51
|
Proteomic Profiling of the Liver, Hepatic Lymph Nodes, and Spleen of Buffaloes Infected with Fasciola gigantica. Pathogens 2020; 9:pathogens9120982. [PMID: 33255373 PMCID: PMC7759843 DOI: 10.3390/pathogens9120982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
In the present study, we used an isobaric tag for relative and absolute quantitation (iTRAQ) proteomics technology to characterize the differentially expressed proteins (DEPs) in the liver, hepatic lymph nodes (hLNs), and spleen of buffaloes infected with Fasciola gigantica (F. gigantica). We also used the parallel reaction monitoring (PRM) method to verify the expression levels of the DEPs in the three infected tissues. At three days post-infection (dpi), 225, 1821, and 364 DEPs were detected in the liver, hLNs, and spleen, respectively. At 42 dpi, 384, 252, and 214 DEPs were detected in the liver, hLNs, and spleen, respectively. At 70 dpi, 125, 829, and 247 DEPs were detected in the liver, hLNs, and spleen, respectively. Downregulation of metabolism was prominent in infected livers at all time points, and upregulation of immune responses was marked in the hLNs during early infection (three dpi); however, no changes in the immune response were detected at the late stages of infection (42 and 70 dpi). Compared to the hLNs, there was no significant upregulation in the levels of immune responses in the infected spleen. All the identified DEPs were used to predict the subcellular localization of the proteins, which were related to extracellular space and membrane and were involved in host immune responses. Further PRM analysis confirmed the expression of 18 proteins. These data provide the first simultaneous proteomic profiles of multiple organs of buffaloes experimentally infected with F. gigantica.
Collapse
|
52
|
Berberine: A nematocidal alkaloid from Argemone mexicana against Strongyloides venezuelensis. Exp Parasitol 2020; 220:108043. [PMID: 33197440 DOI: 10.1016/j.exppara.2020.108043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Strongyloidiasis is a parasitosis that represents a public health problem, in tropical regions. The present study aimed to investigate the anthelmintic effects of several extracts of Argemone mexicana, as well as its main component berberine (Ber) against the third-stage larvae (L3) of Strongyloides venezuelensis in-vitro experiments. Also, the anti-hemolytic activity of the extract, fractions, and Ber were tested in human erythrocytes. A dose-response anthelminthic bioassay demonstrated Ber as the most effective component, followed by methanolic subfraction (Fr3) and finally the crude extract of A. mexicana (Am) showing LC50 response values of 1.6, 19.5, and 92.1 μg/mL, at 96 h respectively. Also, Am, Fr3, and Ber did not produce significant hemolysis against human erythrocytes (p ≤ 0.05). Am and Fr3 showed erythrocyte protection effect capacity at the membrane level (p ≤ 0.05). Furthermore, Ber was found to have an antioxidant activity of 168.18 μg/mL. According to the results, the Fr3 of A. mexicana, and particularly Ber, exhibited potent in-vitro effects against L3 of S. venezuelensis, without hemolytic activity against human erythrocytes and presented good antioxidant capacity. In conclusion, the extracts of A. mexicana and the main component have activity against S. venezuelensis, nevertheless, further studies are required to elucidate the mechanism of action.
Collapse
|
53
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
54
|
Cortez-Maya S, Moreno-Herrera A, Palos I, Rivera G. Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases? Curr Med Chem 2020; 27:5403-5428. [DOI: 10.2174/0929867326666190628163633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
Parasitic diseases, caused by helminths (ascariasis, hookworm, trichinosis, and schistosomiasis)
and protozoa (chagas, leishmaniasis, and amebiasis), are considered a serious public
health problem in developing countries. Additionally, there is a limited arsenal of anti-parasitic
drugs in the current pipeline and growing drug resistance. Therefore, there is a clear need for the
discovery and development of new compounds that can compete and replace these drugs that have
been controlling parasitic infections over the last decades. However, this approach is highly resource-
intensive, expensive and time-consuming. Accordingly, a drug repositioning strategy of the
existing drugs or drug-like molecules with known pharmacokinetics and safety profiles is alternatively
being used as a fast approach towards the identification of new treatments. The artemisinins,
mefloquine, tribendimidine, oxantel pamoate and doxycycline for the treatment of helminths, and
posaconazole and hydroxymethylnitrofurazone for the treatment of protozoa are promising candidates.
Therefore, traditional antiprotozoal drugs, which were developed in some cases decades ago,
are a valid solution. Herein, we review the current status of traditional anti-helminthic and antiprotozoal
drugs in terms of drug targets, mode of action, doses, adverse effects, and parasite resistance
to define their suitability for repurposing strategies. Current antiparasitic drugs are not only
still viable for the treatment of helminth and protozoan infections but are also important candidates
for new pharmacological treatments.
Collapse
Affiliation(s)
- Sandra Cortez-Maya
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, Coyoacan, 04510 Ciudad de Mexico, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| | - Isidro Palos
- Unidad AcadEmica Multidisciplinaria Reynosa-Rodhe, Universidad AutOnoma de Tamaulipas, 88710 Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| |
Collapse
|
55
|
In Vitro and In Vivo Efficacies of the EGFR/MEK/ERK Signaling Inhibitors in the Treatment of Alveolar Echinococcosis. Antimicrob Agents Chemother 2020; 64:AAC.00341-20. [PMID: 32482675 PMCID: PMC7526812 DOI: 10.1128/aac.00341-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/25/2020] [Indexed: 01/21/2023] Open
Abstract
Alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is a lethal disease in humans. Novel therapeutic options are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. In this study, we assessed the in vitro and in vivo effects of the epidermal growth factor receptor (EGFR)/MEK/extracellular signal-regulated kinase (ERK) signaling inhibitors, including BIBW2992, CI-1033, and U0126, on E. multilocularis. Alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is a lethal disease in humans. Novel therapeutic options are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. In this study, we assessed the in vitro and in vivo effects of the epidermal growth factor receptor (EGFR)/MEK/extracellular signal-regulated kinase (ERK) signaling inhibitors, including BIBW2992, CI-1033, and U0126, on E. multilocularis. Our data showed that BIBW2992, CI-1033, and U0126 all displayed in vitro effects on the viability of the E. multilocularis metacestode. These inhibitors also showed protoscolicidal activities and caused severe ultrastructural alterations in the parasite. Moreover, BIBW2992 and CI-1033 exhibited potent proapoptotic effects on E. multilocularis metacestodes. Strikingly, a large portion of the apoptotic cells were found to be the germinative cells. In vivo studies showed that BIBW2992 and U0126 significantly reduced parasite burden, and the parasite obtained from BIBW2992-treated mice displayed impaired structural integrity of the germinal layer. In conclusion, these findings demonstrate the potential of EGFR-mediated signaling as a target for the development of novel anti-AE agents. The EGFR inhibitor BIBW2992 represents a promising drug candidate and/or a lead compound for anti-AE chemotherapy.
Collapse
|
56
|
Lundström-Stadelmann B, Rufener R, Hemphill A. Drug repurposing applied: Activity of the anti-malarial mefloquine against Echinococcus multilocularis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:121-129. [PMID: 32636148 PMCID: PMC7389337 DOI: 10.1016/j.ijpddr.2020.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The current chemotherapeutical treatment against alveolar echinococcosis relies exclusively on benzimidazoles, which are not parasiticidal and can induce severe toxicity. There are no alternative treatment options. To identify novel drugs with activity against Echinococcus multilocularis metacestodes, researchers have studied potentially interesting drug targets (e.g. the parasite's energy metabolism), and/or adopted drug repurposing approaches by undertaking whole organism screenings. We here focus on drug screening approaches, which utilize an in vitro screening cascade that includes assessment of the drug-induced physical damage of metacestodes, the impact on metacestode viability and the viability of isolated parasite stem cells, structure-activity relationship (SAR) analysis of compound derivatives, and the mode of action. Finally, once in vitro data are indicative for a therapeutic window, the efficacy of selected compounds is assessed in experimentally infected mice. Using this screening cascade, we found that the anti-malarial mefloquine was active against E. multilocularis metacestodes in vitro and in vivo. To shed more light into the mode of action of mefloquine, SAR analysis on mefloquine analogues was performed. E. multilocularis ferritin was identified as a mefloquine-binding protein, but its precise role as a drug target remains to be elucidated. In mice that were infected either intraperitoneally with metacestodes or orally with eggs, oral treatment with mefloquine led to a significant reduction of parasite growth compared to the standard treatment with albendazole. However, mefloquine was not acting parasiticidally. Assessment of mefloquine plasma concentrations in treated mice showed that levels were reached which are close to serum concentrations that are achieved in humans during long-term malaria prophylaxis. Mefloquine might be applied in human AE patients as a salvage treatment. Future studies should focus on other repurposed anti-infective compounds (MMV665807, niclosamide, atovaquone), which showed stronger in vitro activity against E. multilocularis than mefloquine.
Collapse
Affiliation(s)
- Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Längggassstrasse 122, 3012, Bern, Switzerland.
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Längggassstrasse 122, 3012, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Längggassstrasse 122, 3012, Bern, Switzerland
| |
Collapse
|
57
|
Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn 2020; 39:3347-3357. [PMID: 32362245 PMCID: PMC7232884 DOI: 10.1080/07391102.2020.1763201] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new strain of a novel infectious disease affecting millions of people, caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently been declared as a
pandemic by the World Health Organization (WHO). Currently, several clinical trials are
underway to identify specific drugs for the treatment of this novel virus. The inhibition
of the SARS-CoV-2 main protease is necessary for the blockage of the viral replication.
