51
|
Hyperlipidemia and hypothyroidism. Clin Chim Acta 2022; 527:61-70. [DOI: 10.1016/j.cca.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
|
52
|
Xu S, Wang Y, Li Z, Hua Q, Jiang M, Fan X. LncRNA GAS5 Knockdown Mitigates Hepatic Lipid Accumulation via Regulating MiR-26a-5p/PDE4B to Activate cAMP/CREB Pathway. Front Endocrinol (Lausanne) 2022; 13:889858. [PMID: 35957809 PMCID: PMC9361042 DOI: 10.3389/fendo.2022.889858] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) can be attributed to the dysregulation of hepatic lipid metabolism; however, its cellular and molecular mechanisms remain unclear. This study aims to explore the effect of long non-coding RNA growth arrest specific 5 (GAS5) on hepatic lipid metabolism in fatty liver models. METHODS Obese mice, high fat diet-fed mice and free fatty acid-stimulated cells were used for GAS5 expression detection. GAS5 overexpression or knockdown models were established to elucidate the regulatory function of GAS5 in de novo lipogenesis (DNL) and mitochondrial function. Bioinformatic analyses and dual luciferase assays were used to investigate the interaction between GAS5, miR-26a-5p and phosphodiesterase (PDE) 4B. The involvement of the cyclic adenosine monophosphate (cAMP)/cAMP-response element-binding protein (CREB) pathway was evaluated using H89 and forskolin treatment. RESULTS GAS5 was activated in vitro and in vivo fatty liver models. Knockdown of GAS5 reduced lipid droplet accumulation, DNL associated enzymes and preserved mitochondrial function, while GAS5 overexpression exacerbated hepatic lipid accumulation. Mechanistically, GAS5 sponged miR-26a-5p to increase PDE4B expression and subsequently modulated DNL and mitochondrial function via the cAMP/CREB pathway. CONCLUSION Downregulation of GAS5 can activate the cAMP/CREB pathway through miR-26a-5p/PDE4B axis to mitigate hepatic lipid accumulation. This study provides evidence that downregulation of GAS5 may be a potential therapeutic option for the treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Miao Jiang
- *Correspondence: Xiaoming Fan, ; Miao Jiang,
| | | |
Collapse
|
53
|
Sun N, Shen C, Zhang L, Wu X, Yu Y, Yang X, Yang C, Zhong C, Gao Z, Miao W, Yang Z, Gao W, Hu L, Williams K, Liu C, Chang Y, Gao Y. Hepatic Krüppel-like factor 16 (KLF16) targets PPARα to improve steatohepatitis and insulin resistance. Gut 2021; 70:2183-2195. [PMID: 33257471 PMCID: PMC8515101 DOI: 10.1136/gutjnl-2020-321774] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/20/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Impaired hepatic fatty acids oxidation results in lipid accumulation and redox imbalance, promoting the development of fatty liver diseases and insulin resistance. However, the underlying pathogenic mechanism is poorly understood. Krüppel-like factor 16 (KLF16) is a transcription factor that abounds in liver. We explored whether and by what mechanisms KLF16 affects hepatic lipid catabolism to improve hepatosteatosis and insulin resistance. DESIGN KLF16 expression was determined in patients with non-alcoholic fatty liver disease (NAFLD) and mice models. The role of KLF16 in the regulation of lipid metabolism was investigated using hepatocyte-specific KLF16-deficient mice fed a high-fat diet (HFD) or using an adenovirus/adeno-associated virus to alter KLF16 expression in mouse primary hepatocytes (MPHs) and in vivo livers. RNA-seq, luciferase reporter gene assay and ChIP analysis served to explore the molecular mechanisms involved. RESULTS KLF16 expression was decreased in patients with NAFLD, mice models and oleic acid and palmitic acid (OA and PA) cochallenged hepatocytes. Hepatic KLF16 knockout impaired fatty acid oxidation, aggravated mitochondrial stress, ROS burden, advancing hepatic steatosis and insulin resistance. Conversely, KLF16 overexpression reduced lipid deposition and improved insulin resistance via directly binding the promoter of peroxisome proliferator-activated receptor α (PPARα) to accelerate fatty acids oxidation and attenuate mitochondrial stress, oxidative stress in db/db and HFD mice. PPARα deficiency diminished the KLF16-evoked protective effects against lipid deposition in MPHs. Hepatic-specific PPARα overexpression effectively rescued KLF16 deficiency-induced hepatic steatosis, altered redox balance and insulin resistance. CONCLUSIONS These findings prove that a direct KLF16-PPARα pathway closely links hepatic lipid homeostasis and redox balance, whose dysfunction promotes insulin resistance and hepatic steatosis.
Collapse
Affiliation(s)
- Nannan Sun
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuangpeng Shen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lei Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xiaojie Wu
- Central Lab of Binzhou People’s Hospital, Central Lab of Binzhou People’s Hospital, Shandong, China
| | - Yuanyuan Yu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chen Yang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhao Gao
- Guangdong Provincial Institute of Sports Science, Guangzhou, Guangdong, China
| | - Wei Miao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zehong Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kevin Williams
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongsheng Chang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China .,Division of Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
54
|
Bueverov AO, Bogomolov PO, Nechayeva OA, Zilov AV. Cause-and-effect relationship between thyroid and liver diseases. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2021:88-94. [DOI: 10.21518/2079-701x-2021-15-88-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Thyroid gland (TG) and the liver are in a complex relationship in both physiological and pathological conditions. Thyroid hormones accelerate metabolic processes, intensify the synthesis of proteins and vitamins, play an important role in the development and differentiation of all cells, including hepatocytes. In addition to the central role in the deiodination of thyroid hormones with the formation of their more active and inactivated forms, the liver also carries out their transport. Dysfunction of TG can lead to changes in liver function, and in liver diseases, abnormalities in the metabolism of thyroid hormones can occur. Most often, liver pathology in diseases of TG is manifested by an increase in the serum activity of enzymes of cytolysis and/or cholestasis. Changes in liver function tests are often observed in patients with thyrotoxicosis. They are based on oxidative stress or cholestasis. The increased activity of osteoblasts in hyperthyroidism leads to an increase in the bone fraction of alkaline phosphatase, which must be taken into account in the differential diagnosis. Hepatotoxicity of thyreostatic drugs is relatively common, ranging from minimal hepatocellular damage to fulminant liver failure. In the case of hypothyroidism, the pathophysiological mechanisms are mainly represented by lipid metabolism disorders leading to fatty degeneration. It should be remembered that severe hypothyroidism can be manifested by hyperammonemia and edematous-ascitic syndrome, requiring differential diagnosis with liver failure. Treatment of liver pathology in TG diseases includes normalization of thyroid status, and in cases of drug hepatitis – temporary withdrawal of a potentially hepatotoxic drug. The data on the association of hypothyroidism and non-alcoholic fatty liver disease in the aspect of developing new therapies are very interesting.
Collapse
Affiliation(s)
- A. O. Bueverov
- Sechenov First Moscow State Medical University (Sechenov University); Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, Evidence-Based Medicine Support and Development Fund
| | - P. O. Bogomolov
- Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, Evidence-Based Medicine Support and Development Fund
| | - O. A. Nechayeva
- Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, Evidence-Based Medicine Support and Development Fund
| | - A. V. Zilov
- Sechenov First Moscow State Medical University
| |
Collapse
|
55
|
Choi W, Park JY, Hong AR, Yoon JH, Kim HK, Kang HC. Association between triglyceride-glucose index and thyroid function in euthyroid adults: The Korea National Health and Nutritional Examination Survey 2015. PLoS One 2021; 16:e0254630. [PMID: 34264998 PMCID: PMC8281995 DOI: 10.1371/journal.pone.0254630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVES Low-normal thyroid function is associated with numerous metabolic risk factors including insulin resistance (IR). Triglyceride-glucose (TyG) index is a new surrogate marker of IR calculated by fasting triglyceride and glucose levels. Here, we investigated the association between thyroid function and TyG index in non-diabetic euthyroid adults. METHODS This cross-sectional study was based on data from the Korean National Health and Nutritional Examination Survey 2015 including 1482 individuals (741 men and 741 women). Serum thyrotropin (TSH) and free thyroxine (fT4) levels were measured. RESULTS After adjusting for confounders, there was an inverse relationship of TyG index with fT4 in men (β = -0.094, P = 0.009) and a positive relationship of TyG index with TSH in women (β = 0.078, P = 0.018). The lowest fT4 tertile in men (P = 0.001) and the highest TSH tertile in women (P = 0.010) exhibited increased TyG index after adjusting for confounders. The lowest fT4 tertile also showed increased homeostatic model assessment for IR (HOMA-IR) only in men (P = 0.006). Odds ratios (ORs) for the high TyG index, which was defined as the highest TyG quartile decreased in the highest and second highest tertile of fT4 in men (OR = 0.41 and OR = 0.45, respectively; P < 0.001) and increased in highest tertile of TSH in women (OR = 1.81, P = 0.031) after adjusting for confounders. The OR for high HOMA-IR defined as the highest HOMA-IR quartile was also lower in the highest and second highest fT4 tertiles in men (both OR = 0.47; P = 0.003). CONCLUSIONS This is the first study to suggest that TyG index is a good surrogate marker of IR in evaluating its relationship with thyroid function.
Collapse
Affiliation(s)
- Wonsuk Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ji Yong Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - A. Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jee Hee Yoon
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ho-Cheol Kang
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
56
|
Li J, Kong D, Gao X, Tian Z, Wang X, Guo Q, Wang Z, Zhang Q. TSH attenuates fatty acid oxidation in hepatocytes by reducing the mitochondrial distribution of miR-449a/449b-5p/5194. Mol Cell Endocrinol 2021; 530:111280. [PMID: 33862186 DOI: 10.1016/j.mce.2021.111280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
The elevated thyroid-stimulating hormone (TSH) levels contribute to the abnormal expression/activity of several key hepatic lipid metabolism enzymes. Although miRNAs have been shown to play key roles in hepatic lipid metabolism and are found in isolated mitochondria, very little is known about the pathological and physiological significance of their mitochondrial distributions in regulating liver lipid metabolism. Here, we found that TSH significantly reduced the distribution of some miRNAs in mitochondria of hepatocytes, especially miR-449a, miR-449b-5p, and miR-5194. These three miRNAs inhibited their target genes PGC1B, ABCD1, ADIPOR1 and the downstream molecule PPARA. These effects synergistically suppressed fatty acid (FA) β-oxidation in mitochondria and peroxisomes and decreased the translocation of cytosolic very long chain fatty acids to peroxisomes, which noticeably reduced FA catabolism and promoted triglyceride accumulation in hepatocytes. This study reveals the functional significance of changed miRNA mitochondrial-cytoplasmic distribution in the regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
| | - Danxia Kong
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
| | - Xueying Gao
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China
| | - Zhenyu Tian
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xiaowei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Qianqian Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Zhe Wang
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China.
