51
|
Shi Y, Huang J, Liu Y, Liu J, Guo X, Li J, Gong L, Zhou X, Cheng G, Qiu Y, You J, Lou Y. Structural and biochemical characteristics of mRNA nanoparticles determine anti-SARS-CoV-2 humoral and cellular immune responses. SCIENCE ADVANCES 2022; 8:eabo1827. [PMID: 36417530 PMCID: PMC9683711 DOI: 10.1126/sciadv.abo1827] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underlines the urgent need for effective mRNA vaccines. However, current understanding of the immunological outcomes of mRNA vaccines formulated under different nanoplatforms is insufficient. Here, severe acute respiratory syndrome coronavirus 2 receptor binding domain mRNA delivered via lipid nanoparticle (LNP), cationic nanoemulsion (CNE), and cationic liposome (Lipo) was constructed. Results demonstrated that the structural and biochemical characteristics of nanoparticles shaped their tissue dissemination, cellular uptake, and intracellular trafficking, which eventually determined the activation of antiviral humoral and cellular immunity. Specifically, LNP was mainly internalized by myocyte and subsequently circumvented lysosome degradation, giving rise to humoral-biased immune responses. Meanwhile, CNE and Lipo induced cellular-preferred immunity, which was respectively attributed to the better lysosomal escape in dendritic cells and the superior biodistribution in secondary lymphoid organs. Overall, this study may guide the design and clinical use of mRNA vaccines against COVID-19.
Collapse
Affiliation(s)
- Yingying Shi
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Jing Liu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Jianhua Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, People’s Republic of China
| | - Liming Gong
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, People’s Republic of China
| | - Xin Zhou
- Ausper Biopharma Inc., 688 Bin’an Road, Hangzhou, Zhejiang 310051, People’s Republic of China
| | - Guofeng Cheng
- Ausper Biopharma Inc., 688 Bin’an Road, Hangzhou, Zhejiang 310051, People’s Republic of China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Jian You
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| |
Collapse
|
52
|
Zoodsma M, de Nooijer AH, Grondman I, Gupta MK, Bonifacius A, Koeken VACM, Kooistra E, Kilic G, Bulut O, Gödecke N, Janssen N, Kox M, Domínguez-Andrés J, van Gammeren AJ, Ermens AAM, van der Ven AJAM, Pickkers P, Blasczyk R, Behrens GMN, van de Veerdonk FL, Joosten LAB, Xu CJ, Eiz-Vesper B, Netea MG, Li Y. Targeted proteomics identifies circulating biomarkers associated with active COVID-19 and post-COVID-19. Front Immunol 2022; 13:1027122. [PMID: 36405747 PMCID: PMC9670186 DOI: 10.3389/fimmu.2022.1027122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the highly infectious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). There is an urgent need for biomarkers that will help in better stratification of patients and contribute to personalized treatments. We performed targeted proteomics using the Olink platform and systematically investigated protein concentrations in 350 hospitalized COVID-19 patients, 186 post-COVID-19 individuals, and 61 healthy individuals from 3 independent cohorts. Results revealed a signature of acute SARS-CoV-2 infection, which is represented by inflammatory biomarkers, chemokines and complement-related factors. Furthermore, the circulating proteome is still significantly affected in post-COVID-19 samples several weeks after infection. Post-COVID-19 individuals are characterized by upregulation of mediators of the tumor necrosis (TNF)-α signaling pathways and proteins related to transforming growth factor (TGF)-ß. In addition, the circulating proteome is able to differentiate between patients with different COVID-19 disease severities, and is associated with the time after infection. These results provide important insights into changes induced by SARS-CoV-2 infection at the proteomic level by integrating several cohorts to obtain a large disease spectrum, including variation in disease severity and time after infection. These findings could guide the development of host-directed therapy in COVID-19.
Collapse
Affiliation(s)
- Martijn Zoodsma
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Aline H. de Nooijer
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Valerie A. C. M. Koeken
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emma Kooistra
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nina Gödecke
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Nico Janssen
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Anton A. M. Ermens
- Department of Clinical Chemistry and Hematology, Amphia Hospital, Breda, Netherlands
| | - Andre J. A. M. van der Ven
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Georg M. N. Behrens
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
53
|
Reduced humoral but stable cellular SARS-CoV-2-specific immunity in liver transplant recipients in the first year after COVID-19. PLoS One 2022; 17:e0276929. [PMID: 36322587 PMCID: PMC9629592 DOI: 10.1371/journal.pone.0276929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Mortality due to COVID-19 is not increased in immunosuppressed individuals after liver transplantation (OLT) compared to individuals without immunosuppression. Data on long-term protective immunity against SARS-CoV-2 in immunosuppressed convalescents, is limited. We prospectively measured immune responses against SARS-CoV-2 by quantifying antibodies against 4 different antigens (spike protein 1 and 2, receptor binding domain, nucleocapsid) and T cell responses by IFN-γ ELISPOT against 4 antigens (membrane, nucleocapsid, spike protein 1 and 2) in 24 OLT convalescents with immunosuppressive therapy longitudinally in the first year after COVID-19 including a booster vaccination in comparison to a matched cohort of non-immunosuppressed convalescents (non-IS-Con). Pre-pandemic OLT samples were retrieved from our prospective OLT biorepository (n = 16). No relevant T cell reactivity or immunoglobulin G (IgG) against SARS-CoV-2 were detectable in pre-pandemic samples of OLT recipients despite reactivity against endemic corona-viruses. OLT convalescents had a lower prevalence of IgG against nucleocapsid (54% vs. 90%) but not against spike protein domains (98-100% vs. 100%) after vaccination in the second half-year after COVID-19 compared to non-IS-Con. Also, concentrations of anti-nucleocapsid IgG were lower in OLT convalescents than in non-IS-Con. Concentration of IgG against spike protein domains was significantly increased by a booster vaccination in OLT convalescents. But concentration of IgG against two of three spike protein domains remains slightly lower compared to non-IS-Con finally. However, none of these differences was mirrored by the cellular immunity against SARS-CoV-2 that remained stable during the first year after COVID-19 and was not further stimulated by a corona vaccination in OLT convalescents. In conclusion, despite lower concentrations of anti-SARS-CoV-2 IgG in OLT convalescents anti-SARS-CoV-2 cellular immunity was as robust as in non-IS-Con.
Collapse
|
54
|
Diani S, Leonardi E, Cavezzi A, Ferrari S, Iacono O, Limoli A, Bouslenko Z, Natalini D, Conti S, Mantovani M, Tramonte S, Donzelli A, Serravalle E. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022; 11:6272. [PMID: 36362500 PMCID: PMC9655392 DOI: 10.3390/jcm11216272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. AIMS This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naïve subjects. MATERIAL AND METHODS through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. RESULTS nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. CONCLUSIONS this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity.
Collapse
Affiliation(s)
- Sara Diani
- School of Musictherapy, Université Européenne Jean Monnet, 35129 Padova, Italy
| | | | | | | | - Oriana Iacono
- Physical Medicine and Rehabilitation Department, Mirandola Hospital, 41037 Mirandola, Italy
| | - Alice Limoli
- ARPAV (Regional Agency for the Environment Protection), 31100 Treviso, Italy
| | - Zoe Bouslenko
- Cardiology Department, Valdese Hospital, 10100 Torino, Italy
| | | | | | | | - Silvano Tramonte
- Environment and Health Commission, National Bioarchitecture Institute, 20121 Milano, Italy
| | | | | |
Collapse
|
55
|
Yeung ST, Premeaux TA, Du L, Niki T, Pillai SK, Khanna KM, Ndhlovu LC. Galectin-9 protects humanized-ACE2 immunocompetent mice from SARS-CoV-2 infection. Front Immunol 2022; 13:1011185. [PMID: 36325323 PMCID: PMC9621319 DOI: 10.3389/fimmu.2022.1011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 remains a global health crisis even with effective vaccines and the availability of FDA approved therapies. Efforts to understand the complex disease pathology and develop effective strategies to limit mortality and morbidity are needed. Recent studies reveal circulating Galectin-9 (gal-9), a soluble beta-galactoside binding lectin with immunoregulatory properties, are elevated in SARS-CoV-2 infected individuals with moderate to severe disease. Moreover, in silico studies demonstrate gal-9 can potentially competitively bind the ACE2 receptor on susceptible host cells. Here, we determined whether early introduction of exogenous gal-9 following SARS-CoV-2 infection in humanized ACE2 transgenic mice (K18-hACE2) may reduce disease severity. Mice were infected and treated with a single dose of a human recombinant form of gal-9 (rh-gal-9) and monitored for morbidity. Subgroups of mice were humanely euthanized at 2- and 5- days post infection (dpi) for viral levels by plaque assay, immune changes measures by flow cytometry, and soluble mediators by protein analysis from lung tissue and bronchoalveolar Lavage fluid (BALF). Mice treated with rh-gal-9 during acute infection had improved survival compared to PBS treated controls. At 5 dpi, rh-gal-9 treated mice had enhanced viral clearance in the BALF, but not in the lung parenchyma. Increased T and dendritic cells and decreased neutrophil frequencies in the lung at 5 dpi were observed, whereas BALF had elevated levels of type-I interferons and proinflammatory cytokines. These results suggest a role for rh-gal-9 in limiting acute COVID-19. Further studies are required to determine the optimal design of gal-9 treatment to effectively ameliorate COVID-19 disease.
Collapse
Affiliation(s)
- Stephen T. Yeung
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Thomas A. Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Li Du
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Toshiro Niki
- Departments of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Kamal M. Khanna
- Department of Microbiology, New York University, New York, NY, United States
- *Correspondence: Lishomwa C. Ndhlovu, ; Kamal M. Khanna,
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Lishomwa C. Ndhlovu, ; Kamal M. Khanna,
| |
Collapse
|
56
|
Bertoletti A, Le Bert N, Tan AT. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022; 55:1764-1778. [PMID: 36049482 PMCID: PMC9385766 DOI: 10.1016/j.immuni.2022.08.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increasing ability to evade neutralizing antibodies have emerged. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function, and anatomical localization of SARS-CoV-2-specific T cells and their influence in the possible ability of T cells to protect the host from severe COVID-19 development.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Immunology Network, A(∗)STAR, Singapore, Singapore.
