51
|
Investigation of binding interaction between bovine α-lactalbumin and procyanidin B2 by spectroscopic methods and molecular docking. Food Chem 2022; 384:132509. [PMID: 35217463 DOI: 10.1016/j.foodchem.2022.132509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 12/29/2022]
Abstract
The interactions between bovine α-lactalbumin and procyanidin B2 were fully investigated by spectroscopic methods and molecular docking. This study hypothesized that ALA could spontaneously interact with procyanidin B2 to form protein-based complex delivery carrier. Far UV CD and FTIR data demonstrated ALA's secondary structures were altered and intrinsic fluorescence quenching suggested ALA conformation was changed with procyanidin B2. Calorimetric technique illustrated ALA-procyanidin B2 complexation was a spontaneous and exothermic process with the number of binding site (n, 3.53) and the binding constant (Kb, 2.16 × 104 M-1). A stable nano-delivery system with ALA can be formed for encapsulating, stabilizing and delivering procyanidin B2. Molecular docking study further elucidated that hydrogen bonds dominated procyanidin B2 binding to ALA in a hydrophobic pocket. This study shows great potential in using ALA as protein-based nanocarriers for oral delivery of hydrophilic nutraceuticals, because procyanidin B2-loaded ALA complex delivery systems can be spontaneously formed.
Collapse
|
52
|
Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041363. [PMID: 35209151 PMCID: PMC8877132 DOI: 10.3390/molecules27041363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023]
Abstract
Conventional extraction methods of proanthocyanidins (PAC) are based on toxic organic solvents, which can raise concerns about the use of extracts in supplemented food and nutraceuticals. Thus, a PAC extraction method was developed for grape seeds (GS) and grape seed powder using food-grade ethanol by optimizing the extraction conditions to generate the maximum yield of PAC. Extraction parameters, % ethanol, solvent: solid (s:s) ratio, sonication time, and temperature were optimized by the central composite design of the response surface method. The yields of PAC under different extraction conditions were quantified by the methylcellulose precipitable tannin assay. The final optimum conditions were 47% ethanol, 10:1 s:s ratio (v:w), 53 min sonication time, and 60 °C extraction temperature. High-performance liquid chromatography analysis revealed the presence of catechin, procyanidin B2, oligomeric and polymeric PAC in the grape seed-proanthocyanidin extracts (GS-PAC). GS-PAC significantly reduced reactive oxygen species and lipid accumulation in the palmitic-acid-induced mouse hepatocytes (AML12) model of steatosis. About 50% of the PAC of the GS was found to be retained in the by-product of wine fermentation. Therefore, the developed ethanol-based extraction method is suitable to produce PAC-rich functional ingredients from grape by-products to be used in supplemented food and nutraceuticals.
Collapse
|
53
|
Jati GAK, Assihhah N, Wati AA, Salasia SIO. Immunosuppression by piperine as a regulator of the NLRP3 inflammasome through MAPK/NF-κB in monosodium urate-induced rat gouty arthritis. Vet World 2022; 15:288-298. [PMID: 35400961 PMCID: PMC8980401 DOI: 10.14202/vetworld.2022.288-298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
Background and Aim: Gouty arthritis is a metabolic disorder involving monosodium urate (MSU) crystal deposition as a key initiator of acute inflammation. Dysregulation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is associated with the pathogenesis of gout through the maturation of interleukin-1β. Piperine (PIP) is a phytochemical with an anti-inflammatory activity that has the potential as an alternative treatment for gout. In this study, we examined the effect of PIP in immunosuppression of gout inflammation through the regulation of the NLRP3 inflammasome.
Materials and Methods: An in silico study was done by pharmacodynamic modeling of PIP in suppressing MSU-induced inflammation through disruption of the NLRP3 inflammasome. In vivo tests, including inflammatory assessment, histopathology, cytology, estimation of lipid peroxidation index, and detection of systemic inflammatory reactants, were performed on two groups using preventive and curative protocols.
Results: In silico studies of molecular docking demonstrated the activity of PIP as a competitive inhibitor of the mitogen-activated protein kinases/nuclear factor-kappaB axis, upstream of the NLRP3 inflammasome. Analysis of gout models with curative and preventive protocols revealed the immunosuppression activity of PIP by reducing inflammatory symptoms, inhibiting tophus formation resulting from NETosis, reducing cartilage erosion, inhibiting leukocyte exudation, suppressing lipid peroxidation index, and inhibiting the production of C-reactive protein.
Conclusion: The results demonstrate the activity of PIP as an immunosuppressant in gout flare. These findings indicate the potential of PIP as a candidate for prophylactic and therapeutic agent for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Galih Aji Kuncoro Jati
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nazzun Assihhah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Anas Ardiana Wati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Siti Isrina Oktavia Salasia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
54
|
Liu L, Wang R, Xu R, Chu Y, Gu W. Procyanidin B2 ameliorates endothelial dysfunction and impaired angiogenesis via the Nrf2/PPARγ/sFlt-1 axis in preeclampsia. Pharmacol Res 2022; 177:106127. [PMID: 35150862 DOI: 10.1016/j.phrs.2022.106127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a severe complication of pregnancy characterized by variable degrees of placental malperfusion. A growing body of evidence indicates that soluble endoglin and soluble fms-like tyrosine kinase-1 (sFlt-1) play important pathophysiological roles in preeclampsia, causing endothelial dysfunction, hypertension, and multiorgan injury. A drug that is safe in pregnancy and inhibits placental sFlt-1 and soluble endoglin secretion would be an attractive treatment strategy for preeclampsia. Procyanidin B2, a bioactive food compound, has been reported to exert multiple beneficial functions. Placental explant cultures in vitro are useful for studying tissue functions including release of secretory components, pharmacology, toxicology, and disease processes. The reduced uterine perfusion pressure (RUPP) rat model has been widely used as a model of preeclampsia. We aimed to investigate the effect of procyanidin B2 on preeclampsia via using placental explant cultures and RUPP rat model. In this study, we demonstrated that procyanidin B2 reduced soluble endoglin and sFlt-1 secretion from human umbilical vein endothelial cells (HUVECs), primary trophoblasts, and placental explants from preeclamptic pregnancies. Moreover, procyanidin B2 alleviated endothelial dysfunction and impaired angiogenesis induced by sFlt-1, including increasing the migration, invasion and angiogenesis of endothelial cells and decreasing the expression of vascular cell adhesion molecule-1 (VCAM-1) and leukocyte adhesion on HUVECs. In addition, procyanidin B2 promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation and induced peroxisome proliferator-activated receptor γ (PPARγ) expression in primary placental tissues and endothelial cells. Importantly, Nrf2 specifically binds to the PPARγ promoter region (-1227/-1217) and enhances its transcriptional activity. Procyanidin B2 inhibits sFlt-1 secretion via the Nrf2/PPARγ axis. In the RUPP rat model of preeclampsia, procyanidin B2 attenuated RUPP-induced maternal angiogenic imbalance, hypertension and improved placental and fetal weight. Taken together, our results demonstrate that procyanidin B2 inhibits sFlt-1 secretion and ameliorates endothelial dysfunction and impaired angiogenesis via the Nrf2/PPARγ axis in preeclampsia. Procyanidin B2 may be a novel therapeutic agent for treatment of preeclampsia.
Collapse
Affiliation(s)
- Lei Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Rencheng Wang
- Department of Obstetrics and Gynecology, Renhe Hospital Baoshan District, Shanghai 200431, China
| | - Ran Xu
- Department of Obstetrics and Gynecology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Yuening Chu
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Weirong Gu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.
| |
Collapse
|
55
|
Xu J, Shen J, Yuan R, Jia B, Zhang Y, Wang S, Zhang Y, Liu M, Wang T. Mitochondrial Targeting Therapeutics: Promising Role of Natural Products in Non-alcoholic Fatty Liver Disease. Front Pharmacol 2022; 12:796207. [PMID: 35002729 PMCID: PMC8733608 DOI: 10.3389/fphar.2021.796207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide, and its prevalence is still growing rapidly. However, the efficient therapies for this liver disease are still limited. Mitochondrial dysfunction has been proven to be closely associated with NAFLD. The mitochondrial injury caused reactive oxygen species (ROS) production, and oxidative stress can aggravate the hepatic lipid accumulation, inflammation, and fibrosis. which contribute to the pathogenesis and progression of NAFLD. Therefore, pharmacological therapies that target mitochondria could be a promising way for the NAFLD intervention. Recently, natural products targeting mitochondria have been extensively studied and have shown promising pharmacological activity. In this review, the recent research progress on therapeutic effects of natural-product-derived compounds that target mitochondria and combat NAFLD was summarized, aiming to provide new potential therapeutic lead compounds and reference for the innovative drug development and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Jingqi Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Shen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruolan Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiwen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sijian Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
56
|
Li Y, Zhu L, Guo C, Xue M, Xia F, Wang Y, Jia D, Li L, Gao Y, Shi Y, He Y, Yuan C. Dietary Intake of Hydrolyzable Tannins and Condensed Tannins to Regulate Lipid Metabolism. Mini Rev Med Chem 2021; 22:1789-1802. [PMID: 34967286 DOI: 10.2174/1389557522666211229112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Lipid metabolism disorder is a multifactor issue, which contributes to several serious health consequences, such as obesity, hyperlipidemia, atherosclerosis diabetes, non-alcoholic fatty liver etc. Tannins, applied as natural derived plant, are commonly used in the study of lipid metabolism disease with excellent safety and effectiveness, while producing less toxic and side effects. Meanwhile, recognition of the significance of dietary tannins in lipid metabolism disease prevention has increased. As suggested by existing evidence, dietary tannins can reduce lipid accumulation, block adipocyte differentiation, enhance antioxidant capacity, increase the content of short-chain fatty acids, and lower blood lipid levels, thus alleviating lipid metabolism disorder. This study is purposed to sum up and analyze plenty of documents on tannins, so as to provide the information required to assess the lipid metabolism of tannins.
