51
|
Bothammal P, Ganesh M, Vigneshwaran V, Anbarasu K, Ponmurugan K, Al-Dhabi NA, Natarajaseenivasan K. Construction of Genomic Library and Screening of Edwardsiella tarda Immunogenic Proteins for Their Protective Efficacy Against Edwardsiellosis. Front Immunol 2021; 12:764662. [PMID: 34868012 PMCID: PMC8636194 DOI: 10.3389/fimmu.2021.764662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Edwardsiella tarda is a severe aquaculture pathogen that can infect many hosts including humans, animals, and fish. Timely diagnosis and treatment are crucial for the control of edwardsiellosis in the aqua industry. By using rabbit polyclonal antibody, an expression gene library of virulent Edwardsiella tarda strain ED-BDU 1 isolated in south India was constructed and screened. The identified immune expressive proteins were characterized, and the corresponding coding sequences were cloned, expressed, and the purified recombinant proteins were used as antigens. The identified immunoreactive proteins namely HflC, HflK, and YhcI were studied for their immune protective potential in vivo by challenge experiments. The protective efficacy of HflC, HflK, and YhcI showed that the clearance of Edwardsiella from the host with ~ 60% survivability. Further, the immunoreactive proteins induce a strong immune response upon infection and elicit the significant production of IL-10, IFN-γ, Th1, and Th2 mediated mRNA expression and were therefore effective in vaccine production for edwardsiellosis.
Collapse
Affiliation(s)
- Palanisamy Bothammal
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Mohan Ganesh
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Vellaisamy Vigneshwaran
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Kumarasamy Anbarasu
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Karuppiah Ponmurugan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
52
|
Liu J, Shao R, Lan Y, Liao X, Zhang J, Mai K, Ai Q, Wan M. Vitamin D 3 protects turbot (Scophthalmus maximus L.) from bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2021; 118:25-33. [PMID: 34450270 DOI: 10.1016/j.fsi.2021.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Accumulating evidence supports that vitamin D3 (VD3) possesses immunomodulatory properties besides its classical actions in calcium and bone homeostasis. In this study, juvenile turbots were fed with the diets containing 0 IU/kg VD3 or the optimum dose of 400 IU/kg VD3 for 8 weeks. To investigate the effects of VD3 on anti-infectious immunity in fish, 107 CFU Edwardsiella tarda was injected intraperitoneally to each juvenile turbot after the feeding trial. Our results showed that the mortality of infected turbots with dietary VD3 was much lower than that in VD3 deficient group, and the supplementation of dietary VD3 significantly reduced the bacterial load in the spleen of infected turbots. Further analysis demonstrated that the production of reactive oxygen species (ROS) in haemocytes and lysozyme activity in serum was elevated, and the responses of T cells and B cells were modulated in VD3-supplemented turbots. Moreover, the inflammation was significantly exacerbated in the infected turbots fed with 0 IU/kg VD3 compared to the fish fed with 400 IU/kg VD3. In addition, the head kidney macrophages (HKMs) in turbots were isolated and incubated with VD3in vitro, the results showed that VD3 significantly promoted the bactericidal activity in HKMs. In conclusion, our study has shown clear evidence that VD3 positively regulates the innate and adaptive immunity in fish, which is beneficial to the defense in fish against pathogen infection.
Collapse
Affiliation(s)
- Jiayu Liu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China.
| |
Collapse
|
53
|
Kaszowska M, Górska S, Knirel Y, Kalinchuk N, Gamian A, Katzenellenbogen E. Structural analysis of Edwardsiella tarda PCM 1155 O-polysaccharide revealed the presence of unique β-L-RhapNAc3NAc derivative. Carbohydr Res 2021; 509:108423. [PMID: 34507179 DOI: 10.1016/j.carres.2021.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The chemical structure of the lipopolysaccharide O-polysaccharide repeating unit of Edwardsiella tarda strain PCM 1155 was studied for the first time. The complete structure of repeating unit was investigated by chemical methods, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The rarely occurring monosaccharide, 2,3-diacetamido-2,3,6-trideoxy-l-mannose (L-RhapNAc3NAc) was identified. The following structure was established.
Collapse
Affiliation(s)
- Marta Kaszowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, PL-53-114, Wroclaw, Poland.
| | - Sabina Górska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, PL-53-114, Wroclaw, Poland.
| | - Yuriy Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Nadezhda Kalinchuk
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Andrzej Gamian
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, PL-53-114, Wroclaw, Poland
| | - Ewa Katzenellenbogen
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, PL-53-114, Wroclaw, Poland
| |
Collapse
|
54
|
Li W, Guan X. PUF60 of Japanese flounder is regulated by pol-miR-novel_395 and involved in pathogen infection, autophagy, and apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104170. [PMID: 34144120 DOI: 10.1016/j.dci.2021.104170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved, non-coding small RNAs that have been shown to regulate diverse biological processes including immunity. In a previous study, a novel miRNA of Japanese flounder (Paralichthys olivaceus), pol-miR-novel_395, was found to be responsive in expression to the infection of the bacterial pathogen Edwardsiella tarda. In the present study, we examined the regulation and immune effect of pol-miR-novel_395 and its target gene. We found that pol-miR-novel_395 expression was regulated by E. tarda and megalocytivirus, and pol-miR-novel_395 targeted the gene of PUF60 (poly (U)-binding-splicing factor 60 kDa) of flounder (named PoPUF60). Constitutive expression of PoPUF60 occurred in relatively high levels in the heart and liver of flounder. Bacterial infection upregulated PoPUF60 expression, whereas viral infection downregulated PoPUF60 expression. Interference with PoPUF60 expression or overexpression of pol-miR-novel_395 in flounder cells strongly potentiated E. tarda infection. Consistently, in vivo knockdown of PoPUF60 enhanced bacterial dissemination in the tissues of flounder but blocked viral replication, whereas in vivo overexpression of PoPUF60 inhibited bacterial dissemination but facilitated viral replication. Additionally, pol-miR-novel_395 and PoPUF60 were involved in the process of autophagy and apoptosis. Collectively, these results indicated that PoPUF60 and pol-miR-novel_395 play an important role in pathogen infection, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Wenrui Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
55
|
Cytokines Induced by Edwardsiella tarda: Profile and Role in Antibacterial Immunity. Biomolecules 2021; 11:biom11081242. [PMID: 34439908 PMCID: PMC8391551 DOI: 10.3390/biom11081242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023] Open
Abstract
Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad range of hosts, including fish and mammals. In the present study, we used an advanced antibody array technology to identify the expression pattern of cytokines induced by E. tarda in a mouse infection model. In total, 31 and 24 differentially expressed cytokines (DECs) were identified in the plasma at 6 h and 24 h post-infection (hpi), respectively. The DECs were markedly enriched in the Gene Ontology (GO) terms associated with cell migration and response to chemokine and in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with immunity, diseases, and infection. Ten key DECs, including IL6 and TNF-α, were found to form extensive protein-protein interaction networks. IL6 was demonstrated to inhibit E. tarda infection and be required for E. tarda-induced inflammatory response. TNF-α also exerted an inhibitory effect on E. tarda infection, and knockdown of fish (Japanese flounder) TNF-α promoted E. tarda invasion in host cells. Together, the results of this study revealed a comprehensive profile of cytokines induced by E. tarda, thus adding new insights into the role of cytokine-associated immunity against bacterial infection and also providing the potential plasma biomarkers of E. tarda infection for future studies.
