51
|
Shi Z, Hu C, Li Q, Sun C. Cancer-Associated Fibroblasts as the "Architect" of the Lung Cancer Immune Microenvironment: Multidimensional Roles and Synergistic Regulation with Radiotherapy. Int J Mol Sci 2025; 26:3234. [PMID: 40244052 PMCID: PMC11989671 DOI: 10.3390/ijms26073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the "architect" of the immune microenvironment in lung cancer, play a multidimensional role in tumor progression and immune regulation. In this review, we summarize the heterogeneity of the origin and the molecular phenotype of CAFs in lung cancer, and explore the complex interactions between CAFs and multiple components of the tumor microenvironment, including the regulatory relationships with innate immune cells (e.g., tumor-associated macrophages, tumor-associated neutrophils), adaptive immune cells (e.g., T cells), and extracellular matrix (ECM). CAFs significantly influence tumor progression and immunomodulation through the secretion of cytokines, remodeling of the ECM, and the regulation of immune cell function significantly affects the immune escape and treatment resistance of tumors. In addition, this review also deeply explored the synergistic regulatory relationship between CAF and radiotherapy, revealing the key role of CAF in radiotherapy-induced remodeling of the immune microenvironment, which provides a new perspective for optimizing the comprehensive treatment strategy of lung cancer. By comprehensively analyzing the multidimensional roles of CAF and its interaction with radiotherapy, this review aims to provide a theoretical basis for the precise regulation of the immune microenvironment and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Zheng Shi
- School of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
52
|
Sun D, Cui X, Yang W, Wei M, Yan Z, Zhang M, Yu W. Simvastatin inhibits PD-L1 via ILF3 to induce ferroptosis in gastric cancer cells. Cell Death Dis 2025; 16:208. [PMID: 40140647 PMCID: PMC11947124 DOI: 10.1038/s41419-025-07562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
The treatment of gastric cancer remains challenging, with immunotherapy serving as a critical component of the holistic approach to its treatment. The results of this study indicated that statins could decrease the serum levels of interleukin-enhancing binding factor 3 (ILF3) and programmed cell death ligand 1(PD-L1) in GC patients and improve their prognosis. Functional experiments demonstrated that simvastatin induced ferroptosis by inhibiting ILF3 in GC cells and enhanced the killing effect of activated CD8+ T cells on GC cells. The CUT&Tag assay revealed that, mechanistically, simvastatin inhibited ILF3 expression by reducing the acetylation level at residue site H3K14 in ILF3. Next-generation sequencing and Kyoto Encyclopedia of Genes and Genomes analysis revealed that ILF3 regulated PD-L1 expression through the DEPTOR/mTOR signaling pathway. Overall, simvastatin induced ferroptosis in GC cells by inhibiting ILF3 expression while promoting the activation of CD8+ T cells to augment antitumor immune responses, thereby facilitating synergistic immunotherapy.
Collapse
Affiliation(s)
- Danping Sun
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Xiaohan Cui
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Wenshuo Yang
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Meng Wei
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Zhibo Yan
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Wenbin Yu
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| |
Collapse
|
53
|
Tang Q, Li J, Zhang L, Zeng S, Bao Q, Hu W, He L, Huang G, Wang L, Liu Y, Zhao X, Yang S, Hu C. Orlistat facilitates immunotherapy via AKT-FOXO3a-FOXM1-mediated PD-L1 suppression. J Immunother Cancer 2025; 13:e008923. [PMID: 40139835 PMCID: PMC11951015 DOI: 10.1136/jitc-2024-008923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/02/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The immunotherapy targeting cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death ligand-1 (PD-L1) has achieved significant breakthroughs, but further improvements are still needed in cancer treatment. METHODS We investigated orlistat, a drug approved by the Food and Drug Administration for the treatment of obesity and found that it can enhance the efficacy of CTLA-4 blockade immunotherapy. We conducted both in vivo and in vitro experiments to explore the mechanism by which orlistat increased antitumor immunity. RESULTS Orlistat enhances the efficacy of anti-CTLA-4 immunotherapy by suppressing tumor cell PD-L1 protein expression and boosting the transcription of interferon-stimulated genes (ISGs) and MHC-I. Mechanistically, orlistat inhibits AKT activity and subsequent phosphorylation of forkhead box O3a (FOXO3a) at its threonine (T) 32, serine (S) 253, thereby downregulating Forkhead box M1 (FOXM1) expression, which ultimately suppresses PD-L1 transcription. Specifically, inhibition of FOXM1 leads to FOXO3a accumulation through impaired AKT activity. FOXM1 activates protein kinase B (AKT) via acting as a scaffold to facilitate 3-phosphoinositide-dependent protein kinase 1 (PDK1) and AKT and interaction. In addition, orlistat enhances phosphorylated signal transducer and activator of transcription 1 (p-STAT1) at tyrosine (Y) 701, resulting in upregulation of ISGs and MHC-I. CONCLUSIONS Orlistat plays a crucial role in modulating the immune response and supporting the combination with CTLA-4 blockade to promote antitumor immunotherapy.
Collapse
Affiliation(s)
- Qingyun Tang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Jie Li
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lianhua Zhang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shuo Zeng
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Qiyu Bao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Weichao Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lijiao He
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Guiping Huang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Liting Wang
- Army Military Medical University, Chongqing, China
| | - Yunyi Liu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Xiaoyan Zhao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Changjiang Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| |
Collapse
|
54
|
Jeong M, Kim KB. Recent Research on Role of p53 Family in Small-Cell Lung Cancer. Cancers (Basel) 2025; 17:1110. [PMID: 40227619 PMCID: PMC11988120 DOI: 10.3390/cancers17071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive malignancy characterized by rapid proliferation, early metastasis, and frequent recurrence, which contribute to a poor prognosis. SCLC is defined by the near-universal inactivation of key tumor suppressor genes, notably TP53 and RB1, which play central roles in its pathogenesis and resistance to therapy. The p53 family of proteins, including p53, p63, and p73, is essential to maintaining cellular homeostasis and tumor suppression. TP53 mutations are almost ubiquitous in SCLC, leading to dysregulated apoptosis and cell cycle control. Moreover, p73 shows potential as a compensatory mechanism for p53 loss, while p63 has a minimal role in this cancer type. In this review, we explore the molecular and functional interplay of the p53 family in SCLC, emphasizing its members' distinct yet interconnected roles in tumor suppression, immune modulation, and therapy resistance. We highlight emerging therapeutic strategies targeting these pathways, including reactivating mutant p53, exploiting synthetic lethality, and addressing immune evasion mechanisms. Furthermore, this review underscores the urgent need for novel, isoform-specific interventions to enhance treatment efficacy and improve patient outcomes in this challenging disease.
Collapse
Affiliation(s)
- Minho Jeong
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kee-Beom Kim
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
55
|
Naldi L, Peri A, Fibbi B. Apelin/APJ: Another Player in the Cancer Biology Network. Int J Mol Sci 2025; 26:2986. [PMID: 40243599 PMCID: PMC11988549 DOI: 10.3390/ijms26072986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The apelinergic system exerts multiple biological activities in human pathologies, including cancer. Overactivation of apelin/APJ, which has been detected in many malignant tumors, and the strong correlation with progression-free and overall survival, suggested the role of an oncogene for the apelin gene. Emerging evidence sheds new light on the effects of apelin on cellular functions and homeostasis in cancer cells and supports a direct role for this pathway on different hallmarks of cancer: "sustaining proliferative signaling", "resisting cell death", "activating invasion and metastasis", "inducing/accessing vasculature", "reprogramming cellular metabolism", "avoiding immune destruction" and "tumor-promoting inflammation", and "enabling replicative immortality". This article reviews the currently available literature on the intracellular processes regulated by apelin/APJ, focusing on those pathways correlated with tumor development and progression. Furthermore, the association between the activity of the apelinergic axis and the resistance of cancer cells to oncologic treatments (chemotherapy, immunotherapy, radiation) suggests apelin/APJ as a possible target to potentiate traditional therapies, as well as to develop diagnostic and prognostic applications. This issue will be also covered in the review.
Collapse
Affiliation(s)
- Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
56
|
Wu X, Hou S, Ye Y, Gao Z. CXCR2P1 enhances the response of gastric cancer to PD-1 inhibitors through increasing the immune infiltration of tumors. Front Immunol 2025; 16:1545605. [PMID: 40176817 PMCID: PMC11961440 DOI: 10.3389/fimmu.2025.1545605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
Background Recent years, immunotherapy has emerged as a pivotal approach in cancer treatment. However, the response of gastric cancer to immunotherapy exhibits significant heterogeneity. Therefore, the early identification of gastric cancer patients who are likely to benefit from immunotherapy and the discovery of novel therapeutic targets are of critical importance. Materials and methods We collected data from European Nucleotide Archive (ENA) and Gene Expression Omnibus (GEO) databases. In project PRJEB25780, we performed WGCNA analysis and Lasso regression and chose CXCR2P1 for the subsequent analysis. Then, we compared the expression difference of CXCR2P1 among different groups. Kaplan-Meier curve was used to analyze the prognostic value of CXCR2P1, which was validated by project IMvigor210 and GEO datasets. ESTIMATE and CIBERSORT algorithm were used to evaluate the reshaping effect of CXCR2P1 to immune microenvironment of tumor. Differentially expressed genes (DEG) analysis, enrichGO analysis, Gene Set Enrichment Analysis (GSEA) and co-expression analysis were used to explore the cell biological function and signaling pathway involved in CXCR2P1. Results WGCNA identified CXCR2P1 as a hub gene significantly associated with immune response to PD-1 inhibitors in gastric cancer. CXCR2P1 expression was elevated in responders and correlated with better prognosis. Functional analysis revealed its role in reshaping the tumor immune microenvironment by promoting immune cell infiltration, including M1 macrophages, activated CD4+ T cells, and follicular helper T cells. CXCR2P1 enhanced antigen presentation via the MHC-II complex, influenced key immune pathways, such as Toll-like receptor signaling and T-cell activation, which led to the up-regulation of expression of PD-L1. GSEA showed CXCR2P1 were correlated with microRNAs. Through DEG analysis and expression analysis, MIR215 was identified as a potential direct target of CXCR2P1. Conclusion High expression of CXCR2P1 is correlated with better response to PD-1 inhibitor. It reshapes the immune microenvironment by increasing immune infiltration and changing the fraction of immune cells. In tumor immune microenvironment, CXCR2P1 can promote inflammation, enhance antigen presentation and activate the PD-1/PD-L1-related signaling pathway, which might be achieved by CXCR2P1-MIR215 axis.