Collapse
Affiliation(s)
- Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yuming He
- College of Medical Science, China Three Gorges University, Yichang, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| |
Collapse
|
57
|
Procyanidin B2 Alleviates Palmitic Acid-Induced Injury in HepG2 Cells via Endoplasmic Reticulum Stress Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8920757. [PMID: 34956386 PMCID: PMC8702323 DOI: 10.1155/2021/8920757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome featuring ectopic lipid accumulation in hepatocytes. NAFLD has been a severe threat to humans with a global prevalence of over 25% yet no approved drugs for the treatment to date. Previous studies showed that procyanidin B2 (PCB2), an active ingredient from herbal cinnamon, has an excellent hepatoprotective effect; however, the mechanism remains inconclusive. The present study aimed to investigate the protective effect and underlying mechanism of PCB2 on PA-induced cellular injury in human hepatoma HepG2 cells. Our results showed that PA-induced oxidative stress, calcium disequilibrium, and subsequent endoplasmic reticulum stress (ERS) mediated cellular injury, with elevated protein levels of GRP78, GRP94, CHOP, and hyperphosphorylation of PERK and IRE1α as well as the increased ratio of Bax/Bcl-2, which was restored by PCB2 in a concentration-dependent manner, proving the excellent antiapoptosis effect. In addition, 4-phenylbutyric acid (4-PBA), the ER stress inhibitor, increased cell viability and decreased protein levels of GRP78 and CHOP, which is similar to PCB2, and thapsigargin (TG), the ER stress agonist, exhibited conversely meanwhile partly counteracted the hepatic protection of PCB2. What is more, upregulated protein expression of p-IKKα/β, p-NF-κB p65, NLRP3, cleaved caspase 1, and mature IL-1β occurred in HepG2 cells in response to PA stress while rescued with the PCB2 intervention. In conclusion, our study demonstrated that PA induces ERS in HepG2 cells and subsequently activates downstream NLRP3 inflammasome-mediated cellular injury, while PCB2 inhibits NLRP3/caspase 1/IL-1β pathway, inflammation, and apoptosis with the presence of ERS, thereby promoting cell survival, which may provide pharmacological evidence for clinical approaches on NAFLD.
Collapse
|
58
|
Bonneville J, Rondeau P, Veeren B, Faccini J, Gonthier MP, Meilhac O, Vindis C. Antioxidant and Cytoprotective Properties of Polyphenol-Rich Extracts from Antirhea borbonica and Doratoxylon apetalum against Atherogenic Lipids in Human Endothelial Cells. Antioxidants (Basel) 2021; 11:antiox11010034. [PMID: 35052538 PMCID: PMC8773103 DOI: 10.3390/antiox11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
The endothelial integrity is the cornerstone of the atherogenic process. Low-density lipoprotein (LDL) oxidation occurring within atheromatous plaques leads to deleterious vascular effects including endothelial cell cytotoxicity. The aim of this study was to evaluate the vascular antioxidant and cytoprotective effects of polyphenol-rich extracts from two medicinal plants from the Reunion Island: Antirhea borbonica (A. borbonica), Doratoxylon apetalum (D. apetalum). The polyphenol-rich extracts were obtained after dissolving each dry plant powder in an aqueous acetonic solution. Quantification of polyphenol content was achieved by the Folin–Ciocalteu assay and total phenol content was expressed as g gallic acid equivalent/100 g plant powder (GAE). Human vascular endothelial cells were incubated with increasing concentrations of polyphenols (1–50 µM GAE) before stimulation with oxidized low-density lipoproteins (oxLDLs). LDL oxidation was assessed by quantification of hydroperoxides and thiobarbituric acid reactive substances (TBARS). Intracellular oxidative stress and antioxidant activity (catalase and superoxide dismutase) were measured after stimulation with oxLDLs. Cell viability and apoptosis were quantified using different assays (MTT, Annexin V staining, cytochrome C release, caspase 3 activation and TUNEL test). A. borbonica and D. apetalum displayed high levels of polyphenols and limited LDL oxidation as well as oxLDL-induced intracellular oxidative stress in endothelial cells. Polyphenol extracts of A. borbonica and D. apetalum exerted a protective effect against oxLDL-induced cell apoptosis in a dose-dependent manner (10, 25, and 50 µM GAE) similar to that observed for curcumin, used as positive control. All together, these results showed significant antioxidant and antiapoptotic properties for two plants of the Reunion Island pharmacopeia, A. borbonica and D. apetalum, suggesting their therapeutic potential to prevent cardiovascular diseases by limiting LDL oxidation and protecting the endothelium.
Collapse
Affiliation(s)
- Jonathan Bonneville
- Clinical Investigation Center (CIC) 1436, INSERM 1048, 31400 Toulouse, France; (J.B.); (J.F.)
- Université de La Réunion, INSERM, UMR 1188 Diabete athérothrombose Réunion Océan Indien (DéTROI), 97400 La Réunion, France; (P.R.); (B.V.); (M.-P.G.)
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabete athérothrombose Réunion Océan Indien (DéTROI), 97400 La Réunion, France; (P.R.); (B.V.); (M.-P.G.)
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabete athérothrombose Réunion Océan Indien (DéTROI), 97400 La Réunion, France; (P.R.); (B.V.); (M.-P.G.)
| | - Julien Faccini
- Clinical Investigation Center (CIC) 1436, INSERM 1048, 31400 Toulouse, France; (J.B.); (J.F.)
- Université de Toulouse III Paul Sabatier, 31400 Toulouse, France
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabete athérothrombose Réunion Océan Indien (DéTROI), 97400 La Réunion, France; (P.R.); (B.V.); (M.-P.G.)
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabete athérothrombose Réunion Océan Indien (DéTROI), 97400 La Réunion, France; (P.R.); (B.V.); (M.-P.G.)
- CHU de La Réunion, 97448 Saint-Pierre, La Réunion, France
- Correspondence: (O.M.); (C.V.)
| | - Cécile Vindis
- Clinical Investigation Center (CIC) 1436, INSERM 1048, 31400 Toulouse, France; (J.B.); (J.F.)
- Université de Toulouse III Paul Sabatier, 31400 Toulouse, France
- Correspondence: (O.M.); (C.V.)
| |
Collapse
|
59
|
Zhu Y, Yuen M, Li W, Yuen H, Wang M, Smith D, Peng Q. Composition analysis and antioxidant activity evaluation of a high purity oligomeric procyanidin prepared from sea buckthorn by a green method. Curr Res Food Sci 2021; 4:840-851. [PMID: 34877544 PMCID: PMC8633577 DOI: 10.1016/j.crfs.2021.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Procyanidin is an important polyphenol for its health-promoting properties, however, the study of procyanidin in sea buckthorn was limited. In this paper, sea buckthorn procyanidin (SBP) was obtained through a green isolation and enrichment technique with an extraction rate and purity of 9.1% and 91.5%. The structure of SBP was analyzed using Ultraviolet–visible spectroscopy (UV–vis), Fourier-transform infrared spectroscopy (FT-IR), and liquid chromatography-mass spectrometry (LC-MS/MS). The results show that SBP is an oligomeric procyanidin, mainly composed of (−)-epicatechin gallate, procyanidin B, (+)-gallocatechin-(+)-catechin, and (+)-gallocatechin dimer. SBP showed superior scavenging capacity on free radicals. Furthermore, the cleaning rate of the ABTS radical was 4.8 times higher than vitamin C at the same concentration. Moreover, SBP combined with vitamin C presented potent synergistic antioxidants with combined index values below 0.3 with concentration rates from 5:5 to 2:8. SBP also provided significant protection against oxidative stress caused by hydrogen peroxide (H2O2) on RAW264.7 cells. These findings prove the potential of SBP as a natural antioxidant in food additives and support the in-depth development of sea buckthorn resources. A green method for the extraction of procyanidin was proposed. An oligomeric procyanidin in sea buckthorn was identified for the first time. SBP combined with VC exerted strong synergistic antioxidant. SBP provided protection of macrophages against oxidative damage.
Collapse
Affiliation(s)
- Yulian Zhu
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Michael Yuen
- Puredia Limited, No.12, Jing'er Road (North), Biological Technology Park, Chengbei District, Xining, Qinghai, China
| | - Wenxia Li
- Puredia Limited, No.12, Jing'er Road (North), Biological Technology Park, Chengbei District, Xining, Qinghai, China
| | - Hywel Yuen
- Puredia Limited, No.12, Jing'er Road (North), Biological Technology Park, Chengbei District, Xining, Qinghai, China
| | - Min Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China
| | - Deandrae Smith
- Department of Food Science and Technology, University of Nebraska, Lincoln Nebraska, USA, 68504
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China
- Corresponding author. Postal address: College of Food Science and Engineering, Northwest A & F University, 712100, Yangling, PR China.
| |
Collapse
|
60
|
Zhang H, Lu J, Liu H, Guan L, Xu S, Wang Z, Qiu Y, Liu H, Peng L, Men X. Ajugol enhances TFEB-mediated lysosome biogenesis and lipophagy to alleviate non-alcoholic fatty liver disease. Pharmacol Res 2021; 174:105964. [PMID: 34732369 DOI: 10.1016/j.phrs.2021.105964] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/24/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Lipophagy is the autophagic degradation of lipid droplets. Dysregulated lipophagy has been implicated in the development of non-alcoholic fatty liver disease (NAFLD). Ajugol is an active alkaloid isolated from the root of Rehmannia glutinosa which is commonly used to treat various inflammatory and metabolic diseases. This study aimed to investigate the effect of ajugol on alleviating hepatic steatosis and sought to determine whether its potential mechanism via the key lysosome-mediated process of lipophagy. Our findings showed that ajugol significantly improved high-fat diet-induced hepatic steatosis in mice and inhibited palmitate-induced lipid accumulation in hepatocytes. Further analysis found that hepatic steatosis promoted the expression of LC3-II, an autophagosome marker, but led to autophagic flux blockade due to a lack of lysosomes. Ajugol also enhanced lysosomal biogenesis and promoted the fusion of autophagosome and lysosome to improve impaired autophagic flux and hepatosteatosis. Mechanistically, ajugol inactivated mammalian target of rapamycin and induced nuclear translocation of the transcription factor EB (TFEB), an essential regulator of lysosomal biogenesis. siRNA-mediated knockdown of TFEB significantly abrogated ajugol-induced lysosomal biogenesis as well as autophagosome-lysosome fusion and lipophagy. We conclude that lysosomal deficit is a critical mediator of hepatic steatosis, and ajugol may alleviate NAFLD via promoting the TFEB-mediated autophagy-lysosomal pathway and lipophagy.