Collapse
|
56
|
Minimal change disease and subacute interstitial nephritis in association with Edwardsiella tarda gastroenteritis following oyster consumption. IDCases 2021; 25:e01236. [PMID: 34377670 PMCID: PMC8329516 DOI: 10.1016/j.idcr.2021.e01236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022] Open
Abstract
Edwardsiella tarda (E. tarda) is a gram-negative, facultatively anaerobic bacillus that is associated with gastroenteritis and a host of other extra-intestinal manifestations in humans. However, its impact on the kidneys is unclear. Most literature that has explored this association involves fish, marine life in which E. tarda inhabits. We report a rare case of a 72-year-old female who presented with an acute kidney injury (AKI) associated with newfound minimal change disease, subacute interstitial nephritis, and a severe E. tarda infection. Her clinical course resolved with antibiotics and glucocorticoids.
Collapse
|
57
|
Edwardsiella piscicida Interferes with Classical Endocytic Trafficking and Replicates in a Specialized Replication-Permissive Niche in Nonphagocytic Cells. J Bacteriol 2021; 203:e0050520. [PMID: 34060905 DOI: 10.1128/jb.00505-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Edwardsiella piscicida is an intracellular pathogen within a broad spectrum of hosts. Essential to E. piscicida's virulence is its ability to invade and replicate inside host cells, yet the survival mechanisms and the nature of the replicative compartment remain unknown. Here, we characterized its intracellular lifestyle in nonphagocytic cells and showed that the intracellular replication of E. piscicida in nonphagocytic cells is dependent on its type III secretion system (T3SS) but not its type VI secretion system. Following internalization, E. piscicida is contained in vacuoles that transiently mature into early endosomes but subsequently bypasses the classical endosome pathway and fusion with lysosomes, which depend on its T3SS. Following rapid escape from the degradative pathway, E. piscicida was found to create a specialized replication-permissive niche characterized by endoplasmic reticulum (ER) markers. Furthermore, we found that a T3SS effector, EseJ, is responsible for the intracellular replication of E. piscicida by preventing endosome/lysosome fusion. In vivo experiments also confirmed that EseJ is necessary for bacterial colonization by E. piscicida in the epithelial layer, followed by systemic dissemination in both zebrafish and mice. Thus, this work elucidates the tactics used by E. piscicida to survive and proliferate within host nonphagocytic cells. IMPORTANCE E. piscicida is a facultative intracellular bacterium associated with septicemia and fatal infections in many animals, including fish and humans. However, little is known about its intracellular life, which is important for successful invasion of the host. The present study is the first comprehensive characterization of E. piscicida's intracellular lifestyle in host cells. Upon internalization, E. piscicida is transiently contained in Rab5-positive vacuoles, but the pathogen prevents further endosome maturation and fusion with lysosomes by utilizing a T3SS effector, EseJ. In addition, the bacterium creates a specialized replication niche for rapid growth via an interaction with the ER. Our study provides new insights into the strategies used by E. piscicida to successfully establish an intracellular lifestyle that contributes to its survival and dissemination during infection.
Collapse
|
58
|
Jara B, Tucca F, Srain BM, Méjanelle L, Aranda M, Fernández C, Pantoja-Gutiérrez S. Antibiotics florfenicol and flumequine in the water column and sediments of Puyuhuapi Fjord, Chilean Patagonia. CHEMOSPHERE 2021; 275:130029. [PMID: 33984897 DOI: 10.1016/j.chemosphere.2021.130029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Chile is a major global producer of farmed salmon in the fjords of Patagonia, and therefore a major consumer of antibiotics. We tested whether the antibiotics florfenicol and flumequine persisted in the large Puyuhuapi Fjord after the six months following mandatory concerted treatment by all salmon farms present in the fjord. Antibiotics were detected in 26% of analyzed samples, but only within the particulate phase, with concentrations of florfenicol of up to 23.1 ng L-1, where detected. Flumequine was present in one sample at trace concentration, and neither antibiotic was detected in the dissolved phase nor in surface sediments. A fugacity-based model predicted that flumequine should theoretically remain in surface sediments at the sub-Minimal Inhibiting Concentrations (sub-MIC) previously shown to promote selection for antibiotic resistance in bacteria. Our observations suggest that surface sediments might act as a reservoir for antibiotic resistomes of bacteria, and that bacteria bearing antibiotic resistance genes could eventually become a risk for human health through the consumption of marine products.
Collapse
Affiliation(s)
- Bibiana Jara
- Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile; Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile; Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral (PIA ANID), Universidad de Concepción, Concepción, Chile; Laboratory of Ecogeochemistry of Benthic Environments - UMR 8222 Centre National de Recherche Scientifique - Sorbonne Université, Banyuls sur Mer, Paris, France
| | - Felipe Tucca
- Norwegian Institute for Water Research (NIVA Chile), Puerto Varas, Chile
| | - Benjamín M Srain
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral (PIA ANID), Universidad de Concepción, Concepción, Chile
| | - Laurence Méjanelle
- Laboratory of Ecogeochemistry of Benthic Environments - UMR 8222 Centre National de Recherche Scientifique - Sorbonne Université, Banyuls sur Mer, Paris, France
| | - Mario Aranda
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Concepción, Concepción, Chile
| | - Camila Fernández
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral (PIA ANID), Universidad de Concepción, Concepción, Chile; LOMIC UMR7621, Observatoire Océanologique, Banyuls sur Mer, Sorbonne Université and CNRS, France
| | - Silvio Pantoja-Gutiérrez
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral (PIA ANID), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
59
|
Liu H, Xie JF, Yu H, Ma Z, Yu YY, Yang Y. The early response expression profiles of miRNA-mRNA in farmed yellow catfish (Pelteobagrus fulvidraco) challenged with Edwardsiella tarda infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104018. [PMID: 33476668 DOI: 10.1016/j.dci.2021.104018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Edwardsiella tarda, the bacterial pathogen that causes ascites disease and red-head disease, poses a serious threat to yellow catfish (Pelteobagrus fulvidraco) aquaculture. In this study, the spleens of E. tarda-infected and non-infected yellow catfish were sequenced to obtain the microRNA (miRNA) and mRNA expression profiles. We obtained 657 differentially expressed (DE) miRNAs and 6867 DE mRNAs between two groups and annotated them using the KEGG database. In addition, the 43 negatively correlated miRNA-mRNA pairs were identified using integrated miRNA-mRNA analysis, which including immune-related miRNAs and target genes such as miR-144, miR-1260, miR-1388, miR-33, miR-338, miR-181b, miR-34c, miR-135 and CLEC4E, LITR, PIKfyve, NCF4, IL-12β, IP6K2, TNFRSF9, IL-4Rα, IRF2, Mx2. We verified 8 DE miRNAs pairs and 10 DE mRNAs by quantitative real-time PCR. Finally, the CLEC4E and Mx2 mRNAs were selected for further verification using in situ hybridization. Together, our results provide valuable information for further analyses of the mechanisms of yellow catfish defense against E. tarda infection.