Collapse
Affiliation(s)
- Xinchun Wu
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
| | - Sen Hou
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing, China
| | - Zhidong Gao
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
57
|
Liu Y, Liu Y, Niu X, Chen A, Li Y, Yu Y, Mo B, Liu Z, Xu T, Cheng J, Wu Z, Wei W. Massively parallel interrogation of human functional variants modulating cancer immunosurveillance. Signal Transduct Target Ther 2025; 10:88. [PMID: 40102418 PMCID: PMC11920242 DOI: 10.1038/s41392-025-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized clinical cancer treatment, while abnormal PD-L1 or HLA-I expression in patients can significantly impact the therapeutic efficacy. Somatic mutations in cancer cells that modulate these critical regulators are closely associated with tumor progression and ICB response. However, a systematic interpretation of cancer immune-related mutations is still lacking. Here, we harnessed the ABEmax system to establish a large-scale sgRNA library encompassing approximately 820,000 sgRNAs that target all feasible serine/threonine/tyrosine residues across the human genome, which systematically unveiled thousands of novel mutations that decrease or augment PD-L1 or HLA-I expression. Beyond residues associated with phosphorylation events, our screens also identified functional mutations that affect mRNA or protein stability, DNA binding capacity, protein-protein interactions, and enzymatic catalytic activity, leading to either gene inactivation or activation. Notably, we uncovered certain mutations that concurrently modulate PD-L1 and HLA-I expression, represented by the clinically relevant mutation SETD2_Y1666. We demonstrated that this mutation induces consistent phenotypic effects across multiple cancer cell lines and enhances the efficacy of immunotherapy in different tumor models. Our findings provide an unprecedented resource of functional residues that regulate cancer immunosurveillance, offering valuable guidance for clinical diagnosis, ICB therapy, and the development of innovative drugs for cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuran Niu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Ang Chen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yizhou Li
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Binrui Mo
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Tao Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Cheng
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeguang Wu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
58
|
Huang Q, Xu YF, Li HP, Zhang T. Bioinformatics and experimental approach reveal potential prognostic and immunological roles of key mitochondrial metabolism-related genes in cervical cancer. Front Oncol 2025; 15:1522910. [PMID: 40165902 PMCID: PMC11955473 DOI: 10.3389/fonc.2025.1522910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Background Metabolic remodeling is the hallmark of cancer. In recent years, mitochondrial metabolism (MM) has been considered essential in tumorigenesis and cancer progression. Understanding the role of MM in cervical cancer (CC) can provide insights into disease progression and potential therapeutic targets. Methods Clinical data of CC patients was downloaded from the UCSC Xena dataset, and differentially expressed genes (DEGs) were identified between tumor and normal samples. MM-related genes (MMRGs) were screened from the MSigDB database. DEGs and MMRGs were then intersected to identify differentially expressed MMRGs. A prognostic risk model was constructed based on these intersecting genes through Cox regression analysis, and its association with the tumor microenvironment and immune checkpoint-related genes was evaluated. Hub genes' expression was evaluated in cells through qRT-PCR. Additionally, drug sensitivity analysis was conducted to explore potential therapeutic drugs. Results We identified 259 overlapping genes between DEGs and MMRGs, with 55 being prognosis-related. Two molecular clusters were revealed, with C1 exhibiting poorer prognosis. A prognostic risk model comprising five genes (BDH1, MIR210, MSMO1, POLA1, and STARD3NL) was established, showing significant associations with survival outcomes of CC patients. Functional enrichment analysis revealed that DEGs between high- and low-risk groups were tightly associated with the immune system. Analysis of the immune microenvironment showed significant differences between different risk groups, with higher immune and ESTIMATE scores observed in the low-risk group. Additionally, expression levels of immune checkpoint-related genes were significantly correlated with the risk score. Drug sensitivity analysis identified potential therapeutic agents correlated with the expression of the five prognostic genes. Conclusion Our findings underscore the importance of MM in CC progression and provide potential therapeutic targets for CC.
Collapse
Affiliation(s)
- Qing Huang
- Gynecology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yang-feng Xu
- Gynecology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Hui-ping Li
- Gynecology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Ting Zhang
- Orthopedics Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
59
|
Che J, Liu Y, Liu Y, Song J, Cui H, Feng D, Tian A, Zhang Z, Xu Y. The application of emerging immunotherapy in the treatment of prostate cancer: progress, dilemma and promise. Front Immunol 2025; 16:1544882. [PMID: 40145100 PMCID: PMC11937122 DOI: 10.3389/fimmu.2025.1544882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, there has been a growing trend towards the utilization of immunotherapy techniques for the treatment of cancer. Some malignancies have acquired significant progress with the use of cancer vaccines, immune checkpoint inhibitors, and adoptive cells therapy. Scholars are exploring the aforementioned methods as potential treatments for advanced prostate cancer (PCa) due to the absence of effective adjuvant therapy to improve the prognosis of metastatic castration-resistant prostate cancer (mCRPC). Immunotherapy strategies have yet to achieve significant advancements in the treatment of PCa, largely attributed to the inhibitory tumor microenvironment and low mutation load characteristic of this malignancy. Hence, researchers endeavor to address these challenges by optimizing the design and efficacy of immunotherapy approaches, as well as integrating them with other therapeutic modalities. To date, studies have also shown potential clinical benefits. This comprehensive review analyzed the utilization of immunotherapy techniques in the treatment of PCa, assessing their advantages and obstacles, with the aim of providing healthcare professionals and scholars with a comprehensive understanding of the progress in this field.
Collapse
Affiliation(s)
- Jizhong Che
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yuanyuan Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yangyang Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Jingheng Song
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Hongguo Cui
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Dongdong Feng
- Department of Urology, Haiyang City People’s Hospital, Yantai, Shandong, China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Zhengchao Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
60
|
Song H, Chen L, Pan X, Shen Y, Ye M, Wang G, Cui C, Zhou Q, Tseng Y, Gong Z, Zhong B, Cui H, Mo S, Zheng J, Jin B, Zheng W, Luo F, Liu J. Targeting tumor monocyte-intrinsic PD-L1 by rewiring STING signaling and enhancing STING agonist therapy. Cancer Cell 2025; 43:503-518.e10. [PMID: 40068600 DOI: 10.1016/j.ccell.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
STING is an important DNA sensing machinery in initiating immune response, yet therapies targeting STING have shown poor outcomes in clinical trials. Here, we reveal that STING signaling induces PD-L1hi tumor monocytes (Tu.Mons) that dominate the resistance against STING agonist therapy. Cell-intrinsic PD-L1, induced by the STING-IRF3-IFN-I axis, is identified as the driving factor for protumoral PD-L1hi Tu.Mons. Notably, TLR2-activated Tu.Mons resist STING-induced upregulation of cell-intrinsic PD-L1 and the associated protumoral functions. Mechanistically, TLR2 stimulation remodels STING signaling by facilitating STING and TRAF6 interaction, which suppresses the IRF3-IFN-I response and enhances NF-κB activation. Moreover, we demonstrate that combining STING agonists with TLR2 agonist pretreatment significantly improves antitumor efficacy in murine syngeneic and humanized models. Our findings uncover a protumoral aspect of STING activation mediated by cell-intrinsic PD-L1 and propose a promising strategy to boost antitumor immunity by fine-tuning STING signaling outputs.
Collapse
Affiliation(s)
- Huan Song
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lin Chen
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuru Shen
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Maolin Ye
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guohong Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Qi Zhou
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yujen Tseng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zheng Gong
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Zhong
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haoshu Cui
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaocong Mo
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiayue Zheng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bryan Jin
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jie Liu
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China.
| |
Collapse
|
61
|
Liu Y, Gong L, Feng J, Xiao C, Liu C, Chen B, Chen L, Jin M, Guan Y, Gao Z, Huang W. Co-delivery of axitinib and PD-L1 siRNA for the synergism of vascular normalization and immune checkpoint inhibition to boost anticancer immunity. J Nanobiotechnology 2025; 23:194. [PMID: 40059141 PMCID: PMC11892300 DOI: 10.1186/s12951-025-03170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/27/2025] [Indexed: 05/13/2025] Open
Abstract
Immune checkpoint inhibition (ICI) has become the mainstay of immunotherapy for the treatment of renal cell carcinoma (RCC). However, only a small portion of patients exhibit a positive response to PD-1/PD-L1 blockade therapy and the key reason is that RCC belongs to a vascular-rich tumor for promoting immunosuppression. Specifically, the dysfunctional tumor vasculature hinders effector T cell infiltration and induces immunosuppressive tumor microenvironment via the release of cytokine, which attenuates the therapeutic efficacy of ICI. Therefore, regulating abnormal tumor vasculature may be a promising strategy to overcome the immunosuppressive microenvironment and enhance ICI therapy. Here, we propose an NGR peptide-modified actively targeted liposome (Axi/siRNAPD-L1@NGR-Lipo) to encapsulate the anti-angiogenic agents Axitinib and PD-L1 siRNA to promote tumor vasculature normalization and relieve immune evasion for enhanced anti-tumor immunotherapy. With NGR-mediated tumor homing and active targeting, Axi/siRNAPD-L1@NGR-Lipo could act on tumor vascular endothelial cells to inhibit neo-angiogenesis, increase pericyte coverage and vascular perfusion, and normalize the structure and function of tumor blood vessels. Meanwhile, it also enhanced immune effector T cells and NK cells infiltration and reduced the proportion of immunosuppressive T cells including MDSC cells and Tregs, thus improving the tumor immunosuppressive microenvironment. Moreover, Axi/siRNAPD-L1@NGR-Lipo reduced the expression of PD-L1 protein in tumor cells, restored the recognition and killing ability of cytotoxic T cells, and relieved immune evasion. As expected, Axi/siRNAPD-L1@NGR-Lipo displayed superior anti-tumor and anti-metastatic efficacy in mice bearing RCC. Overall, this study demonstrated the important potential of regulating abnormal tumor vasculature to reshape the immunosuppressive microenvironment and boost ICI therapy, which represents a promising avenue for the synergistic anti-tumor with cancer immunotherapy.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Department of Pharmacy, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chenfei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bohan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
62
|
Ding CH, Yan FZ, Xu BN, Qian H, Hong XL, Liu SQ, Luo YY, Wu SH, Cai LY, Zhang X, Xie WF. PRMT3 drives PD-L1-mediated immune escape through activating PDHK1-regulated glycolysis in hepatocellular carcinoma. Cell Death Dis 2025; 16:158. [PMID: 40050608 PMCID: PMC11885674 DOI: 10.1038/s41419-025-07482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Aberrant expression of programmed death ligand-1 (PD-L1) facilitates tumor immune evasion. Protein arginine methyltransferase 3 (PRMT3), a member of type I PRMT family, mediates asymmetric dimethylarginine (ADMA) modification of various substrate proteins. This study investigates the role of PRMT3 in PD-L1-associated tumor immunosuppression in hepatocellular carcinoma (HCC). Hepatocyte-specific knockout of Prmt3 significantly suppressed HCC progression in DEN-CCL4-treated mice. Knockout of Prmt3 in HCC cells markedly increased CD8+ T cell infiltration, and reduced lactate production in tumors. PRMT3 interacted with pyruvate dehydrogenase kinase 1 (PDHK1), asymmetric dimethylation of PDHK1 at arginine 363 and 368 residues and increased its kinase activity. The R363/368 K mutant or inhibition of PDHK1 by JX06 blocked the effect of PRMT3 on lactate production. JX06 treatment also attenuated the tumor-promoting role of PRMT3 in HCC in vitro and in vivo. Furthermore, RNA-seq analysis revealed that knockout of PRMT3 downregulates the tumor-associated immune checkpoint, PD-L1, in tumor tissues. Chromatin immunoprecipitation (ChIP) assay demonstrated that PRMT3 promotes lactate-induced PD-L1 expression by enhancing the direct binding of histone H3 lysine 18 lactylation (H3K18la) to the PD-L1 promoter. Tissue microarray analysis showed a positive correlation between PRMT3 and PD-L1 expression in HCC patients. Anti-PD-L1 treatment reversed PRMT3-induced tumor growth and restored CD8+ T cell infiltration. Our research links PRMT3-mediated metabolic reprogramming and immune evasion, revealing that the PRMT3-PDHK1-lactate-PD-L1 axis may be a potential target for improving the efficacy of immunotherapy in HCC.
