51
|
Buckley CD, Barone F, Nayar S, Bénézech C, Caamaño J. Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annu Rev Immunol 2015; 33:715-45. [DOI: 10.1146/annurev-immunol-032713-120252] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher D. Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Francesca Barone
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Saba Nayar
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Cecile Bénézech
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Jorge Caamaño
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
52
|
Abstract
Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.
Collapse
|
53
|
Hauser AE, Höpken UE. B Cell Localization and Migration in Health and Disease. MOLECULAR BIOLOGY OF B CELLS 2015:187-214. [DOI: 10.1016/b978-0-12-397933-9.00012-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
54
|
Hautz T, Zelger BG, Nasr IW, Mundinger GS, Barth RN, Rodriguez ED, Brandacher G, Weissenbacher A, Zelger B, Cavadas P, Margreiter R, Lee WPA, Pratschke J, Lakkis FG, Schneeberger S. Lymphoid neogenesis in skin of human hand, nonhuman primate, and rat vascularized composite allografts. Transpl Int 2014; 27:966-76. [DOI: 10.1111/tri.12358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/28/2013] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Theresa Hautz
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - Bettina G. Zelger
- Department of Pathology; Innsbruck Medical University; Innsbruck Austria
| | - Isam W. Nasr
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - Gerhard S. Mundinger
- Division of Plastic and Reconstructive Surgery; R Adams Cowley Shock Trauma Center; University of Maryland; Baltimore MD USA
- Department of Plastic Surgery; Johns Hopkins Medical University; Baltimore MD USA
| | - Rolf N. Barth
- Department of Surgery; University of Maryland School of Medicine; Baltimore MD USA
| | - Eduardo D. Rodriguez
- Division of Plastic and Reconstructive Surgery; R Adams Cowley Shock Trauma Center; University of Maryland; Baltimore MD USA
| | - Gerald Brandacher
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
- Department of Plastic Surgery; Johns Hopkins Medical University; Baltimore MD USA
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - Bernhard Zelger
- Department of Dermatology; Innsbruck Medical University; Innsbruck Austria
| | | | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - W. P. Andrew Lee
- Department of Plastic Surgery; Johns Hopkins Medical University; Baltimore MD USA
| | - Johann Pratschke
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - Fadi G. Lakkis
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| |
Collapse
|
55
|
Mohanta SK, Yin C, Peng L, Srikakulapu P, Bontha V, Hu D, Weih F, Weber C, Gerdes N, Habenicht AJ. Artery Tertiary Lymphoid Organs Contribute to Innate and Adaptive Immune Responses in Advanced Mouse Atherosclerosis. Circ Res 2014; 114:1772-87. [PMID: 24855201 DOI: 10.1161/circresaha.114.301137] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tertiary lymphoid organs emerge in tissues in response to nonresolving inflammation. Recent research characterized artery tertiary lymphoid organs in the aorta adventitia of aged apolipoprotein E–deficient mice. The atherosclerosis-associated lymphocyte aggregates are organized into distinct compartments, including separate T-cell areas harboring conventional, monocyte-derived, lymphoid, and plasmacytoid dendritic cells, as well as activated T-cell effectors and memory cells; B-cell follicles containing follicular dendritic cells in activated germinal centers; and peripheral niches of plasma cells. Artery tertiary lymphoid organs show marked neoangiogenesis, aberrant lymphangiogenesis, and extensive induction of high endothelial venules. Moreover, newly formed lymph node–like conduits connect the external lamina with high endothelial venules in T-cell areas and also extend into germinal centers. Mouse artery tertiary lymphoid organs recruit large numbers of naïve T cells and harbor lymphocyte subsets with opposing activities, including CD4
+
and CD8
+
effector and memory T cells, natural and induced CD4
+
regulatory T cells, and memory B cells at different stages of differentiation. These data suggest that artery tertiary lymphoid organs participate in primary immune responses and organize T- and B-cell autoimmune responses in advanced atherosclerosis. In this review, we discuss the novel concept that pro- and antiatherogenic immune responses toward unknown arterial wall–derived autoantigens may be organized by artery tertiary lymphoid organs and that disruption of the balance between pro- and antiatherogenic immune cell subsets may trigger clinically overt atherosclerosis.
Collapse
Affiliation(s)
- Sarajo Kumar Mohanta
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Changjun Yin
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Li Peng
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Prasad Srikakulapu
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Vineela Bontha
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Desheng Hu
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Falk Weih
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Norbert Gerdes
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| | - Andreas J.R. Habenicht
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (S.K.M., C.Y., C.W., N.G., A.J.R.H.); Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany (L.P., P.S., V.B., F.W.); and Institute of Molecular Immunology, Helmholtz Center Munich, Neuherberg, Germany (D.H.)
| |
Collapse
|
56
|
Upadhyay V, Fu YX. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells. Cytokine Growth Factor Rev 2014; 25:227-33. [PMID: 24411493 PMCID: PMC3999173 DOI: 10.1016/j.cytogfr.2013.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/15/2013] [Indexed: 01/02/2023]
Abstract
The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Committee on Immunology, University of Chicago, United States; Department of Pathology, University of Chicago, United States
| | - Yang-Xin Fu
- Committee on Immunology, University of Chicago, United States; Department of Pathology, University of Chicago, United States.
| |
Collapse
|
57
|
The role of lymphotoxin signaling in the development of autoimmune pancreatitis and associated secondary extra-pancreatic pathologies. Cytokine Growth Factor Rev 2014; 25:125-37. [DOI: 10.1016/j.cytogfr.2014.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 12/24/2022]
|
58
|
Chang JH, Kim S, Koo J, Lane PJL, Yoon SO, Park AY, Kim KS, Kim MY. The chronicity of tonsillitis is significantly correlated with an increase in an LTi cell portion. Inflammation 2014; 37:132-41. [PMID: 24022597 DOI: 10.1007/s10753-013-9721-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current study explored the relationship between lymphoid tissue inducer (LTi) cells and patients' clinical and immunological status. LTi cells are critical for lymphoid tissue development and maintenance of CD4 T cell-dependent immune responses. The percentage of CD117+CD3-CD56-CD127+ RORγ+ LTi cells isolated from human tonsils was determined and correlated with changes in other immune subsets and clinical factors. We found that the portion of LTi and CD4 T cells was significantly increased in chronic tonsillitis compared to non-inflamed tonsils. Additionally, the expression of OX40 by memory CD4 T cells and OX40 ligand (OX40L) and interleukin (IL)-22 by LTi cells was higher in chronically inflamed tonsils. The treatment for tonsillitis with ibuprofen did not alter LTi cell viability and the expression of OX40L and IL-22. These results demonstrate that during chronic inflammation, LTi cells are increased and express higher levels of OX40L and IL-22, and this is correlated with an increase in memory CD4 T cells.