Collapse
Affiliation(s)
- Hua Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Jia-Fang Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Ying-Ying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China.
| |
Collapse
|
60
|
Ma D, Gu H, Shi Y, Huang H, Sun D, Hu Y. Edwardsiella piscicida YefM-YoeB: A Type II Toxin-Antitoxin System That Is Related to Antibiotic Resistance, Biofilm Formation, Serum Survival, and Host Infection. Front Microbiol 2021; 12:646299. [PMID: 33732226 PMCID: PMC7957083 DOI: 10.3389/fmicb.2021.646299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The emergence of drug resistant bacteria is a tricky and confronted problem in modern medicine, and one of important reasons is the widespread of toxin-antitoxin (TA) systems in pathogenic bacteria. Edwardsiella piscicida (also known as E. tarda) is the leading pathogen threatening worldwide fresh and seawater aquaculture industries and has been considered as a model organism for studying intracellular and systemic infections. However, the role of type II TA systems are completely unknown in aquatic pathogenic bacteria. In this study, we identified and characterized a type II TA system, YefM-YoeB, of E. piscicida, where YefM is the antitoxin and YoeB is the toxin. yefM and yoeB are co-expressed in a bicistronic operon. When expressed in E. coli, YoeB cause bacterial growth arrest, which was restored by the addition of YefM. To investigate the biological role of the TA system, two markerless yoeB and yefM-yoeB in-frame mutant strains, TX01ΔyoeB and TX01ΔyefM-yoeB, were constructed, respectively. Compared to the wild strain TX01, TX01ΔyefM-yoeB exhibited markedly reduced resistance against oxidative stress and antibiotic, and markedly reduced ability to form persistent bacteria. The deletion of yefM-yoeB enhanced the bacterial ability of high temperature tolerance, biofilm formation, and host serum resistance, which is the first study about the relationship between type II TA system and serum resistance. In vitro infection experiment showed that the inactivation of yefM-yoeB greatly enhanced bacterial capability of adhesion in host cells. Consistently, in vivo experiment suggested that the yefM-yoeB mutation had an obvious positive effect on bacteria dissemination of fish tissues and general virulence. Introduction of a trans-expressed yefM-yoeB restored the virulence of TX01ΔyefM-yoeB. These findings suggest that YefM-YoeB is involved in responding adverse circumstance and pathogenicity of E. piscicida. In addition, we found that YefM-YoeB negatively autoregulated the expression of yefM-yoeB and YefM could directly bind with own promoter. This study provides first insights into the biological activity of type II TA system YefM-YoeB in aquatic pathogenic bacteria and contributes to understand the pathogenesis of E. piscicida.
Collapse
Affiliation(s)
- Dongmei Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Yanjie Shi
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Dongmei Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
| |
Collapse
|
61
|
Han H, Teng D, Mao R, Hao Y, Yang N, Wang Z, Li T, Wang X, Wang J. Marine Peptide-N6NH2 and Its Derivative-GUON6NH2 Have Potent Antimicrobial Activity Against Intracellular Edwardsiella tarda in vitro and in vivo. Front Microbiol 2021; 12:637427. [PMID: 33767681 PMCID: PMC7985170 DOI: 10.3389/fmicb.2021.637427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Edwardsiella tarda is a facultative intracellular pathogen in humans and animals. There is no effective way except vaccine candidates to eradicate intracellular E. tarda. In this study, four derivatives of marine peptide-N6NH2 were designed by an introduction of unnatural residues or substitution of natural ones, and their intracellular activities against E. tarda were evaluated in macrophages and in mice, respectively. The minimum inhibitory concentration (MIC) value of N6NH2 and GUON6NH2 against E. tarda was 8 μg/mL. GUON6NH2 showed higher stability to trypsin, lower toxicity (<1%) and longer post-antibiotic effect (PAE) than N6NH2 and other derivatives. Antibacterial mechanism results showed that GUON6NH2 could bind to LPS and destroyed outer/inner cell membranes of E. tarda, superior to N6NH2 and norfloxacin. Both N6NH2 and GUON6NH2 were internalized into macrophages mainly via lipid rafts, micropinocytosis, and microtubule polymerization, respectively, and distributed in the cytoplasm. The intracellular inhibition rate of GUON6NH2 against E. tarda was 97.05–100%, higher than that in case of N6NH2 (96.82–100%). In the E. tarda-induced peritonitis mouse model, after treatment with of 1 μmol/kg N6NH2 and GUON6NH2, intracellular bacterial numbers were reduced by 1.54- and 1.97-Log10 CFU, respectively, higher than norfloxacin (0.35-Log10 CFU). These results suggest that GUON6NH2 may be an excellent candidate for novel antimicrobial agents to treat infectious diseases caused by intracellular E. tarda.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China.,Chinese Herbal Medicine Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
62
|
Improved Stability and Activity of a Marine Peptide-N6NH2 against Edwardsiella tarda and Its Preliminary Application in Fish. Mar Drugs 2020; 18:md18120650. [PMID: 33348729 PMCID: PMC7766155 DOI: 10.3390/md18120650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Edwardsiella tarda can cause fatal gastro-/extraintestinal diseases in fish and humans. Overuse of antibiotics has led to antibiotic resistance and contamination in the environment, which highlights the need to find new antimicrobial agents. In this study, the marine peptide-N6 was amidated at its C-terminus to generate N6NH2. The antibacterial activity of N6 and N6NH2 against E. tarda was evaluated in vitro and in vivo; their stability, toxicity and mode of action were also determined. Minimal inhibitory concentrations (MICs) of N6 and N6NH2 against E. tarda were 1.29–3.2 μM. Both N6 and N6NH2 killed bacteria by destroying the cell membrane of E. tarda and binding to lipopolysaccharide (LPS) and genomic DNA. In contrast with N6, N6NH2 improved the stability toward trypsin, reduced hemolysis (by 0.19% at a concentration of 256 μg/mL) and enhanced the ability to penetrate the bacterial outer and inner membrane. In the model of fish peritonitis caused by E. tarda, superior to norfloxacin, N6NH2 improved the survival rate of fish, reduced the bacterial load on the organs, alleviated the organ injury and regulated the immunity of the liver and kidney. These data suggest that the marine peptide N6NH2 may be a candidate for novel antimicrobial agents against E. tarda infections.
Collapse
|
63
|
Yin K, Ma J, Jin P, Sun X, Liu X, Wang Q. Characterization of a novel live attenuated Edwardsiella piscicida vaccine based on the overexpressed type III secretion system and systematic deletion of the associated effectors. FISH & SHELLFISH IMMUNOLOGY 2020; 106:536-545. [PMID: 32763422 DOI: 10.1016/j.fsi.2020.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella piscicida causes edwardsiellosis in a variety of fish species and leads to tremendous economic losses in the global aquaculture industries. Thus, effective and safe prevention and control of this bacterium are urgently needed to combat the related infections. Live attenuated vaccines (LAVs) effectively prevent infectious diseases. However, most of the existing E. piscicida LAVs are based on the deletion of genes encoding the translocon components of the type III secretion system (T3SS), the core virulence system, which is the most prominent protective bacterial antigen with the strongest immunogenicity. In this study, we systematically deleted all of the 9 established T3SS effectors in E. piscicida (aka 9Δ) and the rpoS gene encoding the alternative sigma factor, the esrB repressor (10Δ), then we overexpressed esrB and T3SS in E. piscicida to obtain the recombinant strain 10Δ/esrBOE. The modified strains 10Δ and 10Δ/esrBOE exhibited severe attenuation and in vivo colonization defects. Additionally, vaccination by intraperitoneal injection with 10Δ and 10Δ/esrBOE could significantly upregulate the expression of the antigen recognition related gene (TLR5) and the adaptive immune response-related gene (MHC II) in the spleen/kidney of turbot fish, and it also enhanced the hosts' serum bactericidal capacity. Finally, vaccination with 10Δ/esrBOE led to increased immune protection against the challenge of wild type E. piscicida EIB202 in turbot fish. Collectively, these findings demonstrated that 10Δ/esrBOE was a novel LAV strain and therefore a potential novel strategy for the construction of LAVs against bacterial pathogens.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiang Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
64
|
Gastric submucosal abscess caused by Edwardsiella tarda infection: a case report. BMC Gastroenterol 2020; 20:299. [PMID: 32928124 PMCID: PMC7491108 DOI: 10.1186/s12876-020-01446-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Background Edwardsiella tarda is a motile, facultatively anaerobic gram-negative bacillus that is isolated from a wide spectrum of animals in aquatic environments but rarely causes infection in humans. Here, we describe the case of a gastric submucosal abscess caused by E. tarda infection. Case presentation The patient was a 74-year-old man with a history of hypertension and chronic alcohol consumption who was admitted to our hospital for abdominal pain, appetite loss and vomiting. Contrast-enhanced computed tomography (CT) revealed choledocholithiasis in the common bile duct, a gastric wall abscess and an intra-abdominal abscess. Endoscopic ultrasound (EUS)-guided drainage with antibiotics successfully cured the patient. Conclusion The combination of CT, endoscopy and EUS-guided drainage with antibiotic therapy might be effective for diagnosis and treatment of a gastric submucosal abscess caused by E. tarda infection.