Collapse
Affiliation(s)
- Chen-Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang-Zhi Yan
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bo-Nan Xu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xia-Lu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Yuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ling-Yan Cai
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
63
|
Li Z, Zhu N, Liu Y, Yu Y, Wang T, Zou C, Wang S, Ou X. A disproportionality analysis of real-world events from the FDA Adverse Event Reporting System (FAERS) for Atezolizumab. BMC Pharmacol Toxicol 2025; 26:51. [PMID: 40038564 PMCID: PMC11881481 DOI: 10.1186/s40360-025-00879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND An increasing number of clinical studies have highlighted the use of atezolizumab in tumor immunotherapy. However, There is still a lack of comprehensive research on its associated adverse events (AEs). To improve our understanding of its toxicological profile and to provide valuable clinical insights regarding into the effectiveness of immunotherapy, this study utilized data from the US Food and Drug Administration Adverse Event Reporting System (FAERS) to conduct a retrospective analysis of AEs linked to atezolizumab. METHODS We extracted the reports of AEs related to atezolizumab from the FAERS database from the first quarter of 2004 to the first quarter of 2024. We quantified them using the reporting odds ratio (ROR) and proportional reporting ratio (PRR), along with chi-square value (χ²), and conducted systematic classification of the AE signal mining results through SAS 9.4 software. RESULTS A total of 19,563 valid reports were incorporated, involving 20 distinct system organ class categories. The AEs related to atezolizumab, reported at the preferred term level, mainly encompassed anemia [ROR 2.33, 95% confidence interval (CI) lower limit 2.09, PRR 2.31, χ² 255.977], febrile neutropenia (ROR 2.81, 95% CI lower limit 2.50, PRR 2.79, χ² 333.586), neutrophil count decreased (ROR 2.14, 95% CI lower limit 1.89, PRR 2.13, χ² 150.688), white blood cell count decreased (ROR 2.35, 95% CI lower limit 2.03, PRR 2.34, χ² 136.673), sepsis (ROR 2.21, 95% CI lower limit 1.91, PRR 2.20, χ² 117.741), alanine aminotransferase increased (ALT) (ROR 2.86, 95% CI lower limit 2.44, PRR 2.85, χ² 180.031), and aspartate aminotransferase increased (AST) (ROR 2.79, 95% CI lower limit 2.38, PRR 2.78, χ² 170.955). CONCLUSIONS Apart from various degrees of hepatotoxicity, such as increased ALT and AST, the immune-related hematological toxicity of atezolizumab should also be noted. In clinical practice, healthcare providers should always be vigilant for the occurrence of such medication-related AEs and take measures to enhance the safety of clinical medication use.
Collapse
Affiliation(s)
- Zhuoyang Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ning Zhu
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwei Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yan Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tianhong Wang
- The Department of Clinical Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Congcong Zou
- Anesthesia and Surgery Center of West China Xiamen Hospital, Sichuan University, 699 Jinyuan West Road, Xingbin Street, Jimei District, Xiamen, Fujian Province, China
| | - Siman Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Ou
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
64
|
Yang Y, Cao L, Xu X, Li D, Deng Y, Li L, Zeng B, Jiang H, Shan L, Huang Y, Xu Y, Ma L. NSUN2/ALYREF axis-driven m 5C methylation enhances PD-L1 expression and facilitates immune evasion in non-small-cell lung cancer. Cancer Immunol Immunother 2025; 74:132. [PMID: 40029463 PMCID: PMC11876480 DOI: 10.1007/s00262-025-03986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
Non-small-cell lung cancer (NSCLC) represents a highly prevalent form of malignancy. 5-methylcytosine (m5C) methylation functions as a key post-transcriptional regulatory mechanism linked to cancer progression. The persistent expression of PD-L1 in tumor cells plays a pivotal role in facilitating immune evasion and promoting T-cell exhaustion. However, the involvement of m5C in NSCLC immune evasion remains inadequately understood. This study seeks to explore the function of the m5C methyltransferase NSUN2 in modulating PD-L1 expression and facilitating immune evasion in NSCLC. Our findings indicate elevated levels of NSUN2 and ALYREF in NSCLC, and both promote the growth of NSCLC cells and the progression of lung cancer. Moreover, the expression of PD-L1 in NSCLC tissues positively correlates with NSUN2 and ALYREF expression. We then discovered that PD-L1 acts as a downstream target of NSUN2-mediated m5C modification in NSCLC cells. Knocking down NSUN2 significantly reduces m5C modification of PD-L1 mRNA, thereby decreasing its stability via the m5C reader ALYREF-dependent manner. Furthermore, inhibiting NSUN2 enhanced CD8+ T-cell activation and infiltration mediated by PD-L1, thereby boosting antitumor immunity, as confirmed in both in vitro and in vivo experiments. Collectively, these results suggested that NSUN2/ALYREF/PD-L1 axis plays a critical role in promoting NSCLC progression and tumor cell immune suppression, highlighting its potential as a novel therapeutic strategy for NSCLC immunotherapy.
Collapse
Affiliation(s)
- Yiran Yang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Leiqun Cao
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Xin Xu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Yiran Deng
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Lan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Bingjie Zeng
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Haixia Jiang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Liang Shan
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Yiwen Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Yunhua Xu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China.
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China.
| |
Collapse
|
65
|
Yang X, Zhang J, Wang P, Wang F, Tang X. Deciphering the Role of CD14 in Helicobacter Pylori-associated Gastritis and Gastric Cancer: Combing Bioinformatics Analysis and Experiments. J Cancer 2025; 16:1918-1933. [PMID: 40092684 PMCID: PMC11905408 DOI: 10.7150/jca.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Gastric cancer (GC) is the third leading cause of cancer-related death and is associated with high mortality and morbidity. Helicobacter pylori (HP) infection is the most important cause of GC. We aimed to identify the core genes of HP caused GC and further elucidate the underlying mechanisms. Methods: GC and HP associated gastritis (HPAG) gene expression data were sourced from Gene Expression Omnibus. Key genes affecting GC prognosis were identified using Cytoscape software. Patient groups were formed based on key gene expression, and the immune analyses were performed with R. MNU, derived from nitrite by HP, was given to GC mice (240ppm) for histology and fluorescence assays. For in vitro experiments, cells received MNU (20 μM) stimulation for 24 hours. Results: CD14 was the only key gene identified. A total of 412 GC patients were divided into CD14-high and CD14-low groups. The two groups showed significant differences in immune cell populations and immune checkpoints. In particular, there was a notable increase in M2 macrophages in GC patients with high CD14 expression (P <0.001). GC Patients with high CD14 expression exhibited a more pronounced immune response than those with low CD14 expression, and elevated CD14 expression positively correlated with the efficacy of CTLA4 therapy (P <0.05). These results indicated that CD14 expression was strongly correlated with the GC immune response. A noticeable increase in CD14 levels was observed in MNU-induced GC animals, cell models, and GC patients. In addition, the number of M2 macrophages was increased in MNU-induced GC mice. Conclusion: Reducing CD14 expression may increase the survival rate of GC patients through the modulation of immune responses. The complex mechanism of CD14's influence on prognosis deserves further investigation.
Collapse
Affiliation(s)
- Xuefei Yang
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
66
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
67
|
Di Marco L, Romanzi A, Pivetti A, De Maria N, Ravaioli F, Salati M, Villa E, Di Benedetto F, Magistri P, Dominici M, Colecchia A, Di Sandro S, Spallanzani A. Suppressing, stimulating and/or inhibiting: The evolving management of HCC patient after liver transplantation. Crit Rev Oncol Hematol 2025; 207:104607. [PMID: 39725094 DOI: 10.1016/j.critrevonc.2024.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024] Open
Abstract
Liver transplantation (LT) is a curative strategy for hepatocellular carcinoma (HCC), but the risk of HCC recurrence remains a challenging problem. In patients with HCC recurrence after LT (HCC-R_LT), the locoregional and surgical approaches are complex, and the guidelines do not report evidence-based strategies for the management of immunosuppression. In recent years, immunotherapy has become an effective option for patients with advanced HCC in pre-transplant settings. However, due to the risk of potentially fatal allograft rejection, the use of immunotherapy is avoided in post-transplant settings. Combining immunosuppressants with immunotherapy in transplant patients is also challenging due to the complex tumor microenvironment and immunoreactivity. The fear of acute liver rejection and the lack of predictive factors hinder the successful clinical application of immunotherapy for post-liver transplantation HCC recurrence. This review aims to comprehensively summarize the risk of HCC-R_LT, the available evidence for the efficacy of immunotherapy in patients with HCC-R_LT, and the clinical issues regarding the innovative management of this patient population.
Collapse
Affiliation(s)
- Lorenza Di Marco
- Department of Oncology and Hematology, Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41124, Italy; Department of Biomedical, Metabolic and Neural Sciences, Clinical and Experimental Medicine Program, University of Modena and Reggio Emilia, Modena 41124, Italy.
| | - Adriana Romanzi
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Alessandra Pivetti
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Nicola De Maria
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna 40138, Italy.
| | - Massimiliano Salati
- Department of Oncology and Hematology, Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41124, Italy.
| | - Erica Villa
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy; National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte 70013, Italy.
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Paolo Magistri
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Massimo Dominici
- Department of Oncology and Hematology, Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41124, Italy.
| | - Antonio Colecchia
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Stefano Di Sandro
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Andrea Spallanzani
- Department of Oncology and Hematology, Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41124, Italy.
| |
Collapse
|
68
|
Huang H, Chen B, Feng C, Chen W, Wu D. Exploring the mediating role of immune cells in the pathogenesis of IgA nephropathy through the inflammatory axis of gut microbiota from a genomic perspective. Mamm Genome 2025; 36:306-316. [PMID: 39505739 PMCID: PMC11880094 DOI: 10.1007/s00335-024-10081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
IgA nephropathy (IgAN) is a chronic glomerular disease characterized by the deposition of IgA antibodies in the kidney's mesangium. Its pathogenesis involves genetic, immune, and environmental factors, particularly within the mucosal immune system and gut microbiota. Immune cells play a central role in mediating these processes, which this study investigates using Mendelian Randomization (MR) to explore causal relationships among gut microbiota, inflammatory markers, blood cells, and immune cells in IgAN pathogenesis. We conducted a two-sample MR analysis using Genome-Wide Association Study (GWAS) summary data to assess the causal effects of gut microbiota, inflammatory markers, and blood cell traits on IgAN. Data sources included the FinnGen dataset for IgAN and relevant GWAS datasets for immune traits, blood cells, and inflammatory markers. Inverse variance weighting (IVW) was the primary MR method, supported by sensitivity analyses. We particularly examined the mediation effect of immune cells on these exposures' influence on IgAN. Significant associations were found between several factors and IgAN. Gut microbiota traits, such as Firmicutes E and Sporomusales, increased IgAN risk, while Citrobacter A and Herbinix reduced it. Inflammatory markers, including Interleukin-10 and Fibroblast Growth Factor 23, promoted IgAN onset. Blood cell traits like red blood cell perturbation response increased risk, while monocyte perturbation response was protective. Immune traits played a key mediating role, with Transitional %B cells reducing IgAN risk and CD28- CD25 + + CD8br %T cells increasing it. This study highlights the pivotal mediating role of immune cells in the interactions between gut microbiota, inflammatory markers, and IgAN risk. These findings identify potential biomarkers and therapeutic targets, providing new insights into the immune mechanisms underlying IgAN and opportunities for intervention.
Collapse
Affiliation(s)
- Haoxiang Huang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cong Feng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Dapeng Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
69
|
Ribeiro MP, Canadas-Sousa A, Aluai-Cunha C, de Fátima Carvalho M, Santos AF. Immunohistochemical Expression of Programmed Death-Ligand 1 and Cytotoxic T-Lymphocyte Antigen-4 in Canine Cutaneous Mast Cell Tumours. Vet Comp Oncol 2025; 23:109-115. [PMID: 39701664 DOI: 10.1111/vco.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Mast cell tumours (MCTs) are the most frequent cutaneous neoplasia of the dog, and they have very variable biological behaviour and survival times. Surgery is still the best treatment, and despite the several adjuvant therapies described, many cases are very aggressive and resistant to these treatments making it urgent to find new therapeutic targets. Nowadays, immunotherapy targeting immune checkpoints has been described as a complementary treatment for several human cancers, but it is still very scarcely studied in veterinary medicine. Therefore, this study aimed to investigate the expression of the checkpoint proteins programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) to evaluate their potential as therapeutic targets for MCT. Through immunohistochemical study, it was analysed the expression of PD-L1 and CTLA-4 in 74 MCT cases from the archive of the Veterinary Pathology Laboratory of the University of Porto (LabPatVet). Tumour size, histological grade, ki-67 proliferation index, mitotic count and presence of metastatic disease were also assessed. Most of the cases expressed both immune checkpoints in neoplastic cells. There was a statistically significant inverse association between the expression of CTLA-4 and MCT grade (p < 0,001) and mitotic count (p < 0.001). PD-L1 was significantly and negatively related to HG (p = 0.004), and tumour size (р = 0.014). Tumour size, histological grade and mitotic count were positively associated with metastatic disease. Additionally, it was observed that the expression of PD-L1 and CTLA-4 was interrelated (p < 0.001). This study demonstrated that MCT cells express both PD-L1 and CTLA-4 and that their expression was associated with MCT prognostic factors.