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
57
|
Choi SY, Yi DY, Kim SC, Kang B, Choe BH, Lee Y, Lee YM, Lee EH, Jang HJ, Choi YJ, Kim HJ. Severe Phenotype of Non-alcoholic Fatty Liver Disease in Pediatric Patients with Subclinical Hypothyroidism: a Retrospective Multicenter Study from Korea. J Korean Med Sci 2021; 36:e137. [PMID: 34032030 PMCID: PMC8144595 DOI: 10.3346/jkms.2021.36.e137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND It is uncertain whether non-alcoholic fatty liver disease (NAFLD) is associated with subclinical hypothyroidism (SH) in pediatric patients. The purpose of this study was to investigated the prevalence and related factors of SH in pediatric patients with NAFLD. We also evaluate the association between liver fibrosis and SH. METHODS We retrospectively reviewed medical records for patients aged 4 to 18 years who were diagnosed with NAFLD and tested for thyroid function from January 2015 to December 2019 at 10 hospitals in Korea. RESULTS The study included 428 patients with NAFLD. The prevalence of SH in pediatric NAFLD patients was 13.6%. In multivariate logistic regression, higher levels of steatosis on ultrasound and higher aspartate aminotransferase to platelet count ratio index (APRI) score were associated with increased risk of SH. Using receiver operating characteristic curves, the optimal cutoff value of the APRI score for predicting SH was 0.6012 (area under the curve, 0.67; P < 0.001; sensitivity 72.4%, specificity 61.9%, positive predictive value 23%, and negative predictive value 93.5%). CONCLUSION SH was often observed in patients with NAFLD, more frequently in patients with more severe liver damage. Thyroid function tests should be performed on pediatric NAFLD patients, especially those with higher grades of liver steatosis and fibrosis.
Collapse
Affiliation(s)
- So Yoon Choi
- Department of Pediatrics, Kosin Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Dae Yong Yi
- Department of Pediatrics, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Soon Chul Kim
- Department of Pediatrics, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Ben Kang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Byung Ho Choe
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yoon Lee
- Department of Pediatrics, Korea University Anam Hospital, Seoul, Korea
| | - Yoo Min Lee
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Eun Hye Lee
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Hyo Jeong Jang
- Department of Pediatrics, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - You Jin Choi
- Department of Pediatrics, Inje University, Ilsan Paik Hospital, Inje University College of Medicine, Korea
| | - Hyun Jin Kim
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea.
| |
Collapse
|
58
|
Gor R, Siddiqui NA, Wijeratne Fernando R, Sreekantan Nair A, Illango J, Malik M, Hamid P. Unraveling the Role of Hypothyroidism in Non-alcoholic Fatty Liver Disease Pathogenesis: Correlations, Conflicts, and the Current Stand. Cureus 2021; 13:e14858. [PMID: 34104598 PMCID: PMC8174393 DOI: 10.7759/cureus.14858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common causes of chronic liver diseases globally. Because thyroid hormones play a crucial role in lipid metabolism, thyroid dysfunction has been implicated in NAFLD pathogenesis in the past decade, with hypothyroidism-induced NAFLD being regarded as a distinct disease entity. However, there has been no common consensus yet, and several studies have found contradictory results. Hence, we conducted this systematic review to represent the current view on the role of hypothyroidism (HT) and individual thyroid function parameters such as thyroid-stimulating hormone (TSH), thyroxine (T4), triiodothyronine (T3), thyroid peroxidase antibody (TPOAb), and thyroglobulin antibody (TGAb) in NAFLD pathogenesis. We searched PubMed, PubMed Central, and Semantic Scholar databases from inception until January 2021 to identify relevant observational (case-control, cross-sectional, and longitudinal) studies. A total of 699 articles were recognized through our database search. After applying the eligibility criteria and performing quality assessment, 10 studies involving 42,227 participants were included in the final systematic review. Each of these studies assessed different thyroid function parameters, and NAFLD was found to be associated with HT in two studies, elevated TSH in three studies, suppressed T4 in three studies, elevated T3 in one study, and elevated TPOAb in one study. There was also a wide heterogeneity in HT definition, study population characteristics, and study design among these studies, making a direct comparison difficult. Because the recognition of HT-induced NAFLD has possible diagnostic, therapeutic, and prognostic implications, we recommend that comprehensive, long-term prospective studies be carried out to determine if HT or thyroid function parameters are causally associated with NAFLD.
Collapse
Affiliation(s)
- Rajvi Gor
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nabeel A Siddiqui
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | | | - Janan Illango
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mushrin Malik
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
59
|
Negi CK, Khan S, Dirven H, Bajard L, Bláha L. Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22084282. [PMID: 33924165 PMCID: PMC8074384 DOI: 10.3390/ijms22084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Collapse
Affiliation(s)
- Chander K. Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
- Correspondence: or
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, 0456 Oslo, Norway;
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| |
Collapse
|
60
|
Lu J, Gong Y, Wei X, Yao Z, Yang R, Xin J, Gao L, Shao S. Changes in hepatic triglyceride content with the activation of ER stress and increased FGF21 secretion during pregnancy. Nutr Metab (Lond) 2021; 18:40. [PMID: 33849585 PMCID: PMC8045396 DOI: 10.1186/s12986-021-00570-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background To meet the needs of foetal growth and development, marked changes in lipid profiles occur during pregnancy. Abnormal lipid metabolism is often accompanied by adverse pregnancy outcomes, which seriously affect maternal and infant health. Further understanding of the mechanism of lipid metabolism during pregnancy would be helpful to reduce the incidence of adverse pregnancy outcomes. Methods Pregnant mice were euthanized in the virgin (V) state, on day 5 of pregnancy (P5), on day 12 of pregnancy (P12), on day 19 of pregnancy (P19) and on lactation day 2 (L2). Body weight and energy expenditure were assessed to evaluate the general condition of the mice. Triglyceride (TG) levels, the cholesterol content in the liver, liver histopathology, serum lipid profiles, serum β-hydroxybutyrate levels, fibroblast growth factor-21 (FGF21) levels and the levels of relevant target genes were analysed. Results During early pregnancy, anabolism was found to play a major role in liver lipid deposition. In contrast, advanced pregnancy is an overall catabolic condition associated with both increased energy expenditure and reduced lipogenesis. Moreover, the accumulation of hepatic TG did not appear until P12, after the onset of endoplasmic reticulum (ER) stress on P5. Then, catabolism was enhanced, and FGF21 secretion was increased in the livers of female mice in late pregnancy. We further found that the expression of sec23a, which as the coat protein complex II (COPII) vesicle coat proteins regulates the secretion of FGF21, in the liver was decreased on P19. Conclusion With the activation of ER stress and increased FGF21 secretion during pregnancy, the hepatic TG content changes, suggesting that ER stress and FGF21 may play an important role in balancing lipid homeostasis and meeting maternal and infant energy requirements in late pregnancy.
Collapse
Affiliation(s)
- Jiayu Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 544, Jing 4 Rd., Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Ying Gong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Xinhong Wei
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| | - Zhenyu Yao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Rui Yang
- Experimental Animal Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jinxing Xin
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 544, Jing 4 Rd., Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China.,Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 544, Jing 4 Rd., Jinan, 250021, Shandong, China. .,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China. .,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China.
| |
Collapse
|
61
|
Assessment of causal association between thyroid function and lipid metabolism: a Mendelian randomization study. Chin Med J (Engl) 2021; 134:1064-1069. [PMID: 33942801 PMCID: PMC8116035 DOI: 10.1097/cm9.0000000000001505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Thyroid dysfunction is associated with cardiovascular diseases. However, the role of thyroid function in lipid metabolism remains partly unknown. The present study aimed to investigate the causal association between thyroid function and serum lipid metabolism via a genetic analysis termed Mendelian randomization (MR). Methods: The MR approach uses a genetic variant as the instrumental variable in epidemiological studies to mimic a randomized controlled trial. A two-sample MR was performed to assess the causal association, using summary statistics from the Atrial Fibrillation Genetics Consortium (n = 537,409) and the Global Lipids Genetics Consortium (n = 188,577). The clinical measures of thyroid function include thyrotropin (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) levels, FT3:FT4 ratio and concentration of thyroid peroxidase antibodies (TPOAb). The serum lipid metabolism traits include total cholesterol (TC) and triglycerides, high-density lipoprotein, and low-density lipoprotein (LDL) levels. The MR estimate and MR inverse variance-weighted method were used to assess the association between thyroid function and serum lipid metabolism. Results: The results demonstrated that increased TSH levels were significantly associated with higher TC (β = 0.052, P = 0.002) and LDL (β = 0.041, P = 0.018) levels. In addition, the FT3:FT4 ratio was significantly associated with TC (β = 0.240, P = 0.033) and LDL (β = 0.025, P = 0.027) levels. However, no significant differences were observed between genetically predicted FT4 and TPOAb and serum lipids. Conclusion: Taken together, the results of the present study suggest an association between thyroid function and serum lipid metabolism, highlighting the importance of the pituitary-thyroid-cardiac axis in dyslipidemia susceptibility.
Collapse
|
62
|
Xu T, Yang Y, Huang X, Ren J, Xu T, Xie W. Lipidomic Perturbations in Cynomolgus Monkeys are Regulated by Thyroid Stimulating Hormone. Front Mol Biosci 2021; 8:640387. [PMID: 33791338 PMCID: PMC8006939 DOI: 10.3389/fmolb.2021.640387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 11/15/2022] Open
Abstract
Thyroid disease affects an estimated 200 million people worldwide, and is commonly associated with increased blood lipid levels. However, the mechanism by which thyroid-stimulating hormone (TSH) affects lipid profiles is not clear. Twenty-four cynomolgus monkeys were treated with a novel exogenous recombinant human TSH (rhTSH) (SNA001) at 9 μg kg−1, 22 μg kg−1, or 54 μg kg−1, and reference rhTSH (Thyrogen®) at 22 μg kg−1. The primary TSH (SNA001) pharmacokinetic (PK) parameters increased in a dose-dependent manner across the dose range of 9 μg kg−1, 22 μg kg−1, or 54 μg kg−1. Peak triiodothyronine (T3) and thyroxine (T4) levels were reached within 24 h after rhTSH administration, which was delayed by approximately 20 h. In total, 420 lipid species were detected and quantified by ultra-performance liquid chromatography high resolution spectrometry (UPLC-HR-MS)-based lipidomics. Notably, peak levels of lipid accumulation, particularly sphingomyelin (SM) and triglycerides (TG), appeared at 4 and 24 h, which was consistent with the pattern of TSH and T3/T4 levels, respectively. According to weighted correlation network analysis (WGCNA), perturbations of many lipid species were strongly correlated with TSH and T3/T4 levels. TSH and the stimulated T3/T4 levels and lipid profiles following SNA001 administration were comparable to those after administration of the reference rhTSH (Thyrogen®). The plasma lipidome and changes in lipid levels after rhTSH stimulation were associated with TSH and T3/T4 concentrations. T3/T4 and lipid profiles were delayed after TSH stimulation. Such phenomena require further exploration.
Collapse
Affiliation(s)
- Tao Xu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China.,The Therapeutic Antibody Research Center of SEU-Alphamab, Southeast University, Nanjing, China
| | - Yanling Yang
- School of Pharmacy, Yantai University, Yantai, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhong Ren
- Suzhou Bionovogene Metabolomics Platform, Jiangsu, China
| | - Ting Xu
- The Therapeutic Antibody Research Center of SEU-Alphamab, Southeast University, Nanjing, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China.,The Therapeutic Antibody Research Center of SEU-Alphamab, Southeast University, Nanjing, China
| |
Collapse
|
63
|
Gariani K, Jornayvaz FR. Pathophysiology of NASH in endocrine diseases. Endocr Connect 2021; 10:R52-R65. [PMID: 33449917 PMCID: PMC7983516 DOI: 10.1530/ec-20-0490] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.