Collapse
Affiliation(s)
- Heng Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China; School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan, Hebei 063210, China
| | - Junfeng Lu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Lingling Guan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Shiqing Xu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Zai Wang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Yang Qiu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Honglin Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China.
| | - Xiuli Men
- School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan, Hebei 063210, China.
| |
Collapse
|
61
|
Nuciferine protects against high-fat diet-induced hepatic steatosis and insulin resistance via activating TFEB-mediated autophagy–lysosomal pathway. Acta Pharm Sin B 2021; 12:2869-2886. [PMID: 35755273 PMCID: PMC9214335 DOI: 10.1016/j.apsb.2021.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and insulin resistance and there are currently no approved drugs for its treatment. Hyperactivation of mTOR complex 1 (mTORC1) and subsequent impairment of the transcription factor EB (TFEB)-mediated autophagy–lysosomal pathway (ALP) are implicated in the development of NAFLD. Accordingly, agents that augment hepatic TFEB transcriptional activity may have therapeutic potential against NAFLD. The objective of this study was to investigate the effects of nuciferine, a major active component from lotus leaf, on NAFLD and its underlying mechanism of action. Here we show that nuciferine activated ALP and alleviated steatosis, insulin resistance in the livers of NAFLD mice and palmitic acid-challenged hepatocytes in a TFEB-dependent manner. Mechanistic investigation revealed that nuciferine interacts with the Ragulator subunit hepatitis B X-interacting protein and impairs the interaction of the Ragulator complex with Rag GTPases, thereby suppressing lysosomal localization and activity of mTORC1, which activates TFEB-mediated ALP and further ameliorates hepatic steatosis and insulin resistance. Our present results indicate that nuciferine may be a potential agent for treating NAFLD and that regulation of the mTORC1–TFEB–ALP axis could represent a novel pharmacological strategy to combat NAFLD.
Collapse
|
62
|
Chen X, Liang J, Bin W, Luo H, Yang X. Anti-hyperlipidemic, Anti-inflammatory, and Ameliorative Effects of DRP1 Inhibition in Rats with Experimentally Induced Myocardial Infarction. Cardiovasc Toxicol 2021; 21:1000-1011. [PMID: 34472022 DOI: 10.1007/s12012-021-09691-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
This study aims to investigate the biological role of DRP1 in myocardial infarction (MI) in concert with hyperlipidemia (HL). Based on the available literatures, 10 genes related to MI with HL (HL-MI) were screened and detected in clinical samples. High-fat diet (HFD) was used to establish HL rat models, after which the rats were subcutaneously injected with PBS or isoproterenol hydrochloride to induce acute MI. Then, rats with HL-MI were injected with pcDNA3.1, pcDNA3.1-DRP1, sh-NC, or sh-DRP1. Serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) were measured. Cardiac function was evaluated by detecting left ventricular fractional shortening (LVFS) and left ventricular ejection fraction (LVEF). Infarct size and histopathological changes were assessed as well as myocardial apoptosis and collagen deposition. The concentration of IL-6, IL-1β, and TNF-α in rat serum and cardiac tissues was also measured by ELISA. Mitochondrial function was shown by measuring the morphology, mitochondrial membrane potential (MMP), and intracellular reactive oxygen species (ROS) level. Pro-apoptotic proteins (Bax, caspase-1, and cleaved caspase-1) and NLRP3 inflammasome activation were also assessed. The expressions of the 10 genes were measured in clinical samples and DRP1 was selected for further experiments with significantly upregulated expression in MI patients. HFD-induced rats showed increased body weight, concurrent with higher levels of TG, TC, and LDL-C and lower HDL-C level. Compared with the BD-PBS group, the HFD-PBS group presented higher mRNA and protein expression levels of DRP1, exacerbated cardiac functions, enlarged infarct size, loss of cardiomyocytes, and disordered island cardiomyocytes. In the HL-MI rat model, injection of pcDNA3.1-DRP1 enhanced the levels of serum lipids and inflammation cytokines, induced loss of a number of cardiomyocytes and collagen deposition, and decreased LVFS and LVEF, while injection of sh-DRP1 ameliorated myocardial injuries, inflammation, and cardiomyocyte apoptosis and fibrosis. In coronary artery endothelial cells from the rats, loss of MMP was observed in the HFD-MI, LV-NC, LV-DRP1, and sh-NC groups and concomitantly, the sh-DRP1group showed increased MMP and decreased levels of mitochondrial ROS, cytochrome C, pro-apoptotic proteins, and NLRP3. Inhibition of DRP1 markedly suppressed HL, systematic inflammation, and myocardial injuries induced by HL-MI through partly restoring mitochondrial function and reducing NLRP3 expression.
Collapse
Affiliation(s)
- Xiehui Chen
- Shenzhen Longhua District Central Hospital (The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University), Shenzhen, 518110, Guangdong, People's Republic of China.
| | - Jinjie Liang
- Department of Geriatrics Cardiovascular Medicine, Fuwai Hospital Chinese Academy of Medical Sciences, No. 12, Langshan Road, Nanshan District, Shenzhen, 518112, Guangdong, People's Republic of China
| | - Wugang Bin
- Department of Geriatrics Cardiovascular Medicine, Fuwai Hospital Chinese Academy of Medical Sciences, No. 12, Langshan Road, Nanshan District, Shenzhen, 518112, Guangdong, People's Republic of China
| | - Hongmin Luo
- Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen, 518081, Guangdong, People's Republic of China
| | - Xu Yang
- Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen, 518081, Guangdong, People's Republic of China
| |
Collapse
|
63
|
Deng L, Liu W, Xu Q, Guo R, Zhang D, Ni J, Li L, Cai X, Fan G, Zhao Y. Tianma Gouteng Decoction regulates oxidative stress and inflammation in AngII-induced hypertensive mice via transcription factor EB to exert anti-hypertension effect. Biomed Pharmacother 2021; 145:112383. [PMID: 34736077 DOI: 10.1016/j.biopha.2021.112383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023] Open
Abstract
Hypertension is one of the important causes of cardiovascular diseases, and the imbalance of vascular homeostasis caused by oxidative stress and endothelial inflammation occurs throughout hypertension pathogenesis. Therefore, inhibiting oxidative stress and endothelial inflammation is important for treating hypertension. Tianma Gouteng Decoction (TGD) is a Chinese herbal medicine that is commonly used to treat hypertension in China, and demonstrates clinically effective antihypertensive effects. However, its blood pressure reduction mechanism remains unclear. In this study, we further determined the antihypertensive effects of TGD and revealed its underlying mechanism. We established an AngII-induced hypertension mice model, which was treated with TGD for six weeks. We monitored blood pressure, heart rate, and body weight every week. After six weeks, we detected changes in the structure and function of the heart, the structure of blood vessels, and vasomotor factors. We also detected the expression of oxidative stress and inflammation-related genes. We found that TGD can significantly reduce blood pressure, improve cardiac structure and function, and reverse vascular remodeling, which could be due to the inhibition of oxidative stress and inflammation. We also found that the effect of inhibiting oxidative stress and inflammation could be related to the up-regulation of transcription factor EB (TFEB) expression by TGD. Therefore, we used AAV9 to knock down TFEB and observe the role of TFEB in TGD's antihypertensive and cardiovascular protection properties. We found that after TFEB knockdown, the protective effect of TGD on blood pressure and cardiovascular remodeling in AngII-induced hypertensive mice was inhibited, and that it was unable to inhibit oxidative stress and inflammation. Therefore, our study demonstrated for the first time that TGD could exert anti-oxidative stress and anti-inflammatory effects through TFEB and reverse the cardiovascular remodeling caused by hypertension.
Collapse
Affiliation(s)
- Linhua Deng
- Second affiliated hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Liu
- Second affiliated hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Qiang Xu
- Second affiliated hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Rui Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dapeng Zhang
- Qinhuangdao Haigang Hospital, Qinhuangdao, China
| | - Jingyu Ni
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyue Cai
- Second affiliated hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guanwei Fan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiang Zhao
- Second affiliated hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
64
|
Fernandes ACF, Santana ÁL, Vieira NC, Gandra RLP, Rubia C, Castro‐Gamboa I, Macedo JA, Macedo GA. In vitro effects of peanut skin polyphenolic extract on oxidative stress, adipogenesis, and lipid accumulation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Annayara C. F. Fernandes
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Ádina L. Santana
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
- Food Science Institute Kansas State University Manhattan USA
| | - Natália C. Vieira
- Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE) Institute of Chemistry (ICAr) Sao Paulo State University (UNESP) Araraquara Brazil
| | - Renata L. P. Gandra
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Camila Rubia
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Ian Castro‐Gamboa
- Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE) Institute of Chemistry (ICAr) Sao Paulo State University (UNESP) Araraquara Brazil
| | - Juliana A. Macedo
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Gabriela A. Macedo
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
65
|
Wu D, Ai L, Sun Y, Yang B, Chen S, Wang Q, Kuang H. Role of NLRP3 Inflammasome in Lupus Nephritis and Therapeutic Targeting by Phytochemicals. Front Pharmacol 2021; 12:621300. [PMID: 34489689 PMCID: PMC8417800 DOI: 10.3389/fphar.2021.621300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune inflammatory condition that affects multiple organs and provokes extensive and severe clinical manifestations. Lupus nephritis (LN) is one of the main clinical manifestations of SLE. It refers to the deposition of immune complexes in the glomeruli, which cause kidney inflammation. Although LN seriously affects prognosis and represents a key factor of disability and death in SLE patients, its mechanism remains unclear. The NACHT, leucine-rich repeat (LRR), and pyrin (PYD) domains-containing protein 3 (NLRP3) inflammasome regulates IL-1β and IL-18 secretion and gasdermin D-mediated pyroptosis and plays a key role in innate immunity. There is increasing evidence that aberrant activation of the NLRP3 inflammasome and downstream inflammatory pathways play an important part in the pathogenesis of multiple autoimmune diseases, including LN. This review summarizes research progress on the elucidation of NLRP3 activation, regulation, and recent clinical trials and experimental studies implicating the NLRP3 inflammasome in the pathophysiology of LN. Current treatments fail to provide durable remission and provoke several sides effects, mainly due to their broad immunosuppressive effects. Therefore, the identification of a safe and effective therapeutic approach for LN is of great significance. Phytochemicals are found in many herbs, fruits, and vegetables and are secondary metabolites of plants. Evidence suggests that phytochemicals have broad biological activities and have good prospects in a variety of diseases, including LN. Therefore, this review reports on current research evaluating phytochemicals for targeting NLRP3 inflammasome pathways in LN therapy.