Collapse
Affiliation(s)
- Mariana Pinto Ribeiro
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ana Canadas-Sousa
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Veterinary Siences, Vasco da Gama University School, Coimbra, Portugal
| | - Catarina Aluai-Cunha
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Maria de Fátima Carvalho
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Ferreira Santos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Animal Science and Study Centre/Food and Agrarian Sciences and Technologies Institute (CECA/ICETA), P. Gomes Teixeira, Porto, Portugal
| |
Collapse
|
70
|
Stagno J, Deme J, Dwivedi V, Lee YT, Lee HK, Yu P, Chen SY, Fan L, Degenhardt MS, Chari R, Young H, Lea S, Wang YX. Structural investigation of an RNA device that regulates PD-1 expression in mammalian cells. Nucleic Acids Res 2025; 53:gkaf156. [PMID: 40071935 PMCID: PMC11897892 DOI: 10.1093/nar/gkaf156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Synthetic RNA devices are engineered to control gene expression and offer great potential in both biotechnology and clinical applications. Here, we present multidisciplinary structural and biochemical data for a tetracycline (Tc)-responsive RNA device (D43) in both ligand-free and bound states, providing a structure-dynamical basis for signal transmission. Activation of self-cleavage is achieved via ligand-induced conformational and dynamical changes that stabilize the elongated bridging helix harboring the communication module, which drives proper coordination of the catalytic residues. We then show the utility of CRISPR-integrated D43 in EL4 lymphocytes to regulate programmed cell death protein 1 (PD-1), a key receptor of immune checkpoints. Treatment of these cells with Tc showed a dose-dependent reduction in PD-1 by immunostaining and a decrease in messenger RNA levels by quantitative PCR as compared with wild type. PD-1 expression was recoverable upon removal of Tc. These results provide mechanistic insight into RNA devices with potential for cancer immunotherapy or other applications.
Collapse
Affiliation(s)
- Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Justin C Deme
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Vibha Dwivedi
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Szu-Yun Chen
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD, 21702, United States
| | - Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Howard A Young
- Cellular and Molecular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Susan M Lea
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
71
|
Zhang Z, Huang W, Hu D, Jiang J, Zhang J, Wu Z, Wen J, Luo X, Wang Y, Sun M, Li S, Wang Y, Liu D, Chen X, Zhang B, Liang H, Li Y, Liu B, Wang S, Xu X, Nie Y, Wu K, Fan D, Xia L. E-twenty-six-specific sequence variant 5 (ETV5) facilitates hepatocellular carcinoma progression and metastasis through enhancing polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC)-mediated immunosuppression. Gut 2025:gutjnl-2024-333944. [PMID: 40015948 DOI: 10.1136/gutjnl-2024-333944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Despite the success of immune checkpoint blockade, a lack of understanding of the hepatocellular carcinoma (HCC) immune microenvironment impedes its development. OBJECTIVE We aim to elucidate the essential function of E-twenty-six-specific sequence variant 5 (ETV5) in regulating the immune microenvironment in HCC. DESIGN Humanised mouse models, murine orthotopic models and diethylnitrosamine/carbon tetrachloride (DEN/CCl4)-induced HCC models were used to examine the function of ETV5. The downstream targets of ETV5 were screened using chromatin immunoprecipitation sequencing, CUT&Tag and RNA sequencing. Immune cells were examined using flow cytometry and immunofluorescence. S100 calcium-binding protein A9 (S100A9) was targeted by neutralising antibodies. RESULTS Overexpression of ETV5 in HCC cells facilitated HCC metastasis and immune escape by recruiting and enhancing the immunosuppressive capabilities of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, ETV5 transactivated programmed death ligand 1 (PD-L1) and S100A9 expression. Inhibition of S100A9 or myeloid-specific knockout of toll-like receptor 4 (TLR4)/receptor for advanced glycation endproducts (RAGE), the receptors of S100A9, impeded ETV5-induced PMN-MDSC recruitment. Meanwhile, S100A9 within the tumour microenvironment elevated ETV5 expression via the extracellular signal-regulated kinase (ERK)/nuclear factor-kappa B pathway. Additionally, ETV5 transcriptionally upregulated PD-L1 in MDSCs as well, thereby augmenting their immunosuppressive functions. Myeloid-specific Etv5 knockout attenuated HCC progression. We developed monoclonal neutralising-S100A9 antibodies that effectively inhibited ETV5-mediated PMN-MDSC infiltration. Synergistic application of anti-S100A9 or TLR4/RAGE inhibitors with anti-PD-L1 therapy significantly suppressed ETV5-mediated HCC progression. CONCLUSION ETV5 facilitates HCC progression and metastasis by promoting the recruitment, infiltration and activation of PMN-MDSCs. Synergistic application of anti-S100A9 or TLR4/RAGE inhibitors with anti-PD-L1 therapy holds great promise as an effective combinational treatment strategy for ETV5-positive HCC.
Collapse
Affiliation(s)
- Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Junjie Wen
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Huifang Liang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, Huazhong University of Science and Technology College of Life Science and Technology, Wuhan, Hubei, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, Huazhong University of Science and Technology College of Life Science and Technology, Wuhan, Hubei, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
- State KeyLaboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
72
|
Lee SW, Jeong S, Kim YJ, Noh JE, Rho KN, Kim HO, Cho HJ, Yang DH, Hwang EC, Kyun Bae W, Yun SJ, Yun JS, Park CK, Oh IJ, Cho JH. Enhanced thrombopoiesis supplies PD-L1 to circulating immune cells via the generation of PD-L1-expressing platelets in patients with lung cancer. J Immunother Cancer 2025; 13:e010193. [PMID: 40010769 PMCID: PMC11865743 DOI: 10.1136/jitc-2024-010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The increased expression of programmed cell death ligand 1 (PD-L1) on a subset of immune cells in the peripheral blood has been frequently observed in patients with cancer, suggesting a relationship with PD-L1 expression in tumor tissues. In this study, we investigated the mechanisms underlying PD-L1 expression on various types of immune cells in the peripheral blood of patients with cancer. METHODS PD-L1 expression on various immune cell populations was analyzed in peripheral blood mononuclear cells of 112 patients with non-small cell lung cancer (NSCLC) using flow cytometry. A mouse model of X-ray-induced acute thrombocytopenia was used to investigate the relationship between thrombopoiesis and PD-L1-expressing platelet generation. The clinical significance of PD-L1-expressing platelets was analyzed in a cohort of patients with stage IV NSCLC who received a combination of anti-programmed cell death 1 (PD-1) therapy and chemotherapy. RESULTS All immune cell populations, including monocytes, T cells, B cells, and NK cells, showed higher PD-L1 expression in patients with cancer than in healthy controls. However, this increased frequency of PD-L1-expressing cells was not attributed to the expression of the cells themselves. Instead, it was entirely dependent on the direct interaction of the cells with PD-L1-expressing platelets. Notably, the platelet-dependent acquisition of PD-L1 on circulating immune cells of patients with lung cancer was observed in various other cancer types and was mechanistically associated with a surge in thrombopoiesis, resulting in the increased production of PD-L1-expressing reticulated platelets. Clinically, patients with enhanced thrombopoiesis and concurrently high PD-L1-expressing platelets exhibited a better response to anti-PD-1 therapy. CONCLUSIONS These findings highlight the role of tumor-associated thrombopoiesis in generating PD-L1-expressing platelets that may serve as a resource for PD-L1-positive cells in the circulation and act as a predictive biomarker for anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Saei Jeong
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Young Ju Kim
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Jeong Eun Noh
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Kyung Na Rho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Hee-Ok Kim
- Selecxine Inc, Seoul, Korea (the Republic of)
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Deok Hwan Yang
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Eu Chang Hwang
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Department of Urology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Woo Kyun Bae
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Sook Jung Yun
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Department of Dermatology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Ju Sik Yun
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| |
Collapse
|
73
|
Zhao SQ, Chen MJ, Chen F, Gao ZF, Li XP, Hu LY, Cheng HY, Xuan JY, Fei JG, Song ZW. ENTPD8 overexpression enhances anti-PD-L1 therapy in hepatocellular carcinoma via miR-214-5p inhibition. iScience 2025; 28:111819. [PMID: 39995876 PMCID: PMC11849663 DOI: 10.1016/j.isci.2025.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, with poor prognosis due to late diagnosis and limited treatment options. In this study, we evaluated the expression of ectonucleoside triphosphate diphosphohydrolase 8 (ENTPD8) in HCC tissues and its clinical significance. Immunohistochemistry, The Cancer Genome Atlas (TCGA) data, and single-cell expression analysis revealed reduced ENTPD8 levels in liver cancer compared to adjacent tissues, with ENTPD8 primarily expressed in tumor cells within the tumor tissue. In vitro assays demonstrated that ENTPD8 inhibits HCC cell proliferation, invasion, and migration. Mechanistically, ENTPD8 regulates programmed death-ligand 1 (PD-L1) expression through miR-214-5p modulation. In vivo, ENTPD8 overexpression combined with anti-PD-L1 treatment enhanced therapeutic efficacy in HCC mouse models. These findings suggest that ENTPD8 may serve as a prognostic marker and therapeutic target for HCC, offering potential strategies for improving treatment outcomes.
Collapse
Affiliation(s)
- Si-qi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Min-jie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhao-feng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiao-ping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ling-yu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Hai-ying Cheng
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jin-yan Xuan
- Department of General Practice, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jian-guo Fei
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zheng-wei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
74
|
Alkhimovitch A, Miller SD, Ifergan I. Wnt-Activated Immunoregulatory Myeloid Cells Prevent Relapse in Experimental Autoimmune Encephalomyelitis and Offer a Potential Therapeutic Strategy for Multiple Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638560. [PMID: 40027604 PMCID: PMC11870494 DOI: 10.1101/2025.02.16.638560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by recurrent inflammatory relapses and neurodegeneration. Myeloid cells play a critical role in shaping the inflammatory environment and influencing disease progression. Here, we demonstrate that activation of the Wnt signaling pathway reprograms myeloid cells into an immunoregulatory phenotype, leading to reduced neuroinflammation and disease severity. Using both experimental autoimmune encephalomyelitis (EAE) and human-derived myeloid cells, we show that Wnt agonist treatment promotes the expression of inhibitory molecules such as PD-L1 and PD-L2, suppressing pro-inflammatory responses. In the chronic and relapsing-remitting EAE models, Wnt activation significantly reduced disease severity, immune cell infiltration into the CNS, and pathogenic T cell responses. Notably, in relapsing-remitting EAE, Wnt treatment prevented new relapses in a PD-L1-dependent manner, highlighting the crucial role of myeloid cell-mediated immune regulation. These findings reveal a previously unrecognized role for Wnt signaling in myeloid cell immunoregulation and suggest that targeting this pathway could provide a novel therapeutic strategy for MS and other autoimmune diseases.