Collapse
|
59
|
van de Pavert SA, Mebius RE. Development of secondary lymphoid organs in relation to lymphatic vasculature. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:81-91. [PMID: 24276888 DOI: 10.1007/978-3-7091-1646-3_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the initial event in lymphatic endothelial specification occurs slightly before the initiation of lymph node formation in mice, the development of lymphatic vessels and lymph nodes occurs within the same embryonic time frame. Specification of lymphatic endothelial cells starts around embryonic day 10 (E10), followed by endothelial cell budding and formation of the first lymphatic structures. Through lymphatic endothelial cell sprouting these lymph sacs give rise to the lymphatic vasculature which is complete by E15.5 in mice. It is within this time frame that lymph node formation is initiated and the first structure is secured in place. As lymphatic vessels are crucially involved in the functionality of the lymph nodes, the recent insight that both structures depend on common developmental signals for their initiation provides a molecular mechanism for their coordinated formation. Here, we will describe the common developmental signals needed to properly start the formation of lymphatic vessels and lymph nodes and their interdependence in adult life.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Royal Netherlands Academy of Arts and Sciences, Hubrecht Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands,
| | | |
Collapse
|
60
|
Koo J, Kim S, Jung WJ, Lee YE, Song GG, Kim KS, Kim MY. Increased Lymphocyte Infiltration in Rheumatoid Arthritis Is Correlated with an Increase in LTi-like Cells in Synovial Fluid. Immune Netw 2013; 13:240-8. [PMID: 24385942 PMCID: PMC3875782 DOI: 10.4110/in.2013.13.6.240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 01/06/2023] Open
Abstract
In this study, we compared the immune cell populations in rheumatoid arthritis (RA) synovial fluid, which shows lymphoid tissue-like structure, with those in tonsils, which are normal secondary lymphoid tissues. Firstly, we found that CD4-CD11b+ macrophages were the major population in RA synovial fluid and that B cells were the major population in tonsils. In addition, synovial fluid from patients with osteoarthritis, which is a degenerative joint disease, contained CD4+CD11b+ monocytes as the major immune cell population. Secondly, we categorized three groups based on the proportion of macrophages found in RA synovial fluid: (1) the macrophage-high group, which contained more than 80% macrophages; (2) the macrophage-intermediate group, which contained between 40% and 80% macrophages; and (3) the macrophage-low group, which contained less than 40% macrophages. In the macrophage-low group, more lymphoid tissue inducer (LTi)-like cells were detected, and the expression of OX40L and TRANCE in these cells was higher than that in the other groups. In addition, in this group, the suppressive function of regulatory T cells was downregulated. Finally, CXCL13 expression was higher in RA synovial fluid than in tonsils, but CCL21 expression was comparable in synovial fluid from all groups and in tonsils. These data demonstrate that increased lymphocyte infiltration in RA synovial fluid is correlated with an increase in LTi-like cells and the elevation of the chemokine expression.
Collapse
Affiliation(s)
- Jihye Koo
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Woong Jae Jung
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Ye Eun Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Gwan Gyu Song
- Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul 152-703, Korea
| | - Kyung-Su Kim
- Department of Otorhinolaryngology, Human Barrier Research Institute, Yonsei University College of Medicine, Seoul 135-720, Korea
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
61
|
Chen L, Fabian KL, Taylor JL, Storkus WJ. Therapeutic use of dendritic cells to promote the extranodal priming of anti-tumor immunity. Front Immunol 2013; 4:388. [PMID: 24348473 PMCID: PMC3843121 DOI: 10.3389/fimmu.2013.00388] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022] Open
Abstract
Ectopic lymphoid tissue, also known as tertiary lymphoid organs (TLO) develop adaptively within sites of chronic tissue inflammation, thereby allowing the host to efficiently crossprime specific immune effector cells within sites of disease. Recent evidence suggests that the presence of TLO in the tumor microenvironment (TME) predicts better overall survival. We will discuss the relevance of extranodal T cell priming within the TME as a means to effectively promote anti-tumor immunity and the strategic use of dendritic cell (DC)-based therapies to reinforce this clinically preferred process in the cancer-bearing host.
Collapse
Affiliation(s)
- Lu Chen
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Kellsye L Fabian
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Jennifer L Taylor
- Department of Dermatology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA ; Department of Dermatology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA ; University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| |
Collapse
|
62
|
Kain MJW, Owens BMJ. Stromal cell regulation of homeostatic and inflammatory lymphoid organogenesis. Immunology 2013; 140:12-21. [PMID: 23621403 DOI: 10.1111/imm.12119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/07/2013] [Accepted: 04/09/2013] [Indexed: 12/22/2022] Open
Abstract
Secondary lymphoid organs function to increase the efficiency of interactions between rare, antigen-specific lymphocytes and antigen presenting cells, concentrating antigen and lymphocytes in a supportive environment that facilitates the initiation of an adaptive immune response. Homeostatic lymphoid tissue organogenesis proceeds via exquisitely controlled spatiotemporal interactions between haematopoietic lymphoid tissue inducer populations and multiple subsets of non-haematopoietic stromal cells. However, it is becoming clear that in a range of inflammatory contexts, ectopic or tertiary lymphoid tissues can develop inappropriately under pathological stress. Here we summarize the role of stromal cells in the development of homeostatic lymphoid tissue, and assess emerging evidence that suggests a critical role for stromal involvement in the tertiary lymphoid tissue development associated with chronic infections and inflammation.
Collapse
Affiliation(s)
- Matthew J W Kain
- University of Oxford Medical School, John Radcliffe Hospital, Headington, Oxford, UK
| | | |
Collapse
|
63
|
Coles M, Veiga-Fernandes H. Insight into lymphoid tissue morphogenesis. Immunol Lett 2013; 156:46-53. [PMID: 23954810 DOI: 10.1016/j.imlet.2013.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 11/17/2022]
Abstract
Secondary lymphoid organs (SLO) are crucial structures for immune-surveillance and rapid immune responses allowing resident lymphocytes to encounter antigen-presenting cells that carry antigens from peripheral tissues. These structures develop during embryonic life through a tightly regulated process that involves interactions between haematopoietic and mesenchymal cells. Importantly, this morphogenesis potential is maintained throughout life since in chronic inflammatory conditions novel "tertiary lymphoid organs" can be generated by processes that are reminiscent of embryonic SLO development. In this review we will discuss early events in SLO morphogenesis, focusing on haematopoietic and mesenchymal cell subsets implicated on the development of lymphoid organs.