Collapse
Affiliation(s)
- Dantong Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Laboratory Diagnostics, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lianjie Ai
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sisi Chen
- Department of Rheumatology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiuhong Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
66
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
67
|
Guan Q, Ding XW, Zhong LY, Zhu C, Nie P, Song LH. Beneficial effects of Lactobacillus-fermented black barley on high fat diet-induced fatty liver in rats. Food Funct 2021; 12:6526-6539. [PMID: 34095944 DOI: 10.1039/d1fo00290b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A long-term high-fat (HF) diet can cause metabolic disorders, which might induce visceral obesity and ectopic triglyceride storage (e.g., hepatic steatosis), and increase hepatic oxidative stress. Oxidative stress plays a significant role in the development of complications associated with obesity. Fermented whole cereal foods exhibit healthy potential due to their unique phytochemical composition and the presence of probiotics. In the present study, the regular nutrients and phytochemicals of Lactobacillus-fermented black barley (Hordeum distichum L.) were analyzed. Further, the black barley fermentation broth (1 mL per 100 g BW per d, equivalent to 1 mL per kg BW of daily human intake) was administered orally to the rats fed on a high fat diet (HF). The anti-oxidative activity and hepatic metabolic profile of Lactobacillus-fermented black barley were investigated. The results showed that the fermentation processing significantly increased the contents of polyphenols (e.g., ferulic acid, etc.), flavonoids (e.g., flavone, etc.), vitamin B1 and B2, partial mineral elements (e.g., Ca, etc.), and thymine. Furthermore, compared to the HF-fed only rats, fermented black barley treatment significantly increased the activities of SOD (superoxide dismutase) and GSH-PX (glutathione peroxidase), and decreased the level of TBARS (thiobarbituric acid reactive substances) in serum, the levels of TG (triglyceride), TC (total cholesterol), NEFA (non-esterified fatty acid) in the liver, and the levels of TC, NEFA in the adipose tissue. This suggested the beneficial effects of fermented black barley on ameliorating oxidative stress and hepatic steatosis, which could be attributed to its regulatory role in the hepatic metabolism of glycerophospholipids, nicotinate and nicotinamide, glutathione, and nucleotide, and on the expression of genes related to oxidative stress (Heat shock protein 90 and reactive oxygen species modulator 1).
Collapse
Affiliation(s)
- Qi Guan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | |
Collapse
|
68
|
Bayram HM, Majoo FM, Ozturkcan A. Polyphenols in the prevention and treatment of non-alcoholic fatty liver disease: An update of preclinical and clinical studies. Clin Nutr ESPEN 2021; 44:1-14. [PMID: 34330452 DOI: 10.1016/j.clnesp.2021.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/14/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The prevention and treatment of non-alcoholic fatty liver disease (NAFLD) has become one of the most urgent problems to be solved. To date, only a lifestyle modification related to diet and physical activity is considered for these patients. Polyphenols are a group of plant natural products that when regularly consumed has been related to a reduction in the risk of several metabolic disorders associated with NAFLD. In this study, we aimed to present an overview of the relationship between polyphenols and NAFLD with current approaches. METHODS We performed a comprehensive literature search for articles on polyphenols and NAFLD published in English between January 2018 to August 2020. Keywords included in this review: "Phenolic" OR "Polyphenol" AND "Non-Alcoholic Fatty Liver Disease". The editorials, communications and conference abstracts were excluded. RESULTS Different polyphenols decreased the pro-inflammatory cytokines in both serum and liver that contribute to a decrease in fatty liver dysfunction. Additionally, polyphenols may improve the regulation of adipokines and prevent hepatic steatosis. According to human clinical studies, polyphenols are promising for NAFLD patients and associated diseases that lead to NAFLD. CONCLUSION Preclinical and clinical studies suggest that various polyphenols could prevent steatosis and its progression to non-alcoholic steatohepatitis, as well as ameliorate NAFLD. However, more clinical studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Hatice Merve Bayram
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Gelisim University, Avcilar, 34310, Istanbul, Turkey.
| | - Fuzail Mohammed Majoo
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Gelisim University, Avcilar, 34310, Istanbul, Turkey.
| | - Arda Ozturkcan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Gelisim University, Avcilar, 34310, Istanbul, Turkey.
| |
Collapse
|
69
|
Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021; 65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.
Collapse
Affiliation(s)
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković,", National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Serbia
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague 6, Suchdol, Czech Republic
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Irena Krga
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | | | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
70
|
Yoo J, Jeong IK, Ahn KJ, Chung HY, Hwang YC. Fenofibrate, a PPARα agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism 2021; 120:154798. [PMID: 33984335 DOI: 10.1016/j.metabol.2021.154798] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/09/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Recent studies have shown that dysregulation of autophagy is involved in the development of nonalcoholic fatty liver disease (NAFLD). Transcription factors E3 (TFE3) and EB (TFEB) are master regulators of the transcriptional response of basic cellular processes such as lysosomal biogenesis and autophagy. Here, we investigated the role of fenofibrate, a PPARα agonist, in promotion of intracellular lipid clearance by upregulation of TFEB/TFE3. METHODS We investigated whether the effects of fenofibrate on livers were dependent on TFEB in high fat diet (HFD)-fed mice and in vivo Tfeb knockdown mice. These mice were analyzed for characteristics of obesity and diabetes; the effects of fenofibrate on hepatic fat content, glucose sensitivity, insulin resistance, and autophagy functional dependence on TFEB were investigated. HepG2, Hep3B, TSC2+/+ and tsc2-/- MEFs, tfeb wild type- and tfeb knockout-HeLa cells were used for in vitro experiments. RESULTS Fenofibrate treatment activated autophagy and TFEB/TFE3 and reduced hepatic fat accumulation in an mTOR-independent manner. Knockdown of TFEB offset the effects of fenofibrate on autophagy and hepatic fat accumulation. In addition, fenofibrate treatment induced lysosomal Ca2+ release through mucolipin 1, activated calcineurin and the CaMKKβ-AMPK-ULK1 pathway, subsequently promoted TFEB and TFE3 dephosphorylation and nuclear translocation. Treatment with calcium chelator or knockdown of mucolipin 1 in hepatocytes offset the effects of fenofibrate treatment on autophagy and hepatic fat accumulation. CONCLUSION Activation of PPARα ameliorates hepatic fat accumulation via activation of TFEB and lipophagy induction. Lysosomal calcium signaling appears to play a critical role in this process. In addition, activation of TFEB by modulating nuclear receptors including PPARα with currently available drugs or new molecules might be a therapeutic target for treatment of NAFLD and other cardiometabolic diseases.
Collapse
Affiliation(s)
- Jin Yoo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - In-Kyung Jeong
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Kyu Jeung Ahn
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Ho Yeon Chung
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - You-Cheol Hwang
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
71
|
Sierra-Cruz M, Miguéns-Gómez A, Grau-Bové C, Rodríguez-Gallego E, Blay M, Pinent M, Ardévol A, Terra X, Beltrán-Debón R. Grape-Seed Proanthocyanidin Extract Reverts Obesity-Related Metabolic Derangements in Aged Female Rats. Nutrients 2021; 13:nu13062059. [PMID: 34208508 PMCID: PMC8234113 DOI: 10.3390/nu13062059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity and ageing are current issues of global concern. Adaptive homeostasis is compromised in the elderly, who are more likely to suffer age-related health issues, such as obesity, metabolic syndrome, and cardiovascular disease. The current worldwide prevalence of obesity and higher life expectancy call for new strategies for treating metabolic disorders. Grape-seed proanthocyanidin extract (GSPE) is reported to be effective in ameliorating these pathologies, especially in young animal models. In this study, we aimed to test the effectiveness of GSPE in modulating obesity-related pathologies in aged rats fed an obesogenic diet. To do so, 21-month-old rats were fed a high-fat/high-sucrose diet (cafeteria diet) for 11 weeks. Two time points for GSPE administration (500 mg/kg body weight), i.e., a 10-day preventive GSPE treatment prior to cafeteria diet intervention and a simultaneous GSPE treatment with the cafeteria diet, were assayed. Body weight, metabolic parameters, liver steatosis, and systemic inflammation were analysed. GSPE administered simultaneously with the cafeteria diet was effective in reducing body weight, total adiposity, and liver steatosis. However, the preventive treatment was effective in reducing only mesenteric adiposity in these obese, aged rats. Our results confirm that the simultaneous administration of GSPE improves metabolic disruptions caused by the cafeteria diet also in aged rats.
Collapse
|
72
|
Procyanidin B2 Reduces Vascular Calcification through Inactivation of ERK1/2-RUNX2 Pathway. Antioxidants (Basel) 2021; 10:antiox10060916. [PMID: 34198832 PMCID: PMC8228429 DOI: 10.3390/antiox10060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
Vascular calcification is strongly associated with atherosclerotic plaque burden and plaque instability. The activation of extracellular signal-regulated kinase 1/2 (ERK1/2) increases runt related transcription factor 2 (RUNX2) expression to promote vascular calcification. Procyanidin B2 (PB2), a potent antioxidant, can inhibit ERK1/2 activation in human aortic smooth muscle cells (HASMCs). However, the effects and involved mechanisms of PB2 on atherosclerotic calcification remain unknown. In current study, we fed apoE-deficient (apoE−/−) mice a high-fat diet (HFD) while treating the animals with PB2 for 18 weeks. At the end of the study, we collected blood and aorta samples to determine atherosclerosis and vascular calcification. We found PB2 treatment decreased lesions in en face aorta, thoracic, and abdominal aortas by 21.4, 24.6, and 33.5%, respectively, and reduced sinus lesions in the aortic root by 17.1%. PB2 also increased α-smooth muscle actin expression and collagen content in lesion areas. In the aortic root, PB2 reduced atherosclerotic calcification areas by 75.8%. In vitro, PB2 inhibited inorganic phosphate-induced osteogenesis in HASMCs and aortic rings. Mechanistically, the expression of bone morphogenetic protein 2 and RUNX2 were markedly downregulated by PB2 treatment. Additionally, PB2 inhibited ERK1/2 phosphorylation in the aortic root plaques of apoE−/− mice and calcified HASMCs. Reciprocally, the activation of ERK1/2 phosphorylation by C2-MEK1-mut or epidermal growth factor can partially restore the PB2-inhibited RUNX2 expression or HASMC calcification. In conclusion, our study demonstrates that PB2 inhibits vascular calcification through the inactivation of the ERK1/2-RUNX2 pathway. Our study also suggests that PB2 can be a potential option for vascular calcification treatment.