Collapse
|
75
|
Varone E, Retini M, Cherubini A, Chernorudskiy A, Marrazza A, Guidarelli A, Cagnotto A, Beeg M, Gobbi M, Fumagalli S, Bolis M, Guarrera L, Barbera MC, Grasselli C, Bleve A, Generali D, Milani M, Mari M, Salmona M, Piersanti G, Bottegoni G, Broggini M, Janssen-Heininger YMW, Cho J, Cantoni O, Zito E. Small molecule-mediated inhibition of the oxidoreductase ERO1A restrains aggressive breast cancer by impairing VEGF and PD-L1 in the tumor microenvironment. Cell Death Dis 2025; 16:105. [PMID: 39962052 PMCID: PMC11833095 DOI: 10.1038/s41419-025-07426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Cancer cells adapt to harsh environmental conditions by inducing the Unfolded Protein Response (UPR), of which ERO1A is a mediator. ERO1A aids protein folding by acting as a protein disulfide oxidase, and under cancer-related hypoxia conditions, it favors the folding of angiogenic VEGFA, leading tumor cells to thrive and spread. The upregulation of ERO1A in cancer cells, oppositely to the dispensability of ERO1A activity in healthy cells, renders ERO1A a perfect target for cancer therapy. Here, we report the upregulation of ERO1A in a cohort of aggressive triple-negative breast cancer (TNBC) patients in which ERO1A levels correlate with a higher risk of breast tumor recurrence and metastatic spread. For ERO1A target validation and therapy in TNBC, we designed new ERO1A inhibitors in a structure-activity campaign of the prototype EN460. Cell-based screenings showed that the presence of the Micheal acceptor in the compound is necessary to engage the cysteine 397 of ERO1A but not sufficient to set out the inhibitory effect on ERO1A. Indeed, the ERO1 inhibitor must adopt a non-coplanar rearrangement within the ERO1A binding site. I2 and I3, two new EN460 analogs with different phenyl-substituted moieties, efficiently inhibited ERO1A, blunting VEGFA secretion. Accordingly, in vitro assays to measure ERO1A engagement and inhibition confirmed that I2 and I3 bind ERO1A and restrain its activity with a IC50 in a low micromolar range. EN460, I2 and I3 triggered breast cancer cytotoxicity while specifically inhibiting ERO1A in a dose-dependent manner. I2 more efficiently impaired cancer-relevant features such as VEGFA secretion and related cell migration. I2 also acted on the tumor microenvironment and viability of xenografts and syngeneic TNBC. Thus, small molecule-mediated ERO1A pharmacological inhibition is feasible and promises to lead to effective therapy for the still incurable TNBC.
Collapse
Affiliation(s)
- Ersilia Varone
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alessandro Cherubini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alexander Chernorudskiy
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Alice Marrazza
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alfredo Cagnotto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marten Beeg
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Gobbi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Marco Bolis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Bioinformatics Core Unit, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Luca Guarrera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Chiara Grasselli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Augusto Bleve
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Generali
- U.O. Patologia Mammaria e Tumori Cerebrali, Azienda Socio-Sanitaria Territoriale, Cremona, Italia
| | - Manuela Milani
- U.O. Patologia Mammaria e Tumori Cerebrali, Azienda Socio-Sanitaria Territoriale, Cremona, Italia
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mario Salmona
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giovanni Bottegoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Massimo Broggini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Yvonne M W Janssen-Heininger
- Departments of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
76
|
Abdo EL, Ajib I, El Mounzer J, Husseini M, Kalaoun G, Matta TM, Mosleh R, Nasr F, Richani N, Khalil A, Shayya A, Ghanem H, Faour WH. Molecular biology of the novel anticancer medications: a focus on kinases inhibitors, biologics and CAR T-cell therapy. Inflamm Res 2025; 74:41. [PMID: 39960501 DOI: 10.1007/s00011-025-02008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 05/09/2025] Open
Abstract
INTRODUCTION Cancer treatment underwent significant changes in the last few years with the introduction of novel treatments targeting the immune system. OBJECTIVES The objective of this review is to discuss novel anticancer drugs including kinase inhibitors, biologics and cellular therapy with CAR-T cells. METHODS Most recent research articles were extracted from PubMed using keywords such as "kinases inhibitors", "CAR-T cell therapy". RESULTS AND DISCUSSION The number of kinase inhibitors is significantly increasing due to their demonstrated effectiveness in combination with biologics. CAR-T represented a major breakthrough in the field. Also, it focused on their mechanisms of action and the rational of their use either alone or in combination in relation to their modes of action.
Collapse
Affiliation(s)
- Elia-Luna Abdo
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Imad Ajib
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Jason El Mounzer
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Mohammad Husseini
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Gharam Kalaoun
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Tatiana-Maria Matta
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Reine Mosleh
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Fidel Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Nour Richani
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Anwar Shayya
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
- Department of Hematology-Oncology, Lebanese American University Medical Center- Rizk Hospital, Beirut, Lebanon
| | - Hady Ghanem
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
- Department of Hematology-Oncology, Lebanese American University Medical Center- Rizk Hospital, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
77
|
Chen W, Qiu J, Li P, Zhang Q, Li D, Li G, Shan G. Simultaneous Induction of Immunogenic Pyroptosis and PD-L1 Downregulation by One Single Photosensitizer for Synergistic Cancer Photoimmunotherapy. J Med Chem 2025; 68:3612-3625. [PMID: 39847528 DOI: 10.1021/acs.jmedchem.4c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pyroptosis, an excellent form of immunogenic cell death that can effectively activate antitumor immune responses, is attracting considerable interest as a promising approach for cancer immunotherapy. Immunogenic pyroptosis can recruit and stimulate dendritic cells to provoke further activation and tumor infiltration of T cells by releasing danger-associated molecular patterns, thus improving the tumor response to PD-1/PD-L1 checkpoint blockade immunotherapy. Here, we report the discovery of a bifunctional photosensitizer Nile Violet that can simultaneously trigger caspase-3/GSDME-mediated immunogenic pyroptosis and PD-L1 downregulation for cancer photoimmunotherapy. It was shown that this synergistic therapeutic strategy significantly inhibited tumor growth by triggering a systemic antitumor immune response. This work highlights the potential of inducing immunogenic pyroptosis and PD-L1 downregulation for synergistic tumor ablation via a single agent.
Collapse
Affiliation(s)
- Weijia Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Jingru Qiu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Peixia Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Qianqian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Donghai Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Guiling Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Gang Shan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
78
|
Feng S, Shen Y, Zhang H, Liu W, Feng W, Chen X, Zhang L, Chen J, Lu M, Xue X, Shen X. Human cytomegalovirus tegument protein UL23 promotes gastric cancer immune evasion by facilitating PD-L1 transcription. Mol Med 2025; 31:57. [PMID: 39934685 PMCID: PMC11816993 DOI: 10.1186/s10020-025-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Immune checkpoint therapy targeting PD-1/PD-L1 has shown promise in treating tumors, however, its clinical benefits are limited to a subset of gastric cancer (GC) patients. Recent research has highlighted a the correlation between PD-L1 expression and the clinical efficacy of anti-PD-1/PD-L1 therapies. Human cytomegalovirus (HCMV) has been implicated in GC, but its specific role in modulating this disease remains elusive. In this study, we analyzed clinical tissue samples using bioinformatics and real-time quantitative polymerase chain reaction (RT-qPCR). We found that GC tissues infected with HCMV presented higher PD-L1 expression compared to those without virus. Furthermore, we demonstrated that HCMV infection enhances PD-L1 expression in GC cells. Cytotoxicity assays revealed that HCMV modulates cancer immune responses via the PD-1/PD-L1 pathway. Mechanistically, we showed that HCMV activates the PI3K-Akt signaling cascade and modulates PD-L1 expression through its tegument protein UL23. Functionally, increased UL23 expression leads to elevated PD-L1 levels, which diminishes tumor cell sensitivity to T-cell-mediated cytotoxicity and triggers T-cell apoptosis. Additionally, in vivo experiments revealed that UL23-induced PD-L1 upregulation inhibits CD8+ T-cell infiltration and reduces the expression of inflammatory factors in tumor microenvironment, ultimately weakening antitumor immunity. Our findings reveal a novel mechanism whereby HCMV and its tegument protein UL23 contribute to cancer immunosuppression through the regulation of PD-L1 expression. This discovery may serve as a potential therapeutic target for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yitian Shen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haoke Zhang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanfeng Liu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weixu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiuting Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liang Zhang
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangli Chen
- Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Mingdong Lu
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xian Shen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
79
|
Gao C, Chen L, Zhao L, Su Y, Ma M, Zhang W, Hong X, Xiao L, Xu B, Hu T. Apatinib Degrades PD-L1 and Reconstitutes Colon Cancer Microenvironment via the Regulation of Myoferlin. Cancers (Basel) 2025; 17:524. [PMID: 39941891 PMCID: PMC11816266 DOI: 10.3390/cancers17030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND For most colorectal cancer (CRC) patients, expanding the benefits of immunotherapy, particularly through blocking programmed cell death-1 (PD-1) and its ligand (PD-L1), is crucial, especially in cases with limited response to neoadjuvant therapy. This study investigates the role of Myoferlin (MYOF) as a novel target in CRC immunotherapy. METHODS Human CRC cell lines (RKO, HCT116), normal intestinal epithelial cells (HIEC-6), and the murine CRC cell line MC38 were used to study the effects of apatinib and MYOF in CRC cells. RNA sequencing, the CPTAC and TCGA databases, and other molecular and cellular methods were applied to disclose the mechanisms involved. A series of mouse models were established to assess the effects of apatinib and MYOF knockdown on tumor progression, immune cell infiltration, and immune checkpoint protein response. RESULTS We found that MYOF is overexpressed in CRC and linked to immune cell infiltration and checkpoint expression. Suppression of MYOF expression significantly inhibited CRC cell proliferation and migration, as well as reduced PD-L1 protein levels. Integrative analysis showed that apatinib modulates MYOF expression via VEGFR2, resulting in decreased PD-L1 expression, increased CD8+ T cell infiltration, and reduced pro-tumor M2 macrophages. Animal experiments further revealed that apatinib treatment or MYOF knockdown enhanced the efficacy of immune checkpoint blockade (ICB) in CRC. CONCLUSIONS These findings highlight novel antitumor mechanisms of MYOF and suggest that combining apatinib with ICB therapy may improve CRC treatment outcomes, offering a promising strategy to enhance immune responses.