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
57
|
Ameratunga R, Woon ST, Steele R, Lehnert K, Leung E, Brooks AES. Critical role of diagnostic SARS-CoV-2 T cell assays for immunodeficient patients. J Clin Pathol 2022; 75:793-797. [PMID: 36216482 DOI: 10.1136/jcp-2022-208305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
Abstract
After almost 3 years of intense study, the immunological basis of COVID-19 is better understood. Patients who suffer severe disease have a chaotic, destructive immune response. Many patients with severe COVID-19 produce high titres of non-neutralising antibodies, which are unable to sterilise the infection. In contrast, there is increasing evidence that a rapid, balanced cellular immune response is required to eliminate the virus and mitigate disease severity. In the longer term, memory T cell responses, following infection or vaccination, play a critical role in protection against SARS-CoV-2.Given the pivotal role of cellular immunity in the response to COVID-19, diagnostic T cell assays for SARS-CoV-2 may be of particular value for immunodeficient patients. A diagnostic SARS-CoV-2 T cell assay would be of utility for immunocompromised patients who are unable to produce antibodies or have passively acquired antibodies from subcutaneous or intravenous immunoglobulin (SCIG/IVIG) replacement. In many antibody-deficient patients, cellular responses are preserved. SARS-CoV-2 T cell assays may identify breakthrough infections if reverse transcriptase quantitative PCR (RT-qPCR) or rapid antigen tests (RATs) are not undertaken during the window of viral shedding. In addition to utility in patients with immunodeficiency, memory T cell responses could also identify chronically symptomatic patients with long COVID-19 who were infected early in the pandemic. These individuals may have been infected before the availability of reliable RT-qPCR and RAT tests and their antibodies may have waned. T cell responses to SARS-CoV-2 have greater durability than antibodies and can also distinguish patients with infection from vaccinated individuals.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand .,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Centre for brain Research, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Cancer Research, Faculty of Medical and health Sciences, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
58
|
Becker M, Cossmann A, Lürken K, Junker D, Gruber J, Juengling J, Ramos GM, Beigel A, Wrenger E, Lonnemann G, Stankov MV, Dopfer-Jablonka A, Kaiser PD, Traenkle B, Rothbauer U, Krause G, Schneiderhan-Marra N, Strengert M, Dulovic A, Behrens GMN. Longitudinal cellular and humoral immune responses after triple BNT162b2 and fourth full-dose mRNA-1273 vaccination in haemodialysis patients. Front Immunol 2022; 13:1004045. [PMID: 36275672 PMCID: PMC9582343 DOI: 10.3389/fimmu.2022.1004045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Haemodialysis patients respond poorly to vaccination and continue to be at-risk for severe COVID-19. Therefore, dialysis patients were among the first for which a fourth COVID-19 vaccination was recommended. However, targeted information on how to best maintain immune protection after SARS-CoV-2 vaccinations in at-risk groups for severe COVID-19 remains limited. We provide, to the best of our knowledge, for the first time longitudinal vaccination response data in dialysis patients and controls after a triple BNT162b2 vaccination and in the latter after a subsequent fourth full-dose of mRNA-1273. We analysed systemic and mucosal humoral IgG responses against the receptor-binding domain (RBD) and ACE2-binding inhibition towards variants of concern including Omicron and Delta with multiplex-based immunoassays. In addition, we assessed Spike S1-specific T-cell responses by interferon γ release assay. After triple BNT162b2 vaccination, anti-RBD B.1 IgG and ACE2 binding inhibition reached peak levels in dialysis patients, but remained inferior compared to controls. Whilst we detected B.1-specific ACE2 binding inhibition in 84% of dialysis patients after three BNT162b2 doses, binding inhibition towards the Omicron variant was only detectable in 38% of samples and declining to 16% before the fourth vaccination. By using mRNA-1273 as fourth dose, humoral immunity against all SARS-CoV-2 variants tested was strongly augmented with 80% of dialysis patients having Omicron-specific ACE2 binding inhibition. Modest declines in T-cell responses in dialysis patients and controls after the second vaccination were restored by the third BNT162b2 dose and significantly increased by the fourth vaccination. Our data support current advice for a four-dose COVID-19 immunisation scheme for at-risk individuals such as haemodialysis patients. We conclude that administration of a fourth full-dose of mRNA-1273 as part of a mixed mRNA vaccination scheme to boost immunity and to prevent severe COVID-19 could also be beneficial in other immune impaired individuals. Additionally, strategic application of such mixed vaccine regimens may be an immediate response against SARS-CoV-2 variants with increased immune evasion potential.
Collapse
Affiliation(s)
- Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Anne Cossmann
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Karsten Lürken
- Department of Internal Medicine and Nephrology, Dialysis Centre Eickenhof, Langenhagen, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Jens Gruber
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Jennifer Juengling
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Gema Morillas Ramos
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Andrea Beigel
- Department of Internal Medicine and Nephrology, Dialysis Centre Eickenhof, Langenhagen, Germany
| | - Eike Wrenger
- Department of Internal Medicine and Nephrology, Dialysis Centre Eickenhof, Langenhagen, Germany
| | - Gerhard Lonnemann
- Department of Internal Medicine and Nephrology, Dialysis Centre Eickenhof, Langenhagen, Germany
| | - Metodi V. Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Alexandra Dopfer-Jablonka
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Philipp D. Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Bjoern Traenkle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany
| | - Gérard Krause
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- Department Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Monika Strengert
- Department Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Georg M. N. Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- CiiM - Centre for Individualized Infection Medicine, Hannover, Germany
| |
Collapse
|
59
|
Salgado Del Riego E, Saiz ML, Corte-Iglesias V, Leoz Gordillo B, Martin-Martin C, Rodríguez-Pérez M, Escudero D, Lopez-Larrea C, Suarez-Alvarez B. Divergent SARS-CoV-2-specific T cell responses in intensive care unit workers following mRNA COVID-19 vaccination. Front Immunol 2022; 13:942192. [PMID: 36275696 PMCID: PMC9582956 DOI: 10.3389/fimmu.2022.942192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The cellular immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in response to full mRNA COVID-19 vaccination could be variable among healthy individuals. Studies based only in specific antibody levels could show an erroneous immune protection at long times. For that, we analyze the antibody levels specific to the S protein and the presence of SARS-CoV-2-specific T cells by ELISpot and AIM assays in intensive care unit (ICU) workers with no antecedents of COVID-19 and vaccinated with two doses of mRNA COVID-19 vaccines. All individuals were seronegative for the SARS-CoV-2 protein S before vaccination (Pre-v), but 34.1% (14/41) of them showed pre-existing T lymphocytes specific for some viral proteins (S, M and N). One month after receiving two doses of COVID-19 mRNA vaccine (Post-v1), all cases showed seroconversion with high levels of total and neutralizing antibodies to the spike protein, but six of them (14.6%) had no T cells reactive to the S protein. Specifically, they lack of specific CD8+ T cells, but maintain the contribution of CD4+ T cells. Analysis of the immune response against SARS-CoV-2 at 10 months after full vaccination (Post-v10), exhibited a significant reduction in the antibody levels (p<0.0001) and protein S-reactive T cells (p=0.0073) in all analyzed individuals, although none of the individuals become seronegative and 77% of them maintained a competent immune response. Thus, we can suggest that the immune response to SARS-CoV-2 elicited by the mRNA vaccines was highly variable among ICU workers. A non-negligible proportion of individuals did not develop a specific T cell response mediated by CD8+ T cells after vaccination, that may condition the susceptibility to further viral infections with SARS-CoV-2. By contrast, around 77% of individuals developed strong humoral and cellular immune responses to SARS-CoV-2 that persisted even after 10 months. Analysis of the cellular immune response is highly recommended for providing exact information about immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Salgado Del Riego
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María Laura Saiz
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Blanca Leoz Gordillo
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Cristina Martin-Martin
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mercedes Rodríguez-Pérez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Spain
- Translational Microbiology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Dolores Escudero
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
- Translational Microbiology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Lopez-Larrea
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
- Servicio de Inmunología, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
60
|
Zhai S, Du M, Wang Y, Liu P. Effects of heterogeneous susceptibility on epidemiological models of reinfection. NONLINEAR DYNAMICS 2022; 111:1891-1902. [PMID: 36210926 PMCID: PMC9526817 DOI: 10.1007/s11071-022-07870-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/26/2022] [Indexed: 05/31/2023]
Abstract
This paper studies an epidemic model with heterogeneous susceptibility which generalizes the SIS (susceptible-infected-susceptible), SIR (susceptible-infected-recovered) and SIRI (susceptible-infected-recovered-infected) models. The proposed model considers the case that some infected people are susceptible again after recovery, some infected people develop immunity after infection, and some infected people are reinfected after recovery. We perform a comprehensive theoretical analysis of the model, showing that under appropriate initial conditions, delayed outbreak phenomenon occurs that can give people false impressions. Moreover, compared with the SIRI model, the proposed model exists the delayed outbreak phenomenon under more probable conditions. Finally, we present a numerical example to illustrate the effectiveness of the theoretical results.
Collapse
Affiliation(s)
- Shidong Zhai
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Ming Du
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Yuan Wang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Ping Liu
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| |
Collapse
|
61
|
Zhou X, Ye G, Lv Y, Guo Y, Pan X, Li Y, Shen G, He Y, Lei P. IL-6 drives T cell death to participate in lymphopenia in COVID-19. Int Immunopharmacol 2022; 111:109132. [PMID: 35964413 PMCID: PMC9359506 DOI: 10.1016/j.intimp.2022.109132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/08/2023]
Abstract
Lymphopenia is a common observation in patients with COVID-19. To explore the cause of T cell lymphopenia in the disease, laboratory results of 64 hospitalized COVID-19 patients were retrospectively analyzed and six patients were randomly selected to trace their changes of T lymphocytes and plasma concentration of IL-6 for the course of disease. Results confirmed that the T-cell lymphopenia, especially CD4+ T cell reduction in COVID-19 patients, was a reliable indicator of severity and hospitalization in infected patients. And CD4+ T cell count below 200 cells/μL predicts critical illness in COVID-19 patients. In vitro assay supported that exposure to key contributors (IL-1β, IL-6, TNF-α and IFN-γ) of COVID-19 cytokine storm caused substantial death of activated T cells. Among these contributors, IL-6 level was found to probably reversely correlate with T cell counts in patients. And IL-6 alone was potent to induce T cell reduction by gasderminE-mediated pyroptosis, inferring IL-6 took a part in affecting the function and status of T cells in COVID-19 patients. Intervention of IL-6 mediated T cell pryprotosis may effectively delay disease progression, maintain normal immune status at an early stage of infection.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guangming Ye
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
62
|
Immune checkpoint alterations and their blockade in COVID-19 patients. BLOOD SCIENCE 2022; 4:192-198. [PMID: 36311817 PMCID: PMC9592141 DOI: 10.1097/bs9.0000000000000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease that seriously affects people's lives. Immune dysfunction, which is characterized by abnormal expression of multiple immune checkpoint proteins (ICs) on immune cells, is associated with progression and poor prognosis for tumors and chronic infections. Immunotherapy targeting ICs has been well established in modulating immune function and improving clinical outcome for solid tumors and hematological malignancies. The role of ICs in different populations or COVID-19 stages and the impact of IC blockade remains unclear. In this review, we summarized current studies of alterations in ICs in COVID-19 to better understand immune changes and provide strategies for treating COVID-19 patients, particularly those with cancer.
Collapse
|
63
|
Rizvi ZA, Babele P, Sadhu S, Madan U, Tripathy MR, Goswami S, Mani S, Kumar S, Awasthi A, Dikshit M. Prophylactic treatment of Glycyrrhiza glabra mitigates COVID-19 pathology through inhibition of pro-inflammatory cytokines in the hamster model and NETosis. Front Immunol 2022; 13:945583. [PMID: 36238303 PMCID: PMC9550929 DOI: 10.3389/fimmu.2022.945583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%–40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Prabhakar Babele
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Upasna Madan
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manas Ranjan Tripathy
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Sandeep Goswami
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shailendra Mani
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Awasthi
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Madhu Dikshit, ; ; Amit Awasthi,
| | - Madhu Dikshit
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- *Correspondence: Madhu Dikshit, ; ; Amit Awasthi,
| |
Collapse
|
64
|
Murphy RL, Paramithiotis E, Sugden S, Chermak T, Lambert B, Montamat-Sicotte D, Mattison J, Steinhubl S. The need for more holistic immune profiling in next-generation SARS-CoV-2 vaccine trials. Front Immunol 2022; 13:923106. [PMID: 36211354 PMCID: PMC9533322 DOI: 10.3389/fimmu.2022.923106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/26/2022] [Indexed: 11/14/2022] Open
Abstract
First-generation anit-SARS-CoV-2 vaccines were highly successful. They rapidly met an unforeseen emergency need, saved millions of lives, and simultaneously eased the burden on healthcare systems worldwide. The first-generation vaccines, however, focused too narrowly on antibody-based immunity as the sole marker of vaccine trial success, resulting in large knowledge gaps about waning vaccine protection, lack of vaccine robustness to viral mutation, and lack of efficacy in immunocompromised populations. Detailed reviews of first-generation vaccines, including their mode of action and geographical distribution, have been published elsewhere. Second-generation clinical trials must address these gaps by evaluating a broader range of immune markers, including those representing cell-mediated immunity, to ensure the most protective and long-lasting vaccines are brought to market.