Collapse
|
73
|
Protective effects of Dioscorea birmanica extract against oxidative stress-induced damage in cultured normal hepatocytes and its phytochemical constituents. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
74
|
Ke H, Bao T, Chen W. New function of polysaccharide from Rubus chingii Hu: protective effect against ethyl carbamate induced cytotoxicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3156-3164. [PMID: 33211321 DOI: 10.1002/jsfa.10944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rubus chingii Hu is a widely cultivated fruit in China and has declared multiple bioactivities including antioxidative activity. Ethyl carbamate (EC), mostly found in fermented food and alcoholic beverages, is a recognized human carcinogen, and researchers have proposed the correlation between oxidative stress and its toxicity. This study acquired the polysaccharide from R. chingii (RP) and explored its effect on EC-induced cytotoxicity using Caco-2 cells as the cell model. RESULTS Results showed that RP exhibited protection against EC-induced toxicity by repairing redox imbalance as indicative of mitigated mitochondrial membrane potential collapse, attenuated reactive oxygen species overproduction, and impeded glutathione depletion. Moreover, the structural features of RP were characterized and revealed that it was mainly constituted by galacturonic acid and arabinose, with an average molecular weight of 7.039 × 105 g mol-1 . CONCLUSION Overall, our results provided a new approach dealing with the toxicity caused by EC from the perspective of oxidative stress and described a new potential healthy value of R. chingii Hu, which could contribute to the development of a promising dietary supplement and functional food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
75
|
Karim N, Shishir MRI, Rashwan AK, Ke H, Chen W. Suppression of palmitic acid-induced hepatic oxidative injury by neohesperidin-loaded pectin-chitosan decorated nanoliposomes. Int J Biol Macromol 2021; 183:908-917. [PMID: 33965489 DOI: 10.1016/j.ijbiomac.2021.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
The biological activity of neohesperidin (NH, a flavanone glycoside) is limited due to instability in the physiological environment. Thus, the current study aimed to explore the protective effect of NH-loaded pectin-chitosan decorated liposomes (P-CH-NH-NL) against palmitic acid (PA)-induced hepatic oxidative injury in L02 cells. The particles were characterized using DLS, TEM, HPLC, DSC, and cellular uptake study. Then, the protective effect of NH-loaded liposomal systems (NH-NLs) against PA-induced oxidative injury was evaluated in terms of cell viability study, intracellular ROS, superoxide ions (O2-), MMP, and cellular GSH determination. Our results exhibited that NH-NLs significantly lessened the PA-induced hepatic oxidative injury in L02 cells via decreasing ROS and O2- generation, reducing MMP collapse, and attenuating GSH reduction, whereas the free NH samples were ineffective. Furthermore, the coated NH-NLs were more effective than that of uncoated nanoliposome. Overall, our study confirmed that P-CH-NH-NL was capable of reducing PA-induced hepatic oxidative injury. Therefore, the pectin-chitosan decorated nanoliposome can be considered as an efficient delivery system for enhancing cellular uptake of lipophilic compound with controlled release and greater biological activity.
Collapse
Affiliation(s)
- Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | | | - Ahmed K Rashwan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
76
|
Yang H, Tuo X, Wang L, Tundis R, Portillo MP, Simal-Gandara J, Yu Y, Zou L, Xiao J, Deng J. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci Technol 2021; 111:114-127. [DOI: 10.1016/j.tifs.2021.02.063] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
77
|
Pietrzyk N, Zakłos-Szyda M, Koziołkiewicz M, Podsędek A. Viburnum opulus L. fruit phenolic compounds protect against FFA-induced steatosis of HepG2 cells via AMPK pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
78
|
Xu Y, Ke H, Li Y, Xie L, Su H, Xie J, Mo J, Chen W. Malvidin-3- O-Glucoside from Blueberry Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Transcription Factor EB-Mediated Lysosomal Function and Activating the Nrf2/ARE Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4663-4673. [PMID: 33787249 DOI: 10.1021/acs.jafc.0c06695] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a universal health issue, whereas there is still a lack of widely accepted therapy until now. Clinical research studies have shown that blueberry could effectively regulate the lipid metabolism, thereby improving obesity-related metabolic syndromes; however, the specific active substances and mechanisms remain unclear. Herein, the effects of the major 10 kinds of anthocyanins from blueberry against NAFLD were investigated using an free fatty acid (FFA)-induced cell model. Among these anthocyanins, malvidin-3-O-glucoside (M3G) and malvidin-3-O-galactoside (M3Ga) could remarkably ameliorate FFA-induced lipid accumulation. Besides, M3G and M3Ga also inhibited oxidative stress via suppressing reactive oxygen species and superoxide anion overproduction, increasing glutathione levels, and enhancing activities of antioxidant enzymes. Further studies unveiled that the representative anthocyanin M3G-upregulated transcription factor EB (TFEB)-mediated lysosomal function possibly interacted with TFEB and activated the Nrf2/ARE (antioxidant responsive element) signaling pathway. Overall, this study enriched the knowledge about the health-promoting effects of blueberry anthocyanins against NAFLD and provided ideas for the development of functional foods of blueberry anthocyanins.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Hongming Su
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
79
|
Epigallocatechin-3-Gallate Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease via Inhibition of Apoptosis and Promotion of Autophagy through the ROS/MAPK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5599997. [PMID: 33953830 PMCID: PMC8068552 DOI: 10.1155/2021/5599997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents one of the most common chronic liver diseases in the world. It has been reported that epigallocatechin-3-gallate (EGCG) plays important biological and pharmacological roles in mammalian cells. Nevertheless, the mechanism underlying the beneficial effect of EGCG on the progression of NAFLD has not been fully elucidated. In the present study, the mechanisms of action of EGCG on the growth, apoptosis, and autophagy were examined using oleic acid- (OA-) treated liver cells and the high-fat diet- (HFD-) induced NAFLD mouse model. Administration of EGCG promoted the growth of OA-treated liver cells. EGCG could reduce mitochondrial-dependent apoptosis and increase autophagy possibly via the reactive oxygen species- (ROS-) mediated mitogen-activated protein kinase (MAPK) pathway in OA-treated liver cells. In line with in vitro findings, our in vivo study verified that treatment with EGCG attenuated HFD-induced NAFLD through reduction of apoptosis and promotion of autophagy. EGCG can alleviate HFD-induced NAFLD possibly by decreasing apoptosis and increasing autophagy via the ROS/MAPK pathway. EGCG may be a promising agent for the treatment of NAFLD.
Collapse
|
80
|
Xie J, Cui H, Xu Y, Xie L, Chen W. Delphinidin-3-O-sambubioside: a novel xanthine oxidase inhibitor identified from natural anthocyanins. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
This study was conducted to investigate the xanthine oxidase (XO) inhibitory activities of 18 monomeric anthocyanins from berry fruits and roselle, and to illustrate the underlying mechanism of the most active anthocyanin delphinidin-3-O-sambubioside.
Materials and Methods
Eighteen monomeric anthocyanins were prepared and purified in our laboratory. The inhibitory properties of anthocyanins were investigated by in vitro inhibitory activity studies and fluorescence quenching studies; the inhibitory mechanism was explored through kinetic studies, fluorescence quenching studies, circular dichroism analysis and computational docking simulations.
Results
XO inhibitory activities of anthocyanins were related to the structures of B rings and glycosides. Among all the tested anthocyanins, delphinidin-3-O-sambubioside showed the most potent inhibitory activity with an IC50 of 17.1 μM, which was comparable to the positive control allopurinol. Spectroscopic results revealed that delphinidin-3-O-sambubioside could spontaneously interact with XO and induce conformational changes. Computational docking study indicated that delphinidin-3-O-sambubioside could bind to XO with a proper orientation, stably formed π–π interactions and hydrogen bonds with key residues, thus preventing the substrate from entering the active pocket.
Conclusions
In brief, our study identified delphinidin-3-O-sambubioside as a potent XO inhibitor from natural anthocyanins, which is potentially applicable for prevention and treatment of hyperuricemia.
Collapse
|
81
|
Kasprzak-Drozd K, Oniszczuk T, Stasiak M, Oniszczuk A. Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. Int J Mol Sci 2021; 22:3715. [PMID: 33918284 PMCID: PMC8038165 DOI: 10.3390/ijms22073715] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains an intricate community of microorganisms, referred to as the gut microbiota (GM), which plays a pivotal role in host homeostasis. Multiple factors could interfere with this delicate balance, including genetics, age, medicines and environmental factors, particularly diet. Growing evidence supports the involvement of GM dysbiosis in gastrointestinal (GI) and extraintestinal metabolic diseases. The beneficial effects of dietary polyphenols in preventing metabolic diseases have been subjected to intense investigation over the last twenty years. As our understanding of the role of the gut microbiota advances and our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review firstly overviews the importance of the GM in health and disease and then reviews the role of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis are also discussed.
Collapse
Affiliation(s)
- Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Mateusz Stasiak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
82
|
Li M, Wang Z, Wang P, Li H, Yang L. TFEB: A Emerging Regulator in Lipid Homeostasis for Atherosclerosis. Front Physiol 2021; 12:639920. [PMID: 33679452 PMCID: PMC7925399 DOI: 10.3389/fphys.2021.639920] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis, predominantly characterized by the disturbance of lipid homeostasis, has become the main causation of various cardiovascular diseases. Therefore, there is an urgent requirement to explore efficacious targets that act as lipid modulators for atherosclerosis. Transcription factor EB (TFEB), whose activity depends on post-translational modifications, such as phosphorylation, acetylation, SUMOylation, ubiquitination, etc., is significant for normal cell physiology. Recently, increasing evidence implicates a role of TFEB in lipid homeostasis, via its functionality of promoting lipid degradation and efflux through mediating lipophagy, lipolysis, and lipid metabolism-related genes. Furthermore, a regulatory effect on lipid transporters and lipid mediators by TFEB is emerging. Notably, TFEB makes a possible therapeutic target of atherosclerosis by regulating lipid metabolism. This review recapitulates the update and current advances on TFEB mediating lipid metabolism to focus on two intracellular activities: a) how cells perceive external stimuli and initiate transcription programs to modulate TFEB function, and b) how TFEB restores lipid homeostasis in the atherosclerotic process. In-depth research is warranted to develop potent agents against TFEB to alleviate or reverse the progression of atherosclerosis.