Here, in this study, we have utilized a blind molecular docking approach to identify the
possible inhibitors of the SARS-CoV-2 main protease, by screening a total of 33 molecules
which includes natural products, anti-virals, anti-fungals, anti-nematodes and
anti-protozoals. All the studied molecules could bind to the active site of the SARS-CoV-2
protease (PDB: 6Y84), out of which rutin (a natural compound) has the highest inhibitor
efficiency among the 33 molecules studied, followed by ritonavir (control drug), emetine
(anti-protozoal), hesperidin (a natural compound), lopinavir (control drug) and indinavir
(anti-viral drug). All the molecules, studied out here could bind near the crucial
catalytic residues, HIS41 and CYS145 of the main protease, and the molecules were
surrounded by other active site residues like MET49, GLY143, HIS163, HIS164, GLU166,
PRO168, and GLN189. As this study is based on molecular docking, hence being particular
about the results obtained, requires extensive wet-lab experimentation and clinical trials
under in vitro as well as in vivo conditions. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Sourav Das
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Sharat Sarmah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| |
Collapse
|
58
|
Vil' VA, Barsegyan YA, Kuhn L, Ekimova MV, Semenov EA, Korlyukov AA, Terent'ev AO, Alabugin IV. Synthesis of unstrained Criegee intermediates: inverse α-effect and other protective stereoelectronic forces can stop Baeyer-Villiger rearrangement of γ-hydroperoxy-γ-peroxylactones. Chem Sci 2020; 11:5313-5322. [PMID: 34122989 PMCID: PMC8159355 DOI: 10.1039/d0sc01025a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
How far can we push the limits in removing stereoelectronic protection from an unstable intermediate? We address this question by exploring the interplay between the primary and secondary stereoelectronic effects in the Baeyer-Villiger (BV) rearrangement by experimental and computational studies of γ-OR-substituted γ-peroxylactones, the previously elusive non-strained Criegee intermediates (CI). These new cyclic peroxides were synthesized by the peroxidation of γ-ketoesters followed by in situ cyclization using a BF3·Et2O/H2O2 system. Although the primary effect (alignment of the migrating C-Rm bond with the breaking O-O bond) is active in the 6-membered ring, weakening of the secondary effect (donation from the OR lone pair to the breaking C-Rm bond) provides sufficient kinetic stabilization to allow the formation and isolation of stable γ-hydroperoxy-γ-peroxylactones with a methyl-substituent in the C6-position. Furthermore, supplementary protection is also provided by reactant stabilization originating from two new stereoelectronic factors, both identified and quantified for the first time in the present work. First, an unexpected boat preference in the γ-hydroperoxy-γ-peroxylactones weakens the primary stereoelectronic effects and introduces a ∼2 kcal mol-1 Curtin-Hammett penalty for reacquiring the more reactive chair conformation. Second, activation of the secondary stereoelectronic effect in the TS comes with a ∼2-3 kcal mol-1 penalty for giving up the exo-anomeric stabilization in the 6-membered Criegee intermediate. Together, the three new stereoelectronic factors (inverse α-effect, misalignment of reacting bonds in the boat conformation, and the exo-anomeric effect) illustrate the richness of stereoelectronic patterns in peroxide chemistry and provide experimentally significant kinetic stabilization to this new class of bisperoxides. Furthermore, mild reduction of γ-hydroperoxy-γ-peroxylactone with Ph3P produced an isolable γ-hydroxy-γ-peroxylactone, the first example of a structurally unencumbered CI where neither the primary nor the secondary stereoelectronic effect are impeded. Although this compound is relatively unstable, it does not undergo the BV reaction and instead follows a new mode of reactivity for the CI - a ring-opening process.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
| | - Yana A Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Fl 32306 USA
| | - Maria V Ekimova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia 9 Miusskaya Square Moscow 125047 Russian Federation
| | - Egor A Semenov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia 9 Miusskaya Square Moscow 125047 Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilov Street Moscow 119991 Russian Federation
- Pirogov Russian National Research Medical University Moscow 117997 Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect Moscow 119991 Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Fl 32306 USA
| |
Collapse
|
59
|
Fairweather I, Brennan GP, Hanna REB, Robinson MW, Skuce PJ. Drug resistance in liver flukes. Int J Parasitol Drugs Drug Resist 2020; 12:39-59. [PMID: 32179499 PMCID: PMC7078123 DOI: 10.1016/j.ijpddr.2019.11.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Liver flukes include Fasciola hepatica, Fasciola gigantica, Clonorchis sinensis, Opisthorchis spp., Fascioloides magna, Gigantocotyle explanatum and Dicrocoelium spp. The two main species, F. hepatica and F. gigantica, are major parasites of livestock and infections result in huge economic losses. As with C. sinensis, Opisthorchis spp. and Dicrocoelium spp., they affect millions of people worldwide, causing severe health problems. Collectively, the group is referred to as the Food-Borne Trematodes and their true significance is now being more widely recognised. However, reports of resistance to triclabendazole (TCBZ), the most widely used anti-Fasciola drug, and to other current drugs are increasing. This is a worrying scenario. In this review, progress in understanding the mechanism(s) of resistance to TCBZ is discussed, focusing on tubulin mutations, altered drug uptake and changes in drug metabolism. There is much interest in the development of new drugs and drug combinations, the re-purposing of non-flukicidal drugs, and the development of new drug formulations and delivery systems; all this work will be reviewed. Sound farm management practices also need to be put in place, with effective treatment programmes, so that drugs can be used wisely and their efficacy conserved as much as is possible. This depends on reliable advice being given by veterinarians and other advisors. Accurate diagnosis and identification of drug-resistant fluke populations is central to effective control: to determine the actual extent of the problem and to determine how well or otherwise a treatment has worked; for research on establishing the mechanism of resistance (and identifying molecular markers of resistance); for informing treatment options; and for testing the efficacy of new drug candidates. Several diagnostic methods are available, but there are no recommended guidelines or standardised protocols in place and this is an issue that needs to be addressed.
Collapse
Affiliation(s)
- I Fairweather
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | - G P Brennan
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - R E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast, BT4 3SD, UK
| | - M W Robinson
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - P J Skuce
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK
| |
Collapse
|
60
|
Vale N, Gouveia MJ, Gärtner F. Current and Novel Therapies Against Helminthic Infections: The Potential of Antioxidants Combined with Drugs. Biomolecules 2020; 10:E350. [PMID: 32106428 PMCID: PMC7175190 DOI: 10.3390/biom10030350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Infections caused by Schistosoma haematobium and Opisthorchisviverrini are classified as Group 1 biological carcinogen and it has been postulated that parasites produce oxysterol and estrogen-like metabolites that might be considered as initiators of infection-associated carcinogenesis. Chemotherapy for these helminthic infections relies on a single drug, praziquantel, (PZQ) that mainly targets the parasite. Additionally, PZQ has some major drawbacks as inefficacy against juvenile form and alone it is not capable to counteract pathologies associated to infections or prevent carcinogenesis. There is an urgent need to develop novel therapeutic approaches that not only target the parasite but also improve the pathologies associated to infection, and ultimately, counteract or/and prevent the carcinogenesis processes. Repurposing the drug in combination of compounds with different modes of action is a promising strategy to find novel therapeutics approaches against these helminthic infections and its pathologies. Here, we emphasized that using antioxidants either alone or combined with anthelmintic drugs could ameliorate tissue damage, infection-associated complications, moreover, could prevent the development of cancer associated to infections. Hence, antioxidants represent a potential adjuvant approach during treatment to reduce morbidity and mortality. Despite the success of some strategies, there is a long way to go to implement novel therapies for schistosomiasis.
Collapse
Affiliation(s)
- Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Maria João Gouveia
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal
| | - Fátima Gärtner
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| |
Collapse
|
61
|
Derivatives of the Antimalarial Drug Mefloquine Are Broad-Spectrum Antifungal Molecules with Activity against Drug-Resistant Clinical Isolates. Antimicrob Agents Chemother 2020; 64:AAC.02331-19. [PMID: 31907188 DOI: 10.1128/aac.02331-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
The antifungal pharmacopeia is critically small, particularly in light of the recent emergence of multidrug-resistant pathogens, such as Candida auris Here, we report that derivatives of the antimalarial drug mefloquine have broad-spectrum antifungal activity against pathogenic yeasts and molds. In addition, the mefloquine derivatives have activity against clinical isolates that are resistant to one or more of the three classes of antifungal drugs currently used to treat invasive fungal infections, indicating that they have a novel mechanism of action. Importantly, the in vitro toxicity profiles obtained using human cell lines indicated that the toxicity profiles of the mefloquine derivatives are very similar to those of the parent mefloquine, despite being up to 64-fold more active against fungal cells. In addition to direct antifungal activity, subinhibitory concentrations of the mefloquine derivatives inhibited the expression of virulence traits, including filamentation in Candida albicans and capsule formation/melanization in Cryptococcus neoformans Mode/mechanism-of-action experiments indicated that the mefloquine derivatives interfere with both mitochondrial and vacuolar function as part of a multitarget mechanism of action. The broad-spectrum scope of activity, blood-brain barrier penetration, and large number of previously synthesized analogs available combine to support the further optimization and development of the antifungal activity of this general class of drug-like molecules.
Collapse
|
62
|
Luber V, Lutz M, Abele‐Horn M, Einsele H, Grigoleit GU, Mielke S. Excretion of
Ascaris lumbricoides
following reduced‐intensity allogeneic hematopoietic stem cell transplantation and consecutive treatment with mebendazole. Transpl Infect Dis 2020; 22:e13224. [DOI: 10.1111/tid.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/28/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Verena Luber
- Department of Internal Medicine II University Hospital of Würzburg Würzburg Germany
- Department of Hematology and Oncology Sana Hospital Hof Hof Germany
| | - Mathias Lutz
- Department of Internal Medicine II University Hospital of Würzburg Würzburg Germany
- Department of Medicine A University Hospital of Münster Münster Germany
| | - Marianne Abele‐Horn
- Institute for Hygiene and Microbiology University of Würzburg Würzburg Germany
| | - Hermann Einsele
- Department of Internal Medicine II University Hospital of Würzburg Würzburg Germany
| | | | - Stephan Mielke
- Department of Internal Medicine II University Hospital of Würzburg Würzburg Germany
- CAST Department of Laboratory Medicine and Medicine Huddinge Karolinska Institutet and University Hospital Stockholm Sweden
| |
Collapse
|
63
|
Santos SS, de Araújo RV, Giarolla J, Seoud OE, Ferreira EI. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. Int J Antimicrob Agents 2020; 55:105906. [PMID: 31987883 DOI: 10.1016/j.ijantimicag.2020.105906] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
Abstract
Chagas disease, leishmaniasis and schistosomiasis are neglected diseases (NDs) and are a considerable global challenge. Despite the huge number of people infected, NDs do not create interest from pharmaceutical companies because the associated revenue is generally low. Most of the research on these diseases has been conducted in academic institutions. The chemotherapeutic armamentarium for NDs is scarce and inefficient and better drugs are needed. Researchers have found some promising potential drug candidates using medicinal chemistry and computational approaches. Most of these compounds are synthetic but some are from natural sources or are semi-synthetic. Drug repurposing or repositioning has also been greatly stimulated for NDs. This review considers some potential drug candidates and provides details of their design, discovery and activity.
Collapse
Affiliation(s)
- Soraya Silva Santos
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Renan Vinicius de Araújo
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Jeanine Giarolla
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Omar El Seoud
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Elizabeth Igne Ferreira
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil.
| |
Collapse
|
64
|
Zajíčková M, Nguyen LT, Skálová L, Raisová Stuchlíková L, Matoušková P. Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today 2019; 25:430-437. [PMID: 31883953 DOI: 10.1016/j.drudis.2019.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
The control of gastrointestinal nematodes (GINs), the most abundant and serious parasites of livestock, has become difficult because of the limited number of available drugs and fast development of drug resistance. Thus, considerable efforts have been devoted to developing new anthelmintics that are efficient against nematodes, especially resistant species. Here, we summarize the most recent results using various approaches: target-based or high-throughput screening (HTS) of compound libraries; the synthesis of new derivatives or new combinations of current anthelmintics; the repurposing of drugs currently approved for other indications; and lastly, the identification of active plant products. We also evaluate the advantages and disadvantages of each of these approaches.
Collapse
Affiliation(s)
- Markéta Zajíčková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic.
| |
Collapse
|
65
|
Tinkler SH. Preventive chemotherapy and anthelmintic resistance of soil-transmitted helminths - Can we learn nothing from veterinary medicine? One Health 2019; 9:100106. [PMID: 31956691 PMCID: PMC6957790 DOI: 10.1016/j.onehlt.2019.100106] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Current parasite control programs in veterinary species have moved away from mass anthelmintic treatment approaches due to the emergence of significant anthelmintic resistance (AR), and the availability of few classes of anthelmintics. A number of parallels between livestock and human helminths exist that warn of the risk of AR in human soil-transmitted helminthiases, yet current public health interventions continue to prioritize mass treatment strategies, a known risk factor for AR. This review discusses the existing parallels between human and animal helminth biology and management, along with current public health recommendations and strategies for helminth control in humans. The effectiveness of current recommendations and alternative management strategies are considered.
Collapse
|
66
|
Gouveia MJ, Nogueira V, Araújo B, Gärtner F, Vale N. Inhibition of the Formation In Vitro of Putatively Carcinogenic Metabolites Derived from S. haematobium and O. viverrini by Combination of Drugs with Antioxidants. Molecules 2019; 24:E3842. [PMID: 31731402 PMCID: PMC6864706 DOI: 10.3390/molecules24213842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022] Open
Abstract
Infections caused by Schistosoma haematobium and Opisthorchis viverrini are classified as carcinogenic. Although carcinogenesis might be a multifactorial process, it has been postulated that these helminth produce/excrete oxysterols and estrogen-like metabolites that might act as initiators of their infection-associated carcinogenesis. Current treatment and control of these infections rely on a single drug, praziquantel, that mainly targets the parasites and not the pathologies related to the infection including cancer. Thus, there is a need to search for novel therapeutic alternatives that might include combinations of drugs and drug repurposing. Based on these concepts, we propose a novel therapeutic strategy that combines drugs with molecule antioxidants. We evaluate the efficacy of a novel therapeutic strategy to prevent the formation of putative carcinogenic metabolites precursors and DNA adducts. Firstly, we used a methodology previously established to synthesize metabolites precursors and DNA adducts in the presence of CYP450. Then, we evaluated the inhibition of their formation induced by drugs and antioxidants alone or in combination. Drugs and resveratrol alone did not show a significant inhibitory effect while N-acetylcysteine inhibited the formation of most metabolite precursors and DNA adducts. Moreover, the combinations of classical drugs with antioxidants were more effective rather than compounds alone. This strategy might be a valuable tool to prevent the initiation of helminth infection-associated carcinogenesis.
