DOI: 10.1016/j.sempedsurg.2023.151309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disorder in premature infants that causes significant morbidity and mortality. Research efforts into the pathogenesis of NEC have discovered a pivotal role for the gram-negative bacterial receptor, Toll-like receptor 4 (TLR4), in its development. TLR4 is activated by dysbiotic microbes within the intestinal lumen, which leads to an exaggerated inflammatory response within the developing intestine, resulting in mucosal injury. More recently, studies have identified that the impaired intestinal motility that occurs early in NEC has a causative role in disease development, as strategies to enhance intestinal motility can reverse NEC in preclinical models. There has also been broad appreciation that NEC also contributes to significant neuroinflammation, which we have linked to the effects of gut-derived pro-inflammatory molecules and immune cells which activate microglia in the developing brain, resulting in white matter injury. These findings suggest that the management of the intestinal inflammation may secondarily be neuroprotective. Importantly, despite the significant burden of NEC on premature infants, these and other studies have provided a strong rationale for the development of small molecules with the capability of reducing NEC severity in pre-clinical models, thus guiding the development of specific anti-NEC therapies. This review summarizes the roles of TLR4 signaling in the premature gut in the pathogenesis of NEC, and provides insights into optimal clinical management strategies based upon findings from laboratory studies.
Collapse
Affiliation(s)
- Daniel J Scheese
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - David J Hackam
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| |
Collapse
|
61
|
Zhou B, Szymanski CM, Baylink A. Bacterial chemotaxis in human diseases. Trends Microbiol 2023; 31:453-467. [PMID: 36411201 PMCID: PMC11238666 DOI: 10.1016/j.tim.2022.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
To infect and cause disease, bacterial pathogens must localize to specific regions of the host where they possess the metabolic and defensive acumen for survival. Motile flagellated pathogens exercise control over their localization through chemotaxis to direct motility based on the landscape of exogenous nutrients, toxins, and molecular cues sensed within the host. Here, we review advances in understanding the roles chemotaxis plays in human diseases. Chemotaxis drives pathogen colonization to sites of inflammation and injury and mediates fitness advantages through accessing host-derived nutrients from damaged tissue. Injury tropism may worsen clinical outcomes through instigating chronic inflammation and subsequent cancer development. Inhibiting bacterial chemotactic systems could act synergistically with antibacterial medicines for more effective and specific eradication.
Collapse
Affiliation(s)
- Bibi Zhou
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Christine M Szymanski
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Arden Baylink
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164, USA.
| |
Collapse
|
62
|
Zhang C, Liu H, Sun L, Wang Y, Chen X, Du J, Sjöling Å, Yao J, Wu S. An overview of host-derived molecules that interact with gut microbiota. IMETA 2023; 2:e88. [PMID: 38868433 PMCID: PMC10989792 DOI: 10.1002/imt2.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
The gut microbiota comprises bacteria, archaea, fungi, protists, and viruses that live together and interact with each other and with host cells. A stable gut microbiota is vital for regulating host metabolism and maintaining body health, while a disturbed microbiota may induce different kinds of disease. In addition, diet is also considered to be the main factor that influences the gut microbiota. The host could shape the gut microbiota through other factors. Here, we reviewed the mechanisms that mediate host regulation on gut microbiota, involved in gut-derived molecules, including gut-derived immune system molecules (secretory immunoglobulin A, antimicrobial peptides, cytokines, cluster of differentiation 4+ effector T cell, and innate lymphoid cells), sources related to gut-derived mucosal molecules (carbon sources, nitrogen sources, oxygen sources, and electron respiratory acceptors), gut-derived exosomal noncoding RNA (ncRNAs) (microRNAs, circular RNA, and long ncRNA), and molecules derived from organs other than the gut (estrogen, androgen, neurohormones, bile acid, and lactic acid). This study provides a systemic overview for understanding the interplay between gut microbiota and host, a comprehensive source for potential ways to manipulate gut microbiota, and a solid foundation for future personalized treatment that utilizes gut microbiota.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Huifeng Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Lei Sun
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Yue Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xiaodong Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Juan Du
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Junhu Yao
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Shengru Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
63
|
Comolli J, Walsh DI, Bobrow J, Lennartz CL, Guido NJ, Thorsen T. An in vitro platform for study of the human gut microbiome under an oxygen gradient. Biomed Microdevices 2023; 25:14. [PMID: 37014472 PMCID: PMC10073063 DOI: 10.1007/s10544-023-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 04/05/2023]
Abstract
The complex, dynamic environment of the human lower gastrointestinal tract is colonized by hundreds of bacterial species that impact health and performance. Ex vivo study of the functional interactions between microbial community members in conditions representative of those in the gut is an ongoing challenge. We have developed an in vitro 40-plex platform that provides an oxygen gradient to support simultaneous maintenance of microaerobic and anaerobic microbes from the gut microbiome that can aid in rapid characterization of microbial interactions and direct comparison of individual microbiome samples. In this report, we demonstrate that the platform more closely maintained the microbial diversity and composition of human donor fecal microbiome samples than strict anaerobic conditions. The oxygen gradient established in the platform allowed the stratification and subsequent sampling of diverse microbial subpopulations that colonize microaerobic and anaerobic micro-environments. With the ability to run forty samples in parallel, the platform has the potential to be used as a rapid screening tool to understand how the gut microbiome responds to environmental perturbations such as toxic compound exposure, dietary changes, or pharmaceutical treatments.
Collapse
Affiliation(s)
- James Comolli
- Biological & Chemical Technologies Group, MIT Lincoln Laboratory, Lexington, MA, USA
| | - David I Walsh
- Biological & Chemical Technologies Group, MIT Lincoln Laboratory, Lexington, MA, USA
| | - Johanna Bobrow
- Biological & Chemical Technologies Group, MIT Lincoln Laboratory, Lexington, MA, USA
| | - Chelsea L Lennartz
- Biological & Chemical Technologies Group, MIT Lincoln Laboratory, Lexington, MA, USA
| | - Nicholas J Guido
- Biological & Chemical Technologies Group, MIT Lincoln Laboratory, Lexington, MA, USA
| | - Todd Thorsen
- Biological & Chemical Technologies Group, MIT Lincoln Laboratory, Lexington, MA, USA.
| |
Collapse
|
64
|
Ducatelle R, Goossens E, Eeckhaut V, Van Immerseel F. Poultry gut health and beyond. ANIMAL NUTRITION 2023; 13:240-248. [PMID: 37168453 PMCID: PMC10164775 DOI: 10.1016/j.aninu.2023.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Intestinal health is critically important for the digestion and absorption of nutrients and thus is a key factor in determining performance. Intestinal health issues are very common in high performing poultry lines due to the high feed intake, which puts pressure on the physiology of the digestive system. Excess nutrients which are not digested and absorbed in the small intestine may trigger dysbiosis, i.e. a shift in the microbiota composition in the intestinal tract. Dysbiosis as well as other stressors elicit an inflammatory response and loss of integrity of the tight junctions between the epithelial cells, leading to gut leakage. In this paper, key factors determining intestinal health and the most important nutritional tools which are available to support intestinal health are reviewed.
Collapse
|
65
|
Abdelgawad A, Nicola T, Martin I, Halloran BA, Tanaka K, Adegboye CY, Jain P, Ren C, Lal CV, Ambalavanan N, O'Connell AE, Jilling T, Willis KA. Antimicrobial peptides modulate lung injury by altering the intestinal microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.529700. [PMID: 36993189 PMCID: PMC10054967 DOI: 10.1101/2023.03.14.529700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mammalian mucosal barriers secrete antimicrobial peptides (AMPs) as critical host-derived regulators of the microbiota. However, mechanisms that support homeostasis of the microbiota in response to inflammatory stimuli such as supraphysiologic oxygen remain unclear. Here, we show that neonatal mice breathing supraphysiologic oxygen or direct exposure of intestinal organoids to supraphysiologic oxygen suppress the intestinal expression of AMPs and alters the composition of the intestinal microbiota. Oral supplementation of the prototypical AMP lysozyme to hyperoxia exposed neonatal mice reduced hyperoxia-induced alterations in their microbiota and was associated with decreased lung injury. Our results identify a gut-lung axis driven by intestinal AMP expression and mediated by the intestinal microbiota that is linked to lung injury. Together, these data support that intestinal AMPs modulate lung injury and repair. In Brief Using a combination of murine models and organoids, Abdelgawad and Nicola et al. find that suppression of antimicrobial peptide release by the neonatal intestine in response to supra-physiological oxygen influences the progression of lung injury likely via modulation of the ileal microbiota. Highlights Supraphysiologic oxygen exposure alters intestinal antimicrobial peptides (AMPs).Intestinal AMP expression has an inverse relationship with the severity of lung injury.AMP-driven alterations in the intestinal microbiota form a gut-lung axis that modulates lung injury.AMPs may mediate a gut-lung axis that modulates lung injury.