Collapse
Affiliation(s)
- Chunyi Gao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Lu Chen
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Lingying Zhao
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen 518038, China;
| | - Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Miaomiao Ma
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Xiaoting Hong
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Li Xiao
- Department of Oncology, Zhongshan Hospital of Xiamen University, Xiamen 361004, China;
| | - Beibei Xu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
80
|
Wang Y, Zhang C, Zeng H, Wang L, Wang Z, Han Z. Pre-injection of exosomes can significantly suppress ovarian cancer growth by activating the immune system in mice. Cancer Immunol Immunother 2025; 74:103. [PMID: 39904884 PMCID: PMC11794933 DOI: 10.1007/s00262-025-03951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
As a type of "cold tumor" with limited immune cell infiltration, ovarian cancer has historically shown limited efficacy in immunotherapy. In this study, we report that exosomes from ovarian cancer can specifically target omentum which is the predilection site for ovarian cancer to metastasize and combat subsequently implanted tumor. Furthermore, we found a substantial increase in the proportion of CD3 + T cells, particularly CD8 + T cells, within the omental tissue where exosomes homed. This increase was accompanied by a significant enhancement in granzyme B levels within CD8 + T cells. Additionally, there was a notable elevation in the concentration of interferon-gamma (IFN-γ) in peripheral blood. In vitro results indicated that exosomes could be internalized by dendritic cells (DCs), promote DC differentiation, and subsequently induce the production of granzyme B and IFN-γ in T cells. Surprisingly, we also observed high expression of programmed death ligand 1 (PD-L1) in the omentum. Therefore, we discovered whether combining PD-L1 blockade led to further tumor regression. However, although the combination group showed complete tumor regression, this difference did not reach statistical significance. But in general, we emphasize that in the case of pre-injection, exosomes have great potential to combat the famous "cold tumor", ovarian cancer, via targeting omentum and activating anti-tumor immunity, offering a novel avenue for overcoming ovarian cancer.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Zeng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zanhong Wang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
81
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
82
|
Wang H, Cao Y, Zhang L, Zhao Q, Li S, Li D. RBM15 Drives Breast Cancer Cell Progression and Immune Escape via m6A-Dependent Stabilization of KPNA2 mRNA. Clin Breast Cancer 2025; 25:96-107. [PMID: 39488447 DOI: 10.1016/j.clbc.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed cancer among women worldwide with high morbidity and mortality. Previous studies have indicated that RNA-binding motif protein-15 (RBM15), an N6-methyladenosine (m6A) writer, is implicated in the growth of breast cancer cells. Herein, we aimed to explore the function and detailed mechanism of RBM15 in breast cancer. METHODS In this research, UALCAN databases were applied to analyze the expression of RBM15 or Karyopherin-2 alpha (KPNA2) in BRCA. RBM15 and KPNA2 mRNA levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) assay. RBM15, KPNA2, and Programmed cell death ligand 1 (PD-L1) protein levels were measured using western blot. Cell proliferation, migration, and invasion were assessed using 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays. The biological role of RBM15 on breast cancer tumor growth was verified using the xenograft tumor model in vivo. Effects of breast cancer cells on the proliferation and apoptosis of CD8+ T cells were analyzed using flow cytometry. Interaction between RBM15 and KPNA2 was validated using methylated RNA immunoprecipitation (MeRIP) and dual-luciferase reporter assays. RESULTS RBM15 and KPNA2 were highly expressed in breast cancer tissues and cell lines. Furthermore, RBM15 silencing might suppress breast cancer cell proliferation, migration, invasion, and lymphocyte immunity in vitro, as well as block tumor growth in vivo. At the molecular level, RBM15 might improve the stability and expression of KPNA2 mRNA via m6A methylation. CONCLUSION RBM15 might contribute to the malignant progression and immune escape of breast cancer cells partly by modulating the stability of KPNA2 mRNA, providing a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hu Wang
- Two Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Yu Cao
- One Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Li Zhang
- Department of Pharmacy, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Qian Zhao
- One Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Shuangjian Li
- One Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Dan Li
- One Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China.
| |
Collapse
|
83
|
da Silva ÁC, Scholl JN, de Fraga Dias A, Weber AF, Morrone FB, Cruz-López O, Conejo-García A, Campos JM, Sévigny J, Figueiró F, Battastini AMO. Preclinical evaluation of bozepinib in bladder cancer cell lines: modulation of the NPP1 enzyme. Purinergic Signal 2025; 21:39-50. [PMID: 37906424 PMCID: PMC11958895 DOI: 10.1007/s11302-023-09975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Bladder cancer (BC) is the most common cancer of the urinary tract. Bozepinib (BZP), a purine-derived molecule, is a potential compound for the treatment of cancer. Purinergic signaling consists of the activity of nucleosides and nucleotides present in the extracellular environment, modulating a variety of biological actions. In cancer, this signaling is mainly controlled by the enzymatic cascade involving the NTPDase/E-NPP family and ecto-5'-nucleotidase/CD73, which hydrolyze extracellular adenosine triphosphate (ATP) to adenosine (ADO). The aim of this work is to evaluate the activity of BZP in the purinergic system in BC cell lines and to compare its in vitro antitumor activity with cisplatin, a chemotherapeutic drug widely used in the treatment of BC. In this study, two different BC cell lines, grade 1 RT4 and the more aggressive grade 3 T24, were used along with a human fibroblast cell line MRC-5, a cell used to predict the selectivity index (SI). BZP shows strong antitumor activity, with notable IC50 values (8.7 ± 0.9 µM for RT4; 6.7 ± 0.7 µM for T24), far from the SI for cisplatin (SI for BZP: 19.7 and 25.7 for RT4 and T24, respectively; SI for cisplatin: 1.7 for T24). BZP arrests T24 cells in the G2/M phase of the cell cycle, inducing early apoptosis. Moreover, BZP increases ATP and ADP hydrolysis and gene/protein expression of the NPP1 enzyme in the T24 cell line. In conclusion, BZP shows superior activity compared to cisplatin against BC cell lines in vitro.
Collapse
Affiliation(s)
- Álisson Coldebella da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo, Porto Alegre, CEP 90035-003, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo, Porto Alegre, CEP 90035-003, RS, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo, Porto Alegre, CEP 90035-003, RS, Brazil
| | - Augusto Ferreira Weber
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo, Porto Alegre, CEP 90035-003, RS, Brazil
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Olga Cruz-López
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/ Campus de Cartuja s/n, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana Conejo-García
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/ Campus de Cartuja s/n, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Joaquín María Campos
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/ Campus de Cartuja s/n, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec - Université Laval, Quebec city, QC, Canada
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo, Porto Alegre, CEP 90035-003, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo, Porto Alegre, CEP 90035-003, RS, Brazil.
| |
Collapse
|
84
|
Sun S, Yang Z, Yao H, Zhang Z. A new enhancer for anti-PD-1/PD-L1 immunotherapy: PCSK9 inhibition. Trends Cancer 2025; 11:84-87. [PMID: 39455406 DOI: 10.1016/j.trecan.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Anti-programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) immunotherapy has shown promising results in cancer treatment, improving clinical outcomes and prolonging patient survival. However, most patients exhibit low response rates to PD-1/PD-L1 blockade, highlighting the urgent need for new enhancers. Increasing data now demonstrate that inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9), a serine proteinase, can enhance the antitumor efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Shengbo Sun
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China; Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
85
|
Foerster Y, Mayer K, Wasserer S, Dechant M, Verkhoturova V, Heyer S, Biedermann T, Persa O. Elevated Neutrophil-to-Lymphocyte Ratio Correlates With Liver Metastases and Poor Immunotherapy Response in Stage IV Melanoma. Cancer Med 2025; 14:e70631. [PMID: 39931836 PMCID: PMC11811709 DOI: 10.1002/cam4.70631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Immune checkpoint inhibition (ICI) has revolutionized treatment for metastasized melanoma, but many patients remain unresponsive. Concerning potential adverse events, reliable biomarkers to predict ICI response are needed. In this context, neutrophil-to-lymphocyte ratio (NLR) and derived NLR (dNLR) have emerged. Liver metastases also limit ICI efficacy, correlating with diminished overall survival (OS) and progression-free survival (PFS) and may siphon activated T cells from the systemic circulation, creating an 'immune desert state'. We evaluated the predictive role of NLR and dNLR for ICI response and the impact of liver metastases on systemic immunity and treatment efficacy. PATIENTS AND METHODS In this single-center retrospective study, we included 141 stage IV melanoma patients undergoing ICI. NLR and dNLR were calculated from absolute neutrophil count, absolute lymphocyte count, and white blood cell count. RESULTS Elevated NLR and dNLR were associated with poor response to ICI and inferior PFS. Patients with liver metastases exhibited higher NLR and dNLR levels and showed diminished response to ICI. CONCLUSIONS Elevated baseline NLR and dNLR predict poor response to ICI and PFS in stage IV melanoma. Liver metastases are negative predictors for ICI response, with associated higher NLR and dNLR levels potentially contributing to therapy resistance.
Collapse
Affiliation(s)
- Yannick Foerster
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Kristine Mayer
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Sophia Wasserer
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Marta Dechant
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | | | - Sarah Heyer
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Tilo Biedermann
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| | - Oana‐Diana Persa
- Department of DermatologyTUM School of Medicine and HealthMünchenGermany
| |
Collapse
|
86
|
Liu P, Guo J, Xie Z, Pan Y, Wei B, Peng Y, Hu S, Ding J, Chen X, Su J, Liu H, Zhou W. Co-Delivery of aPD-L1 and CD73 Inhibitor Using Calcium Phosphate Nanoparticles for Enhanced Melanoma Immunotherapy with Reduced Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410545. [PMID: 39716993 PMCID: PMC11831434 DOI: 10.1002/advs.202410545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Melanoma, a malignant skin tumor, presents significant treatment challenges, particularly in unresectable and metastatic cases. While immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have brought new hope, their efficacy is limited by low response rates and significant immune-mediated adverse events (irAEs). Through multi-omics data analysis, it is discovered that the spatial co-localization of CD73 and PD-L1 in melanoma correlates with improved progression-free survival (PFS), suggesting a synergistic potential of their inhibitors. Building on these insights, a novel therapeutic strategy using calcium phosphate (CaP) nanoparticles is developed for the co-delivery of aPD-L1 and APCP, a CD73 inhibitor. These nanoparticles, constructed via a biomineralization method, exhibit high drug-loading capacity and pH-responsive drug release. Compared to free aPD-L1, the CaP-delivered aPD-L1 effectively avoids systemic side effects while significantly enhancing anti-tumor efficacy, surpassing even a 20-fold dose of free aPD-L1. Furthermore, the co-delivery of aPD-L1 and APCP via CaP nanoparticles demonstrates a synergistic anti-tumor effect, with substantial immune activation and prevention of tumor recurrence through immune memory effects. These findings suggest that the co-delivery of aPD-L1 and APCP using CaP nanoparticles is a promising approach for improving melanoma immunotherapy, achieving enhanced efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Peng Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Biological NanotechnologyChangshaHunan410008China
| | - Jia Guo
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yusheng Pan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Benliang Wei
- Big Data InstituteCentral South UniversityChangshaHunan410083China
| | - Ying Peng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Shuo Hu
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Biological NanotechnologyChangshaHunan410008China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Xiang Chen
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Juan Su
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Hong Liu
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
- Key Laboratory of Biological NanotechnologyChangshaHunan410008China
| |
Collapse
|
87
|
Wang T, Ma W, Zou Z, Zhong J, Lin X, Liu W, Sun W, Hu T, Xu Y, Chen Y. PD-1 blockade treatment in melanoma: Mechanism of response and tumor-intrinsic resistance. Cancer Sci 2025; 116:329-337. [PMID: 39601129 PMCID: PMC11786313 DOI: 10.1111/cas.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Malignant melanoma is characterized by high immunogenicity, genetic heterogeneity, and diverse pathological manifestations, affecting both skin and mucosa over the body. Pembrolizumab and nivolumab, both anti-PD-1 monoclonal antibodies, were approved by the US FDA for unresectable or metastatic melanoma in 2011 and 2014, respectively, with enduring and transformative outcomes. Despite marked clinical achievements, only a subset of patients manifested a complete response. Approximately 55% of melanoma patients exhibited primary resistance to PD-1 antibodies, with nearly 25% developing secondary resistance within 2 years of treatment. Thus, there is a critical need to comprehensively elucidate the mechanisms underlying the efficacy and resistance to PD-1 blockade. This review discusses the fundamental mechanisms of PD-1 blockade, encompassing insights from T cells and B cells, and presents resistance to anti-PD-1 with a particular focus on tumoral-intrinsic mechanisms in melanoma.