Collapse
Affiliation(s)
- Maria João Gouveia
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira Apartado 55142, 4051-401 Porto, Portugal
| | - Verónica Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Bruno Araújo
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Fátima Gärtner
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, university of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, university of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
67
|
Rodrigues JP, Vasconcelos Azevedo FVP, Zoia MAP, Maia LP, Correia LIV, Costa-Cruz JM, de Melo Rodrigues V, Goulart LR. The Anthelmintic Effect on Strongyloides venezuelensis Induced by BnSP- 6, a Lys49-phospholipase A2 Homologue from Bothrops pauloensis Venom. Curr Top Med Chem 2019; 19:2032-2040. [DOI: 10.2174/1568026619666190723152520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/20/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Background:
Phospholipases A2 (PLA2) from snake venoms have a broad potential as
pharmacological tools on medicine. In this context, strongyloidiasis is a neglected parasitic disease
caused by helminths of the genus Strongyloides. Currently, ivermectin is the drug of choice for treatment,
however, besides its notable toxicity, therapeutic failures and cases of drug resistance have been
reported. BnSP-6, from Bothorps pauloensis snake venom, is a PLA2 with depth biochemical characterization,
reporting effects against tumor cells and bacteria.
Objective:
The aim of this study is to demonstrate for the first time the action of the PLA2 on Strongyloides
venezuelensis.
Methods:
After 72 hours of treatment with BnSP-6 mortality of the infective larvae was assessed by motility
assay. Cell and parasite viability was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) assay. Furthermore, autophagic vacuoles were labeled with Monodansylcadaverine
(MDC) and nuclei of apoptotic cells were labeled with Propidium Iodide (PI). Tissue degeneration
of the parasite was highlighted by Transmission Electron Microscopy (TEM).
Results:
The mortality index demonstrated that BnSP-6 abolishes the motility of the parasite. In addition,
the MTT assay attested the cytotoxicity of BnSP-6 at lower concentrations when compared with
ivermectin, while autophagic and apoptosis processes were confirmed. Moreover, the anthelmintic effect
was demonstrated by tissue degeneration observed by TEM. Furthermore, we report that BnSP-6
showed low cytotoxicity on human intestinal cells (Caco-2).
Conclusion:
Altogether, our results shed light on the potential of BNSP-6 as an anthelmintic agent,
which can lead to further investigations as a tool for pharmaceutical discoveries.
Collapse
Affiliation(s)
- Jéssica Peixoto Rodrigues
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Fernanda Van Petten Vasconcelos Azevedo
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-227, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Mariana Alves Pereira Zoia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Larissa Prado Maia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Lucas Ian Veloso Correia
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-227, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Julia Maria Costa-Cruz
- Laboratory of Parasitological Diagnostics, Institute of Biomedical Sciences, Federal University of Uberlandia, Campus Umuarama BL-4C, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-227, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| |
Collapse
|
68
|
Ramadan HKA, Hassan WA, Elossily NA, Ahmad AA, Mohamed AA, Abd- Elkader AS, Abdelsalam EMN, Khojah HMJ. Evaluation of nitazoxanide treatment following triclabendazole failure in an outbreak of human fascioliasis in Upper Egypt. PLoS Negl Trop Dis 2019; 13:e0007779. [PMID: 31553716 PMCID: PMC6779272 DOI: 10.1371/journal.pntd.0007779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/07/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Fascioliasis is a neglected zoonosis with major public health implications in humans. Although triclabendazole (TCBZ) is the drug of choice, there are records of TCBZ failure worldwide. TCBZ-resistant fascioliasis is treated with alternative approved drugs including nitazoxanide (NTZ), with varying levels of efficacy. Data on NTZ efficacy after TCBZ failure in Egypt is scarce. This study evaluated the efficacy of NTZ in cases of TCBZ failure during an outbreak of fascioliasis in Assiut governorate of Upper Egypt. Methodology/Principal findings This prospective study included 67 patients from the outpatient clinic in Manfalout locality of Assiut governorate with clinical manifestations of acute fascioliasis. These included high eosinophilia (> 6% eosinophils in peripheral blood), positive anti-Fasciola antibodies, and hepatic focal lesions (HFL) or ascites on abdominal ultrasound or computed tomography. All patients initially received TCBZ at recommended doses. Patients were followed up after 1 month to assess response. According to the responses, patients were categorized as non-responders and responders. The non-responders received a trial of NTZ and were re-assessed for response based on clinical manifestations, eosinophil count, and abdominal ultrasound. Patients not responding to NTZ received additional doses of TCBZ. One month after initial TCBZ treatment, 37 patients responded well to TCBZ, while 30 patients failed to respond with persistence of fever, abdominal pain, high eosinophilia, and HFL. Most non-responders were male (56.7%); females predominated among TCBZ responders (62.2%). The mean age of the non-responders was relatively lower, at 20.57 ± 14.47 years (p = 0.004). Following NTZ therapy, HFL disappeared in 9/30 (30%) patients and eosinophil counts normalized in only 2 (6.7%) patients, indicating an overall efficacy of 36.6%. The remaining cases received additional doses of TCBZ with complete clinical, pathological, and radiological resolution. Conclusions/Significance Nitazoxanide was partially effective in TCBZ failure in acute human fascioliasis in Upper Egypt. Further studies with larger samples are highly encouraged and further research is urgently needed to find new therapeutic alternatives to TCBZ. Fascioliasis is a neglected zoonosis with major public health implications in humans. Triclabendazole (TCBZ) is the drug of choice, but alternative approved drugs are necessary in cases of TCBZ failure. Nitazoxanide (NTZ) is an alternative used in such cases. However, the efficacy of NTZ in TCBZ-failure cases among patients in Egypt remains unclear. In this study, the efficacy of NTZ was evaluated in cases of TCBZ failure during an outbreak of human fascioliasis in Assiut governorate of Upper Egypt. This study enrolled 67 patients diagnosed with fascioliasis based on clinical, laboratory, and radiological findings. These patients were referred from the outpatient clinic in Manfalout locality of Assiut governorate in Egypt. All patients received TCBZ at recommended doses as initial treatment. Those failing to respond were treated with NTZ at standard doses; following therapy, lesions in the liver and high eosinophil counts were resolved in 30% and 6.7% patients, respectively, indicating an overall efficacy of 36.6%. Therefore, in this outbreak of human fascioliasis in Upper Egypt, NTZ was found to be partially effective in cases with TCBZ failure.
Collapse
Affiliation(s)
| | - Waleed Attia Hassan
- Department of Tropical medicine and Gastroenterology, Faculty of Medicine, Assiut University, Egypt
| | | | | | - Adnan Ahmed Mohamed
- Department of Tropical medicine and Gastroenterology, Faculty of Medicine, Assiut University, Egypt
| | | | | | - Hani M. J. Khojah
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
- * E-mail:
| |
Collapse
|
69
|
Vil’ VA, Terent’ev AO, Mulina OM. Bioactive Natural and Synthetic Peroxides for the Treatment of Helminth and Protozoan Pathogens: Synthesis and Properties. Curr Top Med Chem 2019; 19:1201-1225. [DOI: 10.2174/1568026619666190620143848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
The significant spread of helminth and protozoan infections, the uncontrolled intake of the
known drugs by a large population, the emergence of resistant forms of pathogens have prompted people
to search for alternative drugs. In this review, we have focused attention on structures and synthesis of
peroxides active against parasites causing neglected tropical diseases and toxoplasmosis. To date, promising
active natural, semi-synthetic and synthetic peroxides compounds have been found.
Collapse
Affiliation(s)
- Vera A. Vil’
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Alexander O. Terent’ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Olga M. Mulina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| |
Collapse
|
70
|
Bergquist R, Leonardo L, Zhou XN. From inspiration to translation: Closing the gap between research and control of helminth zoonoses in Southeast Asia. ADVANCES IN PARASITOLOGY 2019; 105:111-124. [PMID: 31530392 DOI: 10.1016/bs.apar.2019.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Poverty magnifies limitations resulting from traditional biases and environmental risks in endemic areas. Any approach towards disease control needs to recognise that socially embedded vulnerabilities can be as powerful as externally imposed infections. Important for RNAS was networking across borders, not just on schistosomiasis but on the whole spectrum of endemic helminthiases, and this bore fruit in the form of the expansion of RNAS into the 'Regional Network on Asian Schistosomiasis and other Helminth Zoonoses (RNAS+)', which focuses on technical standardization, supporting the growth of research capacity and the further development of networking. Administration is lean and largely virtual with the focus on connecting members via the Internet, providing databases and administrative back-up. The strategy emphasizes ways and means to alleviate the spectre of disease and poverty from the endemic areas through boosting research on target diseases and supporting collaboration between basic and operational research on the one hand and control/elimination activities on the other. RNAS+ also benefits from continuing input from outside research institutions in areas outside Southeast Asia. This paper is aiming to identify the priority actions to close the gap between researcher and policy makers.
Collapse
Affiliation(s)
| | - Lydia Leonardo
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines; University of the East Ramon Magsaysay Graduate School, Quezon City, Philippines
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China; Chinese Center for Tropical Diseases Research, Shanghai, China; WHO Collaborating Centre for Tropical Diseases, Shanghai, China; National Center for International Research on Tropical Diseases, Shanghai, China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, China; Shanghai, China
| |
Collapse
|
71
|
Gouveia MJ, Brindley PJ, Azevedo C, Gärtner F, da Costa JMC, Vale N. The antioxidants resveratrol and N-acetylcysteine enhance anthelmintic activity of praziquantel and artesunate against Schistosoma mansoni. Parasit Vectors 2019; 12:309. [PMID: 31221193 PMCID: PMC6585032 DOI: 10.1186/s13071-019-3566-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/15/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Treatment of schistosomiasis has relied on the anthelmintic drug praziquantel (PZQ) for more than a generation. Despite its celebrated performance for treatment and control of schistosomiasis and other platyhelminth infections, praziquantel has some shortcomings and the inability of this drug to counteract disease sequelae prompts the need for novel therapeutic strategies. METHODS Using a host-parasite model involving Biomphalaria glabrata and Schistosoma mansoni we established mechanical transformation of S. mansoni cercariae into newly transformed schistosomula (NTS) and characterized optimal culture conditions. Thereafter, we investigated the antischistosomal activity and ability of the antioxidants N-acetylcysteine (NAC) and resveratrol (RESV) to augment the performance of praziquantel and/or artesunate (AS) against larval stages of the parasite. Drug effects were evaluated by using an automated microscopical system to study live and fixed parasites and by transmission electron microscopy (TEM). RESULTS Transformation rates of cercariae to schistosomula reached ~ 70% when the manipulation process was optimized. Several culture media were tested, with M199 supplemented with HEPES found to be suitable for S. mansoni NTS. Among the antioxidants studied, RESV alone or combined with anthelminthic drugs achieved better results rather N-acetylcysteine (NAC). TEM observations demonstrated that the combination of AS + RESV induced severe, extensive alterations to the tegument and subtegument of NTS when compared to the constituent compounds alone. Two anthelmintic-antioxidant combinations, praziquantel-resveratrol [combination index (CI) = 0.74] and artesunate-resveratrol (CI = 0.34) displayed moderate and strong synergy, respectively. CONCLUSIONS The use of viability markers including staining with propidium iodide increased the accuracy of drug screening assays against S. mansoni NTS. The synergies observed might be the consequence of increased action by RESV on targets of AS and PZQ and/or they may act through concomitantly on discrete targets to enhance overall antischistosomal action. Combinations of active agents, preferably with discrete modes of action including activity against developmental stages and/or the potential to ameliorate infection-associated pathology, might be pursued in order to identify novel therapeutic interventions.