Collapse
|
66
|
Su Y, Liang J, Zhang M, Zhao M, Xie X, Wang X, Pan Z, Huang S, Yan R, Wang Q, Zhou L, Luo X. Wogonin regulates colonocyte metabolism via PPARγ to inhibit Enterobacteriaceae against dextran sulfate sodium-induced colitis in mice. Phytother Res 2023; 37:872-884. [PMID: 36451541 DOI: 10.1002/ptr.7677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/04/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022]
Abstract
To investigate the potential effects and mechanism of wogonin on dextran sulfate sodium (DSS)-induced colitis, 70 male mice were administered wogonin (12.5, 25, 50 mg·kg-1 ·d-1 , i.g.) for 10 days, meanwhile, in order to induce colitis, the mice were free to drink 3% DSS for 6 days. We found that wogonin could obviously ameliorate DSS-induced colitis, including preventing colon shortening and inhibiting pathological damage. In addition, wogonin could increase the expression of PPARγ, which not only restores intestinal epithelial hypoxia but also inhibits iNOS protein to reduce intestinal nitrite levels. All these effects facilitated a reduction in the abundance of Enterobacteriaceae in DSS-induced colitis mice. Therefore, compared with the DSS group, the number of Enterobacteriaceae in the intestinal flora was significantly reduced after administration of wogonin or rosiglitazone by 16s rDNA technology. We also verified that wogonin could promote the expression of PPARγ mRNA and protein in Caco-2 cells, and this effect disappeared when PPARγ signal was inhibited. In conclusion, our study suggested that wogonin can activate the PPARγ signal of the Intestinal epithelium to ameliorate the Intestinal inflammation caused by Enterobacteriaceae bacteria expansion.
Collapse
Affiliation(s)
- Yulin Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junjie Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueqian Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zengfeng Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Yan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
67
|
Wu L, Ai Y, Xie R, Xiong J, Wang Y, Liang Q. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. LAB ON A CHIP 2023; 23:1192-1212. [PMID: 36644984 DOI: 10.1039/d2lc00804a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organoids/organs-on-a-chip open up new frontiers for basic and clinical research of intestinal diseases. Species-specific differences hinder research on animal models, while organoids are emerging as powerful tools due to self-organization from stem cells and the reproduction of the functional properties in vivo. Organs-on-a-chip is also accelerating the process of faithfully mimicking the intestinal microenvironment. And by combining organoids and organ-on-a-chip technologies, they further are expected to serve as innovative preclinical tools and could outperform traditional cell culture models or animal models in the future. Above all, organoids/organs-on-a-chip with other strategies like genome editing, 3D printing, and organoid biobanks contribute to modeling intestinal homeostasis and disease. Here, the current challenges and future trends in intestinal pathophysiological models will be summarized.
Collapse
Affiliation(s)
- Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
68
|
Mo B, Li J, Liao G, Wang L, Fan L. Toxic effects of glyphosate on histopathology and intestinal microflora of juvenile Litopenaeus vannamei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106399. [PMID: 36680893 DOI: 10.1016/j.aquatox.2023.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate is a widely used broad-spectrum herbicide, its pollution to the surrounding conditions can't be ignored. It has been reported that glyphosate has poisonous impacts on aquatic animals. In this study, juvenile Litopenaeus vannamei (L. vannamei) was exposed to glyphosate, and the lethal concentration 50 (LC50) of glyphosate to juvenile L. vannamei for 48 h was 47.6 mg/L. The histological analysis for intestine and hepatopancreas and the intestinal microorganisms of L. vannamei were evaluated after 48 h of exposure to glyphosate with LC50. The histological analysis results showed that the lumen of hepatic tubules was diffused and deformed, the hepatic tubules were ruptured and intestinal villi were fallen off seriously after exposure to glyphosate for 48 h Moreover, the intestinal microbial composition and structure of L. vannamei were changed, with the abundance of Alphaproteobacteria increased significantly. The abundance of Rhodobacteraceae, Vibrio and Legionella increased, but there was no significant difference. The abundance of Bacillus, Paraburkholderia, Enhydrobacter, Comamonas and Alkanindiges decreased significantly. However, the homeostasis of intestinal microorganisms was destroyed. Phenotypic prediction of the two groups of microorganisms revealed a significant increase in the abundance of Facultatively Anaerobic in the glyphosate challenged group. This study suggested that hepatopancreas and intestinal tissue of L. vannamei were seriously damaged after 48 h of exposure to glyphosate with LC50, and intestinal microbial homeostasis was disrupted.
Collapse
Affiliation(s)
- Binhua Mo
- College of Marine Sciences, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Jingping Li
- College of Marine Sciences, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Guowei Liao
- College of Marine Sciences, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering (IMASE), South China Normal University, Guangzhou 510631, China.
| | - Lanfen Fan
- College of Marine Sciences, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China; Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
69
|
Microbiome Alterations in Alcohol Use Disorder and Alcoholic Liver Disease. Int J Mol Sci 2023; 24:ijms24032461. [PMID: 36768785 PMCID: PMC9916746 DOI: 10.3390/ijms24032461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Microbiome alterations are emerging as one of the most important factors that influence the course of alcohol use disorder (AUD). Recent advances in bioinformatics enable more robust and accurate characterization of changes in the composition of the microbiome. In this study, our objective was to provide the most comprehensive and up-to-date evaluation of microbiome alterations associated with AUD and alcoholic liver disease (ALD). To achieve it, we have applied consistent, state of art bioinformatic workflow to raw reads from multiple 16S rRNA sequencing datasets. The study population consisted of 122 patients with AUD, 75 with ALD, 54 with non-alcoholic liver diseases, and 260 healthy controls. We have found several microbiome alterations that were consistent across multiple datasets. The most consistent changes included a significantly lower abundance of multiple butyrate-producing families, including Ruminococcaceae, Lachnospiraceae, and Oscillospiraceae in AUD compared to HC and further reduction of these families in ALD compared with AUD. Other important results include an increase in endotoxin-producing Proteobacteria in AUD, with the ALD group having the largest increase. All of these alterations can potentially contribute to increased intestinal permeability and inflammation associated with AUD and ALD.
Collapse
|
70
|
Hypoxia and Intestinal Inflammation: Common Molecular Mechanisms and Signaling Pathways. Int J Mol Sci 2023; 24:ijms24032425. [PMID: 36768744 PMCID: PMC9917195 DOI: 10.3390/ijms24032425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The gastrointestinal tract (GI) has a unique oxygenation profile. It should be noted that the state of hypoxia can be characteristic of both normal and pathological conditions. Hypoxia-inducible factors (HIF) play a key role in mediating the response to hypoxia, and they are tightly regulated by a group of enzymes called HIF prolyl hydroxylases (PHD). In this review, we discuss the involvement of inflammation hypoxia and signaling pathways in the pathogenesis of inflammatory bowel disease (IBD) and elaborate in detail on the role of HIF in multiple immune reactions during intestinal inflammation. We emphasize the critical influence of tissue microenvironment and highlight the existence of overlapping functions and immune responses mediated by the same molecular mechanisms. Finally, we also provide an update on the development of corresponding therapeutic approaches that would be useful for treatment or prophylaxis of inflammatory bowel disease.
Collapse
|
71
|
Baltsavias S, Van Treuren W, Sawaby A, Baker SW, Sonnenburg JL, Arbabian A. Gut Microbiome Redox Sensors With Ultrasonic Wake-Up and Galvanic Coupling Wireless Links. IEEE Trans Biomed Eng 2023; 70:76-87. [PMID: 35727787 PMCID: PMC9911315 DOI: 10.1109/tbme.2022.3184972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tools to measure in vivo redox activity of the gut microbiome and its influence on host health are lacking. In this paper, we present the design of new in vivo gut oxidation-reduction potential (ORP) sensors for rodents, to study host-microbe and microbe-environment interactions throughout the gut. These are the first in vivo sensors to combine ultrasonic wake-up and galvanic coupling telemetry, allowing for sensor miniaturization, experiment flexibility, and robust wireless measurements in live rodents. A novel study of in situ ORP along the intestine reveals biogeographical redox features that the ORP sensors can uniquely access in future gut microbiome studies.