Collapse
Affiliation(s)
- Tong Wang
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wenjie Ma
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Zijian Zou
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Jingqin Zhong
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Xinyi Lin
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wanlin Liu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wei Sun
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Tu Hu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yu Xu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yong Chen
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| |
Collapse
|
88
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
89
|
Mark JKK, Teh AH, Yap BK. Epstein-Barr virus-infected nasopharyngeal carcinoma therapeutics: oncoprotein targets and clinical implications. Med Oncol 2025; 42:59. [PMID: 39888474 DOI: 10.1007/s12032-025-02610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinctive epithelial cancer closely associated with Epstein-Barr Virus (EBV) infection, posing significant challenges in diagnosis and treatment due to its resistance to conventional therapies and high recurrence rates. Current therapies, including radiotherapy and chemotherapy, exhibit limited efficacy, particularly in recurrent or metastatic cases, highlighting the urgent need for novel therapeutic strategies. Targeting EBV oncoproteins, such as Epstein-Barr Virus encoded Nuclear Antigen 1 (EBNA1), Latent Membrane Protein 1 (LMP1), and Latent Membrane Protein 2 (LMP2), presents a promising therapeutic avenue in NPC treatment. This review discusses the latest advancements in drug discovery targeting EBV oncoproteins, emphasizing the identification of inhibitors for specific functional regions of oncoproteins EBNA1, LMP1, and LMP2. Particular attention is given to the molecular mechanisms of these inhibitors and their preclinical or clinical potential in treating EBV-positive NPC. These developments highlight a promising future for targeted therapies in improving outcomes for NPC patients.
Collapse
Affiliation(s)
- Jacqueline Kar Kei Mark
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
90
|
Zhao L, Gong J, Liao S, Huang W, Zhao J, Xing Y. Preclinical evaluation and preliminary clinical study of 68Ga-NODAGA-NM-01 for PET imaging of PD-L1 expression. Cancer Imaging 2025; 25:6. [PMID: 39871394 PMCID: PMC11771120 DOI: 10.1186/s40644-025-00826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Programmed cell death 1/programmed death ligand-1 (PD-L1)-based immune checkpoint blockade is an effective treatment approach for non-small-cell lung cancer (NSCLC). However, immunohistochemistry does not accurately or dynamically reflect PD-L1 expression owing to its spatiotemporal heterogeneity. Herein, we assessed the feasibility of using a 68Ga-labeled anti-PD-L1 nanobody, 68Ga-NODAGA-NM-01, for PET imaging of PD-L1. METHODS Micro-PET/CT and biodistribution studies were performed on PD-L1-positive and -negative tumor-bearing mice. Additionally, a preliminary clinical study was performed on two patients with NSCLC. NM-01 was radiolabeled with 68Ga without further purification under mild conditions. RESULTS 68Ga-NODAGA-NM-01 exhibited radiochemical purity (> 98%), high stability in vitro, and rapid blood clearance in vivo. Specific accumulation of 68Ga-NODAGA-NM-01 was observed in PD-L1-positive tumor-bearing mice, with a good tumor-to-background ratio 0.5h post-injection. Furthermore, 68Ga-NODAGA-NM-01 PET/CT imaging was found to be safe with no adverse events and distinct uptake in primary and metastatic lesions of the PD-L1-positive patient, with a higher maximal standardized uptake value than that in lesions of the PD-L1-negative patient 1h post-injection. CONCLUSIONS 68Ga-NODAGA-NM-01 can be prepared using a simple method under mild conditions and reflect PD-L1 expression in primary and metastatic lesions. However, our findings need to be confirmed in a large cohort. TRIAL REGISTRATION NCT02978196. Registered February 15, 2018.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, No. 100, Haining Road, Shanghai, 200080, China
| | - Jiali Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, No. 100, Haining Road, Shanghai, 200080, China
| | - Sisi Liao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, No. 100, Haining Road, Shanghai, 200080, China
| | - Wenhua Huang
- Nanomab Technology Limited, No. 333, North Chengdu Road, Jingan District, Shanghai, 200041, China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, No. 100, Haining Road, Shanghai, 200080, China.
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, No. 100, Haining Road, Shanghai, 200080, China.
| |
Collapse
|
91
|
Pellegrini JM, González-Espinoza G, Shayan RR, Hysenaj L, Rouma T, Arce-Gorvel V, Lelouard H, Popoff D, Zhao Y, Hanniffy S, Castillo-Zeledón A, Loperena-Barber M, Celis-Gutierrez J, Mionnet C, Bosilkovski M, Solera J, Muraille E, Barquero-Calvo E, Moreno E, Conde-Álvarez R, Moriyón I, Gorvel JP, Mémet S. Brucella abortus impairs T lymphocyte responsiveness by mobilizing IL-1RA-secreting omental neutrophils. Nat Commun 2025; 16:862. [PMID: 39833171 PMCID: PMC11747348 DOI: 10.1038/s41467-024-55799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Immune evasion strategies of Brucella, the etiologic agent of brucellosis, a global zoonosis, remain partially understood. The omentum, a tertiary lymphoid organ part of visceral adipose tissue, has never been explored as a Brucella reservoir. We report that B. abortus infects and replicates within murine omental macrophages. Throughout the chronic phase of infection, the omentum accumulates macrophages, monocytes and neutrophils. The maintenance of PD-L1+Sca-1+ macrophages, monocytes and neutrophils in the omentum depends on the wadC-encoded determinant of Brucella LPS. We demonstrate that PD-L1+Sca-1+ murine omental neutrophils produce high levels of IL-1RA leading to T cell hyporesponsiveness. These findings corroborate brucellosis patient analysis of whole blood displaying upregulation of PDL1 and Ly6E genes, and of serum exhibiting high levels of IL-1RA. Overall, the omentum, a reservoir for B. abortus, promotes bacterial persistence and causes CD4+ and CD8+ T cell immunosuppression by IL-1RA secreted by PD-L1+Sca-1+ neutrophils.
Collapse
Affiliation(s)
| | | | | | - Lisiena Hysenaj
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Thomas Rouma
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d'Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Hugues Lelouard
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Dimitri Popoff
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Yun Zhao
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Sean Hanniffy
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Amanda Castillo-Zeledón
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Maite Loperena-Barber
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | | | - Cyrille Mionnet
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of North Macedonia
| | - Javier Solera
- Hospital General Universitario, Facultad de Medicina, Universidad Castilla la Mancha Albacete, Albacete, Spain
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d'Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Elías Barquero-Calvo
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Edgardo Moreno
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Raquel Conde-Álvarez
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | - Ignacio Moriyón
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | | | - Sylvie Mémet
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.
| |
Collapse
|
92
|
Li G, Cui J, Li T, Li W, Chen P. A risk signature constructed by Tregs-related genes predict the clinical outcomes and immune therapeutic response in kidney cancer. Discov Oncol 2025; 16:64. [PMID: 39833617 PMCID: PMC11747013 DOI: 10.1007/s12672-025-01787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Regulatory T cells (Tregs) have been found to be related to immune therapeutic resistance in kidney cancer. However, the potential Tregs-related genes still need to be explored. Our study found that patients with high Tregs activity show poor prognosis. Through co-expression and differential expression analysis, we screened several Tregs-related genes (KTRGs) in kidney renal clear cell carcinoma. We further conducted the univariate Cox regression analysis and determined the prognosis-related KTRGs. Through the machine learning algorithm-Boruta, the potentially important KTRGs were screened further and submitted to construct a risk model. The risk model could predict the prognosis of RCC patients well, high risk patients show a poorer outcomes than low risk patients. Multivariate Cox regression analysis reveals that risk score is an independent prognostic factor. Then, the nomogram model based on KTRG risk score and other clinical variables was further established, which shows a high predicted accuracy and clinical benefit based on model validation methods. In addition, we found EMT, JAK/STAT3, and immune-related pathways highly enriched in high risk groups, while metabolism-related pathways show a low enrichment. Through analyzing two other external immune therapeutic datasets, we found that the risk score could predict the patient's immune therapeutic response. High-risk groups represent a worse therapeutic response than low-risk groups. In summary, we identified several Tregs-related genes and constructed a risk model to predict prognosis and immune therapeutic response. We hope these organized data can provide a theoretical basis for exploring potential Tregs' targets to synergize the immune therapy for RCC patients.
Collapse
Affiliation(s)
- Gang Li
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China
| | - Jingmin Cui
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China
| | - Tao Li
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China
| | - Wenhan Li
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China
| | - Peilin Chen
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China.
| |
Collapse
|
93
|
Chiba N, Menju T, Shimazu Y, Toyazaki T, Sumitomo R, Miyamoto H, Tamari S, Nishikawa S, Date H. ArfGAP with the SH3 Domain, Ankyrin Repeat and PH Domain 1 Inversely Regulates Programmed Death-Ligand 1 Through Negative Feedback of Phosphorylated Epithelial Growth Factor Receptor and Activation of Nuclear Factor-Kappa B in Non-Small Cell Lung Cancer. Cancer Manag Res 2025; 17:91-102. [PMID: 39866192 PMCID: PMC11759582 DOI: 10.2147/cmar.s493368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Background Signaling pathways centered on the G-protein ADP-ribosylation factor 6 (Arf6) and its downstream effector ArfGAP with the SH3 Domain, Ankyrin Repeat and PH Domain 1 (AMAP1) drive cancer invasion, metastasis, and therapy resistance. The Arf6-AMAP1 pathway has been reported to promote receptor recycling leading to programmed cell death-ligand 1 (PD-L1) overexpression in pancreatic ductal carcinoma. Moreover, AMAP1 regulates of nuclear factor-kappa B (NF-κB), which is an important molecule in inflammation and immune activation, including tumor immune interaction through PD-L1 regulation. In this study, we investigated the function of AMAP1 on PD-L1 expression using lung cancer cells. Methods We used two non-small cell lung cancer cell lines. Protein expression was evaluated by Western blotting. AMAP1 and NF-kB expression were reduced by conventional siRNA methods, and osimertinib was used as an epithelial growth factor receptor (EGFR) inhibitor. Multiple analysis of receptor tyrosine kinases (RTKs) was conducted using a semi-comprehensive RTKs assay. Results We found that AMAP1 inversely regulated PD-L1 expression. Based on these results, we examined the activation levels of RTKs associated with both AMAP1 and PD-L1. Following a semi-comprehensive phosphorylated RTK assay, we observed the upregulation of phosphorylated EGFR (pEGFR) led by the downregulation of AMAP1. The inhibition of pEGFR by osimertinib downregulates PD-L1 expression. We investigated the relationships between AMAP1, NF-κB, and PD-L1 expression. AMAP1 knockdown upregulated the expression of both NF-κB and PD-L1. Subsequently, NF-κB knockdown downregulated PD-L1 levels, while double knockdown of AMAP1 and NF-κB, restored PD-L1 expression. Conclusion AMAP1 may inversely regulate PD-L1 through negative feedback of pEGFR and activation of NF-κB in NSCLC cell lines.