Collapse
Affiliation(s)
- Robert L. Murphy
- Northwestern University, Evanston, IL, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Robert L. Murphy,
| | | | | | | | - Bruce Lambert
- Northwestern University, Evanston, IL, United States
| | | | | | | |
Collapse
|
65
|
Schwarz M, Mzoughi S, Lozano-Ojalvo D, Tan AT, Bertoletti A, Guccione E. T cell immunity is key to the pandemic endgame: How to measure and monitor it. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:215-221. [PMID: 36065205 PMCID: PMC9434079 DOI: 10.1016/j.crimmu.2022.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 10/27/2022] Open
Abstract
As vaccine deployment improves the healthcare emergency status caused by the SARS-CoV-2 pandemic, we need reliable tools to evaluate the duration of protective immunity at a global scale. Seminal studies have demonstrated that while neutralizing antibodies can protect us from viral infection, T cell-mediated cellular immunity provides long-term protection from severe COVID-19, even in the case of emerging new variants of concern (VOC). Indeed, the emergence of VOCs, able to substantially escape antibodies generated by current vaccines, has made the analysis of correlates of humoral protection against infection obsolete. The focus should now shift towards immunological correlates of protection from disease based on quantification of cellular immunity. Despite this evidence, an assessment of T cell responses is still overlooked. This is largely due to technical challenges and lack of validated diagnostic tests. Here, we review the current state of the art of available tests to distinguish between SARS-CoV-2 antigen-specific Tcells and non-antigen specific T-cells. These assays range from the analysis of the T cell-receptor (TCR) diversity (i.e. Immunoseq and MHC tetramer staining) to the detection of functional T cell activation (i.e. ICS, AIM, Elispot, ELLA, dqTACT, etc.) either from purified Peripheral Blood Mononuclear Cells (PBMCs) or whole blood. We discuss advantages and disadvantages of each assay, proposing their ideal use for different scopes. Finally, we argue how it is paramount to deploy cheap, standardized, and scalable assays to measure T cell functionality to fill this critical diagnostic gap and manage these next years of the pandemic.
Collapse
Affiliation(s)
- Megan Schwarz
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Slim Mzoughi
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Anthony T. Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ernesto Guccione
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
66
|
Rienzo M, Skirecki T, Monneret G, Timsit JF. Immune checkpoint inhibitors for the treatment of sepsis:insights from preclinical and clinical development. Expert Opin Investig Drugs 2022; 31:885-894. [PMID: 35944174 DOI: 10.1080/13543784.2022.2102477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sepsis represents one-fifth of all deaths worldwide and is associated with huge costs. Regarding disease progression, it is now well established that sepsis induces a state of acquired immunosuppression, with an increased risk of secondary infections that contributes to patients' worsening. Thus, tackling sepsis-induced immunosuppression represents a promising perspective. AREAS COVERED Of mechanisms responsible for sepsis-induced immunosuppression, the increased expression of co-inhibitory receptors (aka immune checkpoint) such as PD-1, CTLA4, TIM-3, LAG-3 or BTLA and their ligands recently received considerable interest since their inhibition, thanks to the so-called checkpoint inhibitors (CPI), provided astonishing results in cancer by rebooting immune functions. This review reports on the first landmarks of these molecules in sepsis. We introduce them in terms of basic immunology in line with sepsis pathophysiology both in experimental models and observational works and assess the first human clinical studies. EXPERT OPINION Preclinical results are positive and the first human clinical trials, although currently limited to the early phase, showed a beneficial effect on immunological functions and/or markers and suggested that tolerance of CPIs side effects, mainly auto-immune disorders, is acceptable in sepsis. Elsewhere, in some specific infections leading to ICU admission (or occurring during ICU stay), such as fungal infections, preliminary convincing case reports have been published. Overall, the first results regarding CPIs in sepsis appear encouraging. However, further efforts are warranted, especially in defining the right patients to be treated (i.e., in an individualized approach) and establishing the optimal time to start an immune restoration. Larger trials are now mandatory to confirm CPIs' potential in sepsis.
Collapse
Affiliation(s)
- Mario Rienzo
- AP-HP, Bichat Hospital, Medical and infectious diseases ICU (MI2), F-75018 Paris, France
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, F-69003.,Université de Lyon, EA7426, Hôpital E. Herriot, Lyon, F-69003
| | - Jean-François Timsit
- AP-HP, Bichat Hospital, Medical and infectious diseases ICU (MI2), F-75018 Paris, France.,University of Paris, IAME, INSERM, F-75018 Paris, France
| |
Collapse
|
67
|
Govender M, Hopkins FR, Göransson R, Svanberg C, Shankar EM, Hjorth M, Nilsdotter-Augustinsson Å, Sjöwall J, Nyström S, Larsson M. T cell perturbations persist for at least 6 months following hospitalization for COVID-19. Front Immunol 2022; 13:931039. [PMID: 36003367 PMCID: PMC9393525 DOI: 10.3389/fimmu.2022.931039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is being extensively studied, and much remains unknown regarding the long-term consequences of the disease on immune cells. The different arms of the immune system are interlinked, with humoral responses and the production of high-affinity antibodies being largely dependent on T cell immunity. Here, we longitudinally explored the effect COVID-19 has on T cell populations and the virus-specific T cells, as well as neutralizing antibody responses, for 6-7 months following hospitalization. The CD8+ TEMRA and exhausted CD57+ CD8+ T cells were markedly affected with elevated levels that lasted long into convalescence. Further, markers associated with T cell activation were upregulated at inclusion, and in the case of CD69+ CD4+ T cells this lasted all through the study duration. The levels of T cells expressing negative immune checkpoint molecules were increased in COVID-19 patients and sustained for a prolonged duration following recovery. Within 2-3 weeks after symptom onset, all COVID-19 patients developed anti-nucleocapsid IgG and spike-neutralizing IgG as well as SARS-CoV-2-specific T cell responses. In addition, we found alterations in follicular T helper (TFH) cell populations, such as enhanced TFH-TH2 following recovery from COVID-19. Our study revealed significant and long-term alterations in T cell populations and key events associated with COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Francis R. Hopkins
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robin Göransson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Maria Hjorth
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Divison of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sjöwall
- Divison of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Marie Larsson,
| |
Collapse
|
68
|
Paolini A, Borella R, Neroni A, Lo Tartaro D, Mattioli M, Fidanza L, Di Nella A, Santacroce E, Gozzi L, Busani S, Trenti T, Meschiari M, Guaraldi G, Girardis M, Mussini C, Gibellini L, De Biasi S, Cossarizza A. Patients Recovering from Severe COVID-19 Develop a Polyfunctional Antigen-Specific CD4+ T Cell Response. Int J Mol Sci 2022; 23:8004. [PMID: 35887351 PMCID: PMC9323836 DOI: 10.3390/ijms23148004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Specific T cells are crucial to control SARS-CoV-2 infection, avoid reinfection and confer protection after vaccination. We have studied patients with severe or moderate COVID-19 pneumonia, compared to patients who recovered from a severe or moderate infection that had occurred about 4 months before the analyses. In all these subjects, we assessed the polyfunctionality of virus-specific CD4+ and CD8+ T cells by quantifying cytokine production after in vitro stimulation with different SARS-CoV-2 peptide pools covering different proteins (M, N and S). In particular, we quantified the percentage of CD4+ and CD8+ T cells simultaneously producing interferon-γ, tumor necrosis factor, interleukin (IL)-2, IL-17, granzyme B, and expressing CD107a. Recovered patients who experienced a severe disease display high proportions of antigen-specific CD4+ T cells producing Th1 and Th17 cytokines and are characterized by polyfunctional SARS-CoV-2-specific CD4+ T cells. A similar profile was found in patients experiencing a moderate form of COVID-19 pneumonia. No main differences in polyfunctionality were observed among the CD8+ T cell compartments, even if the proportion of responding cells was higher during the infection. The identification of those functional cell subsets that might influence protection can thus help in better understanding the complexity of immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Lucia Fidanza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Alessia Di Nella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Licia Gozzi
- Infectious Diseases Clinics, AOU Policlinico di Modena, Via del Pozzo 71, 41124 Modena, Italy; (L.G.); (M.M.); (G.G.); (C.M.)
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (S.B.); (M.G.)
- Department of Anesthesia and Intensive Care, AOU Policlinico and University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy;
| | - Marianna Meschiari
- Infectious Diseases Clinics, AOU Policlinico di Modena, Via del Pozzo 71, 41124 Modena, Italy; (L.G.); (M.M.); (G.G.); (C.M.)
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, AOU Policlinico di Modena, Via del Pozzo 71, 41124 Modena, Italy; (L.G.); (M.M.); (G.G.); (C.M.)
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (S.B.); (M.G.)
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (S.B.); (M.G.)
- Department of Anesthesia and Intensive Care, AOU Policlinico and University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, AOU Policlinico di Modena, Via del Pozzo 71, 41124 Modena, Italy; (L.G.); (M.M.); (G.G.); (C.M.)
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (S.B.); (M.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via Campi 287, 41125 Modena, Italy; (A.P.); (R.B.); (A.N.); (D.L.T.); (M.M.); (L.F.); (A.D.N.); (E.S.); (L.G.); (A.C.)
- National Institute for Cardiovascular Research, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
69
|
Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol 2022; 12:953022. [PMID: 35909969 PMCID: PMC9329515 DOI: 10.3389/fcimb.2022.953022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
- *Correspondence: Lilin Ye,
| |
Collapse
|
70
|
Vikkurthi R, Ansari A, Pai AR, Jha SN, Sachan S, Pandit S, Nikam B, Kalia A, Jit BP, Parray HA, Singh S, Kshetrapal P, Wadhwa N, Shrivastava T, Coshic P, Kumar S, Sharma P, Sharma N, Taneja J, Pandey AK, Sharma A, Thiruvengadam R, Grifoni A, Weiskopf D, Sette A, Bhatnagar S, Gupta N. Inactivated whole-virion vaccine BBV152/Covaxin elicits robust cellular immune memory to SARS-CoV-2 and variants of concern. Nat Microbiol 2022; 7:974-985. [PMID: 35681012 DOI: 10.1038/s41564-022-01161-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/24/2022] [Indexed: 12/25/2022]
Abstract
BBV152 is a whole-virion inactivated vaccine based on the Asp614Gly variant. BBV152 is the first alum-imidazoquinolin-adjuvanted vaccine authorized for use in large populations. Here we characterized the magnitude, quality and persistence of cellular and humoral memory responses up to 6 months post vaccination. We report that the magnitude of vaccine-induced spike and nucleoprotein antibodies was comparable with that produced after infection. Receptor binding domain-specific antibodies declined against variants in the order of Alpha (B.1.1.7; 3-fold), Delta (B.1.617.2; 7-fold) and Beta (B.1.351; 10-fold). However, pseudovirus neutralizing antibodies declined up to 2-fold against the Delta followed by the Beta variant (1.7-fold). Vaccine-induced memory B cells were also affected by the Delta and Beta variants. The SARS-CoV-2-specific multicytokine-expressing CD4+ T cells were found in ~85% of vaccinated individuals. Only a ~1.3-fold reduction in efficacy was observed in CD4+ T cells against the Beta variant. We found that antigen-specific CD4+ T cells were present in the central memory compartment and persisted for at least up to 6 months post vaccination. Vaccine-induced CD8+ T cells were detected in ~50% of individuals. Importantly, the vaccine was capable of inducing follicular T helper cells that exhibited B-cell help potential. These findings show that inactivated vaccine BBV152 induces robust immune memory to SARS-CoV-2 and variants of concern that persists for at least 6 months after vaccination.
Collapse
Affiliation(s)
- Rajesh Vikkurthi
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Asgar Ansari
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Anupama R Pai
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Someshwar Nath Jha
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Suvechchha Pandit
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Bhushan Nikam
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Anurag Kalia
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Savita Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Nitya Wadhwa
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Poonam Coshic
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Suresh Kumar
- Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Pragya Sharma
- Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Nandini Sharma
- Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Juhi Taneja
- ESIC Medical College and Hospital, Faridabad, India
| | | | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | | | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
71
|
Krishna BA, Lim EY, Mactavous L, Lyons PA, Doffinger R, Bradley JR, Smith KGC, Sinclair J, Matheson NJ, Lehner PJ, Wills MR, Sithole N. Evidence of previous SARS-CoV-2 infection in seronegative patients with long COVID. EBioMedicine 2022; 81:104129. [PMID: 35772216 PMCID: PMC9235296 DOI: 10.1016/j.ebiom.2022.104129] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND There is currently no consensus on the diagnosis, definition, symptoms, or duration of COVID-19 illness. The diagnostic complexity of Long COVID is compounded in many patients who were or might have been infected with SARS-CoV-2 but not tested during the acute illness and/or are SARS-CoV-2 antibody negative. METHODS Given the diagnostic conundrum of Long COVID, we set out to investigate SARS-CoV-2-specific T cell responses in patients with confirmed SARS-CoV-2 infection and/or Long COVID from a cohort of mostly non-hospitalised patients. FINDINGS We discovered that IL-2 release (but not IFN-γ release) from T cells in response to SARS-CoV-2 peptides is both sensitive (75% +/-13%) and specific (88%+/-7%) for previous SARS-CoV-2 infection >6 months after a positive PCR test. We identified that 42-53% of patients with Long COVID, but without detectable SARS-CoV-2 antibodies, nonetheless have detectable SARS-CoV-2 specific T cell responses. INTERPRETATION Our study reveals evidence (detectable T cell mediated IL-2 release) of previous SARS-CoV-2 infection in seronegative patients with Long COVID. FUNDING This work was funded by the Addenbrooke's Charitable Trust (900276 to NS), NIHR award (G112259 to NS) and supported by the NIHR Cambridge Biomedical Research Centre. NJM is supported by the MRC (TSF MR/T032413/1) and NHSBT (WPA15-02). PJL is supported by the Wellcome Trust (PRF 210688/Z/18/Z, 084957/Z/08/Z), a Medical Research Council research grant MR/V011561/1 and the United Kingdom Research and a Innovation COVID Immunology Consortium grant (MR/V028448/1).