Collapse
Affiliation(s)
- Mark Coles
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
64
|
Chai Q, Onder L, Scandella E, Gil-Cruz C, Perez-Shibayama C, Cupovic J, Danuser R, Sparwasser T, Luther SA, Thiel V, Rülicke T, Stein JV, Hehlgans T, Ludewig B. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 2013; 38:1013-24. [PMID: 23623380 PMCID: PMC7111182 DOI: 10.1016/j.immuni.2013.03.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 03/29/2013] [Indexed: 01/11/2023]
Abstract
The stromal scaffold of the lymph node (LN) paracortex is built by fibroblastic reticular cells (FRCs). Conditional ablation of lymphotoxin-β receptor (LTβR) expression in LN FRCs and their mesenchymal progenitors in developing LNs revealed that LTβR-signaling in these cells was not essential for the formation of LNs. Although T cell zone reticular cells had lost podoplanin expression, they still formed a functional conduit system and showed enhanced expression of myofibroblastic markers. However, essential immune functions of FRCs, including homeostatic chemokine and interleukin-7 expression, were impaired. These changes in T cell zone reticular cell function were associated with increased susceptibility to viral infection. Thus, myofibroblasic FRC precursors are able to generate the basic T cell zone infrastructure, whereas LTβR-dependent maturation of FRCs guarantees full immunocompetence and hence optimal LN function during infection. Novel transgenic mouse model that targets FRCs in adult lymph nodes FRC-specific ablation of the LTβR did not abrogate LN development Myofibroblastic FRC precursors generate the basic infrastructure of the adult LN LTβR-mediated FRC maturation is critical for the maintenance of immunocompentence
Collapse
Affiliation(s)
- Qian Chai
- Institute of Immunobiology, Kantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bagabir R, Byers RJ, Chaudhry IH, Müller W, Paus R, Bayat A. Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br J Dermatol 2013; 167:1053-66. [PMID: 23106354 DOI: 10.1111/j.1365-2133.2012.11190.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Keloid disease (KD) is a common fibroproliferative disorder of unknown aetiology. T cells and macrophages are increased in KD and are thought to contribute to its pathogenesis. However, while a link between inflammation and fibrotic disorders is well known for other disorders, it remains undetermined in KD. OBJECTIVES Systematically to immunophenotype the inflammatory infiltrate of KD in situ in a site-specific manner, and to compare this with normal skin and scar tissue. METHODS Sixty-eight keloid cases were screened for the presence of all three (intralesional, perilesional and extralesional) keloid-associated specific tissue sites. Subsequently, a complete set of 25 keloid biopsies (from different patients) was compared with normal skin (n = 11) and normal scar (n = 11) samples and subjected to systematic, site-specific quantitative immunohistomorphometry and histochemistry, using a range of immunological markers of B cells, T cells, macrophages, mast cells (MCs) and Langerhans cells. RESULTS T cells, B cells, degranulated and mature MCs (coexpressing OX40 ligand) and alternative macrophages (M2) were all significantly increased in intralesional and perilesional KD sites compared with normal skin and scar tissue (P < 0·05). Additionally, 10 of 68 KD cases (15%) showed the presence of distinctive lymphoid aggregates, which resembled mucosa-associated lymphoid tissue (MALT). CONCLUSIONS The increased number and activity of MCs and M2 may implicate inflammation in the fibrotic process in KD. The distinct KD-associated lymphoid aggregate resembles MALT, for which we propose the term 'keloid-associated lymphoid tissue' (KALT). It may perpetuate inflammatory stimuli that promote KD growth. KALT, MCs and M2 are promising novel targets for future KD therapy.
Collapse
Affiliation(s)
- R Bagabir
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K
| | | | | | | | | | | |
Collapse
|
66
|
Brendolan A, Caamaño JH. Mesenchymal cell differentiation during lymph node organogenesis. Front Immunol 2012; 3:381. [PMID: 23248630 PMCID: PMC3522075 DOI: 10.3389/fimmu.2012.00381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/29/2012] [Indexed: 12/31/2022] Open
Abstract
Secondary lymphoid tissues such as lymph nodes are essential for the interactions between antigen presenting cells and lymphocytes that result in adaptive immune responses that protect the host against invading pathogens. The specialized architecture of these organs facilitates the cognate interactions between antigen-loaded dendritic cells and lymphocytes expressing their specific receptor as well as B-T cell interactions that are at the core of long lasting adaptive immune responses. Lymph nodes develop during embryogenesis as a result of a series of cross-talk interactions between a hematopoietically derived cell lineage called lymphoid tissue inducer cells and stromal cells of mesenchymal origin to form the anlagen of these organs. This review will present an overview of the different signaling pathways and maturation steps that mesenchymal cells undergo during the process of lymph node formation such as cell specification, priming, and maturation to become lymphoid tissue stromal organizer cells.
Collapse
Affiliation(s)
- Andrea Brendolan
- Division of Molecular Oncology, San Raffaele Scientific Institute Milan, Italy
| | | |
Collapse
|
67
|
Bénézech C, Mader E, Desanti G, Khan M, Nakamura K, White A, Ware CF, Anderson G, Caamaño JH. Lymphotoxin-β receptor signaling through NF-κB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells. Immunity 2012; 37:721-34. [PMID: 22940098 PMCID: PMC3809035 DOI: 10.1016/j.immuni.2012.06.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/20/2012] [Accepted: 06/30/2012] [Indexed: 01/08/2023]
Abstract
Lymph node development during embryogenesis involves lymphotoxin-β receptor engagement and subsequent differentiation of a poorly defined population of mesenchymal cells into lymphoid tissue organizer cells. Here, we showed that embryonic mesenchymal cells with characteristics of adipocyte precursors present in the microenvironment of lymph nodes gave rise to lymph node organizer cells. Signaling through the lymphotoxin-β receptor controlled the fate of adipocyte precursor cells by blocking adipogenesis and instead promoting lymphoid tissue stromal cell differentiation. This effect involved activation of the NF-κB2-RelB signaling pathway and inhibition of the expression of the key adipogenic factors Pparγ and Cebpα. In vivo organogenesis assays show that embryonic and adult adipocyte precursor cells can migrate into newborn lymph nodes and differentiate into a variety of lymph node stromal cells. Thus, we propose that adipose tissues act as a source of lymphoid stroma for lymph nodes and other lymphoid structures associated with fat.
Collapse
Affiliation(s)
- Cécile Bénézech
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Emma Mader
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Guillaume Desanti
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mahmood Khan
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kyoko Nakamura
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea White
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Carl F. Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Graham Anderson
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jorge H. Caamaño
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
68
|
Mechanisms and mediators of inflammation: potential models for skin rejection and targeted therapy in vascularized composite allotransplantation. Clin Dev Immunol 2012; 2012:757310. [PMID: 23049603 PMCID: PMC3459345 DOI: 10.1155/2012/757310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/09/2012] [Indexed: 02/07/2023]
Abstract
Vascularized composite allotransplantation (VCA) is an effective treatment option for patients suffering from limb loss or severe disfigurement. However, postoperative courses of VCA recipients have been complicated by skin rejection, and long-term immunosuppression remains a necessity for allograft survival. To widen the scope of this quality-of-life improving procedure minimization of immunosuppression in order to limit risks and side effects is needed. In some aspects, the molecular mechanisms and dynamics of skin allograft rejection seem similar to inflammatory skin conditions. T cells are key players in skin rejection and are recruited to the skin via activation of adhesion molecules, cytokines, and chemokines. Blocking these molecules has not only shown success in the treatment of inflammatory dermatoses, but also prolonged graft survival in various models of solid organ transplantation. In addition to T cell recruitment, ectopic lymphoid structures within the allograft associated with chronic rejection in solid organ transplantation might contribute to the strong alloimmune response towards the skin. Selectively targeting the molecules involved offers exciting novel therapeutic options in the prevention and treatment of skin rejection after VCA.