Collapse
|
65
|
Wan X, Li J, Cheng Z, Ao M, Tian R, McLaughlin RW, Zheng J, Wang D. The intestinal microbiome of an Indo-Pacific humpback dolphin (Sousa chinensis) stranded near the Pearl River Estuary, China. Integr Zool 2020; 16:287-299. [PMID: 32761739 DOI: 10.1111/1749-4877.12477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian intestinal microbiome is critical for host health and disease resistance. However, the cetacean intestinal microbiota remains relatively unexplored. By using high-throughput 16S rRNA gene sequencing, we analyzed intestinal bacterial samples from an Indo-pacific humpback dolphin (Sousa chinensis) stranded near the Pearl River Estuary in China. The samples included 3 anatomical regions (foregut, midgut, and rectum) and 2 anatomical locations (content and mucus). Our analyses revealed that the dolphin intestinal bacteria contained 139 operational taxonomic units (OTUs), dominated at the phyla level by Firmicutes (47.05% in the content; 94.77% in the mucus), followed by Bacteroidetes (23.63% in the content; 1.58% in the mucus) and Gammaproteobacteria (14.82% in the content; 2.05% in the mucus). The intestinal bacteria had a small core community (15 OTUs, accounting for 99.74% of the reads), some of which could be potentially pathogenic to both human and dolphins. As an alternative to sampling the dolphin intestinal bacteria, fecal sampling could be used. Additionally, function potentials such as, xenobiotics biodegradation, beta-lactam resistance, and human disease-related pathways, were detected in the dolphin intestinal bacteria. These findings provide the first baseline knowledge of the intestinal microbiome of the Indo-Pacific humpback dolphin, which may offer new insights into cetacean conservation by using microbial surveillance.
Collapse
Affiliation(s)
- Xiaoling Wan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolong Cheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Mengxue Ao
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Renmao Tian
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA.,Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois, USA
| | - Richard William McLaughlin
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,General Studies, Gateway Technical College, Kenosha, Wisconsin, USA
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
66
|
Li MF, Jia BB, Sun YY, Sun L. The Translocation and Assembly Module (TAM) of Edwardsiella tarda Is Essential for Stress Resistance and Host Infection. Front Microbiol 2020; 11:1743. [PMID: 32793174 PMCID: PMC7393178 DOI: 10.3389/fmicb.2020.01743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022] Open
Abstract
Translocation and assembly module (TAM) is a protein channel known to mediate the secretion of virulence factors during pathogen infection. Edwardsiella tarda is a Gram-negative bacterium that is pathogenic to a wide range of farmed fish and other hosts including humans. In this study, we examined the function of the two components of the TAM, TamA and TamB, of E. tarda (named tamAEt and tamBEt, respectively). TamAEt was found to localize on the surface of E. tarda and be recognizable by TamAEt antibody. Compared to the wild type, the tamA and tamB knockouts, TX01ΔtamA and TX01ΔtamB, respectively, were significantly reduced in motility, flagella formation, invasion into host cells, intracellular replication, dissemination in host tissues, and inducing host mortality. The lost virulence capacities of TX01ΔtamA and TX01ΔtamB were restored by complementation with the tamAEt and tamBEt genes, respectively. Furthermore, TX01ΔtamA and TX01ΔtamB were significantly impaired in the ability to survive under low pH and oxidizing conditions, and were unable to maintain their internal pH balance and cellular structures in acidic environments, which led to increased susceptibility to lysozyme destruction. Taken together, these results indicate that TamAEt and TamBEt are essential for the virulence of E. tarda and required for E. tarda to survive under stress conditions.
Collapse
Affiliation(s)
- Mo-Fei Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei-Bei Jia
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
67
|
In vitro Edwardsiella piscicida CK108 Transcriptome Profiles with Subinhibitory Concentrations of Phenol and Formalin Reveal New Insights into Bacterial Pathogenesis Mechanisms. Microorganisms 2020; 8:microorganisms8071068. [PMID: 32709101 PMCID: PMC7409036 DOI: 10.3390/microorganisms8071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Phenol and formalin are major water pollutants that are frequently discharged into the aquatic milieu. These chemicals can affect broad domains of life, including microorganisms. Aquatic pollutants, unlike terrestrial pollutants, are easily diluted in water environments and exist at a sub-inhibitory concentration (sub-IC), thus not directly inhibiting bacterial growth. However, they can modulate gene expression profiles. The sub-IC values of phenol and formalin were measured by minimal inhibitory concentration (MIC) assay to be 0.146% (1.3 mM) and 0.0039% (0.38 mM), respectively, in Edwardsiella piscicida CK108, a Gram-negative fish pathogen. We investigated the differentially expressed genes (DEG) by RNA-seq when the cells were exposed to the sub-ICs of phenol and formalin. DEG analyses revealed that genes involved in major virulence factors (type I fimbriae, flagella, type III and type VI secretion system) and various cellular pathways (energy production, amino acid synthesis, carbohydrate metabolism and two-component regulatory systems) were up- or downregulated by both chemicals. The genome-wide gene expression data corresponded to the results of a quantitative reverse complementary-PCR and motility assay. This study not only provides insight into how a representative fish pathogen, E. piscicida CK108, responds to the sub-ICs of phenol and formalin but also shows the importance of controlling chemical pollutants in aquatic environments.
Collapse
|
68
|
Guo G, Li C, Xia B, Jiang S, Zhou S, Men X, Ren Y. The efficacy of lactic acid bacteria usage in turbot Scophthalmus maximus on intestinal microbiota and expression of the immune related genes. FISH & SHELLFISH IMMUNOLOGY 2020; 100:90-97. [PMID: 32145449 DOI: 10.1016/j.fsi.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
To understand the efficacy of lactic acid bacteria (LAB) as probiotics on the growth, immune response and intestinal microbiota of turbot Scophthalmus maximus, in this study, the Leuconostoc mesenteroides HY2 strain screened from wide caught fish was bath administrated for juvenile turbot with no bacteria administrated as control. The mRNA levels of toll-like receptors 3 (TLR3), interleukin 8 (IL-8) and interferon induced with helicase C domain 1 (IFIH1) in different organs (i.e. intestine, liver, spleen, kidney, brain and skin) were analyzed using RT-PCR technology. The intestinal microbiota was analyzed by 16S rRNA sequencing, in which principal co-ordinates analysis (PCoA) as well as cluster analysis was performed. The results showed that the specific growth rate of turbot in the LAB treatment was significantly higher than those of the control group (P < 0.05). The expression levels of TLR3, IL-8 and IFIH1 were significantly up-regulated in the organs of LAB treatment, except that IL-8 was slightly down-regulated in kidney. A total of 42 phyla in intestinal microbiota were identified. The composition of intestinal microbiota showed significant differences between LAB treatment and the control group. Shannon index in the LAB treatment was significantly increased while Simpson index significantly declined. The PCoA and cluster analysis exhibited significant differences in the composition and abundance between the two groups. Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria acted as biomarkers which may have effects to promote absorption and/or trigger the immune function. In conclusion, the administration of HY2 strain was capable of improving growth performance of turbot by enhancing immune response and optimizing structure and diversity of intestinal microbiota.