Collapse
|
72
|
Hammond TC, Messmer S, Frank JA, Lukins D, Colwell R, Lin AL, Pennypacker KR. Gut microbial dysbiosis correlates with stroke severity markers in aged rats. FRONTIERS IN STROKE 2022; 1:1026066. [PMID: 36825211 PMCID: PMC9945937 DOI: 10.3389/fstro.2022.1026066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background An imbalanced gut microbial community, or dysbiosis, has been shown to occur following stroke. It is possible that this dysbiosis negatively impacts stroke recovery and rehabilitation. Species level resolution measurements of the gut microbiome following stroke are needed to develop and test precision interventions such as probiotic or fecal microbiota transplant therapies that target the gut microbiome. Previous studies have used 16S rRNA amplicon sequencing in young male mice to obtain broad profiling of the gut microbiome at the genus level following stroke, but further investigations will be needed with whole genome shotgun sequencing in aged rats of both sexes to obtain species level resolution in a model which will better translate to the demographics of human stroke patients. Methods Thirty-nine aged male and female rats underwent middle cerebral artery occlusion. Fecal samples were collected before stroke and 3 days post stroke to measure gut microbiome. Machine learning was used to identify the top ranked bacteria which were changed following stroke. MRI imaging was used to obtain infarct and edema size and cerebral blood flow (CBF). ELISA was used to obtain inflammatory markers. Results Dysbiosis was demonstrated by an increase in pathogenic bacteria such as Butyricimonas virosa (15.52 fold change, p < 0.0001), Bacteroides vulgatus (7.36 fold change, p < 0.0001), and Escherichia coli (47.67 fold change, p < 0.0001). These bacteria were positively associated with infarct and edema size and with the inflammatory markers Ccl19, Ccl24, IL17a, IL3, and complement C5; they were negatively correlated with CBF. Conversely, beneficial bacteria such as Ruminococcus flavefaciens (0.14 fold change, p < 0.0001), Akkermansia muciniphila (0.78 fold change, p < 0.0001), and Lactobacillus murinus (0.40 fold change, p < 0.0001) were decreased following stroke and associated with all the previous parameters in the opposite direction of the pathogenic species. There were not significant microbiome differences between the sexes. Conclusion The species level resolution measurements found here can be used as a foundation to develop and test precision interventions targeting the gut microbiome following stroke. Probiotics that include Ruminococcus flavefaciens, Akkermansia muciniphila, and Lactobacillus murinus should be developed to target the deficit following stroke to measure the impact on stroke severity.
Collapse
Affiliation(s)
- Tyler C. Hammond
- Lin Brain Lab, Department of Neuroscience, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Sarah Messmer
- Department of Neurology, The Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States
| | - Jacqueline A. Frank
- Department of Neurology, The Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States
| | - Doug Lukins
- Department of Radiology, University of Kentucky, Lexington, KY, United States
| | | | - Ai-Ling Lin
- Division of Biological Sciences and Institute for Data Science and Informatics, Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Keith R. Pennypacker
- Department of Neurology, The Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
73
|
Dou X, Zhang B, Qiao L, Song X, Pi S, Chang J, Zhang X, Zeng X, Zhu L, Xu C. Biogenic Selenium Nanoparticles Synthesized by Lactobacillus casei ATCC 393 Alleviate Acute Hypobaric Hypoxia-Induced Intestinal Barrier Dysfunction in C57BL/6 Mice. Biol Trace Elem Res 2022:10.1007/s12011-022-03513-y. [PMID: 36469280 DOI: 10.1007/s12011-022-03513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022]
Abstract
Exposure to hypobaric hypoxia at high altitude will cause different tissue and organ damage over a long period of time. Studies have shown that hypobaric hypoxia can cause severe primary intestinal barrier dysfunction, and then cause multiple organ dysfunction. Our previous research showed that selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei ATCC 393 (L. casei ATCC 393) can effectively alleviate intestinal barrier dysfunction caused by oxidative stress and inflammation in mice. This study was conducted to investigate the protective effect of biological SeNPs synthesized by L. casei ATCC 393 on intestinal barrier function in acute hypobaric hypoxic stress mice. The results showed that compared with the hypobaric hypoxic, the SeNPs synthesized by L. casei ATCC 393 by oral administration could effectively alleviate the shortening of intestinal villi, which decreased the level of diamine oxidase (DAO) and myeloperoxidase (MPO), and the expression level of tight junction protein in ileum was increased. In addition, SeNPs significantly increased the activities of superoxide dismutase (SOD), cyclooxygenase (COX-1) and glutathione peroxidase (GPx), and decreased the level of malondialdehyde (MDA), and inhibit the increase of hypoxia related factor. SeNPs effectively regulate the intestinal microecology disorder caused by hypobaric hypoxia stress, and maintain the intestinal microecology balance. In addition, oral administration of SeNPs had better protective effect on intestinal barrier function of mice under hypobaric hypoxia stress. These results suggested that SeNPs synthesized by L. casei ATCC 393 can effectively alleviate the damage of intestinal barrier function under acute hypobaric hypoxic stress, which may be closely related to the antioxidant activity of SeNPs.
Collapse
Affiliation(s)
- Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Baohua Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Xinyi Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Lixu Zhu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
74
|
Ingham AC, Pamp SJ. Mucosal microbiotas and their role in stem cell transplantation. APMIS 2022; 130:741-750. [PMID: 35060190 PMCID: PMC9790582 DOI: 10.1111/apm.13208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022]
Abstract
Mucosal microbiotas and their role in stem cell transplantation. Patients with hematological disorders such as leukemia often undergo allogeneic hematopoietic stem cell transplantation, and thereby receive stem cells from a donor for curation of disease. This procedure also involves immunosuppressive and antimicrobial treatments that disturb the important interactions between the microbiota and the immune system, especially at mucosal sites. After transplantation, bacterial diversity decreases together with a depletion of Clostridia, and shifts toward predominance of Proteobacteria. Infectious and inflammatory complications, such as graft-versus-host disease, also interfere with patient recovery. This review collects and contextualizes current knowledge of the role of mucosal microbiotas at different body sites in stem cell transplantation, proposes underlying mechanisms, and discusses potential clinical value of bacterial markers for improved treatment strategies.
Collapse
Affiliation(s)
- Anna Cäcilia Ingham
- Research Group for Genomic EpidemiologyTechnical University of DenmarkKongens LyngbyDenmark,Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
| | - Sünje Johanna Pamp
- Research Group for Genomic EpidemiologyTechnical University of DenmarkKongens LyngbyDenmark,Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
75
|
Wang X, Hu L, Wang C, He B, Fu Z, Jin C, Jin Y. Cross-generational effects of maternal exposure to imazalil on anaerobic components and carnitine absorption associated with OCTN2 expression in mice. CHEMOSPHERE 2022; 308:136542. [PMID: 36150497 DOI: 10.1016/j.chemosphere.2022.136542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Imazalil (IMZ) is a fungicide recommended by the Chinese ministry of agriculture. However, recent study was observed high level of IMZ by dietary exposure in pregnant women. To determine the cross-generational effects, C57BL/6 mice were exposed to IMZ at dietary levels of 0, 0.025‰, and 0.25‰ during the gestation and lactation periods. Then, we assessed the changes in growth phenotypes, carnitine levels, and gut microbiota in F0, F1 or F2 generations. The growth phenotypes of dams didn't observe significant difference, but there were significant changes in the offspring. Plasma samples revealed low levels of free carnitine (C0), long-chain acyl-carnitines and total carnitine. In particular, C0 may be regarded as relatively potential, specific markers by maternal IMZ exposure. Caco2 cell culture and animal experiment confirmed IMZ affected carnitine absorption through the organic cation transporter type-2 (OCTN2) protein encoded by solute carrier family 22A member 5 (SLC22A5) gene in colon. Maternal IMZ exposure also had a greater effect on gut microbiota in offspring, especially anaerobic bacteria, which positively correlated with C0 and acyl-carnitines. These results suggested that maternal IMZ exposure affected carnitine absorption through OCTN2 protein, which led to the decline of anaerobic bacteria and unbalanced intestinal homeostasis.