Collapse
|
69
|
Weih F, Gräbner R, Hu D, Beer M, Habenicht AJR. Control of dichotomic innate and adaptive immune responses by artery tertiary lymphoid organs in atherosclerosis. Front Physiol 2012; 3:226. [PMID: 22783198 PMCID: PMC3390894 DOI: 10.3389/fphys.2012.00226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/04/2012] [Indexed: 12/29/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) emerge in tissues in response to non-resolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs) in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE−/− mice. ATLOs are structured into T cell areas harboring conventional dendritic cells and monocyte-derived DCs; B cell follicles containing follicular dendritic cells within activated germinal centers; and peripheral niches of plasma cells. ATLOs also show extensive neoangiogenesis, aberrant lymphangiogenesis, and high endothelial venule (HEV) neogenesis. Newly formed conduit networks connect the external lamina of the artery with HEVs in T cell areas. ATLOs recruit and generate lymphocyte subsets with opposing activities including activated CD4+ and CD8+ effector T cells, natural and induced CD4+ T regulatory (nTregs; iTregs) cells as well as B-1 and B-2 cells at different stages of differentiation. These data indicate that ATLOs organize dichotomic innate and adaptive immune responses in atherosclerosis. In this review we discuss the novel concept that dichotomic immune responses toward atherosclerosis-specific antigens are carried out by ATLOs in the adventitia of the arterial wall and that malfunction of the tolerogenic arm of ATLO immunity triggers transition from silent autoimmune reactivity to clinically overt disease.
Collapse
Affiliation(s)
- Falk Weih
- Leibniz-Institute for Age Research, Fritz-Lipmann-Institute Jena, Germany
| | | | | | | | | |
Collapse
|
70
|
Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 2012; 33:297-305. [PMID: 22622061 PMCID: PMC7106385 DOI: 10.1016/j.it.2012.04.006] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 01/07/2023]
Abstract
The lymph nodes (LNs) and spleen have an optimal structure that allows the interaction between T cells, B cells and antigen-presenting dendritic cells (DCs) on a matrix made up by stromal cells. Such a highly organized structure can also be formed in tertiary lymphoid organs (TLOs) at sites of infection or chronic immune stimulation. This review focuses on the molecular mechanisms of TLO formation and maintenance, the controversies surrounding the nature of the inducing events, and the functions of these structures in infection, transplantation and autoimmunity.
Collapse
|
71
|
Expression and function of interleukin-7 in secondary and tertiary lymphoid organs. Semin Immunol 2012; 24:175-89. [PMID: 22444422 DOI: 10.1016/j.smim.2012.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/06/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
Abstract
Interleukin-7 (IL-7) is known since many years as stromal-cell derived cytokine that plays a key role for the adaptive immune system. It promotes lymphocyte development in the bone marrow and thymus as well as naive and memory T cell homeostasis in the periphery. More recently, IL-7 reporter mice and other approaches have led to the further characterization of the various stromal cell sources of IL-7 in secondary lymphoid organs (SLO) and other tissues. We will review these advances along with a discussion of the regulation of IL-7 and its receptor, and compare the biological effects IL-7 has on adaptive as well as innate immune cells in SLO. Finally, we will review the role of IL-7 in development of SLO and tertiary lymphoid tissues that frequently are associated with sites of chronic inflammation.
Collapse
|
72
|
Neonatal lymph node stromal cells drive myelodendritic lineage cells into a distinct population of CX3CR1+CD11b+F4/80+ regulatory macrophages in mice. Blood 2012; 119:3975-86. [PMID: 22403256 DOI: 10.1182/blood-2011-06-359315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Beyond providing a scaffold for immune cells, recent studies indicate that lymph node stromal cells provide potent regulatory capacities that affect the quality of adaptive immune responses. In this study, we provide evidence that neonatal lymph node stromal cells (nnLNSCs) consistently promote the differentiation of macrophage dendritic cell progenitors as well as mature and immature dendritic cells into a distinct population of CX3CR1(+) CD11b(+)F4/80(+) regulatory macrophages (regMΦ). These cells possess remarkably low levels of T cell costimulatory molecules as well as MHC class II molecules. regMΦ do not interfere with early T-cell activation but, via nitric oxide secretion, efficiently suppress T-cell proliferation. Furthermore, CD4(+) T cells proliferating in the presence of regMΦ gain immunosuppressive capacity and MΦ isolated from day 3 nnLNs are T-cell immunosuppressive. Adoptive transfer of antigen-loaded regMΦ induce a profound antigen-specific immune suppression in vivo. Together our data show that nnLNSCs skew the differentiation of dendritic cells and their progenitors toward regMΦ, thus revealing a novel mechanism for local immune regulation.
Collapse
|
73
|
Koning JJ, Mebius RE. Interdependence of stromal and immune cells for lymph node function. Trends Immunol 2011; 33:264-70. [PMID: 22153930 DOI: 10.1016/j.it.2011.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/15/2011] [Accepted: 10/31/2011] [Indexed: 01/09/2023]
Abstract
Lymph nodes are strategically located throughout the body to allow lymphocytes to efficiently encounter their cognate antigen and become activated. The structure of the lymph nodes is such that B and T lymphocytes each have their own microdomain. This structure is provided by lymph node stromal cells, which also provide the lymphocytes with a scaffold upon which to migrate. Here, we discuss how stromal cells differentiate from mesenchymal precursor cells in response to the interaction with lymphocytes, while these stromal cells in turn provide necessary survival factors for the lymphocytes. We propose that during immune reactions, the interactions of stromal and immune cells are similarly important for controlling the expanding lymphocyte pool.
Collapse
Affiliation(s)
- Jasper J Koning
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
74
|
Mortha A, Diefenbach A. Natural killer cell receptor-expressing innate lymphocytes: more than just NK cells. Cell Mol Life Sci 2011; 68:3541-55. [PMID: 21904914 PMCID: PMC11114688 DOI: 10.1007/s00018-011-0803-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/17/2022]
Abstract
Recently, additional subsets that extend the family of innate lymphocytes have been discovered. Among these newly identified innate lymphoid cells is a subset sharing phenotypic characteristics of natural killer cells and lymphoid tissue inducer cells. These cells co-express the transcription factor RORγt and activating NK cell receptors (NKR), but their lineage and functional qualities remain poorly defined. Here, we discuss recent proposals to place these NKR(+)RORγt(+) innate lymphocytes on hematopoietic lineage maps. An overview of the transcriptional circuitry determining fate decisions of innate lymphocytes and a summary of current concepts concerning plasticity and stability of innate lymphocyte effector fates are provided. We will conclude by discussing the function of RORγt-expressing innate lymphocytes during inflammatory bowel diseases and in the immune response to tumors.