Collapse
Affiliation(s)
- Manman Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Zitong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Pengyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
83
|
Jia R, Du J, Cao L, Feng W, He Q, Xu P, Yin G. Immune, inflammatory, autophagic and DNA damage responses to long-term H 2O 2 exposure in different tissues of common carp (Cyprinus carpio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143831. [PMID: 33248772 DOI: 10.1016/j.scitotenv.2020.143831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen peroxide (H2O2) is a stable reactive oxygen species (ROS) in aquatic environment, and high concentration of ambient H2O2 may directly or indirectly affect aquatic animal health. However, the response mechanism of fish to ambient H2O2 has not been well studied yet. Therefore, the aim of the study was to investigate the immune, inflammatory, autophagic and DNA damage responses to long-term H2O2 exposure in different tissues of common carp. The results showed that H2O2 exposure induced a significant immune response, with alterations in the levels of immune parameters including AKP, ACP, LZM, C3, HSP90 and HSP70 in different tissues. The inflammatory response evoked by H2O2 exposure was associated with the activations of TLRs and NF-κB (P65) in the majority of tested tissues. The autophagy process was significantly affected by H2O2 exposure, evidenced by the upregulations of the autophagy-related genes in liver, gills, muscle, intestines, heart and spleen and the downregulations in kidney. Meanwhile, the mRNA level of atm, a primary transducer of DNA damage response, was upregulated in liver, gills, intestines and spleen, and the DNA damage was evidenced by increased 8-OHdG level in intestines after H2O2 exposure. Moreover, cell cycle regulation-related genes, including cyclin A1, B and/or E1, highly expressed in all tested tissues except heart after H2O2 exposure. Interestingly, IBR analysis exhibited that immune, inflammatory, autophagic and DNA damage responses to H2O2 exposure were in a dose-dependent and tissue-specific manner. These data may contribute to understanding H2O2 toxicity for fish and assessing potential risk of H2O2 in aquatic environment.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
84
|
Karim N, Shishir MRI, Gowd V, Chen W. Hesperidin-An Emerging Bioactive Compound against Metabolic Diseases and Its Potential Biosynthesis Pathway in Microorganism. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naymul Karim
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Mohammad Rezaul Islam Shishir
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Vemana Gowd
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
85
|
Chen W, Lu Y, Hu D, Mo J, Ni J. Black mulberry (Morus nigra L.) polysaccharide ameliorates palmitate-induced lipotoxicity in hepatocytes by activating Nrf2 signaling pathway. Int J Biol Macromol 2021; 172:394-407. [PMID: 33450344 DOI: 10.1016/j.ijbiomac.2021.01.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 01/05/2023]
Abstract
Black mulberry (Morus nigra L.) has shown health benefits against metabolic disorders. Lipotoxicity is considered as a potentially cause of metabolic syndrome, and there is no effective treatment. However, the protective effect and its mechanism of black mulberry against lipotoxicity are unclear. In this study, three polysaccharide fractions (BP1, BP2, BP3) were isolated from black mulberry by stepwise precipitation with 30%, 60%, and 90% of ethanol and analyzed by GPC, HPLC and FT-IR methods. BP1 exhibited a better protective effect than BP2 and BP3 on palmitic acid (PA)-induced lipotoxicity in HepG2 cells. BP1 effectively reduced PA-induced lipotoxicity by eliminating accumulation of ROS, improving mitochondrial function, reversing glutathione depletion and enhancing antioxidant enzyme activities. Mechanistically, BP1 activated the Nrf2 signaling pathway, a master regulator of the antioxidant defense system, through increasing Nrf2 nuclear translocation and phosphorylation. Collectively, these results demonstrate that BP1 has the great potential for applications in lipid disorders.
Collapse
Affiliation(s)
- Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Yang Lu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Dongwen Hu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medcine, Zhejiang University, Hangzhou 310016, China
| | - Jingdan Ni
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medcine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
86
|
Lu H, Sun J, Hamblin MH, Chen YE, Fan Y. Transcription factor EB regulates cardiovascular homeostasis. EBioMedicine 2021; 63:103207. [PMID: 33418500 PMCID: PMC7804971 DOI: 10.1016/j.ebiom.2020.103207] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and a major cause of disability globally. Transcription factor EB (TFEB), as a member of the microphthalmia transcription factor (MITF) family, has been demonstrated to be a master regulator of autophagy and lysosomal biogenesis. Emerging studies suggest that TFEB regulates homeostasis in the cardiovascular system and shows beneficial effects on CVDs, including atherosclerosis, aortic aneurysm, postischemic angiogenesis, and cardiotoxicity, constituting a promising molecular target for the prevention and treatment of these diseases. Post-translational modifications regulate TFEB nuclear translocation and its transcriptional activity. Therapeutic strategies have been pursued to enhance TFEB activity and facilitate TFEB beneficial effects on CVDs. The elucidation of TFEB function and the precise underlying mechanisms will accelerate drug development and potential applications of TFEB drugs in the treatment of human diseases.
Collapse
Affiliation(s)
- Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Jinjian Sun
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
87
|
Wu D, Zhong P, Wang Y, Zhang Q, Li J, Liu Z, Ji A, Li Y. Hydrogen Sulfide Attenuates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease by Inhibiting Apoptosis and Promoting Autophagy via Reactive Oxygen Species/Phosphatidylinositol 3-Kinase/AKT/Mammalian Target of Rapamycin Signaling Pathway. Front Pharmacol 2020; 11:585860. [PMID: 33390956 PMCID: PMC7774297 DOI: 10.3389/fphar.2020.585860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide. Hydrogen sulfide (H2S) is involved in a wide range of physiological and pathological processes. Nevertheless, the mechanism of action of H2S in NAFLD development has not been fully clarified. Here, the reduced level of H2S was observed in liver cells treated with oleic acid (OA). Administration of H2S increased the proliferation of OA-treated cells. The results showed that H2S decreased apoptosis and promoted autophagy through reactive oxygen species (ROS)-mediated phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) cascade in OA-treated cells. In addition, administration of H2S relieved high-fat diet (HFD)-induced NAFLD via inhibition of apoptosis and promotion of autophagy. These findings suggest that H2S could ameliorate HFD-induced NAFLD by regulating apoptosis and autophagy through ROS/PI3K/AKT/mTOR signaling pathway. Novel H2S-releasing donors may have therapeutic potential for the treatment of NAFLD.
Collapse
Affiliation(s)
- Dongdong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Peiyu Zhong
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yizhen Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Qianqian Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jianmei Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Zhengguo Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ailing Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| |
Collapse
|
88
|
Fang Y, Ji L, Zhu C, Xiao Y, Zhang J, Lu J, Yin J, Wei L. Liraglutide Alleviates Hepatic Steatosis by Activating the TFEB-Regulated Autophagy-Lysosomal Pathway. Front Cell Dev Biol 2020; 8:602574. [PMID: 33330497 PMCID: PMC7729067 DOI: 10.3389/fcell.2020.602574] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has been demonstrated to alleviate non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism has not been fully elucidated. Increasing evidence suggests that autophagy is involved in the pathogenesis of hepatic steatosis. In this study, we examined whether liraglutide could alleviate hepatic steatosis through autophagy-dependent lipid degradation and investigated the underlying mechanisms. Herein, the effects of liraglutide on NAFLD were evaluated in a high-fat diet (HFD)-induced mouse model of NAFLD as well as in mouse primary and HepG2 hepatocytes exposed to palmitic acid (PA). The expression of the GLP-1 receptor (GLP-1R) was measured in vivo and in vitro. Oil red O staining was performed to detect lipid accumulation in hepatocytes. Electron microscopy was used to observe the morphology of autophagic vesicles and autolysosomes. Autophagic flux activity was measured by infecting HepG2 cells with mRFP-GFP-LC3 adenovirus. The roles of GLP-1R and transcription factor EB (TFEB) in autophagy-lysosomal activation were explored using small interfering RNA. Liraglutide treatment alleviated hepatic steatosis in vivo and in vitro. In models of hepatic steatosis, microtubule-associated protein 1B light chain-3-II (LC3-II) and SQSTM1/P62 levels were elevated in parallel to blockade of autophagic flux. Liraglutide treatment restored autophagic activity by improving lysosomal function. Furthermore, treatment with autophagy inhibitor chloroquine weakened liraglutide-induced autophagy activation and lipid degradation. TFEB has been identified as a key regulator of lysosome biogenesis and autophagy. The protein levels of nuclear TFEB and its downstream targets CTSB and LAMP1 were decreased in hepatocytes treated with PA, and these decreases were reversed by liraglutide treatment. Knockdown of TFEB expression compromised the effects of liraglutide on lysosome biogenesis and hepatic lipid accumulation. Mechanistically, GLP-1R expression was decreased in HFD mouse livers as well as PA-stimulated hepatocytes, and liraglutide treatment reversed the downregulation of GLP-1R expression in vivo and in vitro. Moreover, GLP-1R inhibition could mimic the effect of the TFEB downregulation-mediated decrease in lysosome biogenesis. Thus, our findings suggest that liraglutide attenuated hepatic steatosis via restoring autophagic flux, specifically the GLP-1R-TFEB-mediated autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Yunyun Fang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Linlin Ji
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chaoyu Zhu
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanyuan Xiao
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingjing Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junxi Lu
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Yin
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Eighth People's Hospital, Shanghai, China
| | - Li Wei
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
89
|
Fan J, Liu H, Wang J, Zeng J, Tan Y, Wang Y, Yu X, Li W, Wang P, Yang Z, Dai X. Procyanidin B2 improves endothelial progenitor cell function and promotes wound healing in diabetic mice via activating Nrf2. J Cell Mol Med 2020; 25:652-665. [PMID: 33215883 PMCID: PMC7812287 DOI: 10.1111/jcmm.16111] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
One of the major reasons for the delayed wound healing in diabetes is the dysfunction of endothelial progenitor cells (EPCs) induced by hyperglycaemia. Improvement of EPC function may be a potential strategy for accelerating wound healing in diabetes. Procyanidin B2 (PCB2) is one of the major components of procyanidins, which exhibits a variety of potent pharmacological activities. However, the effects of PCB2 on EPC function and diabetic wound repair remain elusive. We evaluated the protective effects of PCB2 in EPCs with high glucose (HG) treatment and in a diabetic wound healing model. EPCs derived from human umbilical cord blood were treated with HG. The results showed that PCB2 significantly preserved the angiogenic function, survival and migration abilities of EPCs with HG treatment, and attenuated HG‐induced oxidative stress of EPCs by scavenging excessive reactive oxygen species (ROS). A mechanistic study found the protective role of PCB2 is dependent on activating nuclear factor erythroid 2‐related factor 2 (Nrf2). PCB2 increased the expression of Nrf2 and its downstream antioxidant genes to attenuate the oxidative stress induced by HG in EPCs, which were abolished by knockdown of Nrf2 expression. An in vivo study showed that intraperitoneal administration of PCB2 promoted wound healing and angiogenesis in diabetic mice, which was accompanied by a significant reduction in ROS level and an increase in circulating EPC number. Taken together, our results indicate that PCB2 treatment accelerates wound healing and increases angiogenesis in diabetic mice, which may be mediated by improving the mobilization and function of EPCs.