Collapse
Affiliation(s)
- Maria João Gouveia
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-343 Porto, Portugal
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, 20037 Washington, DC USA
| | - Carlos Azevedo
- Laboratory of Cell Biology, Institute of Biomedical Sciences (ICBAS/UP), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fátima Gärtner
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-343 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - José M. C. da Costa
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- National Health Institute Dr. Ricardo Jorge (INSA), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Nuno Vale
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-343 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
72
|
Clare RH, Clark R, Bardelle C, Harper P, Collier M, Johnston KL, Plant H, Plant D, McCall E, Slatko BE, Cantin L, Wu B, Ford L, Murray D, Rich K, Wigglesworth M, Taylor MJ, Ward SA. Development of a High-Throughput Cytometric Screen to Identify Anti- Wolbachia Compounds: The Power of Public-Private Partnership. SLAS DISCOVERY 2019; 24:537-547. [PMID: 30958712 PMCID: PMC6537165 DOI: 10.1177/2472555219838341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Anti-Wolbachia (A·WOL) consortium at the Liverpool School of
Tropical Medicine (LSTM) has partnered with the Global High-Throughput Screening
(HTS) Centre at AstraZeneca to create the first anthelmintic HTS for neglected
tropical diseases (NTDs). The A·WOL consortium aims to identify novel
macrofilaricidal drugs targeting the essential bacterial symbiont
(Wolbachia) of the filarial nematodes causing
onchocerciasis and lymphatic filariasis. Working in collaboration, we have
validated a robust high-throughput assay capable of identifying compounds that
selectively kill Wolbachia over the host insect cell. We
describe the development and validation process of this complex, phenotypic
high-throughput assay and provide an overview of the primary outputs from
screening the AstraZeneca library of 1.3 million compounds.
Collapse
Affiliation(s)
- Rachel H Clare
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Roger Clark
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Catherine Bardelle
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Paul Harper
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Matthew Collier
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Kelly L Johnston
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Helen Plant
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Darren Plant
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Eileen McCall
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Barton E Slatko
- 3 Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Lindsey Cantin
- 3 Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Bo Wu
- 3 Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Louise Ford
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - David Murray
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Kirsty Rich
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Mark Wigglesworth
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Mark J Taylor
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Stephen A Ward
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
73
|
Fonte M, Fagundes N, Gomes A, Ferraz R, Prudêncio C, Araújo MJ, Gomes P, Teixeira C. Development of a synthetic route towards N4,N9-disubstituted 4,9-diaminoacridines: On the way to multi-stage antimalarials. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
74
|
Lundström-Stadelmann B, Rufener R, Ritler D, Zurbriggen R, Hemphill A. The importance of being parasiticidal… an update on drug development for the treatment of alveolar echinococcosis. Food Waterborne Parasitol 2019; 15:e00040. [PMID: 32095613 PMCID: PMC7034016 DOI: 10.1016/j.fawpar.2019.e00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
The lethal disease alveolar echinococcosis (AE) is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. Current chemotherapeutical treatment of AE relies on albendazole and mebendazole, with the caveat that these compounds are not parasiticidal. Drugs have to be taken for a prolonged period of time, often life-long, which can cause adverse effects and reduces the patients' quality of life. In some individuals, benzimidazoles are inactive or cause toxicity, leading to treatment discontinuation. Alternatives to benzimidazoles are urgently needed. Over the recent years, in vivo and in vitro models for low-to-medium throughput drug discovery against AE have been set in place. In vitro drug tests include the phosphoglucose-isomerase (PGI) assay to measure physical damage induced to metacestodes, and viability assays to assess parasiticidal activity against metacestodes and stem cells. In vitro models are also employed for studies on mechanisms of action. In vivo models are thus far based on rodents, mainly mice, and benefits could be gained in future by comparative approaches in naturally infected dogs or captive monkeys. For the identification of novel drugs against AE, a rare disease with a low expected market return, drug-repurposing is the most promising strategy. A variety of chemically synthesized compounds as well as natural products have been analyzed with respect to in vitro and/or in vivo activities against AE. We here review and discuss the most active of these compounds including anti-infective compounds (benzimidazoles, nitazoxanide, amphotericin B, itraconazole, clarithromycin, DB1127, and buparvaquone), the anti-infective anti-malarials (artemisinin, ozonids, mefloquine, and MMV665807) and anti-cancer drugs (isoflavones, 2-methoxyestradiol, methotrexate, navelbine, vincristine, kinase inhibitors, metallo-organic ruthenium complexes, bortezomib, and taxanes). Taking into account the efficacy as well as the potential availability for patients, the most promising candidates are new formulations of benzimidazoles and mefloquine. Future drug-repurposing approaches should also target the energy metabolism of E. multilocularis, in particular the understudied malate dismutation pathway, as this offers an essential target in the parasite, which is not present in mammals. Benzimidazoles are used to treat AE, but new drugs are needed. New drugs against AE can be identified by drug repurposing. Drugs against other infectious diseases and cancer can be repurposed against AE. Most promising are new formulations of benzimidazoles and mefloquine. Future approaches should include targeting the energy metabolism of the parasite.
Collapse
Affiliation(s)
- Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Raphael Zurbriggen
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| |
Collapse
|
75
|
Kwofie KD, Sato K, Sanjoba C, Hino A, Shimogawara R, Amoa-Bosompem M, Ayi I, Boakye DA, Anang AK, Chang KS, Ohashi M, Kim HS, Ohta N, Matsumoto Y, Iwanaga S. Oral activity of the antimalarial endoperoxide 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against Leishmania donovani complex. PLoS Negl Trop Dis 2019; 13:e0007235. [PMID: 30908481 PMCID: PMC6433226 DOI: 10.1371/journal.pntd.0007235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/12/2019] [Indexed: 01/16/2023] Open
Abstract
Visceral leishmaniasis (VL) is a major problem worldwide and causes significant morbidity and mortality. Existing drugs against VL have limitations, including their invasive means of administration long duration of treatment regimens. There are also concerns regarding increasing treatment relapses as well as the identification of resistant clinical strains with the use of miltefosine, the sole oral drug for VL. There is, therefore, an urgent need for new alternative oral drugs for VL. In the present study, we show the leishmanicidal effect of a novel, oral antimalarial endoperoxide N-251. In our In vitro studies, N-251 selectively and specifically killed Leishmania donovani D10 amastigotes with no accompanying toxicity toward the host cells. In addition, N-251 exhibited comparable activities against promastigotes of L. donovani D10, as well as other L. donovani complex parasites, suggesting a wide spectrum of activity. Furthermore, even after a progressive infection was established in mice, N-251 significantly eliminated amastigotes when administered orally. Finally, N-251 suppressed granuloma formation in mice liver through parasite death. These findings indicate the therapeutic effect of N-251 as an oral drug, hence suggest N-251 to be a promising lead compound for the development of a new oral chemotherapy against VL.
Collapse
Affiliation(s)
- Kofi Dadzie Kwofie
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kai Sato
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akina Hino
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Rieko Shimogawara
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Irene Ayi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel A. Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Abraham K. Anang
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, Republic of Korea
| | - Mitsuko Ohashi
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hye-Sook Kim
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobuo Ohta
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shiroh Iwanaga
- Section of Environmental Parasitology, Graduate School of Medical Dental Sciences, Tokyo Medical Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
76
|
In vitro schistosomicidal activity of tamoxifen and its effectiveness in a murine model of schistosomiasis at a single dose. Parasitol Res 2019; 118:1625-1631. [PMID: 30798369 DOI: 10.1007/s00436-019-06259-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 02/11/2019] [Indexed: 01/17/2023]
Abstract
Schistosomiasis is a neglected tropical disease affecting 220 million people worldwide. Praziquantel has proven to be effective against this parasitic disease, though there are increasing concerns regarding tolerance/resistance that calls for new drugs. Repurposing already existing and well-known drugs has been a desirable approach since it reduces time, costs, and ethical concerns. The anti-cancer drug tamoxifen (TAM) has been used worldwide for several decades to treat and prevent breast cancer. Previous reports stated that TAM affects Schistosoma hormonal physiology; however, no controlled schistosomicidal in vivo assays have been conducted. In this work, we evaluated the effect of TAM on female and male Schistosoma mansoni morphology, motility, and egg production. We further assessed worm survival and egg production in S. mansoni-infected mice. TAM induced morphological alterations in male and female parasites, as well as in eggs in vitro. Furthermore, in our in vivo experiments, one single dose of intraperitoneal TAM citrate reduced the total worm burden by 73% and led to a decrease in the amount of eggs in feces and low percentages of immature eggs in the small intestine wall. Eggs obtained from TAM citrate-treated mice were reduced in size and presented hyper-vacuolated structures. Our results suggest that TAM may be repurposed as a therapeutic alternative against S. mansoni infections.
Collapse
|
77
|
Gouveia MJ, Brindley PJ, Rinaldi G, Gärtner F, Correia da Costa JM, Vale N. Combination Anthelmintic/Antioxidant Activity Against Schistosoma Mansoni. Biomolecules 2019; 9:E54. [PMID: 30764562 PMCID: PMC6406910 DOI: 10.3390/biom9020054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/11/2023] Open
Abstract
Schistosomiasis is a major neglected tropical disease. Treatment for schistosomiasis with praziquantel (PZQ), which is effective against the parasite, by itself is not capable to counteract infection-associated disease lesions including hepatic fibrosis. There is a pressing need for novel therapies. Due to their biological properties, antioxidant biomolecules might be useful in treating and reverting associated pathological sequelae. Here, we investigated a novel therapy approach based on a combination of anthelmintic drugs with antioxidant biomolecules. We used a host-parasite model involving Bioamphalaria glabrata and newly transformed schistosomula (NTS) of Schistosoma mansoni. For in vitro drug screening assays, was selected several antioxidants and evaluated not only antischistosomal activity but also ability to enhance activity of the anthelmintic drugs praziquantel (PZQ) and artesunate (AS). The morphological alterations induced by compounds alone/combined were assessed on daily basis using an inverted and automated microscope to quantify NTS viability by a fluorometric-based method. The findings indicated that not only do some antioxidants improve antischistosomal activity of the two anthelmintics, but they exhibit activity per se, leading to high mortality of NTS post-exposure. The combination index (CI) of PZQ + Mel (CI = 0.80), PZQ + Resv (CI = 0.74), AS + Resv (CI = 0.34), AS + NAC (CI = 0.89), VDT + Flav (CI = 1.03) and VDT + Resv (CI = 1.06) reveal that they display moderate to strong synergism. The combination of compounds with discrete mechanisms of action might provide a valuable adjunct to contribution for treatment of schistosomiasis-associated disease.
Collapse
Affiliation(s)
- Maria João Gouveia
- Center for the Study in Animal Science, University of Porto, (CECA/ICETA), Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA.
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA.
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal.
- University of Porto, i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| | - José Manuel Correia da Costa
- Center for the Study in Animal Science, University of Porto, (CECA/ICETA), Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal.
- Department of Infectious Diseases, INSA-National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal.
| | - Nuno Vale
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal.