Collapse
Affiliation(s)
- Benjamin A Krishna
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eleanor Y Lim
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Lenette Mactavous
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK; Cambridge NIHR BioResource Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; Department of Renal Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; NHS Blood and Transplant, Cambridge CB2 0PT, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Nyaradzai Sithole
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
72
|
Moga E, Lynton-Pons E, Domingo P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front Immunol 2022; 13:904686. [PMID: 35833134 PMCID: PMC9271749 DOI: 10.3389/fimmu.2022.904686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Two years after the appearance of the SARS-CoV-2 virus, the causal agent of the current global pandemic, it is time to analyze the evolution of the immune protection that infection and vaccination provide. Cellular immunity plays an important role in limiting disease severity and the resolution of infection. The early appearance, breadth and magnitude of SARS-CoV-2 specific T cell response has been correlated with disease severity and it has been thought that T cell responses may be sufficient to clear infection with minimal disease in COVID-19 patients with X-linked or autosomal recessive agammaglobulinemia. However, our knowledge of the phenotypic and functional diversity of CD8+ cytotoxic lymphocytes, CD4+ T helper cells, mucosal-associated invariant T (MAIT) cells and CD4+ T follicular helper (Tfh), which play a critical role in infection control as well as long-term protection, is still evolving. It has been described how CD8+ cytotoxic lymphocytes interrupt viral replication by secreting antiviral cytokines (IFN-γ and TNF-α) and directly killing infected cells, negatively correlating with stages of disease progression. In addition, CD4+ T helper cells have been reported to be key pieces, leading, coordinating and ultimately regulating antiviral immunity. For instance, in some more severe COVID-19 cases a dysregulated CD4+ T cell signature may contribute to the greater production of pro-inflammatory cytokines responsible for pathogenic inflammation. Here we discuss how cellular immunity is the axis around which the rest of the immune system components revolve, since it orchestrates and leads antiviral response by regulating the inflammatory cascade and, as a consequence, the innate immune system, as well as promoting a correct humoral response through CD4+ Tfh cells. This review also analyses the critical role of cellular immunity in modulating the development of high-affinity neutralizing antibodies and germinal center B cell differentiation in memory and long-lived antibody secreting cells. Finally, since there is currently a high percentage of vaccinated population and, in some cases, vaccine booster doses are even being administered in certain countries, we have also summarized newer approaches to long-lasting protective immunity and the cross-protection of cellular immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Esther Moga,
| | - Elionor Lynton-Pons
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Domingo
- Unidad de enfermedades infecciosas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
73
|
Beliakova-Bethell N, Maruthai K, Xu R, Salvador LCM, Garg A. Monocytic-Myeloid Derived Suppressor Cells Suppress T-Cell Responses in Recovered SARS CoV2-Infected Individuals. Front Immunol 2022; 13:894543. [PMID: 35812392 PMCID: PMC9263272 DOI: 10.3389/fimmu.2022.894543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS Coronavirus 2 (CoV2) is associated with massive immune activation and hyperinflammatory response. Acute and severe CoV2 infection is characterized by the expansion of myeloid derived suppressor cells (MDSC) because of cytokine storm, these MDSC suppress T cell functions. However, the presence of MDSC and its effect on CoV2 antigen specific T cell responses in individuals long after first detection of CoV2 and recovery from infection has not been studied. We and others have previously shown that CD11b+CD33+CD14+HLA-DR-/lo monocytic MDSC (M-MDSC) are present in individuals with clinical recovery from viral infection. In this study, we compared the frequency, functional and transcriptional signatures of M-MDSC isolated from CoV2 infected individuals after 5-months of the first detection of the virus (CoV2+) and who were not infected with CoV2 (CoV2-). Compared to CoV2- individuals, M-MDSC were present in CoV2+ individuals at a higher frequency, the level of M-MDSC correlated with the quantity of IL-6 in the plasma. Compared to CoV2-, increased frequency of PD1+, CD57+ and CX3CR1+ T effector memory (TEM) cell subsets was also present in CoV2+ individuals, but these did not correlate with M-MDSC levels. Furthermore, depleting M-MDSC from peripheral blood mononuclear cells (PBMC) increased T cell cytokine production when cultured with the peptide pools of immune dominant spike glycoprotein (S), membrane (M), and nucleocapsid (N) antigens of CoV2. M-MDSC suppressed CoV2 S- antigen-specific T cell in ROS, Arginase, and TGFβ dependent manner. Our gene expression, RNA-seq and pathway analysis studies further confirm that M-MDSC isolated from CoV2+ individuals are enriched in pathways that regulate both innate and adaptive immune responses, but the genes regulating these functions (HLA-DQA1, HLA-DQB1, HLA-B, NLRP3, IL1β, CXCL2, CXCL1) remained downregulated in M-MDSC isolated from CoV2+ individuals. These results demonstrate that M-MDSC suppresses recall responses to CoV2 antigens long after recovery from infection. Our findings suggest M-MDSC as novel regulators of CoV2 specific T cell responses, and should be considered as target to augment responses to vaccine.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- Department of Medicine, University of California San Diego, San Diego, CA, United States
- Veterans Administration (VA) San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Kathirvel Maruthai
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ruijie Xu
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Liliana C. M. Salvador
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Ankita Garg
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
74
|
Wang G, Xiang Z, Wang W, Chen Z. Seasonal coronaviruses and SARS-CoV-2: effects of preexisting immunity during the COVID-19 pandemic. J Zhejiang Univ Sci B 2022; 23:451-460. [PMID: 35686525 PMCID: PMC9198228 DOI: 10.1631/jzus.b2200049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023]
Abstract
Although the coronavirus disease 2019 (COVID-19) epidemic is still ongoing, vaccination rates are rising slowly and related treatments and drugs are being developed. At the same time, there is increasing evidence of preexisting immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans, mainly consisting of preexisting antibodies and immune cells (including T cells and B cells). The presence of these antibodies is mainly due to the seasonal prevalence of four common coronavirus types, especially OC43 and HKU1. The accumulated relevant evidence has suggested that the target of antibodies is mainly the S2 subunit of S protein, followed by evolutionary conservative regions such as the nucleocapsid (N) protein. Additionally, preexisting memory T and B cells are also present in the population. Preexisting antibodies can help the body protect against SARS-CoV-2 infection, reduce the severity of COVID-19, and rapidly increase the immune response post-infection. These multiple effects can directly affect disease progression and even the likelihood of death in certain individuals. Besides the positive effects, preexisting immunity may also have negative consequences, such as antibody-dependent enhancement (ADE) and original antigenic sin (OAS), the prevalence of which needs to be further established. In the future, more research should be focused on evaluating the role of preexisting immunity in COVID-19 outcomes, adopting appropriate policies and strategies for fighting the pandemic, and vaccine development that considers preexisting immunity.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wei Wang
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
75
|
Hirai T, Yoshioka Y. Considerations of CD8+ T Cells for Optimized Vaccine Strategies Against Respiratory Viruses. Front Immunol 2022; 13:918611. [PMID: 35774782 PMCID: PMC9237416 DOI: 10.3389/fimmu.2022.918611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The primary goal of vaccines that protect against respiratory viruses appears to be the induction of neutralizing antibodies for a long period. Although this goal need not be changed, recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have drawn strong attention to another arm of acquired immunity, CD8+ T cells, which are also called killer T cells. Recent evidence accumulated during the coronavirus disease 2019 (COVID-19) pandemic has revealed that even variants of SARS-CoV-2 that escaped from neutralizing-antibodies that were induced by either infection or vaccination could not escape from CD8+ T cell-mediated immunity. In addition, although traditional vaccine platforms, such as inactivated virus and subunit vaccines, are less efficient in inducing CD8+ T cells, newly introduced platforms for SARS-CoV-2, namely, mRNA and adenoviral vector vaccines, can induce strong CD8+ T cell-mediated immunity in addition to inducing neutralizing antibodies. However, CD8+ T cells function locally and need to be at the site of infection to control it. To fully utilize the protective performance of CD8+ T cells, it would be insufficient to induce only memory cells circulating in blood, using injectable vaccines; mucosal immunization could be required to set up CD8+ T cells for the optimal protection. CD8+ T cells might also contribute to the pathology of the infection, change their function with age and respond differently to booster vaccines in comparison with antibodies. Herein, we overview cutting-edge ideas on CD8+ T cell-mediated immunity that can enable the rational design of vaccines for respiratory viruses.
Collapse
Affiliation(s)
- Toshiro Hirai
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- *Correspondence: Toshiro Hirai,
| | - Yasuo Yoshioka
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| |
Collapse
|
76
|
Becerra-Artiles A, Calvo-Calle JM, Co MD, Nanaware PP, Cruz J, Weaver GC, Lu L, Forconi C, Finberg RW, Moormann AM, Stern LJ. Broadly recognized, cross-reactive SARS-CoV-2 CD4 T cell epitopes are highly conserved across human coronaviruses and presented by common HLA alleles. Cell Rep 2022; 39:110952. [PMID: 35675811 PMCID: PMC9135679 DOI: 10.1016/j.celrep.2022.110952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Sequence homology between SARS-CoV-2 and common-cold human coronaviruses (HCoVs) raises the possibility that memory responses to prior HCoV infection can affect T cell response in COVID-19. We studied T cell responses to SARS-CoV-2 and HCoVs in convalescent COVID-19 donors and identified a highly conserved SARS-CoV-2 sequence, S811-831, with overlapping epitopes presented by common MHC class II proteins HLA-DQ5 and HLA-DP4. These epitopes are recognized by low-abundance CD4 T cells from convalescent COVID-19 donors, mRNA vaccine recipients, and uninfected donors. TCR sequencing revealed a diverse repertoire with public TCRs. T cell cross-reactivity is driven by the high conservation across human and animal coronaviruses of T cell contact residues in both HLA-DQ5 and HLA-DP4 binding frames, with distinct patterns of HCoV cross-reactivity explained by MHC class II binding preferences and substitutions at secondary TCR contact sites. These data highlight S811-831 as a highly conserved CD4 T cell epitope broadly recognized across human populations.