Collapse
Affiliation(s)
- Guangxin Guo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Senhao Jiang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, College of Ocean and Bioengineering, Yancheng Teachers University, Yancheng, 224051, China
| | - Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xianhui Men
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
69
|
Transcriptome Analysis of Paralichthys olivaceus Erythrocytes Reveals Profound Immune Responses Induced by Edwardsiella tarda Infection. Int J Mol Sci 2020; 21:ijms21093094. [PMID: 32353932 PMCID: PMC7247156 DOI: 10.3390/ijms21093094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike mammalian red blood cells (RBCs), fish RBCs are nucleated and thus capable of gene expression. Japanese flounder (Paralichthys olivaceus) is a species of marine fish with important economic values. Flounder are susceptible to Edwardsiella tarda, a severe bacterial pathogen that is able to infect and survive in flounder phagocytes. However, the infectivity of and the immune response induced by E. tarda in flounder RBCs are unclear. In the present research, we found that E. tarda was able to invade and replicate inside flounder RBCs in both in vitro and in vivo infections. To investigate the immune response induced by E. tarda in RBCs, transcriptome analysis of the spleen RBCs of flounder challenged with E. tarda was performed. Six sequencing libraries were constructed, and an average of 43 million clean reads per library were obtained, with 85% of the reads being successfully mapped to the genome of flounder. A total of 1720 differentially expressed genes (DEGs) were identified in E. tarda-infected fish. The DEGs were significantly enriched in diverse Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially those associated with immunity, disease, and infection. Ninety-one key DEGs involved in 12 immune-related pathways were found to form extensive interaction networks. Twenty-one genes that constituted the hub of the networks were further identified, which were highly regulated by E. tarda and involved in a number of immune processes, notably pathogen recognition and signal transduction, antigen processing and presentation, inflammation, and splicing. These results provide new insights into the immune role of flounder RBCs during bacterial infection.
Collapse
|
70
|
Abstract
Edwardsiella piscicida is an Enterobacteriaceae that is abundant in water and causes food and waterborne infections in fish, animals, and humans. The bacterium causes Edwardsiellosis in farmed fish and can lead to severe economic losses in aquaculture worldwide. E. piscicida is an intracellular pathogen that can also cause systemic infection. Type III and type VI secretion systems are the bacterium’s most lethal weapons against host defenses. It also possesses multi-antibiotic resistant genes and is selected and enriched in the environment due to the overuse of antibiotics. Therefore, the bacterium has great potential to contribute to the evolution of the resistome. All these properties have made this bacterium a perfect model to study bacteria virulence mechanisms and the spread of antimicrobial genes in the environment. We summarize recent advance in E. piscicida biology and provide insights into future research in virulence mechanisms, vaccine development and novel therapeutics.
Collapse
Affiliation(s)
- Ka Yin Leung
- a Guangdong Technion - Israel Institute of Technology, Biotechnology and Food Engineering , Shantou , Guangdong , China
| | - Qiyao Wang
- b State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology , Shanghai , China.,c Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, East China University of Science and Technology , Shanghai , China.,d Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology , Shanghai , China
| | - Zhiyun Yang
- a Guangdong Technion - Israel Institute of Technology, Biotechnology and Food Engineering , Shantou , Guangdong , China
| | - Bupe A Siame
- e Department of Biology , Trinity Western University , Langley , BC , Canada
| |
Collapse
|
71
|
Diallo I, Provost P. RNA-Sequencing Analyses of Small Bacterial RNAs and their Emergence as Virulence Factors in Host-Pathogen Interactions. Int J Mol Sci 2020; 21:E1627. [PMID: 32120885 PMCID: PMC7084465 DOI: 10.3390/ijms21051627] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Proteins have long been considered to be the most prominent factors regulating so-called invasive genes involved in host-pathogen interactions. The possible role of small non-coding RNAs (sRNAs), either intracellular, secreted or packaged in outer membrane vesicles (OMVs), remained unclear until recently. The advent of high-throughput RNA-sequencing (RNA-seq) techniques has accelerated sRNA discovery. RNA-seq radically changed the paradigm on bacterial virulence and pathogenicity to the point that sRNAs are emerging as an important, distinct class of virulence factors in both gram-positive and gram-negative bacteria. The potential of OMVs, as protectors and carriers of these functional, gene regulatory sRNAs between cells, has also provided an additional layer of complexity to the dynamic host-pathogen relationship. Using a non-exhaustive approach and through examples, this review aims to discuss the involvement of sRNAs, either free or loaded in OMVs, in the mechanisms of virulence and pathogenicity during bacterial infection. We provide a brief overview of sRNA origin and importance, and describe the classical and more recent methods of identification that have enabled their discovery, with an emphasis on the theoretical lower limit of RNA sizes considered for RNA sequencing and bioinformatics analyses.
Collapse
Affiliation(s)
| | - Patrick Provost
- CHUQ Research Center/CHUL, Department of Microbiology-Infectious Disease and Immunity, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada;
| |
Collapse
|
72
|
Qin L, Wang X, Gao Y, Bi K, Wang W. Roles of EvpP in Edwardsiella piscicida-Macrophage Interactions. Front Cell Infect Microbiol 2020; 10:53. [PMID: 32117819 PMCID: PMC7033576 DOI: 10.3389/fcimb.2020.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Edwardsiella piscicida is found to be an important facultative intracellular pathogen with a broad host range. These organisms can replicate and survive within host macrophages to escape from the subversion of the immune defense. E. piscicida-macrophage interaction is very important in determining the outcome of edwardsiellasis. As an effector protein of E. piscicida T6SS, EvpP has been determined to be a very important virulence factor for E. piscicida, although its precise role in E. piscicida-macrophage interactions is not yet clear. In this study, the roles of EvpP in E. piscicida-macrophage interactions were characterized. Here, we constructed the deletion mutants of evpP (ΔevpP) and complementation (ΔevpP-C) by the allelic exchange method. Compared to wild type strain (WT), ΔevpP was found to be attenuated for growth within macrophages. In line with this observation, we found its survival capacity was lower than WT under oxidative and acid stress in vitro, which simulate conditions encountered in host macrophages. Attenuation of ΔevpP also correlated with enhanced activation of macrophages, as reflected by augmented NO production in ΔevpP-treated macrophages. Moreover, compared to WT, ΔevpP induced markedly increased apoptosis of macrophages, characterized by increased Annexin V binding and the activation of cleaved caspase-3. These findings provided strong evidence that EvpP is involved in the process of E. piscicida-macrophage interactions and is required for its survival and replication in macrophages. Thus, we propose that EvpP might be an important factor that controlling the fate of E. piscicida inside macrophages. To further exploring the underlying mechanism of EvpP action, the cDNA library was constructed from E. piscicida-infected macrophages and a yeast two-hybrid screen was performed to search for cellular proteins interacting with EvpP. Ribosomal protein S5 (RPS5) was identified as a target of EvpP. Furthermore, the interaction was validated with co-immunoprecipitation assay. This result implies that the observed effect of EvpP on macrophages might be related to RPS5-mediated regulation, contributing to a better understanding of the mechanisms of EvpP involved in E. piscicida-macrophage interactions.