- University of Porto, i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
78
|
Frahm S, Anisuzzaman A, Prodjinotho UF, Vejzagić N, Verschoor A, Prazeres da Costa C. A novel cell-free method to culture Schistosoma mansoni from cercariae to juvenile worm stages for in vitro drug testing. PLoS Negl Trop Dis 2019; 13:e0006590. [PMID: 30689639 PMCID: PMC6375649 DOI: 10.1371/journal.pntd.0006590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/14/2019] [Accepted: 11/16/2018] [Indexed: 01/01/2023] Open
Abstract
Background The arsenal in anthelminthic treatment against schistosomiasis is limited and relies almost exclusively on a single drug, praziquantel (PZQ). Thus, resistance to PZQ could constitute a major threat. Even though PZQ is potent in killing adult worms, its activity against earlier stages is limited. Current in vitro drug screening strategies depend on newly transformed schistosomula (NTS) for initial hit identification, thereby limiting sensitivity to new compounds predominantly active in later developmental stages. Therefore, the aim of this study was to establish a highly standardized, straightforward and reliable culture method to generate and maintain advanced larval stages in vitro. We present here how this method can be a valuable tool to test drug efficacy at each intermediate larval stage, reducing the reliance on animal use (3Rs). Methodology/Principal findings Cercariae were mechanically transformed into skin-stage (SkS) schistosomula and successfully cultured for up to four weeks with no loss in viability in a commercially available medium. Under these serum- and cell-free conditions, development halted at the lung-stage (LuS). However, the addition of human serum (HSe) propelled further development into liver stage (LiS) worms within eight weeks. Skin and lung stages, as well as LiS, were submitted to 96-well drug screening assays using known anti-schistosomal compounds such as PZQ, oxamniquine (OXM), mefloquine (MFQ) and artemether (ART). Our findings showed stage-dependent differences in larval susceptibility to these compounds. Conclusion With this robust and highly standardized in vitro assay, important developmental stages of S. mansoni up to LiS worms can be generated and maintained over prolonged periods of time. The phenotype of LiS worms, when exposed to reference drugs, was comparable to most previously published works for ex vivo harvested adult worms. Therefore, this in vitro assay can help reduce reliance on animal experiments in search for new anti-schistosomal drugs. Schistosomiasis remains a major health threat, predominantly in developing countries. Even though there has been some progress in search of new drugs, praziquantel remains the only available drug. Probably the most important advance in the search for new drugs was in vitro transformation of cercariae and their subsequent culture. However, hit identification in compound screenings is exclusively tested in skin stage parasites and is only confirmed for more mature worms in a subsequent step. This is in part due to the lack of an easy culture system for advance-stage parasites. We present here a reliable and highly standardized way to generate LiS worms in vitro in a cell-free culture system. The inclusion of in vitro drug tests on advanced-stage parasites in initial hit identification will help to identify compounds that might otherwise be overlooked. Furthermore, the ability to continuously observe the parasite’s development in vitro will provide an important platform for a better understanding of its maturation in the human host. Taken together, this opens up new avenues to investigate the influence of specific cell types or host proteins on the development of Schistosoma mansoni and provides an additional tool to reduce animal use in future drug discovery efforts (3Rs).
Collapse
Affiliation(s)
- Sören Frahm
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Anisuzzaman Anisuzzaman
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Nermina Vejzagić
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Admar Verschoor
- Institute for Systemic Inflammation Research, Universität zu Lübeck, Lübeck, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
79
|
Niclosamide alleviates pulmonary fibrosis in vitro and in vivo by attenuation of epithelial-to-mesenchymal transition, matrix proteins & Wnt/β-catenin signaling: A drug repurposing study. Life Sci 2019; 220:8-20. [PMID: 30611787 DOI: 10.1016/j.lfs.2018.12.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023]
Abstract
Drug repurposing off late has been emerging as an inspiring alternative approach to conventional, exhaustive and arduous process of drug discovery. It is a process of identifying new therapeutic values for a drug already established for the treatment of a certain condition. Our current study is aimed at repurposing the old anti-helimenthic drug Niclosamide as an anti-fibrotic drug against pulmonary fibrosis (PF). PF is most common lethal interstitial lung disease hallmarked by deposition of extracelluar matrix and scarring of lung. Heterogenous nature, untimely diagnosis and lack of appropriate treatment options make PF an inexorable lung disorder. Prevailing void in PF treatment and drug repositioning strategy of drugs kindled our interest to demonstrate the anti-fibrotic activity of Niclosamide. Our study is aimed at investigating the anti-fibrotic potential of Niclosamide in TGF-β1 induced in vitro model of PF and 21-day model of Bleomycin induced PF in vivo respectively. Our study results showed that Niclosamide holds the potential to exert anti-fibrotic effect by hampering fibroblast migration, attenuating EMT, inhibiting fibrotic signaling and by regulating WNT/β-catenin signaling as evident from protein expression studies. Our study findings can give new directions to development of Niclosamide as an anti-fibrotic agent for treatment of pulmonary fibrosis.
Collapse
|
80
|
Abstract
Neurocysticercosis is the most common helminth infection of nervous system in humans caused by the encysted larvae of Taenia solium. It is a major cause of epilepsy in tropical areas and the most common cause of focal-onset seizures in North Indian children. Children with neurocysticercosis have pleomorphic manifestations depending on the location, number and viability of the cysts and host response. In endemic areas, neurocysticercosis should be clinically suspected in any child with recent-onset seizures, headache or focal motor deficits where there is no other suggestion of an underlying neurological disorder. Diagnosis of neurocysticercosis is essentially based on neuroimaging; visualization of a scolex is diagnostic. Management includes use of cysticidal drugs usually albendazole, which seems to be effective for lesion resolution and seizure remission, use of steroids and anti-epileptic drugs. Single lesions portend good prognosis with resolution of lesions in >60% of the cases within 6 mo and good seizure control. Prognosis is guarded in cysticercus encephalitis, racemose and extraparenchymal neurocysticercosis.
Collapse
Affiliation(s)
- Pratibha Singhi
- Pediatric Neurology and Neurodevelopment Unit, Medanta, The Medicity, Gurgaon, Haryana, India.
| | - Arushi Gahlot Saini
- Pediatric Neurology and Neurodevelopment Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
81
|
Calixto NM, dos Santos DB, Bezerra JCB, Silva LDA. In silico repositioning of approved drugs against Schistosoma mansoni energy metabolism targets. PLoS One 2018; 13:e0203340. [PMID: 30596650 PMCID: PMC6312253 DOI: 10.1371/journal.pone.0203340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 11/26/2022] Open
Abstract
Schistosomiasis is a neglected parasitosis caused by Schistosoma spp. Praziquantel is used for the chemoprophylaxis and treatment of this disease. Although this monotherapy is effective, the risk of resistance and its low efficiency against immature worms compromises its effectiveness. Therefore, it is necessary to develop new schistosomicide drugs. However, the development of new drugs is a long and expensive process. The repositioning of approved drugs has been proposed as a quick, cheap, and effective alternative to solve this problem. This study employs chemogenomic analysis with use of bioinformatics tools to search, identify, and analyze data on approved drugs with the potential to inhibit Schistosoma mansoni energy metabolism enzymes. The TDR Targets Database, Gene DB, Protein, DrugBank, Therapeutic Targets Database (TTD), Promiscuous, and PubMed databases were used. Fifty-nine target proteins were identified, of which 18 had one or more approved drugs. The results identified 20 potential drugs for schistosomiasis treatment; all approved for use in humans.
Collapse
Affiliation(s)
- Nicole Melo Calixto
- Department of Bioinformatics, Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Ceres, Ceres, Goiás, Brazil
| | - Daniela Braz dos Santos
- LAERPH- Laboratory of Parasite-Host Relationship Study, Instituto de Patologia Tropical e Saúde Pública da Universidade Federal de Goiás Goiânia, Goiás, Brazil
| | - José Clecildo Barreto Bezerra
- LAERPH- Laboratory of Parasite-Host Relationship Study, Instituto de Patologia Tropical e Saúde Pública da Universidade Federal de Goiás Goiânia, Goiás, Brazil
| | - Lourival de Almeida Silva
- Department of Bioinformatics, Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Ceres, Ceres, Goiás, Brazil
- * E-mail:
| |
Collapse
|
82
|
Liu M, Landuyt B, Klaassen H, Geldhof P, Luyten W. Screening of a drug repurposing library with a nematode motility assay identifies promising anthelmintic hits against Cooperia oncophora and other ruminant parasites. Vet Parasitol 2018; 265:15-18. [PMID: 30638515 DOI: 10.1016/j.vetpar.2018.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/16/2022]
Abstract
Parasitic nematodes continue to cause significant economic losses in livestock globally. Given the limited number of anthelmintic drugs on the market and the currently increasing drug resistance, there is an urgent need for novel anthelmintics. Most motility assays of anthelmintic activity for parasitic nematodes are laborious and low throughput, and therefore not suitable for screening large compound libraries. Cooperia oncophora accounts for a large proportion of reports on the drug-resistance development of parasites globally. Therefore, using a WMicroTracker instrument, we established a practical, automated and low-cost whole-organism motility assay against exsheathed L3 stages (xL3s) of the ruminant parasite Cooperia oncophora, and screened a repurposing library comprising 2745 molecules. Fourteen known anthelmintics contained in this library were picked up in this blind screen, as well as four novel hits: thonzonium bromide, NH125, physostigmine sulfate, and EVP4593. The four hits were also active against xL3s of Ostertagia ostertagi, Haemonchus contortus and Teladorsagia circumcincta using the same assay. Cytotoxicity testing showed that thonzonium bromide and NH125 (1-Benzyl-3-cetyl-2-methylimidazolium iodide) have significant cytotoxicity. EVP4593 (N(4)-(2-(4-phenoxyphenyl)ethyl)-4,6-quinazolinediamine) demonstrated a potent and broad anthelmintic activity, and a high selectivity index. Moreover, given its novel and unexplored chemical scaffold for anthelmintic activity, EVP4593 is an interesting anthelmintic hit for further optimization.
Collapse
Affiliation(s)
- Maoxuan Liu
- Center of antibody drug, Institute of biomedicine and biotechnology, Shenzhen institutes of advanced technology, Chinese Academy of Science, Shenzhen, 518055, China; Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, box 921, 3000 Leuven, Belgium.
| | - Bart Landuyt
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium
| | - Hugo Klaassen
- Cistim Leuven vzw, Bioincubator 2, Gaston Geenslaan 2, 3001 Leuven, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B-9820, Belgium
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium
| |
Collapse
|
83
|
An Abies procera-derived tetracyclic triterpene containing a steroid-like nucleus core and a lactone side chain attenuates in vitro survival of both Fasciola hepatica and Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:465-474. [PMID: 30399512 PMCID: PMC6216039 DOI: 10.1016/j.ijpddr.2018.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022]
Abstract
Two economically and biomedically important platyhelminth species, Fasciola hepatica (liver fluke) and Schistosoma mansoni (blood fluke), are responsible for the neglected tropical diseases (NTDs) fasciolosis and schistosomiasis. Due to the absence of prophylactic vaccines, these NTDs are principally managed by the single class chemotherapies triclabendazole (F. hepatica) and praziquantel (S. mansoni). Unfortunately, liver fluke resistance to triclabendazole has been widely reported and blood fluke insensitivity/resistance to praziquantel has been observed in both laboratory settings as well as in endemic communities. Therefore, the identification of new anthelmintics is necessary for the sustainable control of these NTDs in both animal and human populations. Here, continuing our work with phytochemicals, we isolated ten triterpenoids from the mature bark of Abies species and assessed their anthelmintic activities against F. hepatica and S. mansoni larval and adult lifecycle stages. Full 1H and 13C NMR-mediated structural elucidation of the two most active triterpenoids revealed that a tetracyclic steroid-like nucleus core and a lactone side chain are associated with the observed anthelmintic effects. When compared to representative mammalian cell lines (MDBK and HepG2), the most potent triterpenoid (700015; anthelmintic EC50s range from 0.7 μM–15.6 μM) displayed anthelmintic selectivity (selectivity indices for F. hepatica: 13 for newly excysted juveniles, 46 for immature flukes, 2 for mature flukes; selectivity indices for S. mansoni: 14 for schistosomula, 9 for immature flukes, 4 for adult males and 3 for adult females) and induced severe disruption of surface membranes in both liver and blood flukes. S. mansoni egg production, a process responsible for pathology in schistosomiasis, was also severely inhibited by 700015. Together, our results describe the structural elucidation of a novel broad acting anthelmintic triterpenoid and support further investigations developing this compound into more potent analogues for the control of both fasciolosis and schistosomiasis. Abies species contain anthelmintic phytochemical triterpenoids. The triterpenoid 700015 affects larval, juvenile and adult fluke viabilities. 700015 is moderately selective against both fluke species.