Collapse
Affiliation(s)
| | | | - Mary Dawn Co
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Padma P Nanaware
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - John Cruz
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Grant C Weaver
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Liying Lu
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Catherine Forconi
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Robert W Finberg
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Ann M Moormann
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
77
|
Rappaport AR, Hong SJ, Scallan CD, Gitlin L, Akoopie A, Boucher GR, Egorova M, Espinosa JA, Fidanza M, Kachura MA, Shen A, Sivko G, Van Abbema A, Veres RL, Jooss K. Low-dose self-amplifying mRNA COVID-19 vaccine drives strong protective immunity in non-human primates against SARS-CoV-2 infection. Nat Commun 2022; 13:3289. [PMID: 35672369 PMCID: PMC9173840 DOI: 10.1038/s41467-022-31005-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to spread globally, highlighting the urgent need for safe and effective vaccines that could be rapidly mobilized to immunize large populations. We report the preclinical development of a self-amplifying mRNA (SAM) vaccine encoding a prefusion stabilized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein and demonstrate strong cellular and humoral immune responses at low doses in mice and rhesus macaques. The homologous prime-boost vaccination regimen of SAM at 3, 10 and 30 μg induced potent neutralizing antibody (nAb) titers in rhesus macaques following two SAM vaccinations at all dose levels, with the 10 μg dose generating geometric mean titers (GMT) 48-fold greater than the GMT of a panel of SARS-CoV-2 convalescent human sera. Spike-specific T cell responses were observed with all tested vaccine regimens. SAM vaccination provided protective efficacy against SARS-CoV-2 challenge as both a homologous prime-boost and as a single boost following ChAd prime, demonstrating reduction of viral replication in both the upper and lower airways. The SAM vaccine is currently being evaluated in clinical trials as both a homologous prime-boost regimen at low doses and as a boost following heterologous prime. Self-amplifying mRNA vaccines offer the benefit of driving potent immune responses at low doses, as the mRNA replicates intracellularly. Here, the authors report the preclinical evaluation of a self-amplifying mRNA SARS-CoV-2 vaccine in non-human primates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Annie Shen
- Gritstone bio, Inc., Emeryville, CA, USA
| | - Gloria Sivko
- Battelle Biomedical Research Center, West Jefferson, OH, USA
| | | | | | | |
Collapse
|
78
|
Mori A, Onozawa M, Tsukamoto S, Ishio T, Yokoyama E, Izumiyama K, Saito M, Muraki H, Morioka M, Teshima T, Kondo T. Humoral response to mRNA-based COVID-19 vaccine in patients with myeloid malignancies. Br J Haematol 2022; 197:691-696. [PMID: 35226358 PMCID: PMC9111452 DOI: 10.1111/bjh.18138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/01/2022]
Abstract
Data on the response to the COVID-19 vaccine in patients with myeloid malignancy, who are at severe risk in case of infection, have not emerged. In a study of 69 patients with myeloid malignancies, including 46 patients with acute myeloid leukaemia (AML) and 23 patients with myelodysplastic syndrome (MDS), anti-spike SARS-CoV-2 antibody titres were measured 3 months after the second mRNA-based vaccination. Seroconversion rates for AML and MDS were 94.7% and 100% respectively, with no significant difference from healthy controls (HCs). Patients with MDS showed a significantly lower antibody titre than that in HCs or AML patients. In AML patients, the antibody titres were comparable to those in HCs when treatment was completed, but lower in patients under maintenance therapy. The response to COVID-19 vaccine appears to be related to disease and treatment status. Patients with myeloid malignancies may be more responsive to vaccines than patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Akio Mori
- Blood Disorders CenterAiiku HospitalSapporoJapan
| | - Masahiro Onozawa
- Department of HematologyHokkaido University Faculty of MedicineSapporoJapan
| | | | | | - Emi Yokoyama
- Blood Disorders CenterAiiku HospitalSapporoJapan
| | | | - Makoto Saito
- Blood Disorders CenterAiiku HospitalSapporoJapan
| | - Haruna Muraki
- Division of LaboratoryAiiku HospitalSapporoJapan
- Sapporo Clinical Laboratory IncSapporoJapan
| | | | - Takanori Teshima
- Department of HematologyHokkaido University Faculty of MedicineSapporoJapan
| | | |
Collapse
|
79
|
Chatterjee B, Singh Sandhu H, Dixit NM. Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and CD8 T-cell responses between patients experiencing mild and severe symptoms. PLoS Pathog 2022; 18:e1010630. [PMID: 35759522 PMCID: PMC9269964 DOI: 10.1371/journal.ppat.1010630] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/08/2022] [Accepted: 06/01/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection results in highly heterogeneous outcomes, from cure without symptoms to acute respiratory distress and death. Empirical evidence points to the prominent roles of innate immune and CD8 T-cell responses in determining the outcomes. However, how these immune arms act in concert to elicit the outcomes remains unclear. Here, we developed a mathematical model of within-host SARS-CoV-2 infection that incorporates the essential features of the innate immune and CD8 T-cell responses. Remarkably, by varying the strengths and timings of the two immune arms, the model recapitulated the entire spectrum of outcomes realized. Furthermore, model predictions offered plausible explanations of several confounding clinical observations, including the occurrence of multiple peaks in viral load, viral recrudescence after symptom loss, and prolonged viral positivity. We applied the model to analyze published datasets of longitudinal viral load measurements from patients exhibiting diverse outcomes. The model provided excellent fits to the data. The best-fit parameter estimates indicated a nearly 80-fold stronger innate immune response and an over 200-fold more sensitive CD8 T-cell response in patients with mild compared to severe infection. These estimates provide quantitative insights into the likely origins of the dramatic inter-patient variability in the outcomes of SARS-CoV-2 infection. The insights have implications for interventions aimed at preventing severe disease and for understanding the differences between viral variants.
Collapse
Affiliation(s)
- Budhaditya Chatterjee
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Narendra M. Dixit
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
80
|
Kohmer N, Rabenau HF, Ciesek S, Krämer BK, Göttmann U, Keller C, Rose D, Blume C, Thomas M, Lammert A, Lammert A. Heterologous immunization with BNT162b2 followed by mRNA-1273 in dialysis patients: seroconversion and presence of neutralizing antibodies. Nephrol Dial Transplant 2022; 37:1132-1139. [PMID: 35099023 PMCID: PMC9383412 DOI: 10.1093/ndt/gfac018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION The vital renal replacement therapy makes it impossible for dialysis patients to distance themselves socially. This results in a high risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and developing coronavuris disease 2019, with excess mortality due to disease burden and immunosuppression. We determined the efficacy of a 100-µg booster of mRNA-1273 (Moderna, Cambridge, MA, USA) 6 months after two doses of BNT162b2 (BioNTech/Pfizer, Mainz, Germany/New York, USA) in 194 SARS-CoV-2-naïve dialysis patients. METHODS Anti-SARS-CoV-2 spike antibodies were measured with the Elecsys Anti-SARS-CoV-2 S assay (Roche Diagnostics, Mannheim, Germany) 4 and 10-12 weeks after two doses of BNT162b2 as well as 4 weeks after the mRNA-1273 booster. The presence of neutralizing antibodies was measured by the SARS-CoV-2 Surrogate Virus Neutralization Test (GenScript Biotech, Piscataway, NJ, USA). Two different cut-offs for positivity were used, one according to the manufacturer's specifications and one correlating with positivity in a plaque reduction neutralization test (PRNT). Receiver operating characteristics analyses were performed to match the anti-SARS-CoV-2 spike antibody cut-offs with the cut-offs in the surrogate neutralization assay accordingly. RESULTS Any level of immunoreactivity determined by the anti-SARS-CoV-2 spike antibody assay was found in 87.3% (n = 144/165) and 90.6% (n = 164/181) of patients 4 and 10-12 weeks, respectively, after two doses of BNT162b2. This was reduced to 68.5% or 60.6% 4 weeks and 51.7% or 35.4% 10-12 weeks, respectively, when using the ROC cut-offs for neutralizing antibodies in the surrogate neutralization test (manufacturer's cut-off ≥103 U/mL and cut-off correlating with PRNT ≥196 U/mL). Four weeks after the mRNA-1273 booster, the concentration of anti-SARS-CoV-2 spike antibodies increased to 23 119.9 U/mL and to 97.3% for both cut-offs of neutralizing antibodies. CONCLUSION Two doses of BNT162b2 followed by one dose of mRNA-1273 within 6 months in patients receiving maintenance dialysis resulted in significant titres of SARS-CoV-2 spike antibodies. While two doses of mRNA vaccine achieved adequate humoral immunity in a minority, the third vaccination boosts the development of virus-neutralizing quantities of SARS-CoV-2 spike antibodies (against wild-type SARS-CoV-2) in almost all patients.
Collapse
Affiliation(s)
- Niko Kohmer
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Holger F Rabenau
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
- German Centre for Infection Research, External Partner Site, Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Bernhard K Krämer
- Department of Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Preventive Medicine and Digital Health Baden-Württemberg, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Uwe Göttmann
- Department of Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Nierenzentrum Worms, Germany
| | - Christine Keller
- Praxis für Stoffwechsel- und Nierenerkrankungen, Zentrum für Dialyse und Apherese, Grünstadt, Germany
| | - Daniela Rose
- Department of Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Praxis für Stoffwechsel- und Nierenerkrankungen, Zentrum für Dialyse und Apherese, Grünstadt, Germany
| | - Carsten Blume
- Praxis für Stoffwechsel- und Nierenerkrankungen, Zentrum für Dialyse und Apherese, Grünstadt, Germany
| | - Michael Thomas
- Praxis für Stoffwechsel- und Nierenerkrankungen, Zentrum für Dialyse und Apherese, Grünstadt, Germany
| | - Alexander Lammert
- Department of Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Praxis für Stoffwechsel- und Nierenerkrankungen, Zentrum für Dialyse und Apherese, Grünstadt, Germany
| | - Anne Lammert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
81
|
Lohse S, Sternjakob-Marthaler A, Lagemann P, Schöpe J, Rissland J, Seiwert N, Pfuhl T, Müllendorff A, Kiefer LS, Vogelgesang M, Vella L, Denk K, Vicari J, Zwick A, Lang I, Weber G, Geisel J, Rech J, Schnabel B, Hauptmann G, Holleczek B, Scheiblauer H, Wagenpfeil S, Smola S. German federal-state-wide seroprevalence study of 1 st SARS-CoV-2 pandemic wave shows importance of long-term antibody test performance. COMMUNICATIONS MEDICINE 2022; 2:52. [PMID: 35603305 PMCID: PMC9117207 DOI: 10.1038/s43856-022-00100-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background Reliable data on the adult SARS-CoV-2 infection fatality rate in Germany are still scarce. We performed a federal state-wide cross-sectional seroprevalence study named SaarCoPS, that is representative for the adult population including elderly individuals and nursing home residents in the Saarland. Methods Serum was collected from 2940 adults via stationary or mobile teams during the 1st pandemic wave steady state period. We selected an antibody test system with maximal specificity, also excluding seroreversion effects due to a high longitudinal test performance. For the calculations of infection and fatality rates, we accounted for the delays of seroconversion and death after infection. Results Using a highly specific total antibody test detecting anti-SARS-CoV-2 responses over more than 180 days, we estimate an adult infection rate of 1.02% (95% CI: [0.64; 1.44]), an underreporting rate of 2.68-fold (95% CI: [1.68; 3.79]) and infection fatality rates of 2.09% (95% CI: (1.48; 3.32]) or 0.36% (95% CI: [0.25; 0.59]) in all adults including elderly individuals, or adults younger than 70 years, respectively. Conclusion The study highlights the importance of study design and test performance for seroprevalence studies, particularly when seroprevalences are low. Our results provide a valuable baseline for evaluation of future pandemic dynamics and impact of public health measures on virus spread and human health in comparison to neighbouring countries such as Luxembourg or France.
Collapse
Affiliation(s)
- Stefan Lohse
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | | | - Paul Lagemann
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Jakob Schöpe
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Jürgen Rissland
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Nastasja Seiwert
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Thorsten Pfuhl
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Alana Müllendorff
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Laurent S Kiefer
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Markus Vogelgesang
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Luca Vella
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Katharina Denk
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Julia Vicari
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Anabel Zwick
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Isabelle Lang
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Gero Weber
- Physical Geography and Environmental Research, Saarland University, 66125 Saarbrücken, Germany
| | - Jürgen Geisel
- Central Laboratory, Saarland University Hospital, 66421 Homburg, Germany
| | - Jörg Rech
- Ministry of Health, Social Affairs, Women and the Family, 66119 Saarbrücken, Germany
| | - Bernd Schnabel
- Ministry of Health, Social Affairs, Women and the Family, 66119 Saarbrücken, Germany
| | - Gunter Hauptmann
- Kassenärztliche Vereinigung Saarland, 66113 Saarbrücken, Germany
| | - Bernd Holleczek
- Ministry of Health, Social Affairs, Women and the Family, 66119 Saarbrücken, Germany.,Saarland Cancer Registry, 66117 Saarbrücken, Germany
| | | | - Stefan Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| |
Collapse
|
82
|
Soleimanian S, Alyasin S, Sepahi N, Ghahramani Z, Kanannejad Z, Yaghobi R, Karimi MH. An Update on Protective Effectiveness of Immune Responses After Recovery From COVID-19. Front Immunol 2022; 13:884879. [PMID: 35669767 PMCID: PMC9163347 DOI: 10.3389/fimmu.2022.884879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits variable immunity responses among hosts based on symptom severity. Whether immunity in recovered individuals is effective for avoiding reinfection is poorly understood. Determination of immune memory status against SARS-CoV-2 helps identify reinfection risk and vaccine efficacy. Hence, after recovery from COVID-19, evaluation of protective effectiveness and durable immunity of prior disease could be significant. Recent reports described the dynamics of SARS-CoV-2 -specific humoral and cellular responses for more than six months in convalescent SARS-CoV-2 individuals. Given the current evidence, NK cell subpopulations, especially the memory-like NK cell subset, indicate a significant role in determining COVID-19 severity. Still, the information on the long-term NK cell immunity conferred by SARS-CoV-2 infection is scant. The evidence from vaccine clinical trials and observational studies indicates that hybrid natural/vaccine immunity to SARS-CoV-2 seems to be notably potent protection. We suggested the combination of plasma therapy from recovered donors and vaccination could be effective. This focused review aims to update the current information regarding immune correlates of COVID-19 recovery to understand better the probability of reinfection in COVID-19 infected cases that may serve as guides for ongoing vaccine strategy improvement.