Collapse
Affiliation(s)
- Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Correspondence should be addressed to F R Jornayvaz:
| |
Collapse
|
64
|
Shao Q, Wu Y, Ji J, Xu T, Yu Q, Ma C, Liao X, Cheng F, Wang X. Interaction Mechanisms Between Major Depressive Disorder and Non-alcoholic Fatty Liver Disease. Front Psychiatry 2021; 12:711835. [PMID: 34966296 PMCID: PMC8710489 DOI: 10.3389/fpsyt.2021.711835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD), which is highly associated with non-alcoholic fatty liver disease (NAFLD), has complex pathogenic mechanisms. However, a limited number of studies have evaluated the mutual pathomechanisms involved in MDD and NAFLD development. Chronic stress-mediated elevations in glucocorticoid (GC) levels play an important role in the development of MDD-related NAFLD. Elevated GC levels can induce the release of inflammatory factors and changes in gut permeability. Elevated levels of inflammatory factors activate the hypothalamic-pituitary-adrenal (HPA) axis, which further increases the release of GC. At the same time, changes in gut permeability promote the release of inflammatory factors, which results in a vicious circle among the three, causing disease outbreaks. Even though the specific role of the thyroid hormone (TH) in this pathogenesis has not been fully established, it is highly correlated with MDD and NAFLD. Therefore, changing lifestyles and reducing psychological stress levels are necessary measures for preventing MDD-related NAFLD. Among them, GC inhibitors and receptor antagonists may be key in the alleviation of early and mid-term disease progression. However, combination medications may be important in late-stage diseases, but they are associated with various side effects. Traditional Chinese medicines have been shown to be potential therapeutic alternatives for such complex diseases.
Collapse
Affiliation(s)
- Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiping Wu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiaoyu Yu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuejing Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
65
|
Olichwier A, Balatskyi VV, Wolosiewicz M, Ntambi JM, Dobrzyn P. Interplay between Thyroid Hormones and Stearoyl-CoA Desaturase 1 in the Regulation of Lipid Metabolism in the Heart. Int J Mol Sci 2020; 22:ijms22010109. [PMID: 33374300 PMCID: PMC7796080 DOI: 10.3390/ijms22010109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1), an enzyme that is involved in the biosynthesis of monounsaturated fatty acids, induces the reprogramming of cardiomyocyte metabolism. Thyroid hormones (THs) activate both lipolysis and lipogenesis. Many genes that are involved in lipid metabolism, including Scd1, are regulated by THs. The present study used SCD1 knockout (SCD1−/−) mice to test the hypothesis that THs are important factors that mediate the anti-steatotic effect of SCD1 downregulation in the heart. SCD1 deficiency decreased plasma levels of thyroid-stimulating hormone and thyroxine and the expression of genes that regulate intracellular TH levels (i.e., Slc16a2 and Dio1-3) in cardiomyocytes. Both hypothyroidism and SCD1 deficiency affected genomic and non-genomic TH pathways in the heart. SCD1 deficiency is known to protect mice from genetic- or diet-induced obesity and decrease lipid content in the heart. Interestingly, hypothyroidism increased body adiposity and triglyceride and diacylglycerol levels in the heart in SCD1−/− mice. The accumulation of triglycerides in cardiomyocytes in SCD1−/− hypothyroid mice was caused by the activation of lipogenesis, which likely exceeded the upregulation of lipolysis and fatty acid oxidation. Lipid accumulation was also observed in the heart in wildtype hypothyroid mice compared with wildtype control mice, but this process was related to a reduction of triglyceride lipolysis and fatty acid oxidation. We also found that simultaneous SCD1 and deiodinase inhibition increased triglyceride content in HL-1 cardiomyocytes, and this process was related to the downregulation of lipolysis. Altogether, the present results suggest that THs are an important part of the mechanism of SCD1 in cardiac lipid utilization and may be involved in the upregulation of energetic metabolism that is associated with SCD1 deficiency.
Collapse
Affiliation(s)
- Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - Volodymyr V. Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - Marcin Wolosiewicz
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
- Correspondence:
| |
Collapse
|
66
|
Yu L, Liu X, Jiang Y, Wang X, Wang X, Yang Z. Use of a Novel Thyroid-Stimulating Hormone Model for Predicting the Progression of Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:11421-11431. [PMID: 33192075 PMCID: PMC7654545 DOI: 10.2147/ott.s275304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Individuals with hepatocellular carcinoma (HCC) are at risk of tumor recurrence after surgical resection, which affects their survival. The aim of the present study was to establish a model for predicting tumor progression in patients with HCC. METHODS To develop and validate the efficacy of a novel prognostic model, a retrospective cohort with HCC (n = 1005) at Beijing Ditan Hospital was enrolled from January 2008 and June 2017. Furthermore, a prospective cohort (n = 77) was recruited to validate the association between thyroid-stimulating hormone (TSH) levels and tumor progression in patients with HCC. RESULTS The model used in predicting the progression of HCC included four variables (namely, Barcelona Clinic Liver Cancer [BCLC] stage, presence of portal vein tumor thrombus, alpha-fetoprotein level, and TSH level). The AUROC of the 1-year progression-free survival (PFS) model was 0.755 and 0.753 in the deriving cohort and validation cohort, respectively, and these values were significantly higher than those of the Child-Pugh score, Model for End-stage Liver Disease (MELD), tumor-lymph node-metastasis (TNM) staging system, Okuda classification, and CLIP score. A simple assessment using a nomogram showed the 1-year PFS rate of patients with HCC. In the prospective cohort, the KM curve showed that the high TSH level group had a shorter PFS than the low TSH level (p = 0.001). CONCLUSION The prognostic model of HCC progression was superior to other well-known classical tumor scoring systems. A high TSH level was correlated to poor outcome, particularly those with advanced HCC.
Collapse
Affiliation(s)
- Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, People's Republic of China.,First Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, People's Republic of China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, People's Republic of China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, People's Republic of China
| | - Xianbo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, People's Republic of China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, People's Republic of China
| |
Collapse
|
67
|
Mu H, Zhou Q, Yang R, Zeng J, Li X, Zhang R, Tang W, Li H, Wang S, Shen T, Huang X, Dou L, Dong J. Naringin Attenuates High Fat Diet Induced Non-alcoholic Fatty Liver Disease and Gut Bacterial Dysbiosis in Mice. Front Microbiol 2020; 11:585066. [PMID: 33281780 PMCID: PMC7691324 DOI: 10.3389/fmicb.2020.585066] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is rising annually, and emerging evidence suggests that the gut bacteria plays a causal role in NAFLD. Naringin, a natural flavanone enriched in citrus fruits, is reported to reduce hepatic lipid accumulation, but to date, no investigations have examined whether the benefits of naringin are associated with the gut bacteria. Thus, we investigated whether the antilipidemic effects of naringin are related to modulating the gut bacteria and metabolic functions. In this study, C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks, then fed an HFD with or without naringin administration for another 8 weeks. Naringin intervention reduced the body weight gain, liver lipid accumulation, and lipogenesis and attenuated plasma biochemical parameters in HFD-fed mice. Gut bacteria analysis showed that naringin altered the community compositional structure of the gut bacteria characterized by increased benefits and fewer harmful bacteria. Additionally, Spearman’s correlation analysis showed that at the genus level, Allobaculum, Alloprevotella, Butyricicoccus, Lachnospiraceae_NK4A136_group, Parasutterella and uncultured_bacterium_f_Muribaculaceae were negatively correlated and Campylobacter, Coriobacteriaceae_UCG-002, Faecalibaculum and Fusobacterium were positively correlated with serum lipid levels. These results strongly suggest that naringin may be used as a potential agent to prevent gut dysbiosis and alleviate NAFLD.
Collapse
Affiliation(s)
- Hongna Mu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Zeng
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianghui Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ranran Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongxia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Siming Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
68
|
Hu DS, Zhu SH, Liu WY, Pan XY, Zhu PW, Li YY, Zheng KI, Ma HL, You J, Targher G, Byrne CD, Chen YP, Zheng MH. PNPLA3 polymorphism influences the association between high-normal TSH level and NASH in euthyroid adults with biopsy-proven NAFLD. DIABETES & METABOLISM 2020; 46:496-503. [PMID: 32035968 DOI: 10.1016/j.diabet.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 02/02/2020] [Indexed: 12/30/2022]
Abstract
AIM We aimed to evaluate the association between serum thyroid stimulating hormone (TSH) levels, within the reference range, and the histological severity of nonalcoholic fatty liver disease (NAFLD), and whether this association was modulated by the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 polymorphism. MATERIALS AND METHODS We enrolled 327 euthyroid individuals with biopsy-proven NAFLD, who were subdivided into two groups, i.e., a 'strict-normal' TSH group (TSH level 0.4 to 2.5mIU/L; n=283) and a 'high-normal' TSH group (TSH level 2.5 to 5.3mIU/L with normal thyroid hormones; n=44). Logistic regression analyses were performed to assess the association between TSH status and presence of nonalcoholic steatohepatitis (NASH) after stratifying subjects by PNPLA3 genotypes. RESULTS Compared to strict-normal TSH group, patients with high-normal TSH levels were younger and had a greater prevalence of NASH and higher histologic NAFLD activity score. After stratifying by PNPLA3 genotypes, the significant association between high-normal TSH levels and presence of NASH was restricted only to carriers of the PNPLA3 G risk allele and remained significant even after adjustment for potential confounding factors (adjusted-odds ratio: 3.279; 95% CI: 1.298-8.284; P=0.012). CONCLUSION In euthyroid individuals with biopsy-proven NAFLD, we found a significant association between high-normal TSH levels and NASH. After stratifying by PNPLA3 rs738409 genotypes, this association was observed only among carriers of the PNPLA3 G risk allele.
Collapse
Affiliation(s)
- D-S Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - S-H Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - W-Y Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - X-Y Pan
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - P-W Zhu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Y-Y Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - K I Zheng
- NAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - H-L Ma
- NAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - J You
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - G Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - C D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Y-P Chen
- NAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - M-H Zheng
- NAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
69
|
Kizivat T, Maric I, Mudri D, Curcic IB, Primorac D, Smolic M. Hypothyroidism and Nonalcoholic Fatty Liver Disease: Pathophysiological Associations and Therapeutic Implications. J Clin Transl Hepatol 2020; 8:347-353. [PMID: 33083258 PMCID: PMC7562794 DOI: 10.14218/jcth.2020.00027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/05/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex clinical entity which can be secondary to many other diseases including hypothyroidism, characterized by lowering of thyroid hormones and increased thyroid stimulating hormone (TSH). A lot of emerging data published recently advocates the hypothesis that hypothyroid induced NAFLD could be a separate clinical entity, even suggesting possible treatment options for NAFLD involving substitution therapy for hypothyroidism along with lifestyle modifications. In addition, a whole new field of research is focused on thyromimetics in NAFLD/NASH treatment, currently in phase 3 clinical trials. In this critical review we summarized epidemiological and pathophysiological evidence linking these two clinical entities and described specific treatment options with the accent on promising new agents in NAFLD treatment, specifically thyroid hormone receptor (THR) agonist and its metabolites.