Collapse
Affiliation(s)
- Lei Qin
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| | - Xingqiang Wang
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yingli Gao
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Keran Bi
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Weixia Wang
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
73
|
Han Y, Wei L, Xiao J, Zhang Y, Wang Q, Zhou M. Identification and study of InV as an inverse autotransporter family representative in Edwardsiella piscicida. Arch Microbiol 2020; 202:1107-1116. [PMID: 32052095 PMCID: PMC7223825 DOI: 10.1007/s00203-019-01804-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022]
Abstract
Invasins and intimins, members of virulence-related adhesin family which is involved in attachment and adherence to epithelial cells during infection, are found in various pathogens. These pathogens can attach to enterocytes and lead to the formation of a pedestal-like structure. Invasins and intimins belong to type Ve secretion systems, and the N-terminal β-barrel domain acts as a translocation pore to secrete the C-terminal passenger domain. However, the relationship between invasins/intimins and type III secretion system (T3SS) has been poorly studied. Based on the transposon insertion mutant library of Edwardsiella piscicida, we got a transposon insertion mutant with significant T3SS defect and identified the mutated gene ETAE_0323 (named inV later). This gene encoded a protein with 2359 amino acid residues and was predicted to be an invasin. To study the relationship between InV and T3SS, strains with N-terminus or C-terminus deleted InV fragments were made. However, none of them was able to copy the phenotype of the transposon insertion mutant previously identified. The localization of InV in ΔT3SS strain was not significantly different from WT, suggesting that the T3SS defect in the transposon insertion mutant was likely to be caused by polar effect. Nevertheless, depletion of inV still showed dramatic internalization and virulence defect in HeLa cell and zebrafish model, respectively, suggesting InV as a virulence related protein.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
74
|
Oh WT, Jun JW, Kim HJ, Giri SS, Yun S, Kim SG, Kim SW, Kang JW, Han SJ, Kwon J, Park SC. Characterization and Pathological Analysis of a Virulent Edwardsiella anguillarum Strain Isolated From Nile Tilapia ( Oreochromis niloticus) in Korea. Front Vet Sci 2020; 7:14. [PMID: 32047760 PMCID: PMC6997428 DOI: 10.3389/fvets.2020.00014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
Edwardsiella species are one of the top causative pathogens of mortality in various fisheries worldwide. Their role in zoonotic infections and increase in antibiotic-resistance has raised concerns and interests in many research fields. Similar to the studies investigating human clinical cases, there has been an increase in research examining the potential pathogenic role of the bacterium in aquaculture. Within the Edwardsiella family, Edwardsiella anguillarum was lastest group to be differentiated from the Edwardsiella tarda group, and many studies focusing on the virulence of this species have since ensued. In Korea, only E. tarda infections have been reported in aquaculture industries, and there have been no reports on economic losses incurred owing to E. anguillarum infection. There has been a recent report investigating the pathogenicity and pathological changes caused by E. anguillarum infection in a tilapia farm located in the Costa Rica. To the best of our knowledge, as ours is the first report of E. anguillarum infection in a Nile tilapia (Oreochromis niloticus) farm located in an Asian country, the pathogenicity of the bacterial strain was histopathologically compared to that of the past studies. As tilapia is one of the most globally consumed fish species, particularly throughout Asia, Europe, and America, an epidemiological study regarding the disease distribution is necessary for the control and prevention of the disease. Here, we report the first mass mortality case caused by E. anguillarum infection in a Nile tilapia farm located in Korea; the bacterial strain responsible was isolated, characterized, and pathologically analyzed.
Collapse
Affiliation(s)
- Woo Taek Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju, South Korea
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jeong Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
75
|
Wang Q, Ji W, Xu Z. Current use and development of fish vaccines in China. FISH & SHELLFISH IMMUNOLOGY 2020; 96:223-234. [PMID: 31821845 DOI: 10.1016/j.fsi.2019.12.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
In the past decades, the aquaculture industry made great progress in China, which contributes more than 70% yield of the world's farmed fish. Along with the rapid growth of fish production, increased emergence and outbreak of numbers of diseases pose harm to the aquaculture industry and food safety. From the efficient, safe, environmental and ethical aspects, vaccines is definitely the most appropriate and focused method to control different kinds of fish diseases. In China, researchers have done huge works on the fish vaccines, and so far six domestic aquatic vaccine products along with one imported aquatic vaccine have obtained the national veterinary medicine certificate. More critically, some new vaccines have also entered the field experiment stage and showed broad market prospects. In the present review, authors summarize seven aquatic vaccines, including the live vaccine against grass carp hemorrhagic disease, the inactivated vaccine against Aeromonas hydrophila sepsis in fish, the live vaccine against Edwardsiella tarda in turbot, the anti-idiotypic antibody vaccine against Vibrio alginolyticus, V. parahaemolyticus, and E. tarda in Japanese flounder, the cell-cultured inactivated vaccine against grass carp hemorrhagic disease, the inactivated vaccine against fish infectious spleen and kidney necrosis virus (ISKNV), and the genetically engineered live vaccine against V. anguillarum in turbot. Moreover, different delivery routes of fish vaccines are also compared in this review, along with differential fish immune response after vaccination. All these efforts will ultimately benefit the healthy and sustainable development of aquaculture industry in China.
Collapse
Affiliation(s)
- Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Ji
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
76
|
Fang QJ, Han YX, Shi YJ, Huang HQ, Fang ZG, Hu YH. Universal stress proteins contribute Edwardsiella piscicida adversity resistance and pathogenicity and promote blocking host immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 95:248-258. [PMID: 31654767 DOI: 10.1016/j.fsi.2019.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Universal stress proteins (Usps) exist ubiquitously in bacteria and other organisms. Usps play an important role in adaptation of bacteria to a variety of environmental stresses. There is increasing evidence that Usps facilitate pathogens to adapt host environment and are involved in pathogenicity. Edwardsiella piscicida (formerly included in E. tarda) is a severe fish pathogen and infects various important economic fish including tilapia (Oreochromis niloticus). In E. piscicida, a number of systems and factors that are involved in stress resistance and pathogenesis were identified. However, the function of Usps in E. piscicida is totally unknown. In this study, we examined the expressions of 13 usp genes in E. piscicida and found that most of these usp genes were up-regulated expression under high temperature, oxidative stress, acid stress, and host serum stress. Particularly, among these usp genes, usp13, exhibited dramatically high expression level upon several stress conditions. To investigate the biological role of usp13, a markerless usp13 in-frame mutant strain, TX01Δusp13, was constructed. Compared to the wild type TX01, TX01Δusp13 exhibited markedly compromised tolerance to high temperature, hydrogen peroxide, and low pH. Deletion of usp13 significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis showed that the inactivation of usp13 significantly impaired the ability of E. piscicida to invade into host cell and infect host tissue. Introduction of a trans-expressed usp13 gene restored the lost virulence of TX01Δusp13. In support of these results, host immune response induced by TX01 and TX01Δusp13 was examined, and the results showed reactive oxygen species (ROS) levels in TX01Δusp13-infected macrophages were significantly higher than those in TX01-infected cells. The expression level of several cytokines (IL-6, IL-8, IL-10, TNF-α, and CC2) in TX01Δusp13-infected fish was significantly higher than that in TX01-infected fish. These results suggested that the deletion of usp13 attenuated the ability of bacteria to overcome the host immune response to pathogen infection. Taken together, our study indicated Usp13 of E. piscicida was not only important participant in adversity resistance, but also was essential for E. piscicida pathogenicity and contributed to block host immune response to pathogen infection.
Collapse
Affiliation(s)
- Qing-Jian Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Marine Science, Hainan University, Haikou, 570228, China; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yue-Xin Han
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yan-Jie Shi
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hui-Qin Huang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Zai-Guang Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Marine Science, Hainan University, Haikou, 570228, China.