Collapse
Affiliation(s)
- Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Kanannejad
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
83
|
Schaenman J, Byford H, Grogan T, Motwani Y, Beaird OE, Kamath M, Lum E, Meneses K, Sayah D, Vucicevic D, Saab S. Impact of solid organ transplant status on outcomes of hospitalized patients with COVID-19 infection. Transpl Infect Dis 2022; 24:e13853. [PMID: 35579437 PMCID: PMC9347588 DOI: 10.1111/tid.13853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
Abstract
Background The COVID‐19 pandemic has caused significant morbidity and mortality in solid organ transplant (SOT) recipients. However, it remains unclear whether the risk factor for SOT patients is the immunosuppression inherent to transplantation versus patient comorbidities. Methods We reviewed outcomes in a cohort of SOT (n = 129) and non‐SOT (NSOT) patients (n = 708) admitted to the University of California, Los Angeles for COVID‐19 infection. Data analyses utilized multivariate logistic regression to evaluate the impact of patient demographics, comorbidities, and transplant status on outcomes. SOT patients were analyzed by kidney SOT (KSOT) versus nonkidney SOT (NKSOT) groups. Results SOT and NSOT patients with COVID‐19 infection differed in terms of patient age, ethnicity, and comorbidities. NKSOT patients were the most likely to experience death, with a mortality rate of 16.2% compared with 1.8% for KSOT and 8.3% for NSOT patients (p = .013). Multivariable analysis of hospitalized patients revealed that patient age (odds ratio [OR] 2.79, p = .001) and neurologic condition (OR 2.66, p < .001) were significantly associated with mortality. Analysis of ICU patients revealed a 2.98‐fold increased odds of death in NKSOT compared with NSOT patients (p = .013). Conclusions This study demonstrates the importance of transplant status in predicting adverse clinical outcomes in patients hospitalized or admitted to the ICU with COVID‐19, especially for NKSOT patients. Transplant status and comorbidities, including age, could be used to risk stratify patients with COVID‐19. This data suggests that immunosuppression contributes to COVID‐19 disease severity and mortality and may have implications for managing immunosuppression, especially for critically ill patients admitted to the ICU.
Collapse
Affiliation(s)
- Joanna Schaenman
- Division of Infectious, Diseases, University of California at Los Angeles, Los Angeles, California, United States
| | - Hannah Byford
- Transplant Nephrology, University of California at Los Angeles, Los Angeles, California, United States
| | - Tristan Grogan
- Division of General Internal Medicine and Health Services Research, University of California at Los Angeles, Los Angeles, California, United States
| | - Yash Motwani
- Division of General Internal Medicine and Health Services Research, University of California at Los Angeles, Los Angeles, California, United States
| | - Omer E Beaird
- Division of Infectious, Diseases, University of California at Los Angeles, Los Angeles, California, United States
| | - Megan Kamath
- Division of Cardiology, University of California at Los Angeles, Los Angeles, California, United States
| | - Erik Lum
- Transplant Nephrology, University of California at Los Angeles, Los Angeles, California, United States
| | - Katherine Meneses
- Transplant Hepatology, University of California at Los Angeles, Los Angeles, California, United States
| | - David Sayah
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California at Los Angeles, Los Angeles, California, United States
| | - Darko Vucicevic
- Division of Cardiology, University of California at Los Angeles, Los Angeles, California, United States
| | - Sammy Saab
- Transplant Hepatology, University of California at Los Angeles, Los Angeles, California, United States
| |
Collapse
|
84
|
Wirsching S, Harder L, Heymanns M, Gröndahl B, Hilbert K, Kowalzik F, Meyer C, Gehring S. Long-Term, CD4 + Memory T Cell Response to SARS-CoV-2. Front Immunol 2022; 13:800070. [PMID: 35514974 PMCID: PMC9065554 DOI: 10.3389/fimmu.2022.800070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
The first cases of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were reported by Chinese authorities at the end of 2019. The disease spread quickly and was declared a global pandemic shortly thereafter. To respond effectively to infection and prevent viral spread, it is important to delineate the factors that affect protective immunity. Herein, a cohort of convalescent healthcare workers was recruited and their immune responses were studied over a period of 3 to 9 months following the onset of symptoms. A cross-reactive T cell response to SARS-CoV-2 and endemic coronaviruses, i.e., OC43 and NL63, was demonstrated in the infected, convalescent cohort, as well as a cohort composed of unexposed individuals. The convalescent cohort, however, displayed an increased number of SARS-CoV-2-specific CD4+ T cells relative to the unexposed group. Moreover, unlike humoral immunity and quickly decreasing antibody titers, T cell immunity in convalescent individuals was maintained and stable throughout the study period. This study also suggests that, based on the higher CD4 T cell memory response against nucleocapsid antigen, future vaccine designs may include nucleocapsid as an additional antigen along with the spike protein.
Collapse
Affiliation(s)
- Sebastian Wirsching
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Laura Harder
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Heymanns
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Britta Gröndahl
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katja Hilbert
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Frank Kowalzik
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Claudius Meyer
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
85
|
Ameratunga R, Woon ST, Steele R, Lehnert K, Leung E, Brooks AES. Severe COVID-19 is a T cell immune dysregulatory disorder triggered by SARS-CoV-2. Expert Rev Clin Immunol 2022; 18:557-565. [PMID: 35510369 DOI: 10.1080/1744666x.2022.2074403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION COVID-19 has had a calamitous impact on the global community. Apart from at least 6M deaths, hundreds of millions have been infected and a much greater number have been plunged into poverty. Vaccines have been effective but financial and logistical challenges have hampered their rapid global deployment. Vaccine disparities have allowed the emergence of new SARS-CoV-2 variants including delta and omicron, perpetuating the pandemic. AREAS COVERED The immunological response to SARS-CoV-2 has been the subject of intense study and is now better understood. Many of the clinical manifestations of severe disease are a consequence of immune dysregulation triggered by the virus. This may explain the lack of efficacy of antiviral treatments such as convalescent plasma infusions, given later in the disease. EXPERT OPINION T cells play a crucial role in both the outcome of COVID-19 as well as the protective response to vaccines. Vaccines do not prevent infection but reduce the risk of a chaotic and destructive cellular immune response to the virus. Severe COVID-19 should be considered a virus-induced secondary immune dysregulatory disorder of cellular immunity, with broad host susceptibility. This perspective of COVID-19 will lead to better diagnostic tests, vaccines and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland New Zealand.,Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand.,Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland.,Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| |
Collapse
|
86
|
Bonifacius A, Tischer-Zimmermann S, Santamorena MM, Mausberg P, Schenk J, Koch S, Barnstorf-Brandes J, Gödecke N, Martens J, Goudeva L, Verboom M, Wittig J, Maecker-Kolhoff B, Baurmann H, Clark C, Brauns O, Simon M, Lang P, Cornely OA, Hallek M, Blasczyk R, Seiferling D, Köhler P, Eiz-Vesper B. Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy. Front Bioeng Biotechnol 2022; 10:867042. [PMID: 35480981 PMCID: PMC9036989 DOI: 10.3389/fbioe.2022.867042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives: Evaluation of the feasibility of SARS-CoV-2-specific T cell manufacturing for adoptive T cell transfer in COVID-19 patients at risk to develop severe disease. Methods: Antiviral SARS-CoV-2-specific T cells were detected in blood of convalescent COVID-19 patients following stimulation with PepTivator SARS-CoV-2 Select using Interferon-gamma Enzyme-Linked Immunospot (IFN-γ ELISpot), SARS-CoV-2 T Cell Analysis Kit (Whole Blood) and Cytokine Secretion Assay (CSA) and were characterized with respect to memory phenotype, activation state and cytotoxic potential by multicolor flow cytometry, quantitative real-time PCR and multiplex analyses. Clinical-grade SARS-CoV-2-specific T cell products were generated by stimulation with MACS GMP PepTivator SARS-CoV-2 Select using CliniMACS Prodigy and CliniMACS Cytokine Capture System (IFN-gamma) (CCS). Functionality of enriched T cells was investigated in cytotoxicity assays and by multiplex analysis of secreted cytotoxic molecules upon target recognition. Results: Donor screening via IFN-γ ELISpot allows for pre-selection of potential donors for generation of SARS-CoV-2-specific T cells. Antiviral T cells reactive against PepTivator SARS-CoV-2 Select could be magnetically enriched from peripheral blood of convalescent COVID-19 patients by small-scale CSA resembling the clinical-grade CCS manufacturing process and showed an activated and cytotoxic T cell phenotype. Four clinical-grade SARS-CoV-2-specific T cell products were successfully generated with sufficient cell numbers and purities comparable to those observed in donor pretesting via CSA. The T cells in the generated products were shown to be capable to replicate, specifically recognize and kill target cells in vitro and secrete cytotoxic molecules upon target recognition. Cell viability, total CD3+ cell number, proliferative capacity and cytotoxic potential remained stable throughout storage of up to 72 h after end of leukapheresis. Conclusion: Clinical-grade SARS-CoV-2-specific T cells are functional, have proliferative capacity and target-specific cytotoxic potential. Their function and phenotype remain stable for several days after enrichment. The adoptive transfer of partially matched, viable human SARS-CoV-2-specific T lymphocytes collected from convalescent individuals may provide the opportunity to support the immune system of COVID-19 patients at risk for severe disease.
Collapse
Affiliation(s)
- Agnes Bonifacius
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Maria Michela Santamorena
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Philip Mausberg
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Josephine Schenk
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Stephanie Koch
- Deutsche Gesellschaft für Gewebetransplantation, Hannover, Germany
| | - Johanna Barnstorf-Brandes
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Nina Gödecke
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Jörg Martens
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Lilia Goudeva
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Murielle Verboom
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Jana Wittig
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Caren Clark
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Olaf Brauns
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Martina Simon
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University of Tuebingen, Tuebingen, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | - Philipp Köhler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Britta Eiz-Vesper
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| |
Collapse
|
87
|
Liu Z, Kilic G, Li W, Bulut O, Gupta MK, Zhang B, Qi C, Peng H, Tsay HC, Soon CF, Mekonnen YA, Ferreira AV, van der Made CI, van Cranenbroek B, Koenen HJPM, Simonetti E, Diavatopoulos D, de Jonge MI, Müller L, Schaal H, Ostermann PN, Cornberg M, Eiz-Vesper B, van de Veerdonk F, van Crevel R, Joosten LAB, Domínguez-Andrés J, Xu CJ, Netea MG, Li Y. Multi-Omics Integration Reveals Only Minor Long-Term Molecular and Functional Sequelae in Immune Cells of Individuals Recovered From COVID-19. Front Immunol 2022; 13:838132. [PMID: 35464396 PMCID: PMC9022455 DOI: 10.3389/fimmu.2022.838132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
The majority of COVID-19 patients experience mild to moderate disease course and recover within a few weeks. An increasing number of studies characterized the long-term changes in the specific anti-SARS-CoV-2 immune responses, but how COVID-19 shapes the innate and heterologous adaptive immune system after recovery is less well known. To comprehensively investigate the post-SARS-CoV-2 infection sequelae on the immune system, we performed a multi-omics study by integrating single-cell RNA-sequencing, single-cell ATAC-sequencing, genome-wide DNA methylation profiling, and functional validation experiments in 14 convalescent COVID-19 and 15 healthy individuals. We showed that immune responses generally recover without major sequelae after COVID-19. However, subtle differences persist at the transcriptomic level in monocytes, with downregulation of the interferon pathway, while DNA methylation also displays minor changes in convalescent COVID-19 individuals. However, these differences did not affect the cytokine production capacity of PBMCs upon different bacterial, viral, and fungal stimuli, although baseline release of IL-1Ra and IFN-γ was higher in convalescent individuals. In conclusion, we propose that despite minor differences in epigenetic and transcriptional programs, the immune system of convalescent COVID-19 patients largely recovers to the homeostatic level of healthy individuals.