Collapse
Affiliation(s)
- Naohisa Chiba
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yumeta Shimazu
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Toyazaki
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryota Sumitomo
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Miyamoto
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeyuki Tamari
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Thoracic Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, Japan
| | - Shigeto Nishikawa
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
94
|
Chen Y, Liu S, Yin X. Progress and prospects of the combination of BMI1-targeted therapy and immunotherapy in cervical cancer. Am J Cancer Res 2025; 15:217-232. [PMID: 39949922 PMCID: PMC11815372 DOI: 10.62347/qtwj8918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Cervical cancer is one of the most prevalent gynecologic malignancies, posing a significant threat to women's health and survival. Despite advancements in early screening and diagnosis, which have led to cervical cancer being termed a "preventable" cancer, treatment options for advanced and recurrent cervical cancer remain limited. Consequently, identifying new therapeutic targets and treatments is crucial for advancing the research and management of cervical cancer. In recent years, targeted therapy and immunotherapy have become focal points in oncology research, offering new avenues and directions for the treatment of cancer. Preclinical studies have demonstrated that targeting BMI1 can inhibit cervical cancer progression, while immunotherapy has advanced to phase III clinical trials, showing promising results. To date, there have been no reports on the combination of BMI1-targeted therapy and immunotherapy in cervical cancer. This review, therefore, elucidates the current state of research and explores the potential and perspectives of combining targeted therapy with immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Shiyu Liu
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Xia Yin
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan UniversityChengdu, Sichuan, P. R. China
| |
Collapse
|
95
|
Fan Y, Zhang R, Shi J, Tian F, Zhang Y, Zhang L, Liao G, Yang M. Mild near-infrared laser-triggered photo-immunotherapy potentiates immune checkpoint blockade via an all-in-one theranostic nanoplatform. J Colloid Interface Sci 2025; 678:1088-1103. [PMID: 39276517 DOI: 10.1016/j.jcis.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
One of the primary challenges for immune checkpoint blockade (ICB)-based therapy is the limited infiltration of T lymphocytes (T cells) into tumors, often referred to as immunologically "cold" tumors. A promising strategy to enhance the anti-tumor efficacy of ICB is to increase antigen exposure, thereby enhancing T cell activation and converting "cold" tumors into "hot" ones. Herein, we present an innovative all-in-one therapeutic nanoplatform to realize local mild photothermal- and photodynamic-triggered antigen exposure, thereby improving the anti-tumor efficacy of ICB. This nanoplatform involves conjugating programmed death-ligand 1 antibody (aPD-L1) with gadolinium-doped near-infrared (NIR)-emitting carbon dots (aPD-L1@GdCDs), which displays negligible cytotoxicity in the absence of light. But under controlled NIR laser irradiation, the GdCDs produce combined photothermal and photodynamic effects. This not only results in tumor ablation but also induces immunogenic cell death (ICD), facilitating enhanced infiltration of CD8+ T cells in the tumor area. Importantly, the combination of aPD-L1 with photothermal and photodynamic therapies via aPD-L1@GdCDs significantly boosts CD8+ T cell infiltration, reduces tumor size, and improves anti-metastasis effects compared to either GdCDs-based phototherapy or aPD-L1 alone. In addition, the whole treatment process can be monitored by multi-modal fluorescence/photoacoustic/magnetic resonance imaging (FLI/PAI/MRI). Our study highlights a promising nanoplatform for cancer diagnosis and therapy, as well as paves the way to promote the efficacy of ICB therapy through mild photothermal- and photodynamic-triggered immunotherapy.
Collapse
Affiliation(s)
- Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Feng Tian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Li Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Guangfu Liao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
96
|
Chai D, Wang J, Lim JM, Xie X, Yu X, Zhao D, Maza PAM, Wang Y, Cyril-Remirez D, Young KH, Li Y. Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity. Mol Cancer 2025; 24:12. [PMID: 39806486 PMCID: PMC11727718 DOI: 10.1186/s12943-024-02211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity. Notably, a DNA vaccine encoding the spike protein, delivered via LNP-M, induced stronger antigen-specific antibody and T cell immune responses compared to electroporation. Single-cell RNA sequencing (scRNA-seq) analysis revealed that the LNP-M/pSpike vaccine enhanced CD80 activation signaling in CD8+ T cells, NK cells, macrophages, and DCs, while reducing the immunosuppressive signals. The enrichment of TCR and BCR by LNP-M/pSpike suggested an increase in immune response specificity and diversity. Additionally, LNP-M effectively delivered DNA-encoded antigens, such as mouse PD-L1 and p53R172H, or monoclonal antibodies targeting mouse PD1 and human p53R282W. This approach inhibited tumor growth or metastasis in several mouse models. The long-term anti-tumor effects of LNP-M-delivered anti-p53R282W antibody relied on memory CD8+ T cell responses and enhanced MHC-I signaling from APCs to CD8+ T cells. These results highlight LNP-M as a promising and effective platform for delivering DNA-based vaccines and cancer immunotherapies.
Collapse
Affiliation(s)
- Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Junhao Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jing Ming Lim
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaohui Xie
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dan Zhao
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Perry Ayn Mayson Maza
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yifei Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dana Cyril-Remirez
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken H Young
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
97
|
Liu Y, Xu L, Dou Y, He Y. AXL: shapers of tumor progression and immunosuppressive microenvironments. Mol Cancer 2025; 24:11. [PMID: 39799359 PMCID: PMC11724481 DOI: 10.1186/s12943-024-02210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025] Open
Abstract
As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance. AXL is highly associated with tumor progression; however, previous studies on AXL have been limited to its impact on the biological behavior of cancer cells. An increasing body of research now demonstrates that AXL can influence the function and differentiation of immune cells, mediating immune suppression and thereby fostering tumor growth. A comprehensive analysis to identify and overcome the causes of immunosuppressive microenvironments represents a novel approach to conquering cancer. In this review, we focus on elucidating the role of AXL within the immunosuppressive microenvironments, discussing and analyzing the effects of AXL on tumor cells, T cells, macrophages, natural killer (NK) cells, fibroblasts, and other immune-stromal cells. We aim to clarify the contributions of AXL to the progression and drug resistance of cancer from its functional role in the immune microenvironment.
Collapse
Affiliation(s)
- Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lei Xu
- Department of Otolaryngology, Southwest Hospital, Army Medical University, Chongqing, 400000, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
98
|
Wan M, Zhou J, Xue N, Mei J, Zhou J, Zong X, Ding J, Li Q, He Z, Zhu Y. Lovastatin-mediated pharmacological inhibition of Formin protein DIAPH1 suppresses tumor immune escape and boosts immunotherapy response. Int Immunopharmacol 2025; 144:113637. [PMID: 39571269 DOI: 10.1016/j.intimp.2024.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND The immunosuppressive tumor microenvironment (TME) is a key characteristic of human cancer. Immunotherapy has emerged as a promising treatment strategy to overcome immune escape and has gained widespread use in recent years. In particular, the blockade of PD-1/PD-L1 interaction holds significant importance in oncotherapy. Combining anti-PD-1/PD-L1 with small molecule inhibitors targeting key pathways represents an emerging trend in therapeutic development. METHODS To validate our findings biologically, we employed qRT-PCR or Western blotting and immunofluorescence staining techniques to assess the expression levels of DIAPH1 and PD-L1 in cells. Additionally, CCK8 and clone formation assays were utilized to evaluate cell proliferation ability, while flow assays were conducted to detect apoptosis in T cells. RESULTS Knockdown of DIAPH1 restored the tumor-killing capacity of T cells, effectively suppressing tumor immune escape. We observed a highly positive correlation between the expression levels of DIAPH1 and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), which can be competitively inhibited by lovastatin. Through Sybyl analysis followed by confirmation via micro scale thermophoresis, we identified lovastatin as a potential inhibitor targeting DIAPH1. Lovastatin downregulated DIAPH1 expression both in tumor cell lines and xenograft lung cancer tissues within a mouse lung cancer model. Furthermore, we found that lovastatin degraded DIAPH1 through lysosomal degradation pathway. Treatment with lovastatin was strongly associated with improved response rates and prolonged overall survival among patients with lung adenocarcinoma. Finally, overexpression of DIAPH1 reversed the inhibitory effects mediated by lovastatin on tumor development. CONCLUSIONS Lovastatin downregulates PD-L1 expression by targeting DIAPH1 and restores the tumor-killing ability of T cells to block tumor immune escape. Lovastatin may become a potential drug for cancer patients to enhance immunotherapy response in the clinic.
Collapse
Affiliation(s)
- Mengyun Wan
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Ji Zhou
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Ningyi Xue
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China; The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Jiaofeng Zhou
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Xinyu Zong
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China; Taizhou People's Hospital affiliated to Nanjing Medical University, Taizhou 225399, Jiangsu, PR China.
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, PR China.
| | - Qing Li
- Department of Oncology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, PR China.
| | - Zhicheng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Yichao Zhu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
99
|
Cai H, Tian S, Liu A, Xie G, Zhang H, Wu X, Wan J, Li S. Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma. Eur J Med Res 2025; 30:17. [PMID: 39780198 PMCID: PMC11715937 DOI: 10.1186/s40001-024-02192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely. METHODS We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints. We also explored potential associations with drug sensitivity. To assess the impact on glioma cell proliferation and apoptosis, we employed various assays, including the Cell Counting Kit-8, colony formation assay, and flow cytometry. RESULTS CTF1 gene and protein expression were significantly elevated in glioma tissues, and correlated with malignancy and poor prognosis. CTF1 was an independent prognostic factor and negatively associated with DNA methylation. The involvement of CTF1 in m6A modifications contributed to glioma progression. Enrichment analysis revealed immune response pathways linked with CTF1 in glioma, including natural killer cell cytotoxicity, NOD-like receptor signaling, Toll-like receptor signaling, antigen processing, chemokine signaling, and cytokine receptor interactions. CTF1 expression correlated positively with pathways related to apoptosis, inflammation, proliferation, and epithelial-mesenchymal transition, and PI3K-AKT-mTOR signaling. Additionally, CTF1 expression was positively associated with macrophage, eosinophil, and neutrophil contents and immune checkpoint-related genes, but negatively associated with sensitivity to 14 drugs. In vitro experiments confirmed that CTF1 knockdown inhibited glioma cell proliferation and promoted apoptosis. CONCLUSION This study identifies CTF1 as a significant independent prognostic factor that is closely associated with the tumor immune microenvironment in glioma. Additionally, reduced expression of CTF1 suppresses the proliferation and induces apoptosis of glioma cells in vitro. Consequently, CTF1 is a potentially promising novel therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Hongqing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Tian
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Angsi Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanchao Xie
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China
| | - Hongsheng Zhang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China
| | - Xiaogang Wu
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, No 424 Changjiang West Road, Shushan District, Hefei, Anhui, 230000, People's Republic of China.
| | - Jinghai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China.
| | - Sai Li
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China.
| |
Collapse
|
100
|
Yu Z, Zhou Z, Zhao Y. Targeted Delivery of BMS-1166 for Enhanced Breast Cancer Immunotherapy. Int J Nanomedicine 2025; 20:293-308. [PMID: 39802387 PMCID: PMC11725277 DOI: 10.2147/ijn.s497089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
Background Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction. Transferrin Receptor 1 is a transmembrane glycoprotein overexpressed in various cancer cells, including breast cancer, and can specifically interact with the T7 (HAIYPRH) peptide. Purpose This study hypothesized that BMS-1166-loaded T7-modified poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) polymeric micelles (BMS-T7) could block PD-L1 interaction with PD-1, serving as a targeted immunotherapy for TfR1-positive breast cancer. Methods BMS-1166 was encapsulated in T7-PEG-PCL micelle. Particle size and zeta potential were determined by dynamic light scattering. Particle morphology was studied by transmission electron microscopy. The particles were characterized by Fourier transform infrared, thermogravimetric analysis, and differential scanning calorimetry. Drug encapsulation efficiency, loading degree, and release profile were examined by high-performance liquid chromatography. Human breast cancer MDA-MB-231 was used to test the cytotoxicity. Flow cytometry and immunofluorescence imaging were used to study the PD-L1 inhibition in cell surface and exosomes. MDA-MB-231 and Jurkat co-culture studied T-cell activation and apoptosis. Results The particle size of the empty and drug-loaded micelles showed a size distribution with an average diameter of 54.62 ± 2.28 nm and 60.22 ± 2.56 nm, respectively. The encapsulation efficiency of BMS-T7 was 83.89 ± 5.59%. The release half-life of drug-loaded micelles was 48h. The IC50 of BMS-1166 was 28.77 μM in MDA-MB-231 cells. In addition, the BMS-T7 showed a better inhibitory effect on PD-L1 expression in breast cancer cells and exosomes than the naked drug. The formulation significantly restored T-cell function compared to the BMS-1166 treatment. Conclusion These results provide preliminary evidence indicating that BMS-T7 may have the potential to deliver drugs to breast cancer cells via active targeting and hold great promise in cancer immunotherapy drug delivery applications.
Collapse
Affiliation(s)
- Zhecheng Yu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, USA
| | - Zeya Zhou
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, USA
| | - Yunqi Zhao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, USA
| |
Collapse
|