Collapse
Affiliation(s)
- Tomislav Kizivat
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University Hospital Osijek, Osijek, Croatia
| | - Ivana Maric
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University Hospital Osijek, Osijek, Croatia
| | - Dunja Mudri
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University Hospital Osijek, Osijek, Croatia
| | - Ines Bilic Curcic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University Hospital Osijek, Osijek, Croatia
| | - Dragan Primorac
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- St Catherine Specialty Hospital, Zagreb & Zabok, Croatia
- University of Split School of Medicine, Split, Croatia
- Eberly College of Science, State College, Penn State University, PA, USA
- The Henry C Lee College of Criminal Justice & Forensic Sciences, University of New Haven, West Haven, CT, USA
- University of Rijeka School of Medicine, Rijeka, Croatia
- University of Osijek Faculty of Dental Medicine & Health, Osijek, Croatia
| | - Martina Smolic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek Faculty of Dental Medicine & Health, Osijek, Croatia
| |
Collapse
|
70
|
Kim D, Vazquez-Montesino LM, Escober JA, Fernandes CT, Cholankeril G, Loomba R, Harrison SA, Younossi ZM, Ahmed A. Low Thyroid Function in Nonalcoholic Fatty Liver Disease Is an Independent Predictor of All-Cause and Cardiovascular Mortality. Am J Gastroenterol 2020; 115:1496-1504. [PMID: 32496342 DOI: 10.14309/ajg.0000000000000654] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Higher levels of thyroid-stimulating hormone (TSH) in the euthyroid state can negatively affect the metabolic health, including nonalcoholic fatty liver disease (NAFLD). We studied the effect of TSH levels in the setting of normal levels of thyroid hormone on all-cause and cause-specific mortality stratified by NAFLD status. METHODS The National Health and Nutrition Examination Survey (NHANES) III from 1988 to 1994 and NHANES III-linked mortality data through 2015 were used. NAFLD was defined as ultrasonographically diagnosed hepatic steatosis without coexisting liver diseases. Subclinical hypothyroidism was defined as a TSH level over 4.5 mIU/L and "low-normal" thyroid function as higher TSH level (2.5-4.5 mIU/L) within the euthyroid reference range. The Cox proportional hazard model analyzed the all-cause mortality and cause-specific mortality. RESULTS In a multivariate logistic regression analysis, individuals with low thyroid function demonstrated an association with NAFLD in a dose-dependent manner. During a median follow-up of 23 years, low thyroid function was associated with increased all-cause mortality only in the univariate model. Low thyroid function was associated with a higher risk for all-cause mortality in individuals with NAFLD and not in those without NAFLD. Furthermore, low thyroid function was associated with a higher risk for cardiovascular mortality in the entire population and among those with NAFLD but demonstrated no association with the non-NAFLD group. DISCUSSION In this large nationally representative sample of American adults, low thyroid function was associated with NAFLD and a predictor of higher risk for all-cause and cardiovascular mortality in individuals with NAFLD.
Collapse
Affiliation(s)
- Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Jessica A Escober
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher T Fernandes
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - George Cholankeril
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rohit Loomba
- NAFLD Research Center, University of California at San Diego, La Jolla, California, USA
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
| | - Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pinnacle Clinical Research, San Antonio, Texas, USA
| | - Zobair M Younossi
- Department of Medicine, Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
71
|
The Molecular Function and Clinical Role of Thyroid Stimulating Hormone Receptor in Cancer Cells. Cells 2020; 9:cells9071730. [PMID: 32698392 PMCID: PMC7407617 DOI: 10.3390/cells9071730] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023] Open
Abstract
The thyroid stimulating hormone (TSH) and its cognate receptor (TSHR) are of crucial importance for thyrocytes to proliferate and exert their functions. Although TSHR is predominantly expressed in thyrocytes, several studies have revealed that functional TSHR can also be detected in many extra-thyroid tissues, such as primary ovarian and hepatic tissues as well as their corresponding malignancies. Recent advances in cancer biology further raise the possibility of utilizing TSH and/or TSHR as a therapeutic target or as an informative index to predict treatment responses in cancer patients. The TSH/TSHR cascade has been considered a pivotal modulator for carcinogenesis and/or tumor progression in these cancers. TSHR belongs to a sub-group of family A G-protein-coupled receptors (GPCRs), which activate a bundle of well-defined signaling transduction pathways to enhance cell renewal in response to external stimuli. In this review, recent findings regarding the molecular basis of TSH/TSHR functions in either thyroid or extra-thyroid tissues and the potential of directly targeting TSHR as an anticancer strategy are summarized and discussed.
Collapse
|
72
|
Zhang L, She ZG, Li H, Zhang XJ. Non-alcoholic fatty liver disease: a metabolic burden promoting atherosclerosis. Clin Sci (Lond) 2020; 134:1775-1799. [PMID: 32677680 DOI: 10.1042/cs20200446] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the fastest growing chronic liver disease, with a prevalence of up to 25% worldwide. Individuals with NAFLD have a high risk of disease progression to cirrhosis, hepatocellular carcinoma (HCC), and liver failure. With the exception of intrahepatic burden, cardiovascular disease (CVD) and especially atherosclerosis (AS) are common complications of NAFLD. Furthermore, CVD is a major cause of death in NAFLD patients. Additionally, AS is a metabolic disorder highly associated with NAFLD, and individual NAFLD pathologies can greatly increase the risk of AS. It is increasingly clear that AS-associated endothelial cell damage, inflammatory cell activation, and smooth muscle cell proliferation are extensively impacted by NAFLD-induced systematic dyslipidemia, inflammation, oxidative stress, the production of hepatokines, and coagulations. In clinical trials, drug candidates for NAFLD management have displayed promising effects for the treatment of AS. In this review, we summarize the key molecular events and cellular factors contributing to the metabolic burden induced by NAFLD on AS, and discuss therapeutic strategies for the improvement of AS in individuals with NAFLD.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Model Animal of Wuhan University, Luojia Mount Wuchang, Wuhan 430072, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Model Animal of Wuhan University, Luojia Mount Wuchang, Wuhan 430072, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Model Animal of Wuhan University, Luojia Mount Wuchang, Wuhan 430072, China
- Basic Medical School, Wuhan University, Wuhan 430071, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Model Animal of Wuhan University, Luojia Mount Wuchang, Wuhan 430072, China
| |
Collapse
|
73
|
Nichols PH, Pan Y, May B, Pavlicova M, Rausch JC, Mencin AA, Thaker VV. Effect of TSH on Non-Alcoholic Fatty Liver Disease (NAFLD) independent of obesity in children of predominantly Hispanic/Latino ancestry by causal mediation analysis. PLoS One 2020; 15:e0234985. [PMID: 32569304 PMCID: PMC7307750 DOI: 10.1371/journal.pone.0234985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
Background Nonalcoholic Fatty Liver Disease (NAFLD) is a common co-morbidity of obesity. Elevated TSH levels (eTSH), also associated with obesity, may contribute to the dysmetabolic state that predisposes to NAFLD. Objective To assess the relationship between TSH levels and NAFLD in children with biopsy-proven NAFLD compared to controls. Design and methods In this retrospective study of children with biopsy-proven NAFLD and age-matched controls, the association of eTSH with NAFLD was investigated and the role of TSH as a mediator between obesity and NAFLD was assessed. Results Sixty-six cases and 4067 controls (69.7 vs 59% Hispanic/Latino ancestry, p = 0.1) of the same age range seen in the same time duration at an urban Children’s Hospital were studied. Children with NAFLD were more likely to be male (74.6 vs 39.4%, p < 0.001), have higher modified BMI-z scores (median 2.4 (IQR 1.7) vs 1.9 (IQR 1.7), p < 0.001), and abnormal metabolic parameters (TSH, ALT, HDL-C, non-HDL-C, and TG). Multivariate analyses controlling for age, sex and severity of obesity showed significant association between the 4th quartile of TSH and NAFLD. Causal mediation analysis demonstrates that TSH mediates 33.8% of the effect of modified BMI-z score on NAFLD. This comprises of 16.0% (OR = 1.1, p = 0.002) caused by the indirect effect of TSH and its interaction with modified BMI-z, and 17.7% (OR = 1.1, p = 0.05) as an autonomous effect of TSH on NAFLD. Overall, 33.8% of the effect can be eliminated by removing the mediator, TSH (p = 0.001). Conclusions The association of eTSH and biopsy-proven NAFLD is demonstrated in children of Hispanic/Latino ancestry. Further, a causal mediation analysis implicates an effect of TSH on NAFLD, independent of obesity.
Collapse
Affiliation(s)
- Presley H. Nichols
- Department of Pediatrics, New York Presbyterian-Columbia University Irving Medical Center, New York, New York, United States of America
| | - Yue Pan
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Benjamin May
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Martina Pavlicova
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - John C. Rausch
- Department of Pediatrics, New York Presbyterian-Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ali A. Mencin
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Vidhu V. Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
74
|
Liang C, Li Y, Bai M, Huang Y, Yang H, Liu L, Wang S, Yu C, Song Z, Bao Y, Yi J, Sun L, Li Y. Hypericin attenuates nonalcoholic fatty liver disease and abnormal lipid metabolism via the PKA-mediated AMPK signaling pathway in vitro and in vivo. Pharmacol Res 2020; 153:104657. [PMID: 31982488 DOI: 10.1016/j.phrs.2020.104657] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and constitutes a major risk factor for progression to cirrhosis, liver failure and hepatocellular carcinoma (HCC). The occurrence of NAFLD is closely associated with abnormal lipid metabolism and implies a high risk of type 2 diabetes and cardiovascular disease. Therefore, specific and effective drugs for the prevention and treatment of NAFLD are necessary. Hypericin (HP) is one of the main active ingredients of Hypericum perforatum L., and we previously revealed its protective role in islet β-cells and its effects against type 2 diabetes. In this study, we aimed to explore the preventive and therapeutic effects of HP against NAFLD and the underlying mechanisms in vitro and in vivo. Here, we demonstrated that HP improved cell viability by reducing apoptosis and attenuated lipid accumulation in hepatocytes both in vitro and in vivovia attenuating oxidative stress, inhibiting lipogenesis and enhancing lipid oxidization. Thus, HP exhibited significant preventive and therapeutic effects against HFHS-induced NAFLD and dyslipidemia in mice. Furthermore, we demonstrated that HP directly bound to PKACα and activated PKA/AMPK signaling to elicit its effects against NAFLD, suggesting that PKACα is one of the drug targets of HP. In addition, the enhancing effect of HP on lipolysis in adipocytes through the activation of PKACα was also elucidated. Together, the conclusions indicated that HP, of which one of the targets is PKACα, has the potential to be used as a preventive or therapeutic drug against NAFLD or abnormal lipid metabolism in the future.
Collapse
Affiliation(s)
- Chen Liang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China; Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yan Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Hang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Shuyue Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Zhenbo Song
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Jingwen Yi
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| | - Yuxin Li
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
75
|
Wang X, Mao J, Zhou X, Li Q, Gao L, Zhao J. Thyroid Stimulating Hormone Triggers Hepatic Mitochondrial Stress through Cyclophilin D Acetylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1249630. [PMID: 31998431 PMCID: PMC6970002 DOI: 10.1155/2020/1249630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/01/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Oxidative stress-related liver diseases were shown to be associated with elevated serum thyroid stimulating hormone (TSH) levels. Mitochondria are the main source of cellular reactive oxygen species. However, the relationship between TSH and hepatic mitochondrial stress/dysfunction and the underlying mechanisms are largely unknown. Here, we focused on exploring the effects and mechanism of TSH on hepatic mitochondrial stress. METHODS As the function of TSH is mediated through the TSH receptor (TSHR), Tshr -/- mice and liver-specific Tshr -/- mice and liver-specific Tshr -/- mice and liver-specific. RESULTS A relatively lower degree of mitochondrial stress was observed in the livers of Tshr -/- mice and liver-specific in vitro. Microarray and RT-PCR analyses showed that Tshr -/- mice and liver-specific. CONCLUSIONS TSH stimulates hepatic CypD acetylation through the lncRNA-AK044604/SIRT1/SIRT3 signaling pathway, indicating an essential role for TSH in mitochondrial stress in the liver.