Collapse
Affiliation(s)
- Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
76
|
Kumar A, Sakhare K, Bhattacharya D, Chattopadhyay R, Parikh P, Narayan KP, Mukherjee A. Communication in non-communicable diseases (NCDs) and role of immunomodulatory nutraceuticals in their management. Front Nutr 2022; 9:966152. [PMID: 36211513 PMCID: PMC9532975 DOI: 10.3389/fnut.2022.966152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Conveyance of pathogens between organisms causes communicable diseases. On the other hand, a non-communicable disease (NCD) was always thought to have no causative transmissible infective agents. Today, this clear distinction is increasingly getting blurred and NCDs are found to be associated with some transmissible components. The human microbiota carries a congregation of microbes, the majority and the most widely studied being bacteria in the gut. The adult human gut harbors ginormous inhabitant microbes, and the microbiome accommodates 150-fold more genes than the host genome. Microbial communities share a mutually beneficial relationship with the host, especially with respect to host physiology including digestion, immune responses, and metabolism. This review delineates the connection between environmental factors such as infections leading to gut dysbiosis and NCDs and explores the evidence regarding possible causal link between them. We also discuss the evidence regarding the value of appropriate therapeutic immunomodulatory nutritional interventions to reduce the development of such diseases. We behold such immunomodulatory effects have the potential to influence in various NCDs and restore homeostasis. We believe that the beginning of the era of microbiota-oriented personalized treatment modalities is not far away.
Collapse
Affiliation(s)
- Abhiram Kumar
- Esperer Onco Nutrition Pvt. Ltd., Mumbai, India
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | | | - Purvish Parikh
- Department of Clinical Haematology, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Kumar P. Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
- *Correspondence: Kumar P. Narayan,
| | | |
Collapse
|
77
|
Kang JTL, Teo JJY, Bertrand D, Ng A, Ravikrishnan A, Yong M, Ng OT, Marimuthu K, Chen SL, Chng KR, Gan YH, Nagarajan N. Long-term ecological and evolutionary dynamics in the gut microbiomes of carbapenemase-producing Enterobacteriaceae colonized subjects. Nat Microbiol 2022; 7:1516-1524. [PMID: 36109646 PMCID: PMC9519440 DOI: 10.1038/s41564-022-01221-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
AbstractLong-term colonization of the gut microbiome by carbapenemase-producing Enterobacteriaceae (CPE) is a growing area of public health concern as it can lead to community transmission and rapid increase in cases of life-threatening CPE infections. Here, leveraging the observation that many subjects are decolonized without interventions within a year, we used longitudinal shotgun metagenomics (up to 12 timepoints) for detailed characterization of ecological and evolutionary dynamics in the gut microbiome of a cohort of CPE-colonized subjects and family members (n = 46; 361 samples). Subjects who underwent decolonization exhibited a distinct ecological shift marked by recovery of microbial diversity, key commensals and anti-inflammatory pathways. In addition, colonization was marked by elevated but unstable Enterobacteriaceae abundances, which exhibited distinct strain-level dynamics for different species (Escherichia coli and Klebsiella pneumoniae). Finally, comparative analysis with whole-genome sequencing data from CPE isolates (n = 159) helped identify substrain variation in key functional genes and the presence of highly similar E. coli and K. pneumoniae strains with variable resistance profiles and plasmid sharing. These results provide an enhanced view into how colonization by multi-drug-resistant bacteria associates with altered gut ecology and can enable transfer of resistance genes, even in the absence of overt infection and antibiotic usage.
Collapse
|
78
|
Mahnic A, Pintar S, Skok P, Rupnik M. Gut community alterations associated with Clostridioides difficile colonization in hospitalized gastroenterological patients with or without inflammatory bowel disease. Front Microbiol 2022; 13:988426. [PMID: 36147861 PMCID: PMC9485611 DOI: 10.3389/fmicb.2022.988426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile colonization and development of infection commonly occur in inflammatory bowel disease (IBD) patients and can trigger flare-ups. Both conditions are inherently linked to disrupted gut microbiota. This study included 149 hospitalized gastrointestinal patients, which were divided into IBD (n = 48) and non-IBD patients (n = 101). Patients were tested for C. difficile colonization (qPCR and selective plating), and gut bacterial communities were analyzed with 16S amplicon sequencing. Blood test results were retrospectively collected from the medical records. IBD and non-IBD patients had comparable C. difficile colonization rates (31.7 and 33.3%, respectively). Compared to non-IBD C. difficile-non-colonized patients, IBD and C. difficile-colonized patients shared multiple common bacterial community characteristics including decreased diversity and reduced abundance of strict anaerobic bacteria. Furthermore, certain microbiota alterations were enhanced when IBD was accompanied by C. difficile colonization, indicating a synergistic effect between both medical complications. Conversely, certain microbial patterns were specific to C. difficile colonization, e.g., co-occurrence with Enterococcus, which was most common in IBD patients (81.3%).
Collapse
Affiliation(s)
- Aleksander Mahnic
- National Laboratory for Health, Environment and Food, Department for Microbiological Research, Maribor, Slovenia
| | - Spela Pintar
- Department of Gastroenterology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Pavel Skok
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Gastroenterology, University Clinical Centre Maribor, Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Department for Microbiological Research, Maribor, Slovenia
- Department of Microbiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
79
|
Luo S, He J, Huang S, Wang X, Su Y, Li Y, Chen Y, Yang G, Huang B, Guo S, Zhou L, Luo X. Emodin targeting the colonic metabolism via PPARγ alleviates UC by inhibiting facultative anaerobe. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154106. [PMID: 35728384 DOI: 10.1016/j.phymed.2022.154106] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emodin is an active ingredient of traditional Chinese medicine Rheum palmatum L. and Polygonum cuspidatum, which possesses anti-inflammatory and intestinal mucosal protection effects. Our previous study found that emodin significantly alleviated ulcerative colitis induced by sodium dextran sulfate (DSS). In this study, we found the underlying mechanism of emodin on ulcerative colitis (UC). PURPOSE We aimed to further explore the mechanism of emodin in the treatment of ulcerative colitis from the perspective of metabolism and intestinal flora. METHODS Ulcerative colitis was induced by 3% sodium dextran sulfate (DSS) on mice, and the mice were respectively treated with mesalazine, rosiglitazone, emodin, and emodin combined with GW9662 (PPARγ inhibitor) simultaneously. Weight changes, the disease activity index (DAI), colonic length, and pathologic changes in colon were used to evaluate the efficacy of emodin. LC-MS/MS was performed for metabolomics analysis of colon. In addition, intestinal flora was assessed using 16S rDNA sequencing. A vector-based short hairpin RNA (shRNA) method was used to silence PPARγ gene expression in Caco-2 cells. RESULTS Emodin binds to the active site of PPARγ protein and forms hydrogen bond interaction with ARG288 and CYS285 amino acids. Furthermore, Emodin significantly promotes the protein expression of PPARγ, while inhibiting iNOS and NF-kB p65 in UC mice, however, this effect is hardly shown when it is combined with GW9662 (the inhibitor of PPARγ). Meanwhile, emodin suppresses the expression of iNOS in Caco-2 cells induced with IFNγ and IL-22, but has no effect on its expression in shPPARγ-Caco-2 cells. In addition, through activating PPARγ signal pathway, emodin is capable of regulating colonic metabolism including oxidative phosphorylation and citrulline metabolism and effecting luminal availability of oxygen and nitrate. This promotes the recovery of anoxic environment of colon epithelial cells, which strains the growth and expansion of Enterobacteriaceae. CONCLUSION The mechanism of Emodin in the treatment of ulcerative colitis relies on its regulation of PPARγ signal pathway, which could modulate colonic metabolism and restore intestinal homeostasis.
Collapse
Affiliation(s)
- Shuang Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China; The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Jinrong He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China
| | - Shaowei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China
| | - Xiaojing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China
| | - Yulin Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China
| | - Yanyang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China
| | - Yanping Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China
| | - Guanghua Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China
| | - Bin Huang
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Shaoju Guo
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China.
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Room C206, Pharmaceutical building, No. 232 Outer Ring Road, Panyu District, Guangzhou City, Guang Dong Province, China.
| |
Collapse
|
80
|
Poluektova EU, Mavletova DA, Odorskaya MV, Marsova MV, Klimina KM, Koshenko TA, Yunes RA, Danilenko VN. Comparative Genomic, Transcriptomic, and Proteomic Analysis of the Limosilactobacillus fermentum U-21 Strain Promising for the Creation of a Pharmabiotic. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Zakošek Pipan M, Podpečan O, Mrkun J. The fascinating microbes and their impact on neonatal dogs and cats - A review. Acta Vet Hung 2022; 70:175-183. [PMID: 35976733 DOI: 10.1556/004.2022.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
Recent literature data indicate that canine and feline neonates are not born in a sterile environment as it was stated previously. The acquisition, colonisation and maintenance of the early life microbiota of healthy fetuses is a rapidly developing research area. In humans, the natural healthy infant microbiome plays an essential role in health and its assembly is determined by the maternal-offspring exchanges of microbes. Even though this topic is becoming more and more important in dogs and cats, the exact role of the neonatal microbiome is not yet fully known in animals. This review summarises the current knowledge of the normal physiological neonatal microbiome in healthy puppies and kittens.