Collapse
Affiliation(s)
- Arthur Mortha
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, 79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, 79104 Freiburg, Germany
| | - Andreas Diefenbach
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, 79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, 79104 Freiburg, Germany
| |
Collapse
|
75
|
Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K, Hartson L, Kolls JK, Khader SA, Randall TD. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol 2011; 12:639-46. [PMID: 21666689 PMCID: PMC3520063 DOI: 10.1038/ni.2053] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/12/2011] [Indexed: 12/11/2022]
Abstract
Ectopic or tertiary lymphoid tissues, such as inducible bronchus-associated lymphoid tissue (iBALT), form in nonlymphoid organs after local infection or inflammation. However, the initial events that promote this process remain unknown. Here we show that iBALT formed in mouse lungs as a consequence of pulmonary inflammation during the neonatal period. Although we found CD4(+)CD3(-) lymphoid tissue-inducer cells (LTi cells) in neonatal lungs, particularly after inflammation, iBALT was formed in mice that lacked LTi cells. Instead, we found that interleukin 17 (IL-17) produced by CD4(+) T cells was essential for the formation of iBALT. IL-17 acted by promoting lymphotoxin-α-independent expression of the chemokine CXCL13, which was important for follicle formation. Our results suggest that IL-17-producing T cells are critical for the development of ectopic lymphoid tissues.
Collapse
Affiliation(s)
- Javier Rangel-Moreno
- Department of Medicine, Division of Allergy Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Interaction between different types of hematopoietic cells is essential for proper functioning of the immune system. For instance, the cytokines produced by antigen-presenting dendritic cells will determine the type of T cell response that is induced. However, hematopoietic cells are also strongly influenced by the surrounding nonhematopoietic cells. The cells that form these microenvironments are collectively called stromal cells. Here, we focus on the stromal cells present within secondary lymphoid organs and discuss their importance for various aspects of the immune system.
Collapse
Affiliation(s)
- Ramon Roozendaal
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
77
|
Geremia A, Arancibia-Cárcamo CV, Fleming MPP, Rust N, Singh B, Mortensen NJ, Travis SPL, Powrie F. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. ACTA ACUST UNITED AC 2011; 208:1127-33. [PMID: 21576383 PMCID: PMC3173242 DOI: 10.1084/jem.20101712] [Citation(s) in RCA: 515] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased numbers of innate lymphoid cells in patients with inflammatory bowel disease. Results of experimental and genetic studies have highlighted the role of the IL-23/IL-17 axis in the pathogenesis of inflammatory bowel disease (IBD). IL-23–driven inflammation has been primarily linked to Th17 cells; however, we have recently identified a novel population of innate lymphoid cells (ILCs) in mice that produces IL-17, IL-22, and IFN-γ in response to IL-23 and mediates innate colitis. The relevance of ILC populations in human health and disease is currently poorly understood. In this study, we have analyzed the role of IL-23–responsive ILCs in the human intestine in control and IBD patients. Our results show increased expression of the Th17-associated cytokine genes IL17A and IL17F among intestinal CD3− cells in IBD. IL17A and IL17F expression is restricted to CD56− ILCs, whereas IL-23 induces IL22 and IL26 in the CD56+ ILC compartment. Furthermore, we observed a significant and selective increase in CD127+CD56− ILCs in the inflamed intestine in Crohn’s disease (CD) patients but not in ulcerative colitis patients. These results indicate that IL-23–responsive ILCs are present in the human intestine and that intestinal inflammation in CD is associated with the selective accumulation of a phenotypically distinct ILC population characterized by inflammatory cytokine expression. ILCs may contribute to intestinal inflammation through cytokine production, lymphocyte recruitment, and organization of the inflammatory tissue and may represent a novel tissue-specific target for subtypes of IBD.
Collapse
Affiliation(s)
- Alessandra Geremia
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 9DU, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Chou HS, Hsieh CC, Yang HR, Wang L, Arakawa Y, Brown K, Wu Q, Lin F, Peters M, Fung JJ, Lu L, Qian S. Hepatic stellate cells regulate immune response by way of induction of myeloid suppressor cells in mice. Hepatology 2011; 53:1007-19. [PMID: 21374665 PMCID: PMC3079329 DOI: 10.1002/hep.24162] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Although organ transplants have been applied for decades, outcomes of somatic cell transplants remain disappointing, presumably due to lack of appropriate supporting stromal cells. Thus, cotransplantation with liver stromal cells, hepatic stellate cells (HSC), achieves long-term survival of islet allografts in mice by way of induction of effector T cell apoptosis and generation of regulatory T (Treg) cells. In this study we provide evidence both in vitro and in vivo that HSC can promote generation of myeloid-derived suppressor cells (MDSC). HSC-induced MDSC demonstrate potent immune inhibitory activity. Induction of MDSC is dependent on an intact interferon gamma signaling pathway in HSC and is mediated by soluble factors, suggesting that the specific tissue stromal cells, such as HSC, play a crucial role in regulating immune response by way of inflammation-induced generation of MDSC. Large amounts of MDSC can be propagated in vitro from bone marrow-derived myeloid precursor cells under the influence of HSC. CONCLUSION Cotransplantation with in vitro generated MDSC can effectively protect islet allografts from host immune attack. Local delivery of potent immune suppressor cells for cell transplants holds great clinical application potential.