Collapse
Affiliation(s)
- Xiaolei Wang
- Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Jinbao Mao
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xinli Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Qiu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
| |
Collapse
|
76
|
Zhang L, Wu K, Bo T, Zhou L, Gao L, Zhou X, Chen W. Integrated microRNA and proteome analysis reveal a regulatory module in hepatic lipid metabolism disorders in mice with subclinical hypothyroidism. Exp Ther Med 2019; 19:897-906. [PMID: 32010250 PMCID: PMC6966133 DOI: 10.3892/etm.2019.8281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Subclinical hypothyroidism (SCH) is becoming a global health problem due to its increasing prevalence and potential adverse effects, including cardiovascular diseases and nonalcoholic fatty liver disease (NAFLD). However, the association between SCH and NAFLD remains controversial. MicroRNAs (miRNAs/miRs) have been reported to be implicated in lipid metabolism disorders; however, how miRNAs regulate hepatic lipid metabolism in SCH mice remains unknown. The present study investigated miRNA alterations and proteome profiles in an SCH mouse model, which was generated by methimazole administration in mice for 16 weeks. Next, the profiles of 17 miRNAs that are critical to hepatic lipid metabolism and the proteome were investigated using reverse transcription-quantitative polymerase chain reaction and iTRAQ labeling in the liver specimens of SCH (n=9) and control (n=7) mice. Putative target prediction of miRNAs was also conducted using TargetScan and miRanda. Compared with the control mice, SCH mice had 8 miRNAs and 36 proteins with significantly different expression in the liver tissues. Furthermore, a regulatory module containing 3 miRNAs (miR-34a-5p, miR-24-3p and miR-130a-3p) and 4 proteins (thioredoxin, selenium-binding protein 2, elongation factor 1β and prosaposin) was identified. Overall, integrated analysis of miRNAs and the proteome highlighted a regulatory module between miRNAs and proteins, which, to a certain extent, may contribute to a better understanding of hepatic lipid metabolism disorders in SCH mice.
Collapse
Affiliation(s)
- Liya Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China
| | - Kunpeng Wu
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lingyan Zhou
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaoming Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
77
|
Jia J, Qin J, Yuan X, Liao Z, Huang J, Wang B, Sun C, Li W. Microarray and metabolome analysis of hepatic response to fasting and subsequent refeeding in zebrafish (Danio rerio). BMC Genomics 2019; 20:919. [PMID: 31791229 PMCID: PMC6889435 DOI: 10.1186/s12864-019-6309-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background Compensatory growth refers to the phenomenon in which organisms grow faster after the improvement of an adverse environment and is thought to be an adaptive evolution to cope with the alleviation of the hostile environment. Many fish have the capacity for compensatory growth, but the underlying cellular mechanisms remain unclear. In the present study, microarray and nontargeted metabolomics were performed to characterize the transcriptome and metabolome of zebrafish liver during compensatory growth. Results Zebrafish could regain the weight they lost during 3 weeks of fasting and reach a final weight similar to that of fish fed ad libitum when refed for 15 days. When refeeding for 3 days, the liver displayed hyperplasia accompanied with decreased triglyceride contents and increased glycogen contents. The microarray results showed that when food was resupplied for 3 days, the liver TCA cycle (Tricarboxylic acid cycle) and oxidative phosphorylation processes were upregulated, while DNA replication and repair, as well as proteasome assembly were also activated. Integration of transcriptome and metabolome data highlighted transcriptionally driven alterations in metabolism during compensatory growth, such as altered glycolysis and lipid metabolism activities. The metabolome data also implied the participation of amino acid metabolism during compensatory growth in zebrafish liver. Conclusion Our study provides a global resource for metabolic adaptations and their transcriptional regulation during refeeding in zebrafish liver. This study represents a first step towards understanding of the impact of metabolism on compensatory growth and will potentially aid in understanding the molecular mechanism associated with compensatory growth.
Collapse
Affiliation(s)
- Jirong Jia
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Zongzhen Liao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Jinfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Bin Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China.,Present address: Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China.
| |
Collapse
|
78
|
Liu L, Li P, Mi Y, Liu Y, Liu Y, Zhang P. Thyroid-stimulating hormone is associated with nonalcoholic steatohepatitis in patients with chronic hepatitis B. Medicine (Baltimore) 2019; 98:e17945. [PMID: 31725651 PMCID: PMC6867716 DOI: 10.1097/md.0000000000017945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The relationship of thyroid function parameters with nonalcoholic steatohepatitis (NASH) in patients with chronic hepatitis B (CHB) remains unknown. Hence, we assessed the impact of thyroid function parameters on NASH in patients with CHB.Consecutive patients with CHB with concurrent nonalcoholic fatty liver disease (NAFLD) were recruited. Liver histology and baseline examinations were carried out in each patient. The associated risk factors for NASH were evaluated.A total of 361 patients with CHB with biopsy-proven NAFLD were included. There was a significant difference in the serum thyroid-stimulating hormone (TSH) level between patients with NASH and non-NASH (3.24 ± 2.00 vs 2.05 ± 1.35 mIU/L, P < .01). Moreover, the NASH prevalence in patients with euthyroidism was significantly higher than in the subclinical hypothyroidism (SCH) patients (P < .001). In multivariate analyses, higher serum concentration of TSH was significantly correlated with NASH (odds ratio [OR]: 1.69, 95% confidence interval [CI]: 1.24-2.31; P = .001). In particular, patients suffering from SCH had a higher risk of having NASH (OR: 4.28, 95% CI: 1.18-15.53; P = .027).Elevated serum TSH level was the independent predictive factor of incident NASH in patients with CHB. Whether the thyroid function parameters should be integrated into future diagnostic scores predicting advanced diseases requires further study.
Collapse
Affiliation(s)
- Liang Liu
- School of Graduates, Tianjin Medical University
- Department of Hepatology, Tianjin Second People's Hospital
| | - Ping Li
- Department of Hepatology, Tianjin Second People's Hospital
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Yuqiang Mi
- Department of Hepatology, Tianjin Second People's Hospital
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Yonggang Liu
- Department of Hepatology, Tianjin Second People's Hospital
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Yiqi Liu
- School of Graduates, Tianjin Medical University
- Department of Hepatology, Tianjin Second People's Hospital
| | - Peng Zhang
- School of Graduates, Tianjin Medical University
- Department of Hepatology, Tianjin Second People's Hospital
| |
Collapse
|
79
|
Yang J, Zhang X, Yi L, Yang L, Wang WE, Zeng C, Mi M, Chen X. Hepatic PKA inhibition accelerates the lipid accumulation in liver. Nutr Metab (Lond) 2019; 16:69. [PMID: 31632452 PMCID: PMC6788098 DOI: 10.1186/s12986-019-0400-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background/aims Liver lipid accumulation induced by high-fat diet (HFD) is an early onset process of non-alcoholic fatty liver diseases (NAFLD). Protein kinase A (PKA) is known to be involved in hepatic lipid metabolism. However, the role of PKA in NAFLD has not been well tested in vivo due to the lack of optimal PKA deficient mouse model. Methods A novel PKA-specific inhibitor gene was conditionally overexpressed in mouse (PKAi mouse) liver using LoxP/Cre system. PKA activity in the liver extract was measured with a commercial assay kit. The PKAi and control mice of 8-week age, were subjected to HFD or chow diet (CD) for 2 months. Body weight, liver index, and triglyceride in the liver were measured. RNA sequencing was performed for the liver tissues and analyzed with Gene Ontology (GO) and pathway enrichment. Results PKAi-GFP protein was overexpressed in the liver and the PKA activation was significantly inhibited in the liver of PKAi mouse. When fed with CD, RNA sequencing revealed 56 up-regulated and 51 down-regulated genes in PKAi mice compared with control mice, which were mainly involved in lipid metabolism though no significant differences in the body weight, liver index, triglyceride accumulation were observed between PKAi and control mice. However, when fed with HFD for 2 months, the liver was enlarged more, and the accumulation of triglyceride in the liver was more severe in PKAi mice. When comparing the transcriptomes of CD-fed and HFD-fed control mice, GO enrichment showed that the genes down-regulated by HFD were mainly enriched in immune-related GO terms, and up-regulated genes were enriched in metabolism. When comparing the transcriptomes of CD-fed and HFD-fed PKAi mice, GO analysis showed that the down-regulated genes were enriched in metabolism, while the up-regulated genes were clustered in ER stress-related pathways. When comparing HFD-fed PKAi and HFD-fed control mice, the genes with lower expression level in PKAi mice were enriched in the lipoprotein synthesis, which might explain that more TG is accumulated in PKAi liver after HFD feeding. Conclusions Reduced PKA activity could be a factor promoting the TG accumulation in the liver and the development of NAFLD.
Collapse
Affiliation(s)
- Jining Yang
- 1Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiaoying Zhang
- 2Department of Physiology & Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA USA
| | - Long Yi
- 1Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Ling Yang
- 3Department of Medical Genetics & Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Room 624 Kresge Hall, Philadelphia, PA USA
| | - Wei Eric Wang
- 4Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Chunyu Zeng
- 4Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Mantian Mi
- 1Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiongwen Chen
- 2Department of Physiology & Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA USA
| |
Collapse
|
80
|
NAFLD and Extra-Hepatic Comorbidities: Current Evidence on a Multi-Organ Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183415. [PMID: 31540048 PMCID: PMC6765902 DOI: 10.3390/ijerph16183415] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide and its incidence is definitely increasing. NAFLD is a metabolic disease with extensive multi-organ involvement, whose extra-hepatic manifestations include type 2 diabetes mellitus, cardiovascular disease, obstructive sleep apnea, chronic kidney disease, osteoporosis, and polycystic ovarian syndrome. Recently, further evidence has given attention to pathological correlations not strictly related to metabolic disease, also incorporating in this broad spectrum of systemic involvement hypothyroidism, psoriasis, male sexual dysfunction, periodontitis, and urolithiasis. The most common cause of mortality in NAFLD is represented by cardiovascular disease, followed by liver-related complications. Therefore, clinicians should learn to screen and initiate treatment for these extra-hepatic manifestations, in order to provide appropriate multidisciplinary assessments and rigorous surveillance. This review evaluates the current evidence regarding extra-hepatic associations of NAFLD, focusing on the pathogenic hypothesis and the clinical implications.
Collapse
|
81
|
Fang K, Wu F, Chen G, Dong H, Li J, Zhao Y, Xu L, Zou X, Lu F. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:255. [PMID: 31519174 PMCID: PMC6743105 DOI: 10.1186/s12906-019-2671-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is characterized by excessive hepatic lipid accumulation. Many studies have suggested that lipid overload is the key initial factor that contributes to hepatic steatosis. Our previous study indicated that diosgenin (DSG) has a beneficial effect on energy metabolism, but the underlying mechanism remains unclear. METHODS Human normal hepatocytes (LO2 cells) were incubated with palmitic acid to establish the cell model of nonalcoholic fatty liver. The effects of DSG on lipid metabolism, glucose uptake and mitochondrial function were evaluated. Furthermore, the mechanism of DSG on oxidative stress, lipid consumption and lipid synthesis in LO2 cells was investigated. RESULTS The results indicated that palmitic acid induced obvious lipid accumulation in LO2 cells and that DSG treatment significantly reduced the intracellular lipid content. DSG treatment upregulated expression of lipolysis proteins, including phospho-AMP activated protein kinase (p-AMPK), phospho-acetyl-coA carboxylase (p-ACC) and carnitine acyl transferase 1A (CPT-1A), and inhibited expression of lipid synthesis-related proteins, including sterol regulatory element-binding protein 1c (SREBP-1c) and fatty acid synthase (FAS). Additionally, DSG-treated cells displayed a marked improvement in mitochondrial function, with less production of reactive oxygen species and a higher mitochondrial membrane potential compared with the model group. CONCLUSION This study suggests that DSG can reduce intracellular lipid accumulation in LO2 cells and that the underlying mechanism may be related to the improving oxidative stress, increasing fatty acid β-oxidation and decreasing lipid synthesis. The above changes might be mediated by the activation of the AMPK/ACC/CPT-1A pathway and inhibition of the SREBP-1c/FAS pathway.