Collapse
Affiliation(s)
- Maja Zakošek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Ožbalt Podpečan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Janko Mrkun
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
82
|
Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol 2022; 28:4053-4060. [PMID: 36157114 PMCID: PMC9403435 DOI: 10.3748/wjg.v28.i30.4053] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex community of microorganisms that inhabit the digestive tracts of humans, living in symbiosis with the host. Dysbiosis, characterized by an imbalance between the beneficial and opportunistic gut microbiota, is associated with several gastrointestinal disorders, such as irritable bowel syndrome (IBS); inflammatory bowel disease (IBD), represented by ulcerative colitis and Crohn's disease; and colorectal cancer (CRC). Dysbiosis can disrupt the mucosal barrier, resulting in perpetuation of inflammation and carcinogenesis. The increase in some specific groups of harmful bacteria, such as Escherichia coli (E. coli) and enterotoxigenic Bacteroides fragilis (ETBF), has been associated with chronic tissue inflammation and the release of pro-inflammatory and carcinogenic mediators, increasing the chance of developing CRC, following the inflammation-dysplasia-cancer sequence in IBD patients. Therefore, the aim of the present review was to analyze the correlation between changes in the gut microbiota and the development and maintenance of IBD, CRC, and IBD-associated CRC. Patients with IBD and CRC have shown reduced bacterial diversity and abundance compared to healthy individuals, with enrichment of Firmicute sand Bacteroidetes. Specific bacteria are also associated with the onset and progression of CRC, such as Fusobacterium nucleatum, E. coli, Enterococcus faecalis, Streptococcus gallolyticus, and ETBF. Future research can evaluate the advantages of modulating the gut microbiota as preventive measures in CRC high-risk patients, directly affecting the prognosis of the disease and the quality of life of patients.
Collapse
Affiliation(s)
- Ana Elisa Valencise Quaglio
- Departament of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo State, Brazil
| | - Thais Gagno Grillo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| | - Ellen Cristina Souza De Oliveira
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| | - Luiz Claudio Di Stasi
- Departament of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo State, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| |
Collapse
|
83
|
Abot A, Fried S, Cani PD, Knauf C. Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxid Redox Signal 2022; 37:394-415. [PMID: 34714099 DOI: 10.1089/ars.2021.0100] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.
Collapse
Affiliation(s)
- Anne Abot
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Steven Fried
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Patrice D Cani
- International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France.,UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Claude Knauf
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| |
Collapse
|
84
|
Stevenson SJR, Lee KC, Handley KM, Angert ER, White WL, Clements KD. Substrate degradation pathways, conserved functions and community composition of the hindgut microbiota in the herbivorous marine fish Kyphosus sydneyanus. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111283. [PMID: 35907589 DOI: 10.1016/j.cbpa.2022.111283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 02/07/2023]
Abstract
Symbiotic gut microbiota in the herbivorous marine fish Kyphosus sydneyanus play an important role in digestion by converting refractory algal carbohydrate into short-chain fatty acids. Here we characterised community composition using both 16S rRNA gene amplicon sequencing and shotgun-metagenome sequencing. Sequencing was carried out on lumen and mucosa samples (radial sections) from three axial sections taken from the hindgut of wild-caught fish. Both lumen and mucosa communities displayed distinct distributions along the hindgut, likely an effect of the differing selection pressures within these hindgut locations, as well as considerable variation among individual fish. In contrast, metagenomic sequences displayed a high level of functional similarity between individual fish and gut sections in the relative abundance of genes (based on sequencing depth) that encoded enzymes involved in algal-derived substrate degradation. These results suggest that the host gut environment selects for functional capacity in symbionts rather than taxonomic identity. Functional annotation of the enzymes encoded by the gut microbiota was carried out to infer the metabolic pathways used by the gut microbiota for the degradation of important dietary substrates: mannitol, alginate, laminarin, fucoidan and galactan (e.g. agar and carrageenan). This work provides the first evidence of the genomic potential of K. sydneyanus hindgut microbiota to convert highly refractory algal carbohydrates into metabolically useful short-chain fatty acids.
Collapse
Affiliation(s)
- Sam J R Stevenson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Kevin C Lee
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Kim M Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - W Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
85
|
Abstract
Changes in the composition of the gut microbiota are associated with many human diseases. So far, however, we have failed to define homeostasis or dysbiosis by the presence or absence of specific microbial species. The composition and function of the adult gut microbiota is governed by diet and host factors that regulate and direct microbial growth. The host delivers oxygen and nitrate to the lumen of the small intestine, which selects for bacteria that use respiration for energy production. In the colon, by contrast, the host limits the availability of oxygen and nitrate, which results in a bacterial community that specializes in fermentation for growth. Although diet influences microbiota composition, a poor diet weakens host control mechanisms that regulate the microbiota. Hence, quantifying host parameters that control microbial growth could help define homeostasis or dysbiosis and could offer alternative strategies to remediate dysbiosis.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
86
|
Trachsel JM, Bearson BL, Kerr BJ, Shippy DC, Byrne KA, Loving CL, Bearson SMD. Short Chain Fatty Acids and Bacterial Taxa Associated with Reduced Salmonella enterica serovar I 4,[5],12:i:- Shedding in Swine Fed a Diet Supplemented with Resistant Potato Starch. Microbiol Spectr 2022; 10:e0220221. [PMID: 35532355 PMCID: PMC9241843 DOI: 10.1128/spectrum.02202-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/17/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals. Within the RPS treatment group, pigs shedding the least Salmonella tended to have greater cecal concentrations of butyrate, valerate, caproate, and succinate. Additionally, among RPS-fed pigs, several bacterial taxa (Prevotella_7, Olsenella, and Bifidobacterium, and others) exhibited negative relationships between their abundances of and the amount of Salmonella in the feces of their hosts. Many of these same taxa also had significant positive associations with cecal concentrations of butyrate, valerate, caproate, even though they are not known to produce these SCFAs. Together, these data suggest the RPS-associated reduction in Salmonella shedding may be dependent on the establishment of bacterial cross feeding interactions that result in the production of certain SCFAs. However, directly feeding a fatty acid mix did not replicate the effect. RPS supplementation could be an effective means to reduce multidrug-resistant (MDR) S. enterica serovar I 4,[5],12:i:- in swine, provided appropriate bacterial communities are present in the gut. IMPORTANCE Prebiotics, such as resistant potato starch (RPS), are types of food that help to support beneficial bacteria and their activities in the intestines. Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen that commonly resides in the intestines of pigs without disease, but can make humans sick if unintentionally consumed. Here we show that in Salmonella inoculated pigs, feeding them a diet containing RPS altered the colonization and activity of certain beneficial bacteria in a way that reduced the amount of Salmonella in their feces. Additionally, within those fed RPS, swine with higher abundance of these types of beneficial bacteria had less Salmonella I 4,[5],12:i:- in their feces. This work illustrates likely synergy between the prebiotic RPS and the presence of certain gut microorganisms to reduce the amount of Salmonella in the feces of pigs and therefore reduce the risk that humans will become ill with MDR Salmonella serovar I 4,[5],12:i:-.
Collapse
Affiliation(s)
- Julian M. Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Bradley L. Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Brian J. Kerr
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Daniel C. Shippy
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Shawn M. D. Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| |
Collapse
|
87
|
Darrigade L, Haghebaert M, Cherbuy C, Labarthe S, Laroche B. A PDMP model of the epithelial cell turn-over in the intestinal crypt including microbiota-derived regulations. J Math Biol 2022; 84:60. [PMID: 35737118 DOI: 10.1007/s00285-022-01766-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Human health and physiology is strongly influenced by interactions between human cells and intestinal microbiota in the gut. In mammals, the host-microbiota crosstalk is mainly mediated by regulations at the intestinal crypt level: the epithelial cell turnover in crypts is directly influenced by metabolites produced by the microbiota. Conversely, enterocytes maintain hypoxia in the gut, favorable to anaerobic bacteria which dominate the gut microbiota. We constructed an individual-based model of epithelial cells interacting with the microbiota-derived chemicals diffusing in the crypt lumen. This model is formalized as a piecewise deterministic Markov process (PDMP). It accounts for local interactions due to cell contact (among which are mechanical interactions), for cell proliferation, differentiation and extrusion which are regulated spatially or by chemicals concentrations. It also includes chemicals diffusing and reacting with cells. A deterministic approximated model is also introduced for a large population of small cells, expressed as a system of porous media type equations. Both models are extensively studied through numerical exploration. Their biological relevance is thoroughly assessed by recovering bio-markers of an healthy crypt, such as cell population distribution along the crypt or population turn-over rates. Simulation results from the deterministic model are compared to the PMDP model and we take advantage of its lower computational cost to perform a sensitivity analysis by Morris method. We finally use the crypt model to explore butyrate supplementation to enhance recovery after infections by enteric pathogens.