Collapse
Affiliation(s)
- Zhaoli Liu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wenchao Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Bowen Zhang
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cancan Qi
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Hsin-Chieh Tsay
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Chai Fen Soon
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Yonatan Ayalew Mekonnen
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Anaísa Valido Ferreira
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Caspar I van der Made
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elles Simonetti
- Laboratory of Pediatric Infectious Diseases, Radboud Centre for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dimitri Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Radboud Centre for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lisa Müller
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Philipp N Ostermann
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Markus Cornberg
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Frank van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
88
|
Laurén I, Havervall S, Ng H, Lord M, Pettke A, Greilert‐Norin N, Gabrielsson L, Chourlia A, Amoêdo‐Leite C, Josyula VS, Eltahir M, Kerzeli I, Falk AJ, Hober J, Christ W, Wiberg A, Hedhammar M, Tegel H, Burman J, Xu F, Pin E, Månberg A, Klingström J, Christoffersson G, Hober S, Nilsson P, Philipson M, Dönnes P, Lindsay R, Thålin C, Mangsbo S. Long-term SARS-CoV-2-specific and cross-reactive cellular immune responses correlate with humoral responses, disease severity, and symptomatology. Immun Inflamm Dis 2022; 10:e595. [PMID: 35349756 PMCID: PMC8962644 DOI: 10.1002/iid3.595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cellular immune memory responses post coronavirus disease 2019 (COVID-19) have been difficult to assess due to the risks of contaminating the immune response readout with memory responses stemming from previous exposure to endemic coronaviruses. The work herein presents a large-scale long-term follow-up study investigating the correlation between symptomology and cellular immune responses four to five months post seroconversion based on a unique severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific peptide pool that contains no overlapping peptides with endemic human coronaviruses. METHODS Peptide stimulated memory T cell responses were assessed with dual interferon-gamma (IFNγ) and interleukin (IL)-2 Fluorospot. Serological analyses were performed using a multiplex antigen bead array. RESULTS Our work demonstrates that long-term SARS-CoV-2-specific memory T cell responses feature dual IFNγ and IL-2 responses, whereas cross-reactive memory T cell responses primarily generate IFNγ in response to SARS-CoV-2 peptide stimulation. T cell responses correlated to long-term humoral immune responses. Disease severity as well as specific COVID-19 symptoms correlated with the magnitude of the SARS-CoV-2-specific memory T cell response four to five months post seroconversion. CONCLUSION Using a large cohort and a SARS-CoV-2-specific peptide pool we were able to substantiate that initial disease severity and symptoms correlate with the magnitude of the SARS-CoV-2-specific memory T cell responses.
Collapse
Affiliation(s)
- Ida Laurén
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Sebastian Havervall
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Henry Ng
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Martin Lord
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | | | - Nina Greilert‐Norin
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Lena Gabrielsson
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Aikaterini Chourlia
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Catarina Amoêdo‐Leite
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Vijay S. Josyula
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Mohamed Eltahir
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
- Department of Immunology, Genetics, and PathologyUppsala UniversityUppsalaSweden
| | - Iliana Kerzeli
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - August J. Falk
- Division of Affinity Proteomics, Department of Protein ScienceKTH Royal Institute of Technology, Science for Life LaboratoryStockholmSweden
| | - Jonathan Hober
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Wanda Christ
- Department of Medicine HuddingeKarolinska Institute, Centre for Infectious MedicineStockholmSweden
| | - Anna Wiberg
- Department of Immunology, Genetics, and PathologyUppsala UniversityUppsalaSweden
| | - My Hedhammar
- Division of Protein Technology, Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Hanna Tegel
- Division of Protein Technology, Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Joachim Burman
- Department of NeuroscienceUppsala UniversityUppsalaSweden
| | - Feifei Xu
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein ScienceKTH Royal Institute of Technology, Science for Life LaboratoryStockholmSweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein ScienceKTH Royal Institute of Technology, Science for Life LaboratoryStockholmSweden
| | - Jonas Klingström
- Department of Medicine HuddingeKarolinska Institute, Centre for Infectious MedicineStockholmSweden
| | - Gustaf Christoffersson
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Sophia Hober
- Division of Protein Technology, Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein ScienceKTH Royal Institute of Technology, Science for Life LaboratoryStockholmSweden
| | - Mia Philipson
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | | | - Robin Lindsay
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Charlotte Thålin
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Sara Mangsbo
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| |
Collapse
|
89
|
Mortezaee K, Majidpoor J. CD8 + T Cells in SARS-CoV-2 Induced Disease and Cancer-Clinical Perspectives. Front Immunol 2022; 13:864298. [PMID: 35432340 PMCID: PMC9010719 DOI: 10.3389/fimmu.2022.864298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Dysregulated innate and adaptive immunity is a sign of SARS-CoV-2-induced disease and cancer. CD8+ T cells are important cells of the immune system. The cells belong to the adaptive immunity and take a front-line defense against viral infections and cancer. Extreme CD8+ T-cell activities in the lung of patients with a SARS-CoV-2-induced disease and within the tumor microenvironment (TME) will change their functionality into exhausted state and undergo apoptosis. Such diminished immunity will put cancer cases at a high-risk group for SARS-CoV-2-induced disease, rendering viral sepsis and a more severe condition which will finally cause a higher rate of mortality. Recovering responses from CD8+ T cells is a purpose of vaccination against SARS-CoV-2. The aim of this review is to discuss the CD8+ T cellular state in SARS-CoV-2-induced disease and in cancer and to present some strategies for recovering the functionality of these critical cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
90
|
Mittelman M. Is COVID Vaccine Effective in Patients with Myeloid Malignancy? Br J Haematol 2022; 197:656-658. [PMID: 35277857 PMCID: PMC9111407 DOI: 10.1111/bjh.18155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Moshe Mittelman
- George Washington University School of Public Health and Health Services Cancer Center, 9049 Doctor Perry Road Washington United States
| |
Collapse
|
91
|
Jannuzzi P, Panza GA. The Association between Contact with Children and the Clinical Course of COVID-19. Epidemiol Infect 2022; 150:1-23. [PMID: 35249579 PMCID: PMC8943224 DOI: 10.1017/s0950268822000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
We examined the association between contact with children and the clinical course of COVID-19 among COVID-19-positive adult patients. Participants completed a survey to assess demographics, medical information related to their COVID-19 diagnosis, contact with children at home and at the workplace. Patients were aged 45.68 ± 14.38 years, mostly female (72.1%), 842 were not hospitalized and 167 were hospitalized. At home, there were no differences between groups for the number of child contact hours or total child hours (hours × number of children) per week (P s > 0.05). The number of children at home was greater among patients not hospitalized (P < 0.05), however this was no longer significant after controlling for covariates (P > 0.05). At the workplace, there were no differences between groups (all P s > 0.05). Sub-group analysis found the proportion of patients that were treated in the intensive care unit (ICU) was greater among patients with no child contact (P < 0.05). A secondary analysis found that patients with no child contact had an increased likelihood of thromboembolism (P < 0.05) and a trend towards more overall COVID-19-related complications (P = 0.076). Overall, an association between contact with children and hospitalization was not found when adjusting for covariates. Sub-group analysis indicated a possible protective effect for more severe disease; however, these findings need further study.
Collapse
Affiliation(s)
- Peter Jannuzzi
- Integrated Care Partners, Hartford HealthCare, Hartford, CT, USA
- Unionville Pediatrics, LLC, Unionville, CT, USA
| | | |
Collapse
|
92
|
Vo HTM, Maestri A, Auerswald H, Sorn S, Lay S, Seng H, Sann S, Ya N, Pean P, Dussart P, Schwartz O, Ly S, Bruel T, Ly S, Duong V, Karlsson EA, Cantaert T. Robust and Functional Immune Memory Up to 9 Months After SARS-CoV-2 Infection: A Southeast Asian Longitudinal Cohort. Front Immunol 2022; 13:817905. [PMID: 35185909 PMCID: PMC8853741 DOI: 10.3389/fimmu.2022.817905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
The duration of humoral and cellular immune memory following SARS-CoV-2 infection in populations in least developed countries remains understudied but is key to overcome the current SARS-CoV-2 pandemic. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for Spike (S)-binding and neutralizing antibodies and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-S antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immune memory was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased antibody-dependent cellular cytotoxicity (ADCC) and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immune memory. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection and in the absence of re-infection.
Collapse
Affiliation(s)
- Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Alvino Maestri
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heng Seng
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Nisa Ya
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Polidy Pean
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sovann Ly
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
93
|
Wang J, Yin XG, Wen Y, Lu J, Zhang RY, Zhou SH, Liao CM, Wei HW, Guo J. MPLA-Adjuvanted Liposomes Encapsulating S-Trimer or RBD or S1, but Not S-ECD, Elicit Robust Neutralization Against SARS-CoV-2 and Variants of Concern. J Med Chem 2022; 65:3563-3574. [PMID: 35108485 PMCID: PMC8848510 DOI: 10.1021/acs.jmedchem.1c02025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/31/2022]
Abstract
Safe and effective vaccines are the best method to defeat worldwide SARS-CoV-2 and its circulating variants. The SARS-CoV-2 S protein and its subunits are the most attractive targets for the development of protein-based vaccines. In this study, we evaluated three lipophilic adjuvants, monophosphoryl lipid A (MPLA), Toll-like receptor (TLR) 1/2 ligand Pam3CSK4, and α-galactosylceramide (α-GalCer), in liposomal and nonliposomal vaccines. The immunological results showed that the MPLA-adjuvanted liposomal vaccine induced the strongest humoral and cellular immunity. Therefore, we further performed a systematic comparison of S-trimer, S-ECD, S1, and RBD as antigens in MPLA-adjuvanted liposomes and found that, although these four vaccines all induced robust specific antibody responses, only S-trimer, S1, and RBD liposomes, but not S-ECD, elicited potent neutralizing antibody responses. Moreover, RBD, S-trimer, and S1 liposomes effectively neutralized variants (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results provide important information for the subunit vaccine design against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Xu-Guang Yin
- School of Medical Sciences, Shaoxing
University, Zhejiang 312000, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jie Lu
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology Co.
Ltd, Nantong 226499, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|
94
|
Taus E, Hofmann C, Ibarrondo FJ, Hausner MA, Fulcher JA, Krogstad P, Ferbas KG, Tobin NH, Rimoin AW, Aldrovandi GM, Yang OO. Dominant CD8 + T Cell Nucleocapsid Targeting in SARS-CoV-2 Infection and Broad Spike Targeting From Vaccination. Front Immunol 2022; 13:835830. [PMID: 35273611 PMCID: PMC8902813 DOI: 10.3389/fimmu.2022.835830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
CD8+ T cells have key protective roles in many viral infections. While an overall Th1-biased cellular immune response against SARS-CoV-2 has been demonstrated, most reports of anti-SARS-CoV-2 cellular immunity have evaluated bulk T cells using pools of predicted epitopes, without clear delineation of the CD8+ subset and its magnitude and targeting. In recently infected persons (mean 29.8 days after COVID-19 symptom onset), we confirm a Th1 bias (and a novel IL-4-producing population of unclear significance) by flow cytometry, which does not correlate to antibody responses against the receptor binding domain. Evaluating isolated CD8+ T cells in more detail by IFN-γ ELISpot assays, responses against spike, nucleocapsid, matrix, and envelope proteins average 396, 901, 296, and 0 spot-forming cells (SFC) per million, targeting 1.4, 1.5, 0.59, and 0.0 epitope regions respectively. Nucleocapsid targeting is dominant in terms of magnitude, breadth, and density of targeting. The magnitude of responses drops rapidly post-infection; nucleocapsid targeting is most sustained, and vaccination selectively boosts spike targeting. In SARS-CoV-2-naïve persons, evaluation of the anti-spike CD8+ T cell response soon after vaccination (mean 11.3 days) yields anti-spike CD8+ T cell responses averaging 2,463 SFC/million against 4.2 epitope regions, and targeting mirrors that seen in infected persons. These findings provide greater clarity on CD8+ T cell anti-SARS-CoV-2 targeting, breadth, and persistence, suggesting that nucleocapsid inclusion in vaccines could broaden coverage and durability.