Collapse
Affiliation(s)
- Hong-Shiue Chou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Ching-Chuan Hsieh
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Horng-Ren Yang
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Lianfu Wang
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Yusuke Arakawa
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Kathleen Brown
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Qingyu Wu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Feng Lin
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland OH
| | - Marion Peters
- Department of Surgery, University of California at San Francisco, CA
| | - John J. Fung
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
79
|
Milićević NM, Klaperski K, Nohroudi K, Milićević Ž, Bieber K, Baraniec B, Blessenohl M, Kalies K, Ware CF, Westermann J. TNF receptor-1 is required for the formation of splenic compartments during adult, but not embryonic life. THE JOURNAL OF IMMUNOLOGY 2010; 186:1486-94. [PMID: 21187446 DOI: 10.4049/jimmunol.1000740] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lymphotoxin β-receptor (LTβR) and TNF receptor-1 (TNFR1) are important for the development of secondary lymphoid organs during embryonic life. The significance of LTβR and TNFR1 for the formation of lymphoid tissue during adult life is not well understood. Immunohistochemistry, morphometry, flow cytometry, and laser microdissection were used to compare wild-type, LTβR(-/-), TNFR1(-/-) spleens with splenic tissue that has been newly formed 8 wk after avascular implantation into adult mice. During ontogeny, LTβR is sufficient to induce formation of the marginal zone, similar-sized T and B cell zones, and a mixed T/B cell zone that completely surrounded the T cell zone. Strikingly, in adult mice, the formation of splenic compartments required both LTβR and TNFR1 expression, demonstrating that the molecular requirements for lymphoid tissue formation are different during embryonic and adult life. Thus, interfering with the TNFR1 pathway offers the possibility to selectively block the formation of ectopic lymphoid tissue and at the same time to spare secondary lymphoid organs such as spleen and lymph nodes. This opens a new perspective for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Novica M Milićević
- Institute of Histology and Embryology, Faculty of Medicine, University of Beograd, 11000 Beograd, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Regulation of inducible BALT formation and contribution to immunity and pathology. Mucosal Immunol 2010; 3:537-44. [PMID: 20811344 DOI: 10.1038/mi.2010.52] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inducible bronchus-associated lymphoid tissue (iBALT) is an organized tertiary lymphoid structure that is not pre-programmed but develops in response to infection or under chronic inflammatory conditions. Emerging research has shown that iBALT provides a niche for T-cell priming and B-cell education to assist in the clearance of infectious agents, highlighting the prospect that iBALT may be engineered and harnessed to enhance protective immunity against respiratory pathogens. Although iBALT formation is associated with several canonical factors of secondary lymphoid organogenesis such as lymphotoxin-α and the homeostatic chemokines, CXCL13, CCL19, and CCL21, these cytokines are not mandatory for its formation, even though they influence its organization and function. Similarly, lymphoid tissue-inducer cells are not a requisite of iBALT formation. In contrast, dendritic cells are emerging as pivotal players required to form and sustain the presence of iBALT. Regulatory T cells appear to be able to attenuate the development of iBALT, although the underlying mechanisms remain ill-defined. In this review, we discuss facets unique to iBALT induction, the cellular subsets, and molecular cues that govern this process, and the contribution of this ectopic structure toward the generation of immune responses in the pulmonary compartment.
Collapse
|
81
|
Hayasaka H, Taniguchi K, Fukai S, Miyasaka M. Neogenesis and development of the high endothelial venules that mediate lymphocyte trafficking. Cancer Sci 2010; 101:2302-8. [PMID: 20726857 PMCID: PMC11158135 DOI: 10.1111/j.1349-7006.2010.01687.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Physiological recruitment of lymphocytes from the blood into lymph nodes and Peyer's patches is mediated by high endothelial venules (HEV), specialized blood vessels found in secondary lymphoid tissues except for the spleen. The HEV are distinguished from other types of blood vessels by their tall and plump endothelial cells, and by their expression of specific chemokines and adhesion molecules, which all contribute to the selective lymphocyte trafficking across these blood vessels. The development of HEV is ontogenically regulated, and they appear perinatally in the mouse. High endothelial venules can appear ectopically, for instance in chronically inflamed tissues. Given that HEV enable the efficient trafficking of lymphocytes into tissues, the induction of HEV at a tumor site could potentiate tumor-specific immune responses, and the artificial manipulation of HEV neogenesis might thus provide a new tool for cancer immunotherapy. However, the process of HEV development and the mechanisms by which the unique features of HEV are maintained are incompletely understood. In this review, we discuss the process of HEV neogenesis and development during ontogeny, and their molecular requirements for maintaining their unique characteristics under physiological conditions.
Collapse
Affiliation(s)
- Haruko Hayasaka
- Department of Microbiology and Immunology, Laboratory of Immunodynamics, Osaka University Graduate School of Medicine Laboratory of Immunodynamics, WPI Immunology Frontier Center, Osaka University, Osaka, Japan.
| | | | | | | |
Collapse
|
82
|
Kim S, Han S, Kim MY. Heterogeneity of IL-22-producing Lymphoid Tissue Inducer-like Cells in Human and Mouse. Immune Netw 2010; 10:115-9. [PMID: 20844735 PMCID: PMC2939355 DOI: 10.4110/in.2010.10.4.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 01/05/2023] Open
Abstract
Lymphoid tissue inducer (LTi) cells have been characterized in mouse as a key cell when secondary lymphoid tissues are organized during development and memory T cells are formed after birth. In addition to their involvement in adaptive immune responses, recent studies show that they contribute to innate immune responses by producing large amount of interleukin (IL)-22 against microbial attack. Here, we compare IL-22-producing LTi and LTi-like cells in human and mouse and discuss their heterogeneity in different tissues.
Collapse
Affiliation(s)
- Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | | | | |
Collapse
|
83
|
Abstract
Secondary lymphoid organs are important locations for the initiation of adaptive immune responses. They develop before birth, and their formation requires interaction between lymphotoxin-α₁ß₂-expressing lymphoid-tissue inducer cells and lymphotoxin-ß receptor-expressing stromal organizer cells. Here, we discuss new insights into the earliest phases of peripheral lymph node and Peyer's patch formation that occur before lymphotoxin-ß receptor signalling and suggest a role for the developing nervous system. In addition, we discuss the differing requirements for the postnatal formation of mucosa-associated lymphoid tissues and tertiary lymphoid structures that develop at sites of chronic inflammation.
Collapse
|
84
|
Abstract
Malignant cells can induce the formation of lymphoid tissue–like structures that help the tumor evade host immunity.
Collapse
Affiliation(s)
- Carlene L Zindl
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
85
|
Buettner M, Pabst R, Bode U. Stromal cell heterogeneity in lymphoid organs. Trends Immunol 2010; 31:80-6. [DOI: 10.1016/j.it.2009.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|
86
|
Coles M, Kioussis D, Veiga-Fernandes H. Cellular and Molecular Requirements in Lymph Node and Peyer's Patch Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:177-205. [DOI: 10.1016/s1877-1173(10)92008-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
87
|
|
88
|
GeurtsvanKessel CH, Willart MAM, Bergen IM, van Rijt LS, Muskens F, Elewaut D, Osterhaus ADME, Hendriks R, Rimmelzwaan GF, Lambrecht BN. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. ACTA ACUST UNITED AC 2009; 206:2339-49. [PMID: 19808255 PMCID: PMC2768850 DOI: 10.1084/jem.20090410] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tertiary lymphoid organs (TLOs) are organized aggregates of B and T cells formed in postembryonic life in response to chronic immune responses to infectious agents or self-antigens. Although CD11c+ dendritic cells (DCs) are consistently found in regions of TLO, their contribution to TLO organization has not been studied in detail. We found that CD11chi DCs are essential for the maintenance of inducible bronchus-associated lymphoid tissue (iBALT), a form of TLO induced in the lungs after influenza virus infection. Elimination of DCs after the virus had been cleared from the lung resulted in iBALT disintegration and reduction in germinal center (GC) reactions, which led to significantly reduced numbers of class-switched plasma cells in the lung and bone marrow and reduction in protective antiviral serum immunoglobulins. Mechanistically, DCs isolated from the lungs of mice with iBALT no longer presented viral antigens to T cells but were a source of lymphotoxin (LT) β and homeostatic chemokines (CXCL-12 and -13 and CCL-19 and -21) known to contribute to TLO organization. Like depletion of DCs, blockade of LTβ receptor signaling after virus clearance led to disintegration of iBALT and GC reactions. Together, our data reveal a previously unappreciated function of lung DCs in iBALT homeostasis and humoral immunity to influenza virus.