Collapse
Affiliation(s)
- Léo Darrigade
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Marie Haghebaert
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Claire Cherbuy
- Université Paris-Saclay, INRAE, Micalis, 78350, Jouy-en-Josas, France
| | - Simon Labarthe
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
- Univ. Bordeaux, INRAE, BIOGECO, F-33610, Cestas, France
- Inria, INRAE, Pléiade, 33400, Talence, France
| | - Beatrice Laroche
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
- Université Paris-Saclay, INRIA, Inria Saclay-Île-de-France, 91120, Palaiseau, France.
| |
Collapse
|
88
|
Escherichia/ Shigella, SCFAs, and Metabolic Pathways-The Triad That Orchestrates Intestinal Dysbiosis in Patients with Decompensated Alcoholic Cirrhosis from Western Mexico. Microorganisms 2022; 10:microorganisms10061231. [PMID: 35744749 PMCID: PMC9229093 DOI: 10.3390/microorganisms10061231] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbiota undergoes profound alterations in alcohol cirrhosis. Microbiota-derived products, e.g., short chain fatty acids (SCFA), regulate the homeostasis of the gut-liver axis. The objective was to evaluate the composition and functions of the intestinal microbiota in patients with alcohol-decompensated cirrhosis. Fecal samples of 18 patients and 18 healthy controls (HC) were obtained. Microbial composition was characterized by 16S rRNA amplicon sequencing, SCFA quantification was performed by gas chromatography (GC), and metagenomic predictive profiles were analyzed by PICRUSt2. Gut microbiota in the cirrhosis group revealed a significant increase in the pathogenic/pathobionts genera Escherichia/Shigella and Prevotella, a decrease in beneficial bacteria, such as Blautia, Faecalibacterium, and a decreased α-diversity (p < 0.001) compared to HC. Fecal SCFA concentrations were significantly reduced in the cirrhosis group (p < 0.001). PICRUSt2 analysis indicated a decrease in acetyl-CoA fermentation to butyrate, as well as an increase in pathways related to antibiotics resistance, and aromatic amino acid biosynthesis. These metabolic pathways have been poorly described in the progression of alcohol-related decompensated cirrhosis. The gut microbiota of these patients possesses a pathogenic/inflammatory environment; therefore, future strategies to balance intestinal dysbiosis should be implemented. These findings are described for the first time in the population of western Mexico.
Collapse
|
89
|
Ahn SY, Sung DK, Chang YS, Park WS. Intratracheal Transplantation of Mesenchymal Stem Cells Attenuates Hyperoxia-Induced Microbial Dysbiosis in the Lungs, Brain, and Gut in Newborn Rats. Int J Mol Sci 2022; 23:ijms23126601. [PMID: 35743045 PMCID: PMC9223745 DOI: 10.3390/ijms23126601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 01/25/2023] Open
Abstract
We attempted to determine whether intratracheal (IT) transplantation of mesenchymal stem cells (MSCs) could simultaneously attenuate hyperoxia-induced lung injuries and microbial dysbiosis of the lungs, brain, and gut in newborn rats. Newborn rats were exposed to hyperoxia (90% oxygen) for 14 days. Human umbilical cord blood-derived MSCs (5 × 105) were transplanted via the IT route on postnatal day (P) five. At P14, the lungs were harvested for histological, biochemical, and microbiome analyses. Bacterial 16S ribosomal RNA genes from the lungs, brain, and large intestine were amplified, pyrosequenced, and analyzed. IT transplantation of MSCs simultaneously attenuated hyperoxia-induced lung inflammation and the ensuing injuries, as well as the dysbiosis of the lungs, brain, and gut. In correlation analyses, lung interleukin-6 (IL-6) levels were significantly positively correlated with the abundance of Proteobacteria in the lungs, brain, and gut, and it was significantly inversely correlated with the abundance of Firmicutes in the gut and lungs and that of Bacteroidetes in the lungs. In conclusion, microbial dysbiosis in the lungs, brain, and gut does not cause but is caused by hyperoxic lung inflammation and ensuing injuries, and IT transplantation of MSCs attenuates dysbiosis in the lungs, brain, and gut, primarily by their anti-oxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea; (S.Y.A.); (Y.S.C.)
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea; (S.Y.A.); (Y.S.C.)
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea; (S.Y.A.); (Y.S.C.)
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea;
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-3523; Fax: +82-2-3410-0049
| |
Collapse
|
90
|
Coates LC, Storms D, Finley JW, Fukagawa NK, Lemay DG, Kalscheur KF, Kable ME. A Low-Starch and High-Fiber Diet Intervention Impacts the Microbial Community of Raw Bovine Milk. Curr Dev Nutr 2022; 6:nzac086. [PMID: 35720468 PMCID: PMC9197574 DOI: 10.1093/cdn/nzac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Background A more sustainable dairy cow diet was designed that minimizes use of feed components digestible by monogastric animals by increasing the quantity of forages. Objectives This study determined if feeding lactating cows the more sustainable, low-starch and high-fiber (LSHF) diet was associated with changes in raw milk microbiota composition and somatic cell count (SCC). Methods In a crossover design, 76 lactating Holstein cows were assigned to an LSHF diet or a high-starch and low-fiber (HSLF) diet, similar to common dairy cow diets in the United States, for 10 wk then placed on the opposite diet for 10 wk. The LSHF diet contained greater quantities of forages, beet pulp, and corn distillers' grain, but contained less canola meal and no high-moisture corn compared with the HSLF diet. Raw milk samples were collected from each cow 4-5 d before intervention and 5 wk into each diet treatment. Within 4 d, additional milk samples were collected for measurement of SCC using Fossmatic 7. The microbial community was determined by sequencing the 16S rRNA gene V4-V5 region and analyzing sequences with QIIME2. After quality filtering, 53 cows remained. Results Raw milk microbial communities differed by diet and time. Taxa associated with fiber consumption, such as Lachnospiraceae, Lactobacillus, Bacteroides, and Methanobrevibacter, were enriched with the LSHF diet. Meanwhile, taxa associated with mastitis, such as Pseudomonas, Stenotrophomonas, and Enterobacteriaceae, were enriched with the HSLF diet. Relatedly, an interaction of diet and time was found to impact SCC. Conclusions In raw milk, consumption of an LSHF diet compared with an HSLF diet was associated with changes in abundance of microbes previously associated with fiber consumption, udder health, and milk spoilage. Further research is needed to determine if an LSHF diet indeed leads to lower rates of mastitis and milk spoilage, which could benefit the dairy industry.