Collapse
Affiliation(s)
- Jiawei Fan
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Hairong Liu
- Experimental Research Center, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinwu Wang
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Jiang Zeng
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Yi Tan
- Wendy Novak Diabetes Center, Louisville, KY, USA.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Yashu Wang
- Department of Clinical Laboratory, Xinjiang Provincial Corps Hospital of Chinese People's Armed Police, Urumqi, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Wenlian Li
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zheng Yang
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
90
|
Li Y, Xu Y, Xie J, Chen W. Malvidin-3-O-arabinoside ameliorates ethyl carbamate-induced oxidative damage by stimulating AMPK-mediated autophagy. Food Funct 2020; 11:10317-10328. [PMID: 33215619 DOI: 10.1039/d0fo01562h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ethyl carbamate (EC) is an environmental toxin, commonly present in various fermented foods and beverages, as well as tobacco and polluted ambient air. However, studies on the effects of EC-induced toxicity on the intestines and potential protection methods are limited. In this study, we show that EC could cause severe toxicity in intestinal epithelial cells (IECs) triggering the induction of decreased cell viability, ROS accumulation and glutathione (GSH) depletion in a dose-dependent manner. Based on these results, we established an EC-treated IEC model to screen the potential protective effects of 12 kinds of anthocyanins extracted from blueberry. Interestingly, we found that malvidin-3-O-arabinoside (M3A) significantly reversed the oxidative damage caused by EC exposure by stimulating autophagy flux, which was determined by the LC3-II level and GFP-RFP-LC3 transfection experiment. Enhancement of autophagy was mainly ascribed to the regulation of lysosomes. M3A pretreatment remarkably upregulated LAMP-1 expression, which indicated elevated lysosomal mass. Besides, M3A also successfully restored lysosomal acidity and subsequently strengthened lysosomal functions. Furthermore, M3A stimulated phosphorylation of AMP-activated protein kinase (AMPK), a master regulator of autophagy. Furthermore, our study indicated the possibility of EC-caused oxidative damage to the intestines and unveiled the remarkably protective benefits of M3A-induced AMPK-mediated autophagy against this toxicity.
Collapse
Affiliation(s)
- Yuting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
91
|
Hu D, Bao T, Lu Y, Su H, Ke H, Chen W. Polysaccharide from Mulberry Fruit ( Morus alba L.) Protects against Palmitic-Acid-Induced Hepatocyte Lipotoxicity by Activating the Nrf2/ARE Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13016-13024. [PMID: 31537067 DOI: 10.1021/acs.jafc.9b03335] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study was aimed to investigate the protective effects of three different mulberry fruit polysaccharide fractions (MFP-I, MFP-II, and MFP-III) against palmitic acid (PA)-induced hepatocyte lipotoxicity and characterize the functional polysaccharide fraction using gel permeation chromatography, high-performance liquid chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance analyses. MFP-I, MFP-II, and MFP-III were isolated from mulberry fruit by stepwise precipitation with 30, 60, and 90% ethanol, respectively. MFP-II at 0.1 and 0.2 mg/mL dramatically attenuated PA-induced hepatic lipotoxicity, while MFP-I and MFP-III showed weak protection. It was demonstrated that MFP-II not only increased nuclear factor erythroid-2-related factor 2 (Nrf2) phosphorylation and its nuclear translocation, thereby activating the Nrf2/ARE signaling pathway, but also enhanced heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, and γ-glutamate cysteine ligase gene expressions and promoted catalase and glutathione peroxidase activities, which protected hepatocytes against PA-induced oxidative stress and lipotoxicity. Further investigation indicated that the molecular weight of MFP-II was 115.0 kDa, and MFP-II mainly consisted of galactose (30.5%), arabinose (26.2%), and rhamnose (23.1%). Overall, our research might provide in-depth insight into mulberry fruit polysaccharide in ameliorating lipid metabolic disorders.
Collapse
Affiliation(s)
- Dongwen Hu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yang Lu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongming Su
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, People's Republic of China
| |
Collapse
|
92
|
Su H, Xie L, Xu Y, Ke H, Bao T, Li Y, Chen W. Pelargonidin-3- O-glucoside Derived from Wild Raspberry Exerts Antihyperglycemic Effect by Inducing Autophagy and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13025-13037. [PMID: 31322351 DOI: 10.1021/acs.jafc.9b03338] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing evidence indicates that anthocyanins exert beneficial effects on type 2 diabetes (T2D), but the underlying mechanism remains unclear. Herein, the hyperglycemia-lowering effect of Pg3G derived from wild raspberry was investigated on high-glucose/high-fat (HG+HF)-induced hepatocytes and db/db diabetic mice. Our results indicated that Pg3G promoted glucose uptake in HG+HF-induced hepatocytes. Moreover, Pg3G induced autophagy, whereas autophagy inhibitors blocked the hypoglycemic effect of Pg3G. Transcriptional factor EB (TFEB) was found to be linked to Pg3G-induced autophagy. In vivo study showed that Pg3G treatment contributed to the improvement of glucose tolerance, insulin sensitivity, and induction of autophagy. Furthermore, Pg3G not only modified the gut microbiota composition, as indicated by an increased abundance of Prevotella, and elevated Bacteroidetes/Firmicutes ratio, but also strengthened the intestinal barrier integrity. This study unveils a novel mechanism that Pg3G attenuates hyperglycemia through inducing autophagy and modulating gut microbiota, which implicates a potential nutritional intervention strategy for T2D.
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
93
|
Li D, Cui Y, Wang X, Liu F, Li X. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytother Res 2020; 35:1416-1431. [PMID: 33037751 DOI: 10.1002/ptr.6902] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
Defective degradation of intracellular lipids induced by autophagy is causally linked to the development of non-alcoholic fatty liver disease (NAFLD). Natural agents that can restore autophagy could therefore have the potentials for clinical applications for this public health issue. Herein, we investigated the effects of apple polyphenol extract (APE) on fatty acid-induced lipids depositions in HepG2 cells. APE treatment alleviated palmitic acid and oleic acid-induced intracellular lipid accumulation, concomitant with the increased autophagy, restored lysosomal acidification, inhibited lipid synthesis and slight promotion of fatty acid oxidation. Mechanistically, APE up-regulated the expression of SIRT1, activated LKB1/AMPK pathway and inhibited mTOR signaling. Over-expressed or knock-down SIRT1 positively regulated AMPK and ATG7 expressions. SIRT1 and ATG7 knock-down impaired APE induction of improved lipid accumulation, increased intracellular TG content. Thus, APE induction of autophagy to ameliorate fatty acid-induced lipid deposition is SIRT1 dependent, APE conserved preventive potentials for clinical hepatosteatosis.
Collapse
Affiliation(s)
- Deming Li
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yuan Cui
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xinjing Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Fang Liu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xinli Li
- School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
94
|
Management of Gout-associated MSU crystals-induced NLRP3 inflammasome activation by procyanidin B2: targeting IL-1β and Cathepsin B in macrophages. Inflammopharmacology 2020; 28:1481-1493. [PMID: 33006110 DOI: 10.1007/s10787-020-00758-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
Gout, the most prevalent inflammatory arthritis worldwide, released interleukin-1β (IL-1β) and Cathepsin B inflammatory mediators that constitute the hallmark of the disease. Herein we aimed to investigate whether procyanidin B2 (PCB2), a natural dietary compound, can suppress MSU crystals-stimulated gouty inflammation. Treated with lipopolysaccharide (LPS) plus MSU, both mouse peritoneal macrophages (MPM) and mouse bone marrow-derived macrophages (BMDM) released a large amount of mature IL-1β compared to those treated with MSU or LPS alone, while IL-1β release was blocked by TLR4 and its downstream effector inhibitors. In two mouse models of gout, oral administration of PCB2 suppressed MSU crystals-induced increasing expression of IL-1β, Cathepsin B and NLRP3 in the air pouch skin and paws, accompanied with the downregulation prostaglandin E2 (PGE2) in pouch exudates. Inflammatory immune cell infiltration including macrophages and neutrophils were significantly blocked by PCB2 in air pouch skin and paws of mice gout groups. PCB2 also suppressed the release of IL-1β and Cathepsin B induced by MSU plus LPS in MPM. Our results suggest that the inhibitory effects of PCB2 on NLRP3 inflammasome may alleviate inflammatory response in gout, and this might be a promising anti-inflammatory mechanism of PCB2 against the inflammation in gout.