Collapse
Affiliation(s)
- Corine H GeurtsvanKessel
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Ruddle NH, Akirav EM. Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. THE JOURNAL OF IMMUNOLOGY 2009; 183:2205-12. [PMID: 19661265 DOI: 10.4049/jimmunol.0804324] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Secondary lymphoid organs (SLOs) include lymph nodes, spleen, Peyer's patches, and mucosal tissues such as the nasal-associated lymphoid tissue, adenoids, and tonsils. Less discretely anatomically defined cellular accumulations include the bronchus-associated lymphoid tissue, cryptopatches, and isolated lymphoid follicles. All SLOs serve to generate immune responses and tolerance. SLO development depends on the precisely regulated expression of cooperating lymphoid chemokines and cytokines such as LTalpha, LTbeta, RANKL, TNF, IL-7, and perhaps IL-17. The relative importance of these factors varies between the individual lymphoid organs. Participating in the process are lymphoid tissue initiator, lymphoid tissue inducer, and lymphoid tissue organizer cells. These cells and others that produce crucial cytokines maintain SLOs in the adult. Similar signals regulate the transition from inflammation to ectopic or tertiary lymphoid tissues.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520--8089, USA
| | | |
Collapse
|
90
|
Evans I, Kim MY. Involvement of lymphoid inducer cells in the development of secondary and tertiary lymphoid structure. BMB Rep 2009; 42:189-93. [PMID: 19403040 DOI: 10.5483/bmbrep.2009.42.4.189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
During development lymphoid tissue inducer (LTi) cells are the first hematopoietic cells to enter the secondary lymphoid anlagen and induce lymphoid tissue neogenesis. LTi cells induce lymphoid tissue neogensis by expressing a wide range of proteins that are associated with lymphoid organogenesis. Among these proteins, membrane-bound lymphotoxin (LT) alpha1beta2 has been identified as a critical component to this process. LTalpha1beta2 interacts with the LTbeta-receptor on stromal cells and this interaction induces up-regulation of adhesion molecules and production of chemokines that are necessary for the attraction, retention and organization of other cell types. Constitutive expression of LTalpha1beta2 in adult LTi cells can result in the formation of a lymphoid-like structure called tertiary lymphoid tissue. In this review, we summarize the function of fetal and adult LTi cells and their involvement in secondary and tertiary lymphoid tissue development in murine models.
Collapse
Affiliation(s)
- Isabel Evans
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Birmingham Medical School, Birmingham, UK
| | | |
Collapse
|
91
|
Gräbner R, Lötzer K, Döpping S, Hildner M, Radke D, Beer M, Spanbroek R, Lippert B, Reardon CA, Getz GS, Fu YX, Hehlgans T, Mebius RE, van der Wall M, Kruspe D, Englert C, Lovas A, Hu D, Randolph GJ, Weih F, Habenicht AJR. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice. ACTA ACUST UNITED AC 2009; 206:233-48. [PMID: 19139167 PMCID: PMC2626665 DOI: 10.1084/jem.20080752] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis involves a macrophage-rich inflammation in the aortic intima. It is increasingly recognized that this intimal inflammation is paralleled over time by a distinct inflammatory reaction in adjacent adventitia. Though cross talk between the coordinated inflammatory foci in the intima and the adventitia seems implicit, the mechanism(s) underlying their communication is unclear. Here, using detailed imaging analysis, microarray analyses, laser-capture microdissection, adoptive lymphocyte transfers, and functional blocking studies, we undertook to identify this mechanism. We show that in aged apoE−/− mice, medial smooth muscle cells (SMCs) beneath intimal plaques in abdominal aortae become activated through lymphotoxin β receptor (LTβR) to express the lymphorganogenic chemokines CXCL13 and CCL21. These signals in turn trigger the development of elaborate bona fide adventitial aortic tertiary lymphoid organs (ATLOs) containing functional conduit meshworks, germinal centers within B cell follicles, clusters of plasma cells, high endothelial venules (HEVs) in T cell areas, and a high proportion of T regulatory cells. Treatment of apoE−/− mice with LTβR-Ig to interrupt LTβR signaling in SMCs strongly reduced HEV abundance, CXCL13, and CCL21 expression, and disrupted the structure and maintenance of ATLOs. Thus, the LTβR pathway has a major role in shaping the immunological characteristics and overall integrity of the arterial wall.
Collapse
Affiliation(s)
- Rolf Gräbner
- Institute for Vascular Medicine, Friedrich Schiller University of Jena, 07743 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Ahrendt M, Hammerschmidt SI, Pabst O, Pabst R, Bode U. Stromal cells confer lymph node-specific properties by shaping a unique microenvironment influencing local immune responses. THE JOURNAL OF IMMUNOLOGY 2008; 181:1898-907. [PMID: 18641327 DOI: 10.4049/jimmunol.181.3.1898] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lymph nodes (LN) consist not only of highly motile immune cells coming from the draining area or from the systemic circulation, but also of resident stromal cells building the backbone of the LN. These two cell types form a unique microenvironment which is important for initiating an optimal immune response. The present study asked how the unique microenvironment of the mesenteric lymph node (mLN) is influenced by highly motile cells and/or by the stromal cells. A transplantation model in rats and mice was established. After resecting the mLN, fragments of peripheral lymph node (pLN) or mLN were inserted into the mesentery. The pLN and mLN have LN-specific properties, resulting in differences of, for example, the CD103(+) dendritic cell subset, the adhesion molecule mucosal addressin cell adhesion molecule 1, the chemokine receptor CCR9, the cytokine IL-4, and the enzyme retinal dehydrogenase 2. This new model clearly showed that during regeneration stromal cells survived and immune cells were replaced. Surviving high endothelial venules retained their site-specific expression (mucosal addressin cell adhesion molecule 1). In addition, the low expression of retinal dehydrogenase 2 and CCR9 persisted in the transplanted pLN, suggesting that stromal cells influence the lymph node-specific properties. To examine the functional relevance of this different expression pattern in transplanted animals, an immune response against orally applied cholera toxin was initiated. The data showed that the IgA response against cholera toxin is significantly diminished in animals transplanted with pLN. This model documents that stromal cells of the LN are active players in shaping a unique microenvironment and influencing immune responses in the drained area.