Collapse
Affiliation(s)
- Laurynne C Coates
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - David Storms
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - John W Finley
- United States Department of Agriculture, Agricultural Research Service, George Washington Carver Center, Beltsville, MD, USA
| | - Naomi K Fukagawa
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Danielle G Lemay
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Kenneth F Kalscheur
- United States Department of Agriculture, Agricultural Research Service, US Dairy Forage Research Center, Madison, WI, USA
| | - Mary E Kable
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| |
Collapse
|
91
|
Fang J, Zhang Z, Cheng Y, Yang H, Zhang H, Xue Z, Lu S, Dong Y, Song C, Zhang X, Zhou Y. EPA and DHA differentially coordinate the crosstalk between host and gut microbiota and block DSS-induced colitis in mice by a reinforced colonic mucus barrier. Food Funct 2022; 13:4399-4420. [PMID: 35297435 DOI: 10.1039/d1fo03815j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon with a continuously remitting and relapsing course. Its etiology is closely related to abnormal interactions between host and gut microbiota. The mucus barrier lining the gastrointestinal tract is necessary to coordinate host and gut microbiota interaction by nourishing and modulating the microbiota. Differential effects of the anti-inflammatory fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on UC progression in mice were firstly addressed by our previous work; here, the mechanism for their respective effects were further uncovered from host-microbiome crosstalk based on mucus barrier modulation to pave the way for UC therapy. Methods: Assessment of the disease activity index and histopathology score was conducted in mice with dextran sodium sulfate (DSS)-induced colitis pre-treated with different doses of EPA and DHA. Mucin generation, glycosylation and secretion were evaluated by a combination of electron microscopy, specific mucous staining, and qPCR. Western blotting was used to analyze the underlying molecular events. Fecal short chain fatty acids were detected using gas chromatography, and the gut microbial composition was analyzed using 16S rRNA sequencing. Results: Compared with DHA, the more potent inhibitory effect of high dose EPA on DSS-induced colitis was reconfirmed, which was underlain by a reinforced mucus layer as indicated by increased mucin granule release, mucus layer stratification and markedly upregulated expression of the key modulators involved in goblet cell differentiation. In turn a remarkably enhanced mucus barrier in the EPA group functioned to modulate the gut microbiome, as demonstrated by the enriched abundance of the phylum Bacteroidetes and mucin-degrading bacterium Akkermansia muciniphila producing acetic and propionic acids. Conclusions: EPA and DHA differentially coordinate the interaction between the host and the gut microbiota and relieve mucus barrier disruption in DSS-induced colitis. EPA may develop into a promising adjunctive therapy for UC.
Collapse
Affiliation(s)
- Jian Fang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,College of Medicine, Shaoxing University, 508 Huancheng Road, Shaoxing, Zhejiang Province, 312000, People's Republic of China
| | - ZhuangWei Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yinyin Cheng
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Haitao Yang
- Mingzhou Hospital of Zhejiang University Department of Pathology, Mingzhou Hospital of Zhejiang University, Ningbo, 315040 Zhejiang, People's Republic of China
| | - Hui Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Zhe Xue
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Songtao Lu
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yichen Dong
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Chunyan Song
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Gastroenterology and hepatology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yuping Zhou
- Department of Gastroenterology and hepatology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Ningbo, Zhejiang, 315020, People's Republic of China. .,Institute of Digestive Disease of Ningbo University, Ningbo, 315020, People's Republic of China
| |
Collapse
|
92
|
Kocaefe-Özşen N, Yilmaz B, Alkım C, Arslan M, Topaloğlu A, Kısakesen HLB, Gülsev E, Çakar ZP. Physiological and Molecular Characterization of an Oxidative Stress-Resistant Saccharomyces cerevisiae Strain Obtained by Evolutionary Engineering. Front Microbiol 2022; 13:822864. [PMID: 35283819 PMCID: PMC8911705 DOI: 10.3389/fmicb.2022.822864] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a major stress type observed in yeast bioprocesses, resulting in a decrease in yeast growth, viability, and productivity. Thus, robust yeast strains with increased resistance to oxidative stress are in highly demand by the industry. In addition, oxidative stress is also associated with aging and age-related complex conditions such as cancer and neurodegenerative diseases. Saccharomyces cerevisiae, as a model eukaryote, has been used to study these complex eukaryotic processes. However, the molecular mechanisms underlying oxidative stress responses and resistance are unclear. In this study, we have employed evolutionary engineering (also known as adaptive laboratory evolution – ALE) strategies to obtain an oxidative stress-resistant and genetically stable S. cerevisiae strain. Comparative physiological, transcriptomic, and genomic analyses of the evolved strain were then performed with respect to the reference strain. The results show that the oxidative stress-resistant evolved strain was also cross-resistant against other types of stressors, including heat, freeze-thaw, ethanol, cobalt, iron, and salt. It was also found to have higher levels of trehalose and glycogen production. Further, comparative transcriptomic analysis showed an upregulation of many genes associated with the stress response, transport, carbohydrate, lipid and cofactor metabolic processes, protein phosphorylation, cell wall organization, and biogenesis. Genes that were downregulated included those related to ribosome and RNA processing, nuclear transport, tRNA, and cell cycle. Whole genome re-sequencing analysis of the evolved strain identified mutations in genes related to the stress response, cell wall organization, carbohydrate metabolism/transport, which are in line with the physiological and transcriptomic results, and may give insight toward the complex molecular mechanisms of oxidative stress resistance.
Collapse
Affiliation(s)
- Nazlı Kocaefe-Özşen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Bahtiyar Yilmaz
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ceren Alkım
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Mevlüt Arslan
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Halil L Brahim Kısakesen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Erdinç Gülsev
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Z Petek Çakar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
93
|
Gueddouri D, Caüzac M, Fauveau V, Benhamed F, Charifi W, Beaudoin L, Rouland M, Sicherre F, Lehuen A, Postic C, Boudry G, Burnol AF, Guilmeau S. Insulin resistance per se drives early and reversible dysbiosis-mediated gut barrier impairment and bactericidal dysfunction. Mol Metab 2022; 57:101438. [PMID: 35007789 PMCID: PMC8814824 DOI: 10.1016/j.molmet.2022.101438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE A common feature of metabolic diseases is their association with chronic low-grade inflammation. While enhanced gut permeability and systemic bacterial endotoxin translocation have been suggested as key players of this metaflammation, the mechanistic bases underlying these features upon the diabesity cascade remain partly understood. METHODS Here, we show in mice that, independently of obesity, the induction of acute and global insulin resistance and associated hyperglycemia, upon treatment with an insulin receptor (IR) antagonist (S961), elicits gut hyperpermeability without triggering systemic inflammatory response. RESULTS Of note, S961-treated diabetic mice display major defects of gut barrier epithelial functions, such as increased epithelial paracellular permeability and impaired cell-cell junction integrity. We also observed in these mice the early onset of a severe gut dysbiosis, as characterized by the bloom of pro-inflammatory Proteobacteria, and the later collapse of Paneth cells antimicrobial defense. Interestingly, S961 treatment discontinuation is sufficient to promptly restore both the gut microbial balance and the intestinal barrier integrity. Moreover, fecal transplant approaches further confirm that S961-mediated dybiosis contributes at least partly to the disruption of the gut selective epithelial permeability upon diabetic states. CONCLUSIONS Together, our results highlight that insulin signaling is an indispensable gatekeeper of intestinal barrier integrity, acting as a safeguard against microbial imbalance and acute infections by enteropathogens.
Collapse
Affiliation(s)
- Dalale Gueddouri
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Michèle Caüzac
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Véronique Fauveau
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Fadila Benhamed
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Wafa Charifi
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Lucie Beaudoin
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Matthieu Rouland
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Florian Sicherre
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Catherine Postic
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Gaëlle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, F35000 Rennes, France
| | | | - Sandra Guilmeau
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France.
| |
Collapse
|
94
|
Liu L, Shang L, Jin D, Wu X, Long B. General anesthesia bullies the gut: a toxic relationship with dysbiosis and cognitive dysfunction. Psychopharmacology (Berl) 2022; 239:709-728. [PMID: 35187594 DOI: 10.1007/s00213-022-06096-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Perioperative neurocognitive disorder (PND) is a common surgery outcome affecting up to a third of the elderly patients, and it is associated with high morbidity and increased risk for Alzheimer's disease development. PND is characterized by cognitive impairment that can manifest acutely in the form of postoperative delirium (POD) or after hospital discharge as postoperative cognitive dysfunction (POCD). Although POD and POCD are clinically distinct, their development seems to be mediated by a systemic inflammatory reaction triggered by surgical trauma that leads to dysfunction of the blood-brain barrier and facilitates the occurrence of neuroinflammation. Recent studies have suggested that the gut microbiota composition may play a pivotal role in the PND development by modulating the risk of neuroinflammation establishment. In fact, modulation of gut microbiome composition with pre- and probiotics seems to be effective for the prevention and treatment of PND in animals. Interestingly, general anesthetics seem to have major responsibility on the gut microbiota composition changes following surgery and, consequently, can be an important element in the process of PND initiation. This concept represents an important milestone for the understanding of PND pathogenesis and may unveil new opportunities for the development of preventive or mitigatory strategies against the development of these conditions. The aim of this review is to discuss how anesthetics used in general anesthesia can interact and alter the gut microbiome composition and contribute to PND development by favoring the emergence of neuroinflammation.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lihua Shang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Dongxue Jin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Bo Long
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
95
|
Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022; 20:593-607. [PMID: 35149841 DOI: 10.1038/s41579-022-00692-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
96
|
Markandey M, Bajaj A, Ilott NE, Kedia S, Travis S, Powrie F, Ahuja V. Gut microbiota: sculptors of the intestinal stem cell niche in health and inflammatory bowel disease. Gut Microbes 2022; 13:1990827. [PMID: 34747326 PMCID: PMC8583176 DOI: 10.1080/19490976.2021.1990827] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal epithelium represents a dynamic and diverse cellular system that continuously interacts with gut commensals and external cues. Intestinal stem cells, which lie at the heart of epithelial renewal and turnover, proliferate to maintain a steady stem cell population and differentiate to form functional epithelial cell types. This rather sophisticated assembly-line is maintained by an elaborate micro-environment, sculpted by a myriad of host and gut microbiota-derived signals, forming an intestinal stem cell niche. This complex, yet crucial signaling niche undergoes dynamic changes during homeostasis and chronic intestinal inflammation. Inflammatory bowel disease refers to a chronic inflammatory response toward pathogenic or commensal microbiota, in a genetically susceptible host. Compositional and functional alterations in gut microbiota are pathognomonic of IBD.The present review highlights the modulatory role of gut microbiota on the intestinal stem cell niche during homeostasis and inflammatory bowel disease. We discuss the mechanisms of direct action of gut commensals (through microbiota-derived or microbiota-influenced metabolites) on ISCs, followed by their effects via other epithelial and immune cell types.