Collapse
|
82
|
Sinha RA, Bruinstroop E, Singh BK, Yen PM. Nonalcoholic Fatty Liver Disease and Hypercholesterolemia: Roles of Thyroid Hormones, Metabolites, and Agonists. Thyroid 2019; 29:1173-1191. [PMID: 31389309 PMCID: PMC6850905 DOI: 10.1089/thy.2018.0664] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Thyroid hormones (THs) exert a strong influence on mammalian lipid metabolism at the systemic and hepatic levels by virtue of their roles in regulating circulating lipoprotein, triglyceride (TAG), and cholesterol levels, as well as hepatic TAG storage and metabolism. These effects are mediated by intricate sensing and feedback systems that function at the physiological, metabolic, molecular, and transcriptional levels in the liver. Dysfunction in the pathways involved in lipid metabolism disrupts hepatic lipid homeostasis and contributes to the pathogenesis of metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD) and hypercholesterolemia. There has been strong interest in understanding and employing THs, TH metabolites, and TH mimetics as lipid-modifying drugs. Summary: THs regulate many processes involved in hepatic TAG and cholesterol metabolism to decrease serum cholesterol and intrahepatic lipid content. TH receptor β analogs designed to have less side effects than the natural hormone are currently being tested in phase II clinical studies for NAFLD and hypercholesterolemia. The TH metabolites, 3,5-diiodo-l-thyronine (T2) and T1AM (3-iodothyronamine), have different beneficial effects on lipid metabolism compared with triiodothyronine (T3), although their clinical application is still under investigation. Also, prodrugs and glucagon/T3 conjugates have been developed that direct TH to the liver. Conclusions: TH-based therapies show clinical promise for the treatment of NAFLD and hypercholesterolemia. Strategies for limiting side effects of TH are being developed and may enable TH metabolites and analogs to have specific effects in the liver for treatments of these conditions. These liver-specific effects and potential suppression of the hypothalamic/pituitary/thyroid axis raise the issue of monitoring liver-specific markers of TH action to assess clinical efficacy and dosing of these compounds.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
83
|
Lonardo A, Mantovani A, Lugari S, Targher G. NAFLD in Some Common Endocrine Diseases: Prevalence, Pathophysiology, and Principles of Diagnosis and Management. Int J Mol Sci 2019; 20:2841. [PMID: 31212642 PMCID: PMC6600657 DOI: 10.3390/ijms20112841] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Secondary nonalcoholic fatty liver disease (NAFLD) defines those complex pathophysiological and clinical consequences that ensue when the liver becomes an ectopic site of lipid storage owing to reasons other than its mutual association with the metabolic syndrome. Disorders affecting gonadal hormones, thyroid hormones, or growth hormones (GH) may cause secondary forms of NAFLD, which exhibit specific pathophysiologic features and, in theory, the possibility to receive an effective treatment. Here, we critically discuss epidemiological and pathophysiological features, as well as principles of diagnosis and management of some common endocrine diseases, such as polycystic ovary syndrome (PCOS), hypothyroidism, hypogonadism, and GH deficiency. Collectively, these forms of NAFLD secondary to specific endocrine derangements may be envisaged as a naturally occurring disease model of NAFLD in humans. Improved understanding of such endocrine secondary forms of NAFLD promises to disclose novel clinical associations and innovative therapeutic approaches, which may potentially be applied also to selected cases of primary NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Operating Unit Internal Medicine-Ospedale Civile di Baggiovara-AOU, 41125 Modena, Italy.
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy.
| | - Simonetta Lugari
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy.
| |
Collapse
|
84
|
Lonardo A, Ballestri S, Mantovani A, Nascimbeni F, Lugari S, Targher G. Pathogenesis of hypothyroidism-induced NAFLD: Evidence for a distinct disease entity? Dig Liver Dis 2019; 51:462-470. [PMID: 30733187 DOI: 10.1016/j.dld.2018.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/05/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, may be associated with primary hypothyroidism. However, the pathogenesis underlying such an association is complex and not completely understood. Here, we specifically discuss the pathogenic mechanisms potentially involved in hypothyroidism-induced NAFLD. To this end, we summarize the general pathophysiology of thyroid hormones (TH). Next, we analyze the published data from rodent studies by discussing whether hypothyroid rats may develop NAFLD via hyperphagia; whether mitochondria become energetically more efficient; what the overall energy balance is and if diversion of fatty substrates occurs; and the latest advancements in molecular pathogenesis brought about by metabolomics, cell imaging, lipophagy, autophagy and genetically engineered mouse models. Moreover, we discuss the data published regarding humans on the pathogenic role of TH, metabolic syndrome and other risk factors in hypothyroidism-related NAFLD as well as the putative mechanisms underlying the development of NAFLD-related hepatocellular carcinoma in hypothyroidism. In conclusion, although many research questions still remain unanswered, the pathophysiology of hypothyroidism-induced NAFLD makes this a potentially curable and distinct disease entity. However, further studies are needed to better elucidate the underlying mechanisms, and to ascertain whether treatment with either TH or thyromimetic agents improves NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Operating Unit Internal Medicine, Department of Medicine, Azienda Ospedaliero-Universitaria Modena, Italy.
| | - Stefano Ballestri
- Operating Unit Internal Medicine, Department of Medicine, Azienda USL Modena, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Fabio Nascimbeni
- Operating Unit Internal Medicine, Department of Medicine, Azienda Ospedaliero-Universitaria Modena, Italy
| | - Simonetta Lugari
- Post-graduate school of Internal Medicine, University of Modena and Reggio Emilia, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|
85
|
Guan Y, Zhang T, He J, Jia J, Zhu L, Wang Z. Bisphenol A disturbed the lipid metabolism mediated by sterol regulatory element binding protein 1 in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:179-186. [PMID: 30579156 DOI: 10.1016/j.aquatox.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/31/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA), a representative endocrine disrupting compound, exists ubiquitously in the aquatic environment. Several studies on fish have validated the role of BPA in the lipid metabolism. However, the action mechanisms of BPA on lipid metabolism have been little studied. To clarify how BPA regulates lipid metabolism, Gobiocypris rarus were exposed to 15 μg/L BPA for 3 and 6 weeks. Results showed that BPA altered lipid content by regulating some metabolism-related genes. The BPA's inhibiting effect on fatty acid β-oxidation might be stronger than on lipid synthesis. BPA disturbed the expression of acaca (acetyl-CoA carboxylase), fasn (fatty acid synthase) and cpt1α (carnitine palmitoyltransferase 1α) by altering the sterol regulatory element binding protein 1 (SREBP-1) binding to their sterol regulatory elements (SREs). Our result also revealed that DNA methylation in the 5' flanking regions of cpt1α could perturb the SREBP-1 binding adjacent to its SRE in females under BPA exposure. Besides, BPA exposure led to gender-specific effect on fatty acid β-oxidation in G. rarus. This will contribute to our understanding of the regulation mechanisms of BPA on lipid metabolism in fish.
Collapse
Affiliation(s)
- Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiafa He
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecuar Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
86
|
The Chinese medicine Chai Hu Li Zhong Tang protects against non-alcoholic fatty liver disease by activating AMPKα. Biosci Rep 2018; 38:BSR20180644. [PMID: 30291215 PMCID: PMC6239269 DOI: 10.1042/bsr20180644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
An effective treatment for non-alcoholic fatty liver disease (NAFLD) is urgently needed. In the present study, we investigated whether the Chinese medicine Chai Hu Li Zhong Tang (CHLZT) could protect against the development of NAFLD. Rats in an animal model of NAFLD were treated with CHLZT, and their serum levels of cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were detected with an automatic biochemical analyzer. A cellular model of NAFLD was also established by culturing HepG2 cells in a medium that contained a long chain fat emulsion. Those cells were treated with CHLZT that contained serum from rats. After treatment, the levels of adenylate-activated protein kinase (AMPK) α (AMPKα), p-AMPKα, acetyl coenzyme A carboxylase (ACC) α (ACCα), pACCα, PPARγ, and SREBP-2 were detected. The AMPK agonist, acadesine (AICAR), was used as a positive control compound. Our results showed that CHLZT or AICAR significantly decreased the serum levels of TG, TC, LDL-C, AST, ALT, and insulin in NAFLD rats, and significantly increased their serum HDL-C levels. Treatments with CHLZT or AICAR significantly decreased the numbers of lipid droplets in NAFLD liver tissues and HepG2 cells. CHLZT and AICAR increased the levels of p-AMPKα and PPARγ in the NAFLD liver tissues and HepG2 cells, but decreased the levels of ACC-α, p-ACC-α, SREBP-2, and 3-hydroxyl-3-methylglutaryl-coenzyme A reductase (HMGR). CHLZT protects against NAFLD by activating AMPKα, and also by inhibiting ACC activity, down-regulating SREBP2 and HMGR, and up-regulating PPAR-γ. Our results suggest that CHLZT might be useful for treating NAFLD in the clinic.
Collapse
|
87
|
Mandato C, D'Acunzo I, Vajro P. Thyroid dysfunction and its role as a risk factor for non-alcoholic fatty liver disease: What's new. Dig Liver Dis 2018; 50:1163-1165. [PMID: 30262159 DOI: 10.1016/j.dld.2018.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Claudia Mandato
- Systematic Pediatrics AORN "Santobono-Pausilipon", Naples, Italy
| | - Ida D'Acunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" Pediatric Section, University of Salerno, Baronissi, SA, Italy
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" Pediatric Section, University of Salerno, Baronissi, SA, Italy.
| |
Collapse
|
88
|
Guo Z, Li M, Han B, Qi X. Association of non-alcoholic fatty liver disease with thyroid function: A systematic review and meta-analysis. Dig Liver Dis 2018; 50:1153-1162. [PMID: 30224316 DOI: 10.1016/j.dld.2018.08.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. The relationship of NAFLD with thyroid function parameters and hypothyroidism remains controversial. AIM To clarify the effect of thyroid function parameters and hypothyroidism on the development of NAFLD and progression to nonalcoholic steatohepatitis (NASH). METHODS PubMed, EMBASE, and Cochrane library databases were searched. Study quality was assessed. Weighted mean difference (WMD) and odds ratio (OR) with 95% confidence interval (CI) were calculated. RESULTS Twenty six studies involving 61,548 participants were eligible, most of which were of high quality. NAFLD/NASH patients had significantly higher TSH levels than controls in adults (NAFLD versus health: WMD = 0.105, 95%CI = 0.012-0.197; NAFLD versus euthyroidism: WMD = 0.100, 95%CI = 0.005-0.194; NASH versus NAFLD: WMD = 0.540, 95%CI = 0.136-0.944) and children/adolescents (NAFLD versus lean controls: WMD = 1.039, 95%CI = 0.104-1.973; NAFLD versus overweight/obese controls: WMD = 0.485, 95%CI = 0.267-.703). Unclassified hypothyroidism was positively associated with the risk of NAFLD/NASH in adults (NAFLD versus health: OR = 1.605, 95%CI = 1.180-2.183; NASH versus NAFLD: OR = 2.317, 95%CI = 1.425-3.768) and children/adolescents (NAFLD versus overweight/obese controls: OR = 2.015, 95%CI = 1.246-3.258). However, the statistical results were inconsistent among the subgroup meta-analyses of subclinical and overt hypothyroidism. Association of NAFLD with FT3 and FT4 levels was heterogeneous among population. CONCLUSION TSH level may be an important risk factor for the development and progression of NAFLD, independent of thyroid hormones.