Collapse
|
84
|
de Oliveira RS, Viana DC, Colli BO, Rajshekhar V, Salomão JFM. Pediatric neurocysticercosis. Childs Nerv Syst 2018; 34:1957-1965. [PMID: 29987374 DOI: 10.1007/s00381-018-3889-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neurocysticercosis (NCC) is an infestation of the nervous system caused by encysted larvae of Taenia solium. NCC is an important acquired cause of epilepsy and other neurological manifestations especially in endemic areas. NCC in children has pleomorphic manifestations depending on the location, number, viability of the cysts, and host response. Even with advancing knowledge of the disease manifestations, many aspects related to diagnosis and treatment, particularly in children, still remain controversial and pose challenges to clinical practice. There is no gold standard test to diagnose NCC and the management recommendations are still emerging. This review provides an overview of diagnosis of NCC in children and its management with special focus on current challenges and future prospects. DISCUSSION In developing countries, NCC is important not only because of its frequency but also because of high morbidity and mortality rates associated, especially in cases in which it progresses to increased intracranial pressure. Because of its pleomorphic presentation, NCC should be considered in the differential diagnosis of a number of neurological conditions. Treatment with cysticidal therapy leads to reduction in seizure frequency and a faster resolution of lesions. CONCLUSIONS We have summarized the current approaches to diagnosis and treatment of NCC, recent advances in understanding the biology of NCC, and how one can take advantage of these new insights to formulate the next generation of clinical trials.
Collapse
Affiliation(s)
- Ricardo Santos de Oliveira
- Division of Neurosurgery and Pediatric Neurosurgery, Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Dinark Conceição Viana
- Division of Neurosurgery and Pediatric Neurosurgery, Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Benedicto Oscar Colli
- Division of Neurosurgery and Pediatric Neurosurgery, Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vedantam Rajshekhar
- Department of Neurological Sciences, Christian Medical College Hospital, Vellore, India
| | - José Francisco Manganelli Salomão
- Division of Pediatric Neurosurgery, National Institute of Women, Children and Adolescents Health Fernandes Figueira - Oswaldo Cruz Foundation (IFF - Fiocruz), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
85
|
Rufener R, Ritler D, Zielinski J, Dick L, da Silva ET, da Silva Araujo A, Joekel DE, Czock D, Goepfert C, Moraes AM, de Souza MVN, Müller J, Mevissen M, Hemphill A, Lundström-Stadelmann B. Activity of mefloquine and mefloquine derivatives against Echinococcus multilocularis. Int J Parasitol Drugs Drug Resist 2018; 8:331-340. [PMID: 29933218 PMCID: PMC6020078 DOI: 10.1016/j.ijpddr.2018.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/27/2022]
Abstract
The cestode E. multilocularis causes the disease alveolar echinococcosis (AE) in humans. The continuously proliferating metacestode (larval stage) of the parasite infects mostly the liver and exhibits tumor-like growth. Current chemotherapeutical treatment options rely on benzimidazoles, which are rarely curative and have to be applied daily and life-long. This can result in considerable hepatotoxicity and thus treatment discontinuation. Therefore, novel drugs against AE are urgently needed. The anti-malarial mefloquine was previously shown to be active against E. multilocularis metacestodes in vitro, and in mice infected by intraperitoneal inoculation of metacestodes when administered at 100 mg/kg by oral gavage twice a week for 12 weeks. In the present study, the same dosage regime was applied in mice infected via oral uptake of eggs representing the natural route of infection. After 12 weeks of treatment, the presence of parasite lesions was assessed in a liver squeeze chamber and by PCR, and a significantly reduced parasite load was found in mefloquine-treated animals. Assessment of mefloquine plasma concentrations by HPLC and modeling using a two-compartment pharmacokinetic model with first-order absorption showed that >90% of the expected steady-state levels (Cmin 1.15 mg/L, Cmax 2.63 mg/L) were reached. These levels are close to concentrations achieved in humans during long-term weekly dosage of 250 mg (dose applied for malaria prophylaxis). In vitro structure-activity relationship analysis of mefloquine and ten derivatives revealed that none of the derivatives exhibited stronger activities than mefloquine. Activity was only observed, when the 2-piperidylmethanol group of mefloquine was replaced by an amino group-containing residue and when the trifluoromethyl residue on position 8 of the quinoline structure was present. This is in line with the anti-malarial activity of mefloquine and it implies that the mode of action in E. multilocularis might be similar to the one against malaria.
Collapse
Affiliation(s)
- Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Jana Zielinski
- Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Luca Dick
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Emerson Teixeira da Silva
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | - Adriele da Silva Araujo
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | - Deborah Elisabeth Joekel
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Christine Goepfert
- Institute of Animal Pathology COMPATH, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Switzerland
| | - Adriana Marques Moraes
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | | | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Meike Mevissen
- Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.
| |
Collapse
|
86
|
Becker SL, Liwanag HJ, Snyder JS, Akogun O, Belizario. V, Freeman MC, Gyorkos TW, Imtiaz R, Keiser J, Krolewiecki A, Levecke B, Mwandawiro C, Pullan RL, Addiss DG, Utzinger J. Toward the 2020 goal of soil-transmitted helminthiasis control and elimination. PLoS Negl Trop Dis 2018; 12:e0006606. [PMID: 30106975 PMCID: PMC6091919 DOI: 10.1371/journal.pntd.0006606] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Sören L. Becker
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Harvy Joy Liwanag
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ateneo School of Medicine and Public Health, Ateneo de Manila University, Metro Manila, the Philippines
| | - Jedidiah S. Snyder
- Children Without Worms, The Task Force for Global Health, Decatur, Georgia, United States of America
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Oladele Akogun
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
- Modibbo Adama University of Technology, Yola, Nigeria
| | - Vicente Belizario.
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
- College of Public Health, University of the Philippines, Manila, the Philippines
| | - Matthew C. Freeman
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
- Department of Environmental Health, Emory University, Atlanta, Georgia, United States of America
| | - Theresa W. Gyorkos
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Rubina Imtiaz
- Children Without Worms, The Task Force for Global Health, Decatur, Georgia, United States of America
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alejandro Krolewiecki
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
- Instituto de Investigaciones en Enfermedades Tropicales, Universidad Nacional de Salta, Oran, Argentina
| | - Bruno Levecke
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Charles Mwandawiro
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Rachel L. Pullan
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David G. Addiss
- Children Without Worms, The Task Force for Global Health, Decatur, Georgia, United States of America
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Soil-Transmitted Helminthiasis Advisory Committee, Decatur, Georgia, United States of America
| |
Collapse
|
87
|
Lam NS, Long X, Su XZ, Lu F. Artemisinin and its derivatives in treating helminthic infections beyond schistosomiasis. Pharmacol Res 2018; 133:77-100. [DOI: 10.1016/j.phrs.2018.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 12/26/2022]
|
88
|
Arylpyrrole and fipronil analogues that inhibit the motility and/or development of Haemonchus contortus in vitro. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:379-385. [PMID: 30081296 PMCID: PMC6083343 DOI: 10.1016/j.ijpddr.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/31/2018] [Accepted: 06/03/2018] [Indexed: 11/23/2022]
Abstract
Due to widespread drug resistance in parasitic nematodes, there is a need to develop new anthelmintics. Given the cost and time involved in developing a new drug, the repurposing of known chemicals can be a promising, alternative approach. In this context, we tested a library (n = 600) of natural product-inspired pesticide analogues against exsheathed third stage-larvae (xL3s) of Haemonchus contortus (barber's pole worm) using a whole-organism, phenotypic screening technique that measures the inhibition of motility and development in treated larvae. In the primary screen, we identified 32 active analogues derived from chemical scaffolds of arylpyrrole or fipronil. The seven most promising compounds, selected based on their anthelmintic activity and/or limited cytotoxicity, are arylpyrroles that reduced the motility of fourth-stage larvae (L4s) with significant potency (IC50 values ranged from 0.04 ± 0.01 μM to 4.25 ± 0.82 μM, and selectivity indices ranged from 10.6 to 412.5). Since the parent structures of the active compounds are uncouplers of oxidative phosphorylation, we tested the effect of selected analogues on oxygen consumption in xL3s using the Seahorse XF24 flux analyser. Larvae treated with the test compounds showed a significant increase in oxygen consumption compared with the untreated control, demonstrating their uncoupling activity. Overall, the results of the present study have identified natural product-derived molecules that are worth considering for chemical optimisation as anthelmintic drug leads. Pesticide analogues were assessed for anthelmintic activity. Inhibition of motility and development of larval stages of Haemonchus contortus. Uncoupling of oxidative phosphorylation in larvae.
Collapse
|
89
|
Pasche V, Laleu B, Keiser J. Screening a repurposing library, the Medicines for Malaria Venture Stasis Box, against Schistosoma mansoni. Parasit Vectors 2018; 11:298. [PMID: 29764454 PMCID: PMC5952519 DOI: 10.1186/s13071-018-2855-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background The development of new treatments against schistosomiasis is imperative but lacks commercial interest. Drug repurposing represents a suitable strategy to identify potential treatments, which have already unblocked several essential steps along the drug development path, hence reducing costs and timelines. Promoting this approach, the Medicines for Malaria Venture (MMV) recently distributed a drug repurposing library of 400 advanced lead candidates (Stasis Box). Methods All 400 compounds were initially tested in vitro against the larval stage of Schistosoma mansoni at 10 μM. Hits progressed to screening on adult worms and were further characterised for IC50, cytotoxicity and selectivity. Ten lead compounds were tested in mice harbouring a chronic S. mansoni infection. Results Eleven of the 37 compounds active on the larval stage were also highly active on adult worms in vitro (IC50 = 2.0–7.5 μM). IC50 values on adult S. mansoni decreased substantially in the presence of albumin (7.5–123.5 μM). Toxicity to L6 and MRC cells was moderate. A moderate worm burden reduction of 51.6% was observed for MMV690534, while the other 9 compounds showed low activity. None of the in vivo results were statistically significant (P > 0.05). Conclusions Phenotypic screening of advanced lead compounds is a simple and resource-low method to identify novel anthelminthics. None of the promising hits of the Stasis Box identified in vitro against S. mansoni yielded acceptable worm burden reductions in vivo, which might be due to the high plasma protein binding. Since the in vitro hits interfere with different drug targets, they might provide a starting point for target based screening and structure-activity relationship studies.