Collapse
Affiliation(s)
- Manasvini Markandey
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Bajaj
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | | | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Simon Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India,CONTACT Vineet Ahuja Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India, 110029
| |
Collapse
|
97
|
Yuan X, Xue H, Xu X, Jiao X, Pan Z, Zhang Y. Closely related Salmonella Derby strains triggered distinct gut microbiota alteration. Gut Pathog 2022; 14:6. [PMID: 35078518 PMCID: PMC8787955 DOI: 10.1186/s13099-022-00480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Salmonella Derby is one of the most predominant Salmonella serotypes that seriously threatens food safety. This bacterium can be further differentiated to sub-populations with different population sizes; however, whether and how the S. Derby–gut microbiota interactions affect epidemic patterns of S. Derby sub-populations remain largely unknown.
Results
We selected two representative strains, 14T and 14C, which represent rarely distributed and prevalent sub-populations of the S. Derby ST40 group, respectively, to address this question using a mouse model. Effects of oral administration of both strains was monitored for 14 days. Alpha diversity of gut microbiota at early stages of infection (4 h post infection) was higher in 14C-treated mice and lower in 14T-treated mice compared with controls. Strain 14T triggered stronger inflammation responses but with lower pathogen titer in spleen compared with strain 14C at 14 days post infection. Certain known probiotic bacteria that can hinder colonization of Salmonella, such as Bifidobacteriaceae and Akkermansiaceae, exhibited increased relative abundance in 14T-treated mice compared with 14C-treated mice. Our results also demonstrated that Ligilactobacillus strains isolated from gut microbiota showed stronger antagonistic activity against strain 14T compared with strain 14C.
Conclusions
We identified how S. Derby infection affected gut microbiota composition, and found that the 14T strain, which represented a rarely distributed S. Derby sub-population, triggered stronger host inflammation responses and gut microbiota disturbance compared with the 14C strain, which represented a prevalent S. Derby sub-population. This study provides novel insights on the impacts of gut microbiota on the epidemic patterns of Salmonella populations.
Collapse
|
98
|
Duncan K, Carey-Ewend K, Vaishnava S. Spatial analysis of gut microbiome reveals a distinct ecological niche associated with the mucus layer. Gut Microbes 2022; 13:1874815. [PMID: 33567985 PMCID: PMC8253138 DOI: 10.1080/19490976.2021.1874815] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mucus-associated bacterial communities are critical for determining disease pathology and promoting colonization resistance. Yet the key ecological properties of mucus resident communities remain poorly defined. Using an approach that combines in situ hybridization, laser microdissection and 16s rRNA sequencing of spatially distinct regions of the mouse gut lumen, we discovered that a dense microbial community resembling a biofilm is embedded in the mucus layer. The mucus-associated biofilm-like community excluded bacteria belonging to phylum Proteobacteria. Additionally, it was significantly more diverse and consisted of bacterial species that were unique to it. By employing germ-free mice deficient in T and B lymphocytes we found that formation of biofilm-like structure was independent of adaptive immunity. Instead the integrity of biofilm-like community depended on Gram-positive commensals such as Clostridia. Additionally, biofilm-like community in the mucus lost fewer Clostridia and showed smaller bloom of Proteobacteria compared to the lumen upon antibiotic treatment. When subjected to time-restricted feeding biofilm-like structure significantly enhanced in size and showed enrichment of Clostridia. Taken together our work discloses that mucus-associated biofilm-like community represents a specialized community that is structurally and compositionally distinct that excludes aerobic bacteria while enriching for anaerobic bacteria such as Clostridia, exhibits enhanced stability to antibiotic treatment and that can be modulated by dietary changes.
Collapse
Affiliation(s)
- Kellyanne Duncan
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Kelly Carey-Ewend
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Shipra Vaishnava
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States,CONTACT Shipra Vaishnava Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, United States
| |
Collapse
|
99
|
Hua D, Li S, Li S, Wang X, Wang Y, Xie Z, Zhao Y, Zhang J, Luo A. Gut Microbiome and Plasma Metabolome Signatures in Middle-Aged Mice With Cognitive Dysfunction Induced by Chronic Neuropathic Pain. Front Mol Neurosci 2022; 14:806700. [PMID: 35058749 PMCID: PMC8763791 DOI: 10.3389/fnmol.2021.806700] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Patients with chronic neuropathic pain (CNP) often complain about their terrible memory, especially the speed of information processing. Accumulating evidence suggests a possible link between gut microbiota and pain processing as well as cognitive function via the microbiota-gut-brain axis. This study aimed at exploring the fecal microbiome and plasma metabolite profiles in middle-aged spared nerve injury (SNI) mice model with cognitive dysfunction (CD) induced by CNP. The hierarchical cluster analysis of performance in the Morris water maze test was used to classify SNI mice with CD or without CD [i.e., non-CD (NCD)] phenotype. 16S rRNA sequencing revealed a lower diversity of gut bacteria in SNI mice, and the increase of Actinobacteria, Proteus, and Bifidobacterium might contribute to the cognitive impairment in the CNP condition. The plasma metabolome analysis showed that the endocannabinoid (eCB) system, disturbances of lipids, and amino acid metabolism might be the dominant signatures of CD mice. The fecal microbiota transplantation of the Sham (not CD) group improved allodynia and cognitive performance in pseudo-germ-free mice via normalizing the mRNA expression of eCB receptors, such as cn1r, cn2r, and htr1a, reflecting the effects of gut bacteria on metabolic activity. Collectively, the findings of this study suggest that the modulation of gut microbiota and eCB signaling may serve as therapeutic targets for cognitive deficits in patients with CNP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
100
|
Yun B, King M, Draz MS, Kline T, Rodriguez-Palacios A. Oxidative reactivity across kingdoms in the gut: Host immunity, stressed microbiota and oxidized foods. Free Radic Biol Med 2022; 178:97-110. [PMID: 34843918 DOI: 10.1016/j.freeradbiomed.2021.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species play a major role in the induction of programmed cell death and numerous diseases. Production of reactive oxygen species is ubiquitous in biological systems such as humans, bacteria, fungi/yeasts, and plants. Although reactive oxygen species are known to cause diseases, little is known about the importance of the combined oxidative stress burden in the gut. Understanding the dynamics and the level of oxidative stress 'reactivity' across kingdoms could help ascertain the combined consequences of free radical accumulation in the gut lumen. Here, we present fundamental similarities of oxidative stress derived from the host immune cells, bacteria, yeasts, plants, and the therein-derived diets, which often accentuate the burden of free radicals by accumulation during storage and cooking conditions. Given the described similarities, oxidative stress could be better understood and minimized by monitoring the levels of oxidative stress in the feces to identify pro-inflammatory factors. However, we illustrate that dietary studies rarely monitor oxidative stress markers in the feces, and therefore our knowledge on fecal oxidative stress monitoring is limited. A more holistic approach to understanding oxidative stress 'reactivity' in the gut could help improve strategies to use diet and microbiota to prevent intestinal diseases.
Collapse
Affiliation(s)
- Bahda Yun
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Maria King
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Terence Kline
- Veterinary Technology Program, Cuyahoga Community College, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|