Collapse
Affiliation(s)
- Zeqi Guo
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China; Postgraduate College, Dalian Medical University, Dalian, China.
| | - Miaomiao Li
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China; Postgraduate College, Dalian Medical University, Dalian, China.
| | - Bing Han
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China.
| | - Xingshun Qi
- Meta-Analysis Interest Group & Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China.
| |
Collapse
|
89
|
Lugari S, Mantovani A, Nascimbeni F, Lonardo A. Hypothyroidism and nonalcoholic fatty liver disease - a chance association? Horm Mol Biol Clin Investig 2018; 41:/j/hmbci.2020.41.issue-1/hmbci-2018-0047/hmbci-2018-0047.xml. [PMID: 30367792 DOI: 10.1515/hmbci-2018-0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) defines the clinical-pathological spectrum of hepatic lipotoxicity, which may progress to hepatic fibrosis and its complications. Thyroid hormone is a master regulator of cell metabolism and body fat distribution. Whether hypothyroidism is associated or not with an increased risk of developing NAFLD and its fibrotic progression is both clinically and physiopathologically relevant. Indeed, answering this research question would carry major pathogenic and therapeutic implications. Method PubMed database was searched using relevant key-words such as hypothyroidism; NAFLD; nonalcoholic steatohepatitis; cirrhosis; hepatocellular carcinoma; epidemiology; pathogenesis; natural history. The epidemiological studies and the meta-analyses published so far were identified as well as those studies addressing the physiopathology underlying this association. Results Many observational studies have investigated the association between either subclinical or overt hypothyroidism and NAFLD. Data are conflicting: some original and meta-analytical studies demonstrated that hypothyroidism, (mainly subclinical hypothyroidism), was common, occurring in approximately 25% of individuals with imaging-defined or biopsy-proven NAFLD; other studies, however, failed to identify a significant association between hypothyroidism and NAFLD. Moreover, such an association is biologically plausible based on the specific physiopathological impact of thyroid hormone and thyroid stimulating hormone (TSH) on metabolism of hepatocytes and accumulation and distribution of body fat. Conclusions The findings from the present review support a significant association between primary hypothyroidism and risk of development and progression of NAFLD. However, further studies evaluating the relative importance of subclinical versus overt hypothyroidism as well as addressing the mechanisms underlying the association of hypothyroidism with NAFLD are eagerly awaited.
Collapse
Affiliation(s)
- Simonetta Lugari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Fabio Nascimbeni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Amedeo Lonardo
- Division of Internal Medicine, Department of Biomedical, Metabolic and Neural Sciences, Azienda Ospedaliero-Universitaria, Ospedale Civile di Baggiovara, Modena, Italy
| |
Collapse
|
90
|
Mantovani A, Nascimbeni F, Lonardo A, Zoppini G, Bonora E, Mantzoros CS, Targher G. Association Between Primary Hypothyroidism and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Thyroid 2018; 28:1270-1284. [PMID: 30084737 DOI: 10.1089/thy.2018.0257] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND It is currently uncertain whether primary hypothyroidism is associated with nonalcoholic fatty liver disease (NAFLD). We performed a meta-analysis of relevant studies to quantify the magnitude of association between primary hypothyroidism and risk of NAFLD. METHODS We searched PubMed, Web of Science and Scopus databases from January 2000 to March 2018 using predefined keywords to identify observational cross-sectional, case-control, and longitudinal studies in which NAFLD was diagnosed by imaging or biopsy. Data from selected studies were extracted and meta-analysis was performed using random-effects modeling. RESULTS A total of 12 cross-sectional and 3 longitudinal studies enrolling 44,140 individuals were included in the final analysis. Hypothyroidism (defined either by self-reported history of hypothyroidism with use of levothyroxine replacement therapy or by presence of abnormal thyroid function tests) was associated with an increased risk of prevalent NAFLD (n = 12 studies; random-effects odds ratio 1.42 [95% confidence interval (CI) 1.15-1.77]; I2 = 51.2%), independently of age, sex, body mass index and other common metabolic risk factors. The magnitude of risk paralleled the underlying severity of NAFLD histology (n = 3 studies; random-effects odds ratio 2.73 [CI 1.90-3.93]; I2 = 0%), and tended to increase across the different definitions used for diagnosing hypothyroidism. Meta-analysis of data from the three longitudinal studies showed that subclinical hypothyroidism was not independently associated with risk of incident ultrasound-defined NAFLD over a median of 5 years (random-effects hazard ratio 1.29 [CI 0.89-1.86]; I2 = 83.9%). Sensitivity analyses did not alter these findings. Funnel plot did not reveal significant publication bias. CONCLUSIONS This large and updated meta-analysis shows that the presence of variably defined hypothyroidism is significantly associated with the presence and severity of NAFLD. However, the observational design of the eligible studies does not allow for proving causality.
Collapse
Affiliation(s)
- Alessandro Mantovani
- 1 Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona , Verona, Italy
| | - Fabio Nascimbeni
- 2 Department of Internal Medicine and Metabolic Diseases, Nuovo Ospedale Sant'Agostino Estense di Baggiovara, Modena, Italy
| | - Amedeo Lonardo
- 2 Department of Internal Medicine and Metabolic Diseases, Nuovo Ospedale Sant'Agostino Estense di Baggiovara, Modena, Italy
| | - Giacomo Zoppini
- 1 Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona , Verona, Italy
| | - Enzo Bonora
- 1 Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona , Verona, Italy
| | - Christos S Mantzoros
- 3 Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School, Boston, Massachusetts
| | - Giovanni Targher
- 1 Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona , Verona, Italy
| |
Collapse
|
91
|
Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-Mediated Regulation of Lipid Metabolism by Phosphorylation. Biol Pharm Bull 2018; 41:985-993. [DOI: 10.1248/bpb.b17-00724] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qi Wang
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital
| | - Aihua Zhai
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| | - Bai Zhang
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| | - Guizhen Tian
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| |
Collapse
|
92
|
Wang X, Du H, Shao S, Bo T, Yu C, Chen W, Zhao L, Li Q, Wang L, Liu X, Su X, Sun M, Song Y, Gao L, Zhao J. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology 2018; 68:62-77. [PMID: 29356058 DOI: 10.1002/hep.29788] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 01/12/2018] [Indexed: 01/04/2023]
Abstract
Physiological opening of the mitochondrial permeability transition pore (mPTP) is indispensable for maintaining mitochondrial function and cell homeostasis, but the role of the mPTP and its initial factor, cyclophilin D (CypD), in hepatic steatosis is unclear. Here, we demonstrate that excess mPTP opening is mediated by an increase of CypD expression induced hepatic mitochondrial dysfunction. Notably, such mitochondrial perturbation occurred before detectable triglyceride accumulation in the liver of high-fat diet-fed mice. Moreover, either genetic knockout or pharmacological inhibition of CypD could ameliorate mitochondrial dysfunction, including excess mPTP opening and stress, and down-regulate the transcription of sterol regulatory element-binding protein-1c, a key factor of lipogenesis. In contrast, the hepatic steatosis in adenoviral overexpression of CypD-infected mice was aggravated relative to the control group. Blocking p38 mitogen-activated protein kinase or liver-specific Ire1α knockout could resist CypD-induced sterol regulatory element-binding protein-1c expression and steatosis. Importantly, CypD inhibitor applied prior to or after the onset of triglyceride deposition substantially prevented or ameliorated fatty liver. CONCLUSION CypD stimulates mPTP excessive opening, subsequently causing endoplasmic reticulum stress through p38 mitogen-activated protein kinase activation, and results in enhanced sterol regulatory element-binding protein-1c transcription and hepatic steatosis. (Hepatology 2018;68:62-77).
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Qiu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Li Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Physiology and Neurobiology and the Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Xiaojing Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiaohui Su
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Mingqi Sun
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| |
Collapse
|
93
|
Abstract
It has been known for a long time that thyroid hormones have prominent effects on hepatic fatty acid and cholesterol synthesis and metabolism. Indeed, hypothyroidism has been associated with increased serum levels of triglycerides and cholesterol as well as non-alcoholic fatty liver disease (NAFLD). Advances in areas such as cell imaging, autophagy and metabolomics have generated a more detailed and comprehensive picture of thyroid-hormone-mediated regulation of hepatic lipid metabolism at the molecular level. In this Review, we describe and summarize the key features of direct thyroid hormone regulation of lipogenesis, fatty acid β-oxidation, cholesterol synthesis and the reverse cholesterol transport pathway in normal and altered thyroid hormone states. Thyroid hormone mediates these effects at the transcriptional and post-translational levels and via autophagy. Given these potentially beneficial effects on lipid metabolism, it is possible that thyroid hormone analogues and/or mimetics might be useful for the treatment of metabolic diseases involving the liver, such as hypercholesterolaemia and NAFLD.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
94
|
Zhang M, Chi X, Qu N, Wang C. Long noncoding RNA lncARSR promotes hepatic lipogenesis via Akt/SREBP-1c pathway and contributes to the pathogenesis of nonalcoholic steatohepatitis. Biochem Biophys Res Commun 2018; 499:66-70. [PMID: 29555473 DOI: 10.1016/j.bbrc.2018.03.127] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
Non-alcoholic fatty liver disease and steatohepatitis (NAFLD and NASH) account for the majority of liver disease in industrialized countries. However, the pathogenesis still unclear. Long non-coding RNAs (lncRNAs) has been reported to be involved in various pathophysiological processes. Here, we reported a novel role of lncARSR in hepatic lipogenesis in NAFLD. The expression of lncARSR was induced both in NAFLD patients and mouse model, as well as in hepatocytes treated with fatty acid. Moreover, overexpression of lncARSR enhanced while knockdown of lncARSR ameliorated hepatic lipid accumulation in vivo and in vitro. Furthermore, the expression of genes related to fatty acid synthesis and oxidation increased with lncARSR overexpression in vivo. Mechanistically, we identified that lncARSR regulated hepatic lipogenesis via upregulating SREBP-1c, the key regulatory molecule involved in lipogenesis. Knockdown of SREBP-1c by shRNA blocked the effect of lncARSR on lipogenesis. Furthermore, we demonstrated that lncARSR regulated SREBP-1c expression by PI3K/Akt pathway. In conclusion, our data indicated that lncARSR potentially contributes to the hepatic steatosis in NAFLD, which may be a new therapeutic target against NAFLD.