Collapse
Affiliation(s)
- Valérian Pasche
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland.,University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), PO Box 1826, 20, Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland. .,University of Basel, P.O. Box, CH-4003, Basel, Switzerland.
| |
Collapse
|
90
|
Greter H, Mmbando B, Makunde W, Mnacho M, Matuja W, Kakorozya A, Suykerbuyk P, Colebunders R. Evolution of epilepsy prevalence and incidence in a Tanzanian area endemic for onchocerciasis and the potential impact of community-directed treatment with ivermectin: a cross-sectional study and comparison over 28 years. BMJ Open 2018; 8:e017188. [PMID: 29605818 PMCID: PMC5884367 DOI: 10.1136/bmjopen-2017-017188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Worldwide, there are an estimated 50 million people affected by epilepsy. Its aetiology is manifold, and parasitic infections play an important role, specifically onchocerciasis. In onchocerciasis endemic areas, a distinctive form of epilepsy has been described as nodding syndrome, affecting children and causing nodding seizures, mental retardation and debilitating physical development. Onchocerciasis control programmes using community-directed treatment with ivermectin (CDTI) are implemented in endemic countries. This study is designed to contribute to a better understanding of the linkage between the onset of epilepsy, onchocerciasis and CDTI. Comparing the epidemiological data on epilepsy and onchocerciasis from pre-CDTI and 20 years after its introduction will allow identifying a potential impact of ivermectin on the onset of epilepsy. METHODS AND ANALYSIS The study will be conducted in the Mahenge highlands in Tanzania. Study site selection is based on an in-depth study on epilepsy in that area dating from 1989. CDTI was introduced in 1997. By a door-to-door approach, the population will be screened for epilepsy using a validated questionnaire. Suspected cases will be invited for a neurological examination for case verification. Onchocerciasis prevalence will be assessed by a rapid epidemiological assessment. As an indicator for ongoing transmission, children younger than 10 years of age will be tested for Ov16 antibodies. Ivermectin use will be assessed at household level. Epilepsy data will be analysed in comparison with the 1989 data to reveal pre-CDTI and post-CDTI prevalence and incidence. ETHICS AND DISSEMINATION The protocol has received ethical approval from the ethics committees of the University of Antwerp, Belgium, and of the National Institut of Medical Research, Dar es Salaam, Tanzania. The findings will be published in peer-reviewed journals, and presented to the health authorities in Tanzania, at national, regional and village level.
Collapse
Affiliation(s)
- Helena Greter
- Global Health Institute, University of Antwerp, Wilrijk, Belgium
| | - Bruno Mmbando
- National Institute of Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Williams Makunde
- National Institute of Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Mohamed Mnacho
- Department of Neurology, Muhimbili University of Health Sciences, Dar es Salaam, Tanzania
| | - William Matuja
- Department of Neurology, Muhimbili University of Health Sciences, Dar es Salaam, Tanzania
| | | | | | | |
Collapse
|
91
|
Stroehlein AJ, Young ND, Gasser RB. Advances in kinome research of parasitic worms - implications for fundamental research and applied biotechnological outcomes. Biotechnol Adv 2018; 36:915-934. [PMID: 29477756 DOI: 10.1016/j.biotechadv.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022]
Abstract
Protein kinases are enzymes that play essential roles in the regulation of many cellular processes. Despite expansions in the fields of genomics, transcriptomics and bioinformatics, there is limited information on the kinase complements (kinomes) of most eukaryotic organisms, including parasitic worms that cause serious diseases of humans and animals. The biological uniqueness of these worms and the draft status of their genomes pose challenges for the identification and classification of protein kinases using established tools. In this article, we provide an account of kinase biology, the roles of kinases in diseases and their importance as drug targets, and drug discovery efforts in key socioeconomically important parasitic worms. In this context, we summarise methods and resources commonly used for the curation, identification, classification and functional annotation of protein kinase sequences from draft genomes; review recent advances made in the characterisation of the worm kinomes; and discuss the implications of these advances for investigating kinase signalling and developing small-molecule inhibitors as new anti-parasitic drugs.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
92
|
Vijaya, Yadav AK, Gogoi S. In vitro and in vivo anthelmintic efficacy of two pentacyclic triterpenoids, ursolic acid and betulinic acid against mice pinworm, Syphacia obvelata. J Parasit Dis 2018; 42:144-149. [PMID: 29491574 PMCID: PMC5825362 DOI: 10.1007/s12639-017-0960-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
Pinworm infections are one of the common problems in laboratory rodents and man. At present there are only few drugs against intestinal helminths, and new drugs are urgently needed to cope up any future risk of drug resistance. Interest in plant secondary metabolites (PSMs) has risen considerably in the recent years for the discovery and development of new drugs. In the present study, we explored the in vitro and in vivo anthelmintic potentials of two pentacyclic triterpenoids, ursolic acid (UA) and betulinic acid (BA), the important PSMs of many medicinal plants, against Syphacia obvelata (Nematoda: Oxyuridae), a common pinworm of mice. The results of this study indicated that in both, in vitro and in vivo assays, BA showed comparatively better anthelmintic effects than UA. In the in vitro assay, 1.00 mg/ml concentration of BA showed paralysis and mortality of worms in 1.20 ± 0.04 and 2.30 ± 0.03 h, respectively. In the in vivo assay, a single 10.00 mg/kg dose of BA, administered for 5 days, revealed 68.78% reduction in egg counts and 84.08% reduction in worm counts of infected mice. The present study suggests that BA holds a great promise to be pursued further for detailed testing against some other representative group of helminth parasites.
Collapse
Affiliation(s)
- Vijaya
- Department of Zoology, North-Eastern Hill University, Shillong, 793022 India
| | - Arun K. Yadav
- Department of Zoology, North-Eastern Hill University, Shillong, 793022 India
| | - S. Gogoi
- Department of Zoology, North-Eastern Hill University, Shillong, 793022 India
| |
Collapse
|
93
|
Gedge LM, Bettis AA, Bradley MH, Hollingsworth TD, Turner HC. Economic evaluations of lymphatic filariasis interventions: a systematic review and research needs. Parasit Vectors 2018; 11:75. [PMID: 29391042 PMCID: PMC5793442 DOI: 10.1186/s13071-018-2616-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/02/2018] [Indexed: 01/13/2023] Open
Abstract
In 2000, the World Health Organization established the Global Programme to Eliminate Lymphatic Filariasis (GPELF), with the goal of eliminating the disease as a public health problem by 2020. Since the start of the programme, a cumulative total of 6.2 billion treatments have been delivered to affected populations - with more than 556 million people treated in 2015 alone. In this paper, we perform a rigorous systematic review of the economic evaluations of lymphatic filariasis interventions have been conducted. We demonstrate that the standard interventions to control lymphatic filariasis are consistently found to be highly cost-effective. This finding has important implications for advocacy groups and potential funders. However, there are several important inconsistencies and research gaps that need to be addressed as we move forward towards the 2020 elimination goals. One of the most important identified research gaps was a lack of evaluation of new interventions specifically targeting areas co-endemic with onchocerciasis and Loa loa - which could become a major barrier to achieving elimination.
Collapse
Affiliation(s)
- Lukyn M. Gedge
- School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Alison A. Bettis
- London Centre for Neglected Tropical Disease Research, London, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Marys Campus, Imperial College London, Norfolk Place, London, W2 1PG UK
| | | | - T. Déirdre Hollingsworth
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
- Big Data Institute, University of Oxford, Oxford, OX3 7LF UK
| | - Hugo C. Turner
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
94
|
Vil' VA, Yaremenko IA, Ilovaisky AI, Terent'ev AO. Peroxides with Anthelmintic, Antiprotozoal, Fungicidal and Antiviral Bioactivity: Properties, Synthesis and Reactions. Molecules 2017; 22:E1881. [PMID: 29099089 PMCID: PMC6150334 DOI: 10.3390/molecules22111881] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
The biological activity of organic peroxides is usually associated with the antimalarial properties of artemisinin and its derivatives. However, the analysis of published data indicates that organic peroxides exhibit a variety of biological activity, which is still being given insufficient attention. In the present review, we deal with natural, semi-synthetic and synthetic peroxides exhibiting anthelmintic, antiprotozoal, fungicidal, antiviral and other activities that have not been described in detail earlier. The review is mainly concerned with the development of methods for the synthesis of biologically active natural peroxides, as well as its isolation from natural sources and the modification of natural peroxides. In addition, much attention is paid to the substantially cheaper biologically active synthetic peroxides. The present review summarizes 217 publications mainly from 2000 onwards.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| | - Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia.
- Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia.
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia.
| |
Collapse
|
95
|
Greter H, Cowan N, Ngandolo BN, Kessely H, Alfaroukh IO, Utzinger J, Keiser J, Zinsstag J. Treatment of human and livestock helminth infections in a mobile pastoralist setting at Lake Chad: Attitudes to health and analysis of active pharmaceutical ingredients of locally available anthelminthic drugs. Acta Trop 2017; 175:91-99. [PMID: 27235793 DOI: 10.1016/j.actatropica.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022]
Abstract
Mobile pastoralists face challenges in accessing quality health care and medication for managing human and animal diseases. We determined livestock disease priorities, health seeking behaviour of people bearing helminthiases and - placing particular emphasis on trematode infections - treatment strategies and outcome satisfaction among mobile pastoralists of four ethnic groups in the Lake Chad area using focus group discussions. People suffering from schistosomiasis were interviewed about symptoms, health seeking behaviour and their satisfaction with respect to the provided treatment. Anthelminthic drugs for human and veterinary use obtained from various health care structures were analysed for active pharmaceutical ingredients (API) and quantity, using high pressure liquid chromatography-UV and liquid chromatography combined with tandem mass spectrometry. Most people suffering from schistosomiasis sought treatment at health care centres. Yet, they also consulted informal providers without medical training. Regarding animal health, self-mediated therapy was common to manage suspected livestock fascioliasis. Self-reported treatment satisfaction for human schistosomiasis and trematodiasis treatment outcome in livestock were low. Mobile pastoralists perceived the purchased drugs to be of low quality. Among 33 products locally sold as anthelminthic drugs for human or veterinary use, 27 contained albendazole or mebendazole, varying between 91% and 159% of the labelled amount. Six products were sold loosely with incomplete information and their API could not be identified. No counterfeit anthelminthic drugs were detected. None of the samples contained praziquantel or triclabendazole, the drugs of choice against schistosomiasis and fascioliasis, respectively. The perceived unsatisfactory treatment outcomes in humans and animals infected with trematodes are most likely due to empiric diagnosis and the resulting use of inadequate therapy for human schistosomiasis and the lack of efficacious drugs against livestock fascioliasis.
Collapse
Affiliation(s)
- Helena Greter
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Noemi Cowan
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Bongo N Ngandolo
- Institut de Recherche en Elevage pour le Développement, N'Djamena, Chad
| | - Hamit Kessely
- Centre de Support en Santé International, N'Djamena, Chad
| | | | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
96
|
Treatment of Schistosoma mansoni with miltefosine in vitro enhances serological recognition of defined worm surface antigens. PLoS Negl Trop Dis 2017; 11:e0005853. [PMID: 28841653 PMCID: PMC5589257 DOI: 10.1371/journal.pntd.0005853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/07/2017] [Accepted: 08/04/2017] [Indexed: 11/19/2022] Open
Abstract
Background Miltefosine, an anti-cancer drug that has been successfully repositioned for treatment of Leishmania infections, has recently also shown promising effects against Schistosoma spp targeting all life cycle stages of the parasite. The current study examined the effect of treating Schistosoma mansoni adult worms with miltefosine on exposure of worm surface antigens in vitro. Methodology/Principal findings In an indirect immunofluorescence assay, rabbit anti-S.mansoni adult worm homogenate and anti-S. mansoni infection antisera gave strong immunofluorescence of the S. mansoni adult worm surface after treatment with miltefosine, the latter antiserum having previously been shown to synergistically enhance the schistosomicidal activity of praziquantel. Rabbit antibodies that recognised surface antigens exposed on miltefosine-treated worms were recovered by elution off the worm surface in low pH buffer and were used in a western immunoblotting assay to identify antigenic targets in a homogenate extract of adult worms (SmWH). Four proteins reacting with the antibodies in immunoblots were purified and proteomic analysis (MS/MS) combined with specific immunoblotting indicated they were the S. mansoni proteins: fructose-1,6 bisphosphate aldolase (SmFBPA), Sm22.6, alkaline phosphatase and malate dehydrogenase. These antibodies were also found to bind to the surface of 3-hour schistosomula and induce immune agglutination of the parasites, suggesting they may have a role in immune protection. Conclusion/Significance This study reveals a novel mode of action of miltefosine as an anti-schistosome agent. The immune-dependent hypothesis we investigated has previously been lent credence with praziquantel (PZQ), whereby treatment unmasks parasite surface antigens not normally exposed to the host during infection. Antigens involved in this molecular mechanism could have potential as intervention targets and antibodies against these antigens may act to increase the drug’s anti-parasite efficacy and be involved in the development of resistance to re-infection. Schistosomiasis (Bilharzia) is a serious public health problem caused by a parasite of genus Schistosoma. There is an increasing concern about development of parasite resistance to the only drug available for treatment, praziquantel (PZQ). Miltefosine, a repurposed anti-cancer drug for treatment of Leishmania infection, was shown to have activity against Schistosoma in animal models at all the parasite’s life cycle stages. In this work, we examined the potential that miltefosine could act to expose parasite surface antigens that are normally hidden during natural infection as a way to avoid lethal effects of host immunity. We used two immunobinding techniques, immunofluorescence and western immunoblotting, and a protein identification technique, namely mass spectrometry, to identify proteins exposed on the worm surface following incubation with miltefosine. Four S. mansoni proteins were shown to be exposed by miltefosine treatment: fructose-bisphosphate aldolase (SmFBPA), Sm22.6, alkaline phosphatase and malate dehydrogenase. Antibodies specific for these antigens recognised and bound to the surface of early-stage schistosome larvae and antibodies specific for SmFBPA induced clumping of the larvae, suggesting a potential role in early parasite killing and protection against infection. These antibodies may be utilised to increase miltefosine’s anti-parasite efficacy and may be involved in resistance to re-infection.