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
77
|
A Comparative Analysis of Edwardsiella tarda-Induced Transcriptome Profiles in RAW264.7 Cells Reveals New Insights into the Strategy of Bacterial Immune Evasion. Int J Mol Sci 2019; 20:ijms20225724. [PMID: 31731575 PMCID: PMC6888325 DOI: 10.3390/ijms20225724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 01/15/2023] Open
Abstract
Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad host range, including fish, reptiles, and mammals. One prominent virulence feature of E. tarda is its ability to survive and replicate in host phagocytes, but the relevant molecular mechanism is largely unknown. In this study, we examined the transcriptome profiles of RAW264.7 cells, a murine macrophage cell line, infected with live E. tarda or stimulated with dead E. tarda for 4 h and 8 h. Eighteen libraries were constructed, and an average of 69 million clean reads per library were obtained, with ~81.63% of the reads being successfully mapped to the reference genome. In total, 208 and 232 differentially expressed genes (DEGs) were identified between live and dead E. tarda-treated cells at 4 h and 8 h post-infection, respectively. The DEGs were markedly enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with immunity. Live E. tarda differed strikingly from dead E. tarda in the regulation of immune related genes. Compared with dead E. tarda-treated cells, live E. tarda-treated cells exhibited marked and significant suppression in the induction of a large amount of immune genes, including RIG-I-like receptors, cytokines, and interferon-related genes. Furthermore, some of the immune genes highly regulated by live E. tarda formed complicated interaction networks with each other. Together, the results of this study revealed a transcriptome profile specifically induced by the active virulence elements of live E. tarda during the infection process, thus adding new insights into the intracellular infection mechanism of E. tarda. This study also provided a valuable set of target genes for further study of the immune evasion strategy of E. tarda.
Collapse
|
78
|
Wei L, Qiao H, Sit B, Yin K, Yang G, Ma R, Ma J, Yang C, Yao J, Ma Y, Xiao J, Liu X, Zhang Y, Waldor MK, Wang Q. A Bacterial Pathogen Senses Host Mannose to Coordinate Virulence. iScience 2019; 20:310-323. [PMID: 31605945 PMCID: PMC6817725 DOI: 10.1016/j.isci.2019.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/19/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Bacterial pathogens are thought to activate expression of virulence genes upon detection of host-associated cues, but identification of the nature of such signals has proved difficult. We generated a genome-scale defined transposon mutant library in Edwardsiella piscicida, an important fish pathogen, to quantify the fitness of insertion mutants for intracellular growth in macrophages and in turbot (Scophthalmus maximus). These screens identified EvrA, a transcription activator that induces expression of esrB, a key virulence regulator. EvrA is directly bound and activated by mannose-6-phosphate (man-6P) derived from actively imported mannose. Mutants lacking EvrA or expressing an EvrA unable to bind man-6P were similarly attenuated in turbot. Exogenously added mannose promoted E. piscicida virulence, and high levels of mannose were detected in fish tissue. Together, these observations reveal that binding of a host-derived sugar to a transcription factor can facilitate pathogen sensing of the host environment and trigger virulence programs.
Collapse
Affiliation(s)
- Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haoxian Qiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guanhua Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ruiqing Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chun Yang
- State Key Laboratory of Genetic Engineering, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun Yao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Matthew K Waldor
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| |
Collapse
|
79
|
Yin K, Peng Y, Ahmed MAH, Ma J, Xu R, Zhang Y, Ma Y, Wang Q. PepA binds to and negatively regulates esrB to control virulence in the fish pathogen Edwardsiella piscicida. Microbiol Res 2019; 232:126349. [PMID: 31816594 DOI: 10.1016/j.micres.2019.126349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023]
Abstract
As an important marine fish pathogen, Edwardsiella piscicida infects a broad range of fish species and causes substantial economic losses. The EsrA-EsrB two-component system is essential for the expression of type III and type VI secretion systems (T3/T6SSs), the key virulence determinants in the bacterium. In this study, a pull-down assay with the esrB promoter as bait was performed to identify the upstream regulators of esrB. As a result, PepA, a leucyl aminopeptidase, was identified as a repressor of EsrB and T3/T6SS expression. PepA bound to the esrB promoter region and negatively regulated the production of T3/T6SS proteins in early stages. Moreover, PepA was found to affect the in vivo colonization of E. piscicida in turbot livers through the regulation of EsrB expression. Collectively, our results enhance the understanding of the virulence regulatory network and in vivo colonization mechanism of E. piscicida. One sentence summary: PepA regulates EsrB expression in Edwardsiella piscicida.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Moamer A H Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rongjing Xu
- Yantai Tianyuan Aquatic Co. Ltd., Yantai, Shandong, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
80
|
Li WR, Hu YH, Jiang S, Sun L. Global profiling and characterization of Japanese flounder (Paralichthys olivaceus) kidney microRNAs regulated by Edwardsiella tarda infection in a time-dependent fashion. FISH & SHELLFISH IMMUNOLOGY 2019; 93:766-780. [PMID: 31421241 DOI: 10.1016/j.fsi.2019.07.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is an important economic fish species farmed in China and other countries. It is susceptible to infection by Edwardsiella tarda, a severe fish pathogen with a broad host range. In this study, we employed high-throughput deep sequencing technology to identify, in a global scale, flounder kidney microRNAs (miRNAs) induced by E. tarda at different stages of infection. Differentially expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) exhibiting significantly altered expression levels before and after E. tarda infection were examined. A total of 96 DEmiRNAs were identified, for which 2779 target genes were predicted. Eighty-seven miRNA-mRNA pairs, involving 29 DEmiRNAs and 86 DEmRNAs, showed negative correlations in their expression patterns. GO and KEGG enrichment analysis revealed that the putative target genes of the DEmiRNAs were associated with diverse biological processes, cellular components, and molecular functions. One of the DEmiRNAs, pol-miR-182-5p, was demonstrated to regulate sphingosine-1-phosphate receptor 1 (PoS1PR1) negatively in a manner that depended on the specific interaction between the seed sequence of pol-miR-182-5p and the 3'-UTR of PoS1PR1. Overexpression of pol-miR-182-5p in flounder cells promoted apoptosis and inhibited cellular viability. Knockdown of PoS1PR1 in flounder enhanced E. tarda invasion and dissemination in fish tissues. These results provide new insights into miRNA-mediated anti-bacterial immunity in flounder.
Collapse
Affiliation(s)
- Wen-Rui Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
81
|
Lin M, Zeng C, Li Z, Ma Y, Jia X. Comparative analysis of the composition and function of fecal-gut bacteria in captive juvenile Crocodylus siamensis between healthy and anorexic individuals. Microbiologyopen 2019; 8:e929. [PMID: 31482690 PMCID: PMC6925159 DOI: 10.1002/mbo3.929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023] Open
Abstract
The Siamese crocodile (Crocodylus siamensis) is a freshwater, endangered crocodile with high economic value in the farming industry. Gut microflora plays an essential role in host physiological activity, and it contributes significantly to both the health and diseased states of animals. However, thus far, no study has focused on the correlation between diseases and intestinal bacterial communities in crocodilians. Here, we first compared the composition and function of gut microbial communities in captive juvenile C. siamensis suffering from anorexia and healthy crocodile controls using deep amplicon sequencing. The gut microbial diversity of anorexic crocodiles was much lower than the healthy individuals. Obvious changes in gut microbial composition were observed between sick and healthy crocodiles, except for Cetobacterium somerae of phylum Fusobacteria. In particular, the abundance of Bacteroides luti, Clostridium disporicum, Plesiomonas shigelloides, and Odoribacter sp. in the gut flora of healthy crocodiles was distinctly higher than the diseased group. Conversely, the species Edwardsiella tarda was overrepresented in the gut of anorexic crocodiles compared to the healthy group. Furthermore, in anorexic crocodiles, the predicted microbial functions that were related to amino acid metabolism, biosynthesis of other secondary metabolites, nucleotide metabolism, replication and repair, and translation were significantly reduced, while signal transduction was significantly enriched. These findings of the present study provide a reference to enrich the field of gut microorganism studies in crocodilians and suggest that alterations in the composition and function of gut bacteria in C. siamensis juveniles may be associated with anorexia in crocodiles.
Collapse
Affiliation(s)
- Mao Lin
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Chenxi Zeng
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China
| | - Zhongqin Li
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China
| | - Ying Ma
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China
| | - Xueqing Jia
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
82
|
Guan Y, Yin K, Zhou M, Yang M, Zhang Y, Liu X, Wang Q. EsrB negatively regulates expression of the glutamine sythetase GlnA in the fish pathogen Edwardsiella piscicida. FEMS Microbiol Lett 2019; 365:4810546. [PMID: 29346648 DOI: 10.1093/femsle/fny007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/13/2018] [Indexed: 12/13/2022] Open
Abstract
Edwardsiella piscicida is a gram-negative bacterial pathogen invading a wide range of fish species. Response regulator EsrB is essential for the activation of type III and type VI secretion systems (T3/T6SS). In this study, proteomes of the wild-type E. piscicida EIB202 and ΔesrB mutant strains were compared to identify the regulon components of EsrB cultured in DMEM allowing T3/T6SS expression. As a result, 19 proteins showed different expression, which were identified to be associated with T3/T6SS, related to amino acid transport and metabolism, and energy production. Particularly, GlnA, a glutamine synthetase essential for ammonia assimilation and glutamine biosynthesis from glutamate, was found to be regulated negatively by EsrB. Moreover, GlnA affected bacterial growth in vitro and bacterial colonization in vivo. Collectively, our results indicated that EsrB plays important roles in regulating the expression of metabolic pathways and virulence genes, including glutamine biosynthesis in E. piscicida during infection.
Collapse
Affiliation(s)
- Yunpeng Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Minjun Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
83
|
Wei L, Qiao H, Liu B, Yin K, Liu Q, Zhang Y, Ma Y, Wang Q. MarTrack: A versatile toolbox of mariner transposon derivatives used for functional genetic analysis of bacterial genomes. Microbiol Res 2019; 228:126306. [PMID: 31422233 DOI: 10.1016/j.micres.2019.126306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 11/24/2022]
Abstract
The mariner transposon family of Himar1 has been widely used for the random mutagenesis of bacteria to generate single insertions into the chromosome. Here, a versatile toolbox of mariner transposon derivatives was generated and applied to the functional genomics investigation of fish pathogen Edwardsiella piscicida. In this study, we combined the merits of the random mutagenesis of mariner transposon and common efficient reporter marker genes or regulatory elements, mCherry, gfp, luxAB, lacZ, sacBR, and PBAD and antibiotic resistance cassettes to construct a series of derivative transposon vectors, pMmch, pMKGR, pMCGR, pMXKGR, pMLKGR, pMSGR, and pMPR, based on the initial transposon pMar2xT7. The function and effectiveness of the modified transposons were verified by introducing them into E. piscicida EIB202. Based on the toolbox, a transposon insertion mutant library containing approximately 3.0 × 105 distinct mutants was constructed to explore the upstream regulators of esrB, the master regulator of the type III and type VI secretion systems (T3/T6SS) in E. piscicida. Following analysis by Con-ARTIST, ETAE_3474, annotated as fabR and involved in fatty acid metabolism, was screened out and identified as a novel regulator mediating T3SS and T6SS expression. In addition, the fabR mutants displayed critical virulence attenuation in turbot. Due to the broad-range host compatibility of mariner transposons, the newly built transposon toolbox can be applied for functional genomics studies in various bacteria.
Collapse
Affiliation(s)
- Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Haoxian Qiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Bing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China.
| |
Collapse
|
84
|
Yang D, Liu X, Xu W, Gu Z, Yang C, Zhang L, Tan J, Zheng X, Wang Z, Quan S, Zhang Y, Liu Q. The Edwardsiella piscicida thioredoxin-like protein inhibits ASK1-MAPKs signaling cascades to promote pathogenesis during infection. PLoS Pathog 2019; 15:e1007917. [PMID: 31314784 PMCID: PMC6636751 DOI: 10.1371/journal.ppat.1007917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/14/2019] [Indexed: 12/02/2022] Open
Abstract
It is important that bacterium can coordinately deliver several effectors into host cells to disturb the cellular progress during infection, however, the precise role of effectors in host cell cytosol remains to be resolved. In this study, we identified a new bacterial virulence effector from pathogenic Edwardsiella piscicida, which presents conserved crystal structure to thioredoxin family members and is defined as a thioredoxin-like protein (Trxlp). Unlike the classical bacterial thioredoxins, Trxlp can be translocated into host cells, mimicking endogenous thioredoxin to abrogate ASK1 homophilic interaction and phosphorylation, then suppressing the phosphorylation of downstream Erk1/2- and p38-MAPK signaling cascades. Moreover, Trxlp-mediated inhibition of ASK1-Erk/p38-MAPK axis promotes the pathogenesis of E. piscicida in zebrafish larvae infection model. Taken together, these data provide insights into the mechanism underlying the bacterial thioredoxin as a virulence effector in downmodulating the innate immune responses during E. piscicida infection. Thioredoxin (Trx) is universally conserved thiol-oxidoreductase that regulates numerous cellular pathways under thiol-based redox control in both prokaryotic and eukaryotic organisms. Despite its central importance, the mechanism of bacterial Trx recognizes its target proteins in host cellular signaling remains unknown. Here, we uncover a bacterial thioredoxin-like protein that can be translocated into host cells and mimic the endogenous TRX1 to target ASK1-MAPK signaling, finally facilitating bacterial pathogenesis. This work expands our understanding of bacterial thioredoxins in manipulating host innate immunity.
Collapse
Affiliation(s)
- Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Wenting Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyan Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Cuiting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lingzhi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jinchao Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
85
|
Affiliation(s)
- Qin Xiang Ng
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
- MOH Holdings Pte Ltd, Singapore
| | - Chusheng Seng
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | - Fu Zi Yvonne Chan
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Wee Song Yeo
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
86
|
A case of necrotizing fasciitis following Edwardsiella tarda septicemia with gastroenteritis. J Infect Chemother 2019; 25:1053-1056. [PMID: 31235349 DOI: 10.1016/j.jiac.2019.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022]
Abstract
Edwardsiella tarda is an uncommon pathogen that causes gastroenteritis in humans and is found in the aquatic environment. In rare cases, it also causes fatal infections, including sepsis and necrotizing fasciitis. However, it remains unknown whether E. tarda gastroenteritis could lead to these lethal diseases via hematogenous spread. Here we have reported a previously healthy 64-year-old woman with necrotizing fasciitis consecutively caused by E. tarda septicemia with gastroenteritis. The patient was transferred to the emergency department due to disturbance of consciousness and hypotension after suffering from diarrhea for a month. As whole-body computed tomography (CT) revealed an edematous change in the small intestine, septic shock following gastroenteritis was suspected, and the patient was immediately started on empiric antibiotic therapy and provided critical care. Her general physical conditions gradually began improving, but, on day 7, rapidly appearing blisters on both the lower limbs were noted, and she was accordingly examined again by conducting a CT scan. Based on the results, she was diagnosed with necrotizing fasciitis in both lower extremities, and surgical debridement was rapidly performed. Microbiological analysis of the specimens revealed E. tarda bacteremia, which suggested that E. tarda caused a series of infections in this patient. Finally, she fully recovered and was discharged within 3 months. Cumulatively, we proposed that gastroenteritis by E. tarda could directly result in fatal infections through the blood stream.
Collapse
|
87
|
The Edwardsiella piscicida Type III Effector EseJ Suppresses Expression of Type 1 Fimbriae, Leading to Decreased Bacterial Adherence to Host Cells. Infect Immun 2019; 87:IAI.00187-19. [PMID: 30988056 DOI: 10.1128/iai.00187-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022] Open
Abstract