Collapse
|
95
|
Jia R, Cao LP, Du JL, He Q, Gu ZY, Jeney G, Xu P, Yin GJ. Effects of high-fat diet on antioxidative status, apoptosis and inflammation in liver of tilapia (Oreochromis niloticus) via Nrf2, TLRs and JNK pathways. FISH & SHELLFISH IMMUNOLOGY 2020; 104:391-401. [PMID: 32553566 DOI: 10.1016/j.fsi.2020.06.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Fatty liver injury (or disease) is a common disease in farmed fish, but its pathogenic mechanism is not fully understood. Therefore the present study aims to investigate high-fat diet (HFD)-induced liver injury and explore the underlying mechanism in fish. The tilapia were fed on control diet and HFD for 90 days, and then the blood and liver tissues were collected to determine biochemical parameter, gene expression and protein level. The results showed that HFD feeding signally increased the levels of plasma aminotransferases and pro-inflammatory factors after 60 days. In liver and plasma, HFD feeding significantly suppressed antioxidant ability, but enhanced lipid peroxidation formation, protein oxidation and DNA damage after 60 or 90 days. Further, the Nrf2 pathway and antioxidative function-related genes were adversely changed in liver of HFD-fed tilapia after 60 and/or 90 days. Meanwhile, HFD treatment induced apoptosis via initiating mitochondrial pathway in liver after 90 days. Furthermore, after 90 days of feeding, the expression of genes or proteins related to JNK pathway and TLRs-Myd88-NF-κB pathway was clearly upregulated in HFD treatment. Similarly, the mRNA levels of inflammatory factors including tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-10 were also upregulated in liver of HFD-fed tilapia after 60 and/or 90 days. In conclusion, the current study suggested that HFD feeding impaired antioxidant defense system, induced apoptosis, enhanced inflammation and led to liver injury. The adverse influences of HFD in the liver might be due to the variation of Nrf2, JNK and TLRs-Myd88-NF-κB signaling pathways.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Li-Ping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jin-Liang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zheng-Yan Gu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Galina Jeney
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; National Agricultural Research Center, Research Institute for Fisheries and Aquaculture, Anna Light 8, Szarvas, 5440, Hungary
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Guo-Jun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
96
|
Wang P, Gao J, Ke W, Wang J, Li D, Liu R, Jia Y, Wang X, Chen X, Chen F, Hu X. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radic Biol Med 2020; 156:83-98. [PMID: 32305646 DOI: 10.1016/j.freeradbiomed.2020.04.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Resveratrol (RSV) is a natural polyphenol with anti-obesity effects. However, the mechanisms of anti-obesity remain unclear due to its low bioavailability. Recent evidence demonstrates that gut microbiota plays a key role in obesity. This spurred us to investigate whether the anti-obesity effects of RSV are related to modulations in the gut microbiota and metabolic functions. Here, RSV significantly improved metabolic phenotype and intestinal oxidative stress in the high-fat diet (HFD)-fed mice. A multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing and metagenome. At the phylogenetic level, RSV treatment significantly modulated the gut microbiota composition in HFD-fed mice, characterized with increased Blautia abundance and decreased Desulfovibrio and Lachnospiraceae_NK4A136_group abundance. At the functional level, RSV significantly decreased the enrichment of pathways linked to host metabolic disease and increased the enrichment of pathways involved in the generation of small metabolites. Besides, the fecal microbiota transplantation experiment showed anti-obesity and microbiota-modulating effects similar to those observed in the oral RSV-feeding experiment. Furthermore, metabolomic analysis and antibiotic treatment verified that 4-hydroxyphenylacetic acid (4-HPA) and 3-hydroxyphenylpropionic acid (3-HPP) were the two gut metabolites of RSV, which contribute to improving lipid metabolism in vitro. Moreover, the content of 4-HPA and 3-HPP exhibited strong correlation with the intestinal oxidative state. We concluded that the RSV-mediated alteration of gut microbiota, related gut metabolites and redox state of the intestinal environment contributed to prevention of metabolic syndrome in HFD-fed mice.
Collapse
Affiliation(s)
- Pan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Jianpeng Gao
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Weixin Ke
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Jing Wang
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Ruolin Liu
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Yan Jia
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Xuehua Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, and Liver Center, University of California, San Francisco, CA, 94143, USA
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, 100083, China; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
97
|
Li Y, Hu D, Qi J, Cui S, Chen W. Lysosomal Reacidification Ameliorates Vinyl Carbamate-Induced Toxicity and Disruption on Lysosomal pH. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8951-8961. [PMID: 32806125 DOI: 10.1021/acs.jafc.0c00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ethyl carbamate (EC) is a carcinogen toxicant, commonly found in fermented foods and beverages. The carcinogenic and toxic possibility of EC is thought to be related to its metabolite vinyl carbamate (VC). However, we found interesting mechanisms underlying VC-induced toxicity in this study, which were greatly different from EC. We first conducted a simple synthesis procedure for VC and found that VC possessed higher toxicity but failed to regulate levels of reactive oxygen species, glutathione, and autophagy. Notably, VC treatment resulted in upregulation of lysosomal pH, which was responsible for its cytotoxicity. Cyclic adenosine monophosphate (cAMP) pretreatment could enhance restoration of lysosomal acidity and ameliorate VC-induced damage. Inhibition of protein kinase A and cystic fibrosis transmembrane conductance regulator can block cAMP-induced cytoprotection. Together, our results provided the evidence for novel mechanisms of toxicity and possible protection method under VC exposure, which might give new perspectives on the study of EC-induced toxicity.
Collapse
Affiliation(s)
- Yuting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Dongwen Hu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Jifeng Qi
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
98
|
Liu JX, Yang C, Liu ZJ, Su HY, Zhang WH, Pan Q, Liu HF. Protection of procyanidin B2 on mitochondrial dynamics in sepsis associated acute kidney injury via promoting Nrf2 nuclear translocation. Aging (Albany NY) 2020; 12:15638-15655. [PMID: 32805725 PMCID: PMC7467384 DOI: 10.18632/aging.103726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
In septic acute kidney injury (SAKI), the positive feedback between damaged mitochondria and accumulation of reactive oxygen species results in cell and tissue damage through multiple mechanisms. Removing the damaged mitochondria or neutralizing the reactive oxygen species has been considered beneficial to alleviating cell damage. The antioxidant Procyanidin B2 has been reported to inhibits reactive oxygen species and thereby reduces cell injury. However, it is unclear whether this effect is associated with clearance of damaged mitochondria. Here, we evaluated the efficacy of procyanidin B2 on SAKI, and focused on its effects on mitochondrial dynamics and removing damaged mitochondria via mitophagy. The results showed that the renal function, renal tubular cell vacuolization and oxidative stress were decreased in SAKI mice treated with procyanidin B2, moreover, skewed mitochondrial fusion/fission, mitochondrial mediated apoptosis and impaired mitophagy were improved in SAKI mice treated with procyanidin B2. In mechanism, the improvement of procyanidin B2 on mitochondrial dynamics were associated with increased nuclear translocation of the transcription factor, Nrf2. In summary, our findings highlighted that the protective efficacy of procyanidin B2 in reducing cellular damage in SAKI, and mechanisms improving mitochondrial dynamics and quality control at least in part by promoting Nrf2 translocation into the nucleus.
Collapse
Affiliation(s)
- Jian-Xing Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Ze-Jian Liu
- Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Hong-Yong Su
- Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Wei-Huang Zhang
- Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
99
|
Andrographolide Exerts Antihyperglycemic Effect through Strengthening Intestinal Barrier Function and Increasing Microbial Composition of Akkermansia muciniphila. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6538930. [PMID: 32774682 PMCID: PMC7396114 DOI: 10.1155/2020/6538930] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that type 2 diabetes (T2D) is associated with intestinal barrier dysfunction and dysbiosis, implying the potential targets for T2D therapeutics. Andrographolide was reported to have several beneficial effects on diabetes and its associated complications. However, the protective role of andrographolide, as well as its underlying mechanism against T2D, remains elusive. Herein, we reported that andrographolide enhanced intestinal barrier integrity in LPS-induced Caco-2 cells as indicated by the improvement of cell monolayer barrier permeability and upregulation of tight junction protein expression. In addition, andrographolide alleviated LPS-induced oxidative stress by preventing ROS and superoxide anion radical overproduction and reversing glutathione depletion. In line with the in vitro results, andrographolide reduced metabolic endotoxemia and strengthened gut barrier integrity in db/db diabetic mice. We also found that andrographolide appeared to ameliorate glucose intolerance and insulin resistance and attenuated diabetes-associated redox disturbance and inflammation. Furthermore, our results indicated that andrographolide modified gut microbiota composition as indicated by elevated Bacteroidetes/Firmicutes ratio, enriched microbial species of Akkermansia muciniphila, and increased SCFAs level. Taken together, this study demonstrated that andrographolide exerted a glucose-lowering effect through strengthening intestinal barrier function and increasing the microbial species of A. muciniphila, which illuminates a plausible approach to prevent T2D by regulating gut barrier integrity and shaping intestinal microbiota composition.
Collapse
|
100
|
Wang S, Chen Y, Li X, Zhang W, Liu Z, Wu M, Pan Q, Liu H. Emerging role of transcription factor EB in mitochondrial quality control. Biomed Pharmacother 2020; 128:110272. [PMID: 32447212 DOI: 10.1016/j.biopha.2020.110272] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are energy producers that play a vital role in cell survival. Mitochondrial dysfunction is involved in many diseases, including metabolic syndrome, neurodegenerative disorders, cardiomyopathies, cancer, obesity, and diabetic kidney disease, and challenges still remain in terms of treatments for these diseases. Mitochondrial quality control (MQC), which is defined as the maintenance of the quantity, morphology, and function of mitochondria, plays a pivotal role in maintaining cellular metabolic homeostasis and cell survival. Recently, growing evidence suggests that the transcription factor EB (TFEB) plays a pivotal role in MQC. Here, we systemically investigate the potential role and mechanisms of TFEB in MQC, which include the activation of mitophagy, regulation of mitochondrial biogenesis, reactive oxygen species (ROS) clearance, and the balance of mitochondria fission-fusion cycle. Importantly, we further discuss the therapeutic measures and effects aimed at TFEB on mitochondrial dysfunction-related diseases. Taken together, targeting TFEB to regulate MQC may represent an appealing therapeutic strategy for mitochondrial dysfunction related-diseases.
Collapse
Affiliation(s)
- Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yanse Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaoyu Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Weihuang Zhang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zejian Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Man Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|