Collapse
Affiliation(s)
- Ellie Taus
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christian Hofmann
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Francisco Javier Ibarrondo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Mary Ann Hausner
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Jennifer A. Fulcher
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Paul Krogstad
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kathie G. Ferbas
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Nicole H. Tobin
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Anne W. Rimoin
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Grace M. Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Otto O. Yang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
95
|
Foote SL, Jones S, Lockmuller J, Brown L, Breen J, Gururaj A. Parsing Immune Correlates of Protection Against SARS-CoV-2 from Biomedical Literature. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2021:466-475. [PMID: 35308924 PMCID: PMC8861695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
After the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 2019, identification of immune correlates of protection (CoPs) have become increasingly important to understand the immune response to SARS-CoV-2. The vast amount of preprint and published literature related to COVID-19 makes it challenging for researchers to stay up to date on research results regarding CoPs against SARS-CoV-2. To address this problem, we developed a machine learning classifier to identify papers relevant to CoPs and a customized named entity recognition (NER) model to extract terms of interest, including CoPs, vaccines, assays, and animal models. A user-friendly visualization tool was populated with the extracted and normalized NER results and associated publication information including links to full-text articles and clinical trial information where available. The goal of this pilot project is to provide a basis for developing real-time informatics platforms that can inform researchers with scientific insights from emerging research.
Collapse
Affiliation(s)
- Sydney L Foote
- Office of Data Science and Emerging Technologies, NIAID, NIH, Rockville, MD, USA
- Both authors contributed to the work equally
| | - Sara Jones
- Office of Data Science and Emerging Technologies, NIAID, NIH, Rockville, MD, USA
- Both authors contributed to the work equally
| | - Jane Lockmuller
- Office of Data Science and Emerging Technologies, NIAID, NIH, Rockville, MD, USA
| | - Liliana Brown
- Division of Microbiology and Infectious Diseases, NIAID, NIH, Rockville, MD, USA
| | - Joseph Breen
- Division of Allergy, Immunology, and Transplantation, NIAID, NIH, Rockville, MD, USA
| | - Anupama Gururaj
- Division of Allergy, Immunology, and Transplantation, NIAID, NIH, Rockville, MD, USA
| |
Collapse
|
96
|
Ameratunga R, Woon ST, Lea E, Steele R, Lehnert K, Leung E, Brooks AES. The (apparent) antibody paradox in COVID-19. Expert Rev Clin Immunol 2022; 18:335-345. [PMID: 35184669 PMCID: PMC8935454 DOI: 10.1080/1744666x.2022.2044797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland New Zealand
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E. S. Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| |
Collapse
|
97
|
Jiang S, Wu S, Zhao G, He Y, Guo X, Zhang Z, Hou J, Ding Y, Cheng A, Wang B. Identification of a promiscuous conserved CTL epitope within the SARS-CoV-2 spike protein. Emerg Microbes Infect 2022; 11:730-740. [PMID: 35171086 PMCID: PMC8890520 DOI: 10.1080/22221751.2022.2043727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The COVID-19 disease caused by infection with SARS-CoV-2 and its variants is devastating to the global public health and economy. To date, over a hundred COVID-19 vaccines are known to be under development, and the few that have been approved to fight the disease are using the spike protein as the primary target antigen. Although virus-neutralizing epitopes are mainly located within the RBD of the spike protein, the presence of T cell epitopes, particularly the CTL epitopes that are likely to be needed for killing infected cells, has received comparatively little attention. This study predicted several potential T cell epitopes with web-based analytic tools and narrowed them down from several potential MHC-I and MHC-II epitopes by ELIspot and cytolytic assays to a conserved MHC-I epitope. The epitope is highly conserved in current viral variants and compatible with a presentation by most HLA alleles worldwide. In conclusion, we identified a CTL epitope suitable for evaluating the CD8+ T cell-mediated cellular response and potentially for addition into future COVID-19 vaccine candidates to maximize CTL responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Sheng Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College(SHMC), Fudan University.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuting Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College(SHMC), Fudan University
| | - Gan Zhao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Yue He
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | | | - Zhiyu Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Jiawang Hou
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Yuan Ding
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Alex Cheng
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College(SHMC), Fudan University.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Advaccine Biopharmaceutics (Suzhou) Co. LTD, Jiangsu Province, China. dColby College, Waterville, Maine, USA
| |
Collapse
|
98
|
Dutt TS, LaVergne SM, Webb TL, Baxter BA, Stromberg S, McFann K, Berry K, Tipton M, Alnachoukati O, Zier L, Ebel G, Dunn J, Henao-Tamayo M, Ryan EP. Comprehensive Immune Profiling Reveals CD56 + Monocytes and CD31 + Endothelial Cells Are Increased in Severe COVID-19 Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:685-696. [PMID: 34987111 DOI: 10.4049/jimmunol.2100830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023]
Abstract
Immune response dysregulation plays a key role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. In this study, we evaluated immune and endothelial blood cell profiles of patients with coronavirus disease 2019 (COVID-19) to determine critical differences between those with mild, moderate, or severe COVID-19 using spectral flow cytometry. We examined a suite of immune phenotypes, including monocytes, T cells, NK cells, B cells, endothelial cells, and neutrophils, alongside surface and intracellular markers of activation. Our results showed progressive lymphopenia and depletion of T cell subsets (CD3+, CD4+, and CD8+) in patients with severe disease and a significant increase in the CD56+CD14+Ki67+IFN-γ+ monocyte population in patients with moderate and severe COVID-19 that has not been previously described. Enhanced circulating endothelial cells (CD45-CD31+CD34+CD146+), circulating endothelial progenitors (CD45-CD31+CD34+/-CD146-), and neutrophils (CD11b+CD66b+) were coevaluated for COVID-19 severity. Spearman correlation analysis demonstrated the synergism among age, obesity, and hypertension with upregulated CD56+ monocytes, endothelial cells, and decreased T cells that lead to severe outcomes of SARS-CoV-2 infection. Circulating monocytes and endothelial cells may represent important cellular markers for monitoring postacute sequelae and impacts of SARS-CoV-2 infection during convalescence and for their role in immune host defense in high-risk adults after vaccination.
Collapse
Affiliation(s)
- Taru S Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Stephanie M LaVergne
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO
| | - Tracy L Webb
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Bridget A Baxter
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO
| | - Sophia Stromberg
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO
| | - Kim McFann
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO
| | - Kailey Berry
- Department of Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO
| | - Madison Tipton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO; and
| | - Omar Alnachoukati
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO
| | - Linda Zier
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO
| | - Greg Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Julie Dunn
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO.,University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Elizabeth P Ryan
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO;
| |
Collapse
|
99
|
Murugesan K, Jagannathan P, Altamirano J, Maldonado YA, Bonilla HF, Jacobson KB, Parsonnet J, Andrews JR, Shi RZ, Boyd S, Pinsky BA, Singh U, Banaei N. Long-Term Accuracy of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Interferon-γ Release Assay and Its Application in Household Investigation. Clin Infect Dis 2022; 75:e314-e321. [PMID: 35079772 PMCID: PMC8807306 DOI: 10.1093/cid/ciac045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND An immunodiagnostic assay that sensitively detects a cell-mediated immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed for epidemiological investigation and for clinical assessment of T- cell-mediated immune response to vaccines, particularly in the context of emerging variants that might escape antibody responses. METHODS The performance of a whole blood interferon-gamma (IFN-γ) release assay (IGRA) for the detection of SARS-CoV-2 antigen-specific T cells was evaluated in coronavirus disease 2019 (COVID-19) convalescents tested serially up to 10 months post-infection and in healthy blood donors. SARS-CoV-2 IGRA was applied in contacts of households with index cases. Freshly collected blood in the lithium heparin tube was left unstimulated, stimulated with a SARS-CoV-2 peptide pool, and stimulated with mitogen. RESULTS The overall sensitivity and specificity of IGRA were 84.5% (153/181; 95% confidence interval [CI]: 79.0-89.0) and 86.6% (123/142; 95% CI: 80.0-91.2), respectively. The sensitivity declined from 100% (16/16; 95% CI: 80.6-100) at 0.5-month post-infection to 79.5% (31/39; 95% CI: 64.4-89.2) at 10 months post-infection (P < .01). The IFN-γ response remained relatively robust at 10 months post-infection (3.8 vs 1.3 IU/mL, respectively). In 14 households, IGRA showed a positivity rate of 100% (12/12) and 65.2% (15/23), and IgG of 50.0% (6/12) and 43.5% (10/23) in index cases and contacts, respectively, exhibiting a difference of + 50% (95% CI: +25.4 to +74.6) and +21.7% (95% CI: +9.23 to +42.3), respectively. Either IGRA or IgG was positive in 100% (12/12) of index cases and 73.9% (17/23) of contacts. CONCLUSIONS The SARS-CoV-2 IGRA is a useful clinical diagnostic tool for assessing cell-mediated immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Kanagavel Murugesan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan Altamirano
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yvonne A Maldonado
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hector F Bonilla
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen B Jacobson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Parsonnet
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Run-Zhang Shi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA,Clinical Virology Laboratory, Stanford Health Care, Stanford, CA, USA
| | - Upinder Singh
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA,Department of Microbiology and Immunology
| | - Niaz Banaei
- Corresponding Author: Niaz Banaei MD , 3375 Hillview Ave, Rm. 1602, Palo Alto, Ca 94304 USA, Phone 650-736-8052,
| |
Collapse
|
100
|
Liu J, Budylowski P, Samson R, Griffin BD, Babuadze G, Rathod B, Colwill K, Abioye JA, Schwartz JA, Law R, Yip L, Ahn SK, Chau S, Naghibosadat M, Arita Y, Hu Q, Yue FY, Banerjee A, Hardy WR, Mossman K, Mubareka S, Kozak RA, Pollanen MS, Martin Orozco N, Gingras AC, Marcusson EG, Ostrowski MA. Preclinical evaluation of a SARS-CoV-2 mRNA vaccine PTX-COVID19-B. SCIENCE ADVANCES 2022; 8:eabj9815. [PMID: 35044832 PMCID: PMC8769538 DOI: 10.1126/sciadv.abj9815] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/24/2021] [Indexed: 06/01/2023]
Abstract
Safe and effective vaccines are needed to end the COVID-19 pandemic. Here, we report the preclinical development of a lipid nanoparticle–formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern, including the Alpha, Beta, Gamma, and Delta lineages. No adverse effects were induced by PTX-COVID19-B in either mice or hamsters. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 2 clinical trial ongoing.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- CD4 Lymphocyte Count
- CD8-Positive T-Lymphocytes/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/immunology
- Canada
- Cell Line
- Cricetinae
- Drug Evaluation, Preclinical
- Female
- HEK293 Cells
- Humans
- Immunity, Cellular/immunology
- Immunity, Humoral/immunology
- Liposomes/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nanoparticles
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Th1 Cells/immunology
- Vaccines, Synthetic/immunology
- mRNA Vaccines/immunology
Collapse
Affiliation(s)
- Jun Liu
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Patrick Budylowski
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Reuben Samson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | | | | | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | | | | | - Ryan Law
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lily Yip
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Serena Chau
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Yuko Arita
- Providence Therapeutics Holdings Inc., Calgary, AB, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Feng Yun Yue
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - W. Rod Hardy
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | | | - Michael S. Pollanen
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Eric G. Marcusson
- Providence Therapeutics Holdings Inc., Calgary, AB, Canada
- Marcusson Consulting, San Francisco, CA, USA
| | - Mario A. Ostrowski
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| |
Collapse
|