Collapse
|
97
|
Pensel PE, Elissondo N, Gambino G, Gamboa GU, Benoit JP, Elissondo MC. Experimental cystic echinococcosis therapy: In vitro and in vivo combined 5-fluorouracil/albendazole treatment. Vet Parasitol 2017; 245:62-70. [PMID: 28969840 DOI: 10.1016/j.vetpar.2017.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 11/17/2022]
Abstract
Human cystic echinococcosis is a zoonosis caused by the larval stage of the tapeworm Echinococcus granulosus sensu lato (s. l.). Although benzimidazole compounds such as albendazole (ABZ) and mebendazole have been the cornerstone of chemotherapy for the disease, there is often no complete recovery after treatment. Hence, new strategies are required to improve treatment of human cystic echinococcosis. The goals of the current study were as follows: (i) to evaluate the in vitro efficacy of the 5-fluorouracil (5-FU) and ABZ combination against E. granulosus s. l. protoscoleces and cysts, (ii) to compare the clinical efficacy of 5-FU alone or in combination with ABZ in infected mice. The combination of 5-FU+ABZ had a stronger in vitro effect against larval stage than that did both drugs alone. Even at the lowest concentration of 5-FU+ABZ combination (1μg/ml), the reduction of the viability of protoscoleces and cysts was greater than that observed with drugs alone at 10μg/ml. The results were confirmed at the ultrastructural level by scanning electron microscopy. These data helped to justify the in vivo investigations assessing the therapeutic potential of the combination of 5-FU and ABZ suspension in CF-1 mice infected with E. granulosus sensu stricto (s. s.) metacestodes. Treatment with 5-FU (10mg/kg) or 5-FU (10mg/kg) + ABZ suspension (5mg/kg) reduced the weight of cysts recovered from mice compared with control groups. Interestingly, the effect of 5-FU given weekly for 5 consecutive weeks was comparable to that observed with ABZ suspension under a daily schedule during 30days. Co-administration of 5-FU with ABZ did not enhance the in vivo efficacy of drugs alone calculated in relation to cysts weights. However, the combination provoked greater ultrastructural alterations compared to the monotherapy. In conclusion, we demonstrated the efficacy of 5-FU either alone or co-administrated with ABZ against murine experimental cystic echinococcosis. Since 5-FU treatments did not cause toxic effect in mice, further in vivo studies will be performed by adjusting the dosage and the frequency of treatments.
Collapse
Affiliation(s)
- Patricia E Pensel
- Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Fac. Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Natalia Elissondo
- Laboratorio de Análisis Clínicos Santisteban, 7000 Tandil, Buenos Aires, Argentina
| | - Guillermo Gambino
- Laboratorio de Análisis Clínicos Santisteban, 7000 Tandil, Buenos Aires, Argentina
| | - Gabriela Ullio Gamboa
- Departamento de Farmacia, Fac. Ciencias Químicas, Universidad Nacional de Córdoba, UNITEFA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - J P Benoit
- INSERM U1066, MINT-Micro et Nanomédecines biomimétiques, IBS-CHU Angers, 49933 Angers cedex 9, France
| | - María C Elissondo
- Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Fac. Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina; Departamento de Farmacia, Fac. Ciencias Químicas, Universidad Nacional de Córdoba, UNITEFA, Argentina.
| |
Collapse
|
98
|
Barda B, Sayasone S, Phongluxa K, Xayavong S, Keoduangsy K, Odermatt P, Puchkov M, Huwyler J, Hattendorf J, Keiser J. Efficacy of Moxidectin Versus Ivermectin Against Strongyloides stercoralis Infections: A Randomized, Controlled Noninferiority Trial. Clin Infect Dis 2017; 65:276-281. [PMID: 28369530 DOI: 10.1093/cid/cix278] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/21/2017] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Infections with Strongyloides stercoralis are of considerable public health relevance. Moxidectin, a well-established drug in veterinary medicine under consideration for regulatory submission for the treatment of onchocerciasis, might serve as an alternative to the widely used ivermectin. METHODS We conducted an exploratory, randomized, single-blind trial to evaluate the efficacy and safety of moxidectin (8 mg) vs ivermectin (200 μg/kg) against S. stercoralis infections. Cure rate (CR) against S. stercoralis was the primary outcome. Safety and efficacy against coinfections with soil-transmitted helminths and Opisthorchis viverrini were secondary outcomes. Noninferiority required the lower limit of the 95% confidence interval (CI) of the differences in CRs not exceed 7 percentage points. RESULTS A total of 127 participants were enrolled and randomly assigned to the 2 treatments whereby 1 participant per arm was lost to follow-up. We observed a CR of 93.7% (59/63) for moxidectin compared to 95.2% (59/62) for ivermectin. Differences between CRs were estimated as -1.5% percentage points (95% CI, -9.6 to 6.5), thus the lower limit of the CI exceeds the noninferiority margin of 7 percentage points. No side effects were observed. CRs against hookworm infection were 57% (moxidectin) and 56% (ivermectin). Low efficacy for both drugs against O. viverrini was observed. CONCLUSIONS Moxidectin might be a safe and efficacious alternative to ivermectin for the treatment of S. stercoralis infection, given that only slight differences in CRs were observed. However, noninferiority could not be demonstrated. Larger clinical trials should be conducted once the drug is marketed. CLINICAL TRIALS REGISTRATION Current Controlled Trials: ISRCTN11983645.
Collapse
Affiliation(s)
- Beatrice Barda
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute
- University of Basel, Switzerland
| | - Somphou Sayasone
- National Institute of Public Health, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Khampheng Phongluxa
- National Institute of Public Health, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Syda Xayavong
- National Institute of Public Health, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Khonsavanh Keoduangsy
- National Institute of Public Health, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Peter Odermatt
- University of Basel, Switzerland
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute
| | - Maxim Puchkov
- Department of Pharmaceutical Technology, University of Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Technology, University of Basel, Switzerland
| | - Jan Hattendorf
- University of Basel, Switzerland
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute
- University of Basel, Switzerland
| |
Collapse
|
99
|
Bergquist R, Utzinger J, Keiser J. Controlling schistosomiasis with praziquantel: How much longer without a viable alternative? Infect Dis Poverty 2017; 6:74. [PMID: 28351414 PMCID: PMC5371198 DOI: 10.1186/s40249-017-0286-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
The current approach of morbidity control of schistosomiasis, a helminth disease of poverty with considerable public health and socioeconomic impact, is based on preventive chemotherapy with praziquantel. There is a pressing need for new drugs against this disease whose control entirely depends on this single drug that has been widely used over the past 40 years. We argue that a broader anthelminthic approach supplementing praziquantel with new antischistosomals targeting different parasite development stages would not only increase efficacy but also reduce the risk for drug resistance. Repositioning drugs already approved for other diseases provides a shortcut to clinical trials, as it is expected that such drugs rapidly pass the regulatory authorities. The antischistosomal properties of antimalarial drugs (e.g., semisynthetic artemisinins, synthetic trioxolanes, trioxaquines and mefloquine) and of drugs being developed or registered for other purposes (e.g., moxidectin and miltefosin), administered alone or in combination with praziquantel, have been tested in the laboratory and clinical trials. Another avenue to follow is the continued search for new antischistosomal properties in plants. Here, we summarise recent progress made in schistosomiasis chemotherapy, placing particular emphasis on repositioning of existing drugs against schistosomiasis.
Collapse
Affiliation(s)
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland.,University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland. .,University of Basel, P.O. Box, CH-4003, Basel, Switzerland.
| |
Collapse
|
100
|
Romero-Sandoval N, Ortiz-Rico C, Sánchez-Pérez HJ, Valdivieso D, Sandoval C, Pástor J, Martín M. Soil transmitted helminthiasis in indigenous groups. A community cross sectional study in the Amazonian southern border region of Ecuador. BMJ Open 2017; 7:e013626. [PMID: 28292765 PMCID: PMC5353281 DOI: 10.1136/bmjopen-2016-013626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Rural communities in the Amazonian southern border of Ecuador have benefited from governmental social programmes over the past 9 years, which have addressed, among other things, diseases associated with poverty, such as soil transmitted helminth infections. The aim of this study was to explore the prevalence of geohelminth infection and several factors associated with it in these communities. METHODS This was a cross sectional study in two indigenous communities of the Amazonian southern border of Ecuador. The data were analysed at both the household and individual levels. RESULTS At the individual level, the prevalence of geohelminth infection reached 46.9% (95% CI 39.5% to 54.2%), with no differences in terms of gender, age, temporary migration movements or previous chemoprophylaxis. In 72.9% of households, one or more members were infected. Receiving subsidies and overcrowding were associated with the presence of helminths. CONCLUSIONS The prevalence of geohelminth infection was high. Our study suggests that it is necessary to conduct studies focusing on communities, and not simply on captive groups, such as schoolchildren, with the object of proposing more suitable and effective strategies to control this problem.
Collapse
Affiliation(s)
- Natalia Romero-Sandoval
- Facultad de Ciencias Médicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Grups de Recerca d'Amèrica i Àfrica Llatines-GRAAL, Barcelona, España
| | - Claudia Ortiz-Rico
- Grups de Recerca d'Amèrica i Àfrica Llatines-GRAAL, Barcelona, España
- Unidad de Bioestadística y Epidemiología, Universidad Autónoma de Barcelona, Barcelona, España
| | - Héctor Javier Sánchez-Pérez
- Grups de Recerca d'Amèrica i Àfrica Llatines-GRAAL, Barcelona, España
- El Colegio de la Frontera Sur-ECOSUR, San Cristóbal de Las Casas, Chiapas, México
| | - Daniel Valdivieso
- Facultad de Ciencias Médicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Carlos Sandoval
- Fundación Ecuatoriana para la Investigación en Salud-FEPIS, Quinindé, Ecuador
| | | | - Miguel Martín
- Grups de Recerca d'Amèrica i Àfrica Llatines-GRAAL, Barcelona, España
- Unidad de Bioestadística y Epidemiología, Universidad Autónoma de Barcelona, Barcelona, España
| |
Collapse
|