Collapse
Affiliation(s)
- Manuela Ahrendt
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
93
|
Abstract
The nomenclature "embryonic lymphoid tissue inducer (LTi) cell" reflects the fundamental role of the cell in secondary lymphoid tissue organization. In addition, it is equally important in primary lymphoid tissue development as it regulates central tolerance to self-antigens in the thymus. An adult LTi cell constitutively expresses two sets of tumor necrosis factor (TNF) family members, whereas its embryonic counterpart expresses only one. The first set is lymphotoxin (LT)alpha, LTbeta, and TNalpha, which are essential for the secondary lymphoid organogenesis during embryogenesis and for maintaining an organized secondary lymphoid structure during adulthood. The second set is OX40- and CD30-ligands, which are critical for memory T cell generation. Adult LTi cells regulate adaptive immune responses by providing LTbetaR signals to stromal cells to maintain secondary lymphoid tissue structure, and determine adaptive immune responses by providing OX40 and CD30 survival signals to activated T cells in memory T cell generation. Along with the consideration of the roles of embryonic LTi cells in primary and secondary lymphoid tissues, this review highlights the roles of adult LTi cells in secondary lymphoid tissue function.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, 511 Sangdo-dong, Dongjak-gu, Seoul 156-743, Korea.
| |
Collapse
|
94
|
Shimomura Y, Ogawa A, Kawada M, Sugimoto K, Mizoguchi E, Shi HN, Pillai S, Bhan AK, Mizoguchi A. A unique B2 B cell subset in the intestine. ACTA ACUST UNITED AC 2008; 205:1343-55. [PMID: 18519649 PMCID: PMC2413032 DOI: 10.1084/jem.20071572] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Over 80% of the body's activated B cells are located in mucosal sites, including the intestine. The intestine contains IgM+ B cells, but these cells have not been characterized phenotypically or in terms of their developmental origins. We describe a previously unidentified and unique subset of immunoglobulin M+ B cells that present with an AA4.1−CD21−CD23− major histocompatibility complex class IIbright surface phenotype and are characterized by a low frequency of somatic hypermutation and the potential ability to produce interleukin-12p70. This B cell subset resides within the normal mucosa of the large intestine and expands in response to inflammation. Some of these intestinal B cells originate from the AA4.1+ immature B2 cell pool in the steady state and are also recruited from the recirculating naive B cell pool in the context of intestinal inflammation. They develop in an antigen-independent and BAFF-dependent manner in the absence of T cell help. Expansion of these cells can be induced in the absence of the spleen and gut-associated lymphoid tissues. These results describe the existence of an alternative pathway of B cell maturation in the periphery that gives rise to a tissue-specific B cell subset.
Collapse
Affiliation(s)
- Yasuyo Shimomura
- Experimental Pathology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Stachowiak AN, Irvine DJ. Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J Biomed Mater Res A 2008; 85:815-28. [DOI: 10.1002/jbm.a.31661] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
96
|
Heikenwalder M, Prinz M, Zeller N, Lang KS, Junt T, Rossi S, Tumanov A, Schmidt H, Priller J, Flatz L, Rülicke T, Macpherson AJ, Holländer GA, Nedospasov SA, Aguzzi A. Overexpression of lymphotoxin in T cells induces fulminant thymic involution. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1555-70. [PMID: 18483211 PMCID: PMC2408416 DOI: 10.2353/ajpath.2008.070572] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2008] [Indexed: 01/12/2023]
Abstract
Activated lymphocytes and lymphoid-tissue inducer cells express lymphotoxins (LTs), which are essential for the organogenesis and maintenance of lymphoreticular microenvironments. Here we describe that T-cell-restricted overexpression of LT induces fulminant thymic involution. This phenotype was prevented by ablation of the LT receptors tumor necrosis factor receptor (TNFR) 1 or LT beta receptor (LTbetaR), representing two non-redundant pathways. Multiple lines of transgenic Ltalphabeta and Ltalpha mice show such a phenotype, which was not observed on overexpression of LTbeta alone. Reciprocal bone marrow transfers between LT-overexpressing and receptor-ablated mice show that involution was not due to a T cell-autonomous defect but was triggered by TNFR1 and LTbetaR signaling to radioresistant stromal cells. Thymic involution was partially prevented by the removal of one allele of LTbetaR but not of TNFR1, establishing a hierarchy in these signaling events. Infection with the lymphocytic choriomeningitis virus triggered a similar thymic pathology in wt, but not in Tnfr1(-/-) mice. These mice displayed elevated TNFalpha in both thymus and plasma, as well as increased LTs on both CD8(+) and CD4(-)CD8(-) thymocytes. These findings suggest that enhanced T cell-derived LT expression helps to control the physiological size of the thymic stroma and accelerates its involution via TNFR1/LTbetaR signaling in pathological conditions and possibly also in normal aging.
Collapse
Affiliation(s)
- Mathias Heikenwalder
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Irvine DJ, Stachowiak AN, Hori Y. Lymphoid tissue engineering: Invoking lymphoid tissue neogenesis in immunotherapy and models of immunity. Semin Immunol 2008; 20:137-46. [DOI: 10.1016/j.smim.2007.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 10/11/2007] [Indexed: 01/28/2023]
|
98
|
Abstract
Ectopic or tertiary lymphoid tissues develop at sites of inflammation or infection in peripheral, non-lymphoid organs. These tissues are architecturally similar to conventional secondary lymphoid organs, with separated B and T cell areas, specialized populations of dendritic cells, well-differentiated stromal cells and high endothelial venules. Ectopic lymphoid tissues are often associated with the local pathology that results from chronic infection or chronic inflammation. However, there are also examples in which ectopic lymphoid tissues appear to contribute to local protective immune responses. Here we review how ectopic lymphoid structures develop and function in the context of local immunity and pathology.
Collapse
Affiliation(s)
- Damian M Carragher
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, United States
| | | | | |
Collapse
|
99
|
Abstract
The recognition that lymphocytes existed in different varieties and that lymphoid organs were important for their differentiation greatly influenced immunological research. The growing awareness that started in the mid-fifties of the previous century has shifted the emphasis of immunology from a molecular, mostly serological science to the cell-oriented modern immunology of today. Matters such as hematopoietic differentiation, cell-cell interaction, cellular activation, as well as migratory behavior of hematopoietic cells received much attention and deepened our insight in the immune system. The relatively recent generation of mutant mice lacking lymphoid organs prompted the realization that the organogenesis of lymphoid organs could be dissected at the cellular and molecular level. Now we can distinguish several phases of development for lymphoid organs, and can assign molecules and cells to be essentially involved in these phases. Future research will identify additional molecules and cells required for the formation of the various lymphoid organs, because the picture is not complete yet.
Collapse
Affiliation(s)
- Mark F R Vondenhoff
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
100
|
Abstract
Secondary lymphoid organs develop during embryogenesis or in the first few weeks after birth according to a highly coordinated series of interactions between newly emerging hematopoietic cells and immature mesenchymal or stromal cells. These interactions are orchestrated by homeostatic chemokines, cytokines, and growth factors that attract hematopoietic cells to sites of future lymphoid organ development and promote their survival and differentiation. In turn, lymphotoxin-expressing hematopoietic cells trigger the differentiation of stromal and endothelial cells that make up the scaffolding of secondary lymphoid organs. Lymphotoxin signaling also maintains the expression of adhesion molecules and chemokines that govern the ultimate structure and function of secondary lymphoid organs. Here we describe the current paradigm of secondary lymphoid organ development and discuss the subtle differences in the timing, molecular interactions, and cell types involved in the development of each secondary lymphoid organ.
Collapse
|