Collapse
Affiliation(s)
- Ming Zhang
- Intensive Care Unit, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Xiaoming Chi
- Intensive Care Unit, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Na Qu
- Intensive Care Unit, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Congying Wang
- Department of Medical Equipment, Weifang People's Hospital, Weifang, Shandong, 261000, China.
| |
Collapse
|
95
|
Shao S, Yao Z, Lu J, Song Y, He Z, Yu C, Zhou X, Zhao L, Zhao J, Gao L. Ablation of prolactin receptor increases hepatic triglyceride accumulation. Biochem Biophys Res Commun 2018. [PMID: 29524401 DOI: 10.1016/j.bbrc.2018.03.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increasing prevalence of non-alcoholic fatty liver disease (NAFLD) worldwide has necessitated a more thorough understanding of it and expanded the scope of research in this field. Women are more resistant to NAFLD than men despite equal exposure to major risk factors, such as obesity or hyperlipidemia. Female resistance is hormone-dependent, as evidenced by the sharp increase in NAFLD incidence in post-menopausal women who do not take hormone replacement therapy. Here, we found that the estrogen-responsive pituitary hormone prolactin (PRL), through specific PRL receptor (PRLR), down-regulates hepatic triglyceride (TG) accumulation. PRL was demonstrated to significantly down-regulate hepatic TG accumulation in female mice and protect male mice from liver steatosis induced by high-fat diet. Interestingly, Ad-shPRLR injected mice, whose hepatic PRLR abundance was effectively decreased at the protein levels, exhibited significantly aggravated liver steatosis. PRL could decrease the expression of stearoyl-coenzyme A desaturase 1 (SCD1), the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, in animal models and multiple hepatic cell lines. Following knockdown of PRLR, the changes to PRL-triggered SCD1 expression disappeared. Thus, PRL acted as a previously unrecognized master regulator of liver TG metabolism, indicating that modification of PRL via PRLR might serve as a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Zhenyu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Jiayu Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Xiaoming Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China; Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, China.
| |
Collapse
|
96
|
Liver-specific deletion of TSHR inhibits hepatic lipid accumulation in mice. Biochem Biophys Res Commun 2018; 497:39-45. [PMID: 29421660 DOI: 10.1016/j.bbrc.2018.01.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
The effect of thyroid-stimulating hormone receptor (TSHR) on hepatic lipid accumulation in vivo is not fully understood. Further, while TSHR in the thyroid has been studied extensively, whether and how the absence of TSHR in the liver affects systemic energy metabolism has not yet been reported. To examine these effects, we generated hepatic TSHR conditional knockout (LT-KO) mice using Cre/LoxP recombination technology. The liver-specific TSHR-knockout (LT-KO) mice exhibited not only lower hepatic triglyceride and cholesterol contents due to modified synthesis and catabolism of lipids in the liver, but also decreased serum lipids, especially serum LDL-C levels. Abnormalities of TSHR in the thyroid affect whole-body energy balance; however, measurements taken in metabolic chambers showed that the hepatic TSHR conditional deletion had no impact on systemic energy metabolism. Unlike its critical role in maintaining the normal growth and function of the thyroid gland, our results demonstrated that hepatic TSHR is involved in liver lipid metabolism and has little effect on energy metabolism.
Collapse
|
97
|
Beukhof CM, Massolt ET, Visser TJ, Korevaar TIM, Medici M, de Herder WW, Roeters van Lennep JE, Mulder MT, de Rijke YB, Reiners C, Verburg FA, Peeters RP. Effects of Thyrotropin on Peripheral Thyroid Hormone Metabolism and Serum Lipids. Thyroid 2018; 28:168-174. [PMID: 29316865 DOI: 10.1089/thy.2017.0330] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Subclinical hypothyroidism is associated with dyslipidemia and atherosclerosis. Whether these effects are in part mediated via direct effects of thyrotropin (TSH) on peripheral thyroid hormone (TH) metabolism and/or concentrations of serum lipids is not clear. OBJECTIVE This study examined whether TSH has direct effects on peripheral TH metabolism and serum lipids. METHODS Eighty-two patients with differentiated thyroid cancer were retrospectively analyzed. All patients had undergone total thyroidectomy and 131I remnant ablation. During follow-up, two successive injections of recombinant human TSH (rhTSH) were administered to patients on a stable dose of levothyroxine. In all patients, TSH, thyroxine (T4), free T4 (fT4), triiodothyronine (T3), reverse T3 (rT3), total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein B, lipoprotein(a), and triglyceride levels were measured immediately before the first and approximately 72 hours after the second injection of rhTSH. RESULTS After rhTSH stimulation, T3 values decreased (from 1.91 to 1.81 nmol/L; p < 0.001). T4, fT4, and rT3 did not change. After rhTSH, median apolipoprotein B increased from 0.90 to 0.92 g/L (p = 0.03), lipoprotein(a) from 0.21 to 0.24 g/L (p < 0.001), and triglycerides from 1.98 to 2.50 mmol/L (p < 0.001). Serum high-density lipoprotein cholesterol decreased from 0.98 to 0.81 mmol/L (p < 0.001). Multiple regression analysis showed that the changes in lipids were most closely associated with the decrease in T3 levels. CONCLUSIONS TSH has direct effects on peripheral TH metabolism by decreasing T3 levels in levothyroxine-treated thyroidectomized patients. This decrease in T3 levels is accompanied by unfavorable changes in serum lipids.
Collapse
Affiliation(s)
- Carolien M Beukhof
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Elske T Massolt
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Theo J Visser
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Tim I M Korevaar
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Marco Medici
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | - Wouter W de Herder
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| | | | - Monique T Mulder
- 2 Department of Vascular Medicine, University Medical Center , Rotterdam, The Netherlands
| | - Yolanda B de Rijke
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
- 3 Department of Clinical Chemistry, Erasmus MC, University Medical Center , Rotterdam, The Netherlands
| | - Christoph Reiners
- 4 Department of Nuclear Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Frederik A Verburg
- 4 Department of Nuclear Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
- 5 Department of Nuclear Medicine, University Hospital Marburg , Marburg, Germany
| | - Robin P Peeters
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, University Medical Center , Rotterdam, The Netherlands
| |
Collapse
|
98
|
Gong Y, Ma Y, Ye Z, Fu Z, Yang P, Gao B, Guo W, Hu D, Ye J, Ma S, Zhang F, Zhou L, Xu X, Li Z, Yang T, Zhou H. Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism 2017; 76:32-41. [PMID: 28987238 DOI: 10.1016/j.metabol.2017.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
CONTEXT Thyroid stimulating hormone (TSH) has received increasing attention as being closely associated with increased low-density lipoprotein cholesterol (LDL-c) level and higher atherosclerotic risks. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is known for increasing circulating LDL-c level by inducing LDL receptor degradation. However, whether TSH influences hepatic PCSK9 expression and LDL-c metabolism remains unclear. METHODS First, the correlation between TSH and lipid profiles were investigated in euthyroid population and in subclinical hypothyroidism patients. Then, an in vitro study was conducted to validate the effects of TSH on hepatic PCSK9 expression in HepG2 cells. RESULTS Serum TSH concentrations positively correlated with LDL-c levels in euthyroid subjects. Subclinical hypothyroidism patients with higher serum TSH levels showed significantly increased serum PCSK9 levels than the matched euthyroid participants (151.29 (89.51-293.03) vs. 84.70 (34.98-141.72) ng/ml, P<0.001), along with increased LDL-c concentrations. In HepG2 cells, LDLR expression on the plasma membrane was decreased, and PCSK9 mRNA and protein levels were synchronously upregulated after recombinant human TSH (rhTSH) treatment, while the effects could be blocked by TSH receptor blocking antibody K1-70. Sterol regulatory element binding protein (SREBP) 1c and SREBP2 mRNA expressions were enhanced after rhTSH treatment, and specific siRNAs significantly inhibited the effects of rhTSH. Furthermore, there was a noticeable induction of PCSK9 expression by rhTSH even though HMGCR gene expression was silenced. CONCLUSION We conclude a regulating role of TSH on hepatic PCSK9 expression, which further contributing to a higher LDL-c level.
Collapse
Affiliation(s)
- Yingyun Gong
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, China
| | - Yizhe Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, China
| | - Zhengqin Ye
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, China
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Panpan Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Beibei Gao
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Guo
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dandan Hu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingya Ye
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fan Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Zhou
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinyu Xu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhong Li
- Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, China.
| |
Collapse
|
99
|
Senese R, Cioffi F, de Lange P, Leanza C, Iannucci LF, Silvestri E, Moreno M, Lombardi A, Goglia F, Lanni A. Both 3,5-Diiodo-L-Thyronine and 3,5,3'-Triiodo-L-Thyronine Prevent Short-term Hepatic Lipid Accumulation via Distinct Mechanisms in Rats Being Fed a High-Fat Diet. Front Physiol 2017; 8:706. [PMID: 28959215 PMCID: PMC5603695 DOI: 10.3389/fphys.2017.00706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
3,3′,5-triiodo-L-thyronine (T3) improves hepatic lipid accumulation by increasing lipid catabolism but it also increases lipogenesis, which at first glance appears contradictory. Recent studies have shown that 3,5-diiodothyronine (T2), a natural thyroid hormone derivative, also has the capacity to stimulate hepatic lipid catabolism, however, little is known about its possible effects on lipogenic gene expression. Because genes classically involved in hepatic lipogenesis such as SPOT14, acetyl-CoA-carboxylase (ACC), and fatty acid synthase (FAS) contain thyroid hormone response elements (TREs), we studied their transcriptional regulation, focusing on TRE-mediated effects of T3 compared to T2 in rats receiving high-fat diet (HFD) for 1 week. HFD rats showed a marked lipid accumulation in the liver, which was significantly reduced upon simultaneous administration of either T3 or T2 with the diet. When administered to HFD rats, T2, in contrast with T3, markedly downregulated the expression of the above-mentioned genes. T2 downregulated expression of the transcription factors carbohydrate-response element-binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c) involved in activation of transcription of these genes, which explains the suppressed expression of their target genes involved in lipogenesis. T3, however, did not repress expression of the TRE-containing ChREBP gene but repressed SREBP-1c expression. Despite suppression of SREBP-1c expression by T3 (which can be explained by the presence of nTRE in its promoter), the target genes were not suppressed, but normalized to HFD reference levels or even upregulated (ACC), partly due to the presence of TREs on the promoters of these genes and partly to the lack of suppression of ChREBP. Thus, T2 and T3 probably act by different molecular mechanisms to achieve inhibition of hepatic lipid accumulation.
Collapse
Affiliation(s)
- Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del SannioBenevento, Italy
| | - Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| | - Cristina Leanza
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| | - Liliana F Iannucci
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del SannioBenevento, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del SannioBenevento, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico IINaples, Italy
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del SannioBenevento, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, "Luigi Vanvitelli" CasertaCaserta, Italy
| |
Collapse
|
100
|
Li Y, Wang L, Zhou L, Song Y, Ma S, Yu C, Zhao J, Xu C, Gao L. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2. Mol Cell Endocrinol 2017; 446:70-80. [PMID: 28212844 DOI: 10.1016/j.mce.2017.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
Epidemiological evidence indicates that thyroid stimulating hormone (TSH) is positively correlated with abnormal glucose levels. We previously reported that TSH has direct effects on gluconeogenesis. However, the underlying molecular mechanism remains unclear. In this study, we observed increased fasting blood glucose and glucose production in a mouse model of subclinical hypothyroidism (only elevated TSH levels). TSH acts via the classical cAMP/PKA pathway and CRTC2 regulates glucose homeostasis. Thus, we explore whether CRTC2 is involved in the process of TSH-induced gluconeogenesis. We show that TSH increases CRTC2 expression via the TSHR/cAMP/PKA pathway, which in turn upregulates hepatic gluconeogenic genes. Furthermore, TSH stimulates CRTC2 dephosphorylation and upregulates p-CREB (Ser133) in HepG2 cells. Silencing CRTC2 and CREB decreases the effect of TSH on PEPCK-luciferase, the rate-limiting enzyme of gluconeogenesis. Finally, the deletion of TSHR reduces the levels of the CRTC2:CREB complex in mouse livers. This study demonstrates that TSH activates CRTC2 via the TSHR/cAMP/PKA pathway, leading to the formation of a CRTC2:CREB complex and increases hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Yujie Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Laicheng Wang
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 544 Jing 4 Rd Jinan, Shangdong 250021, PR China
| | - Lingyan Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Chao Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China.
| | - Ling Gao
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 544 Jing 4 Rd Jinan, Shangdong 250021, PR China.
| |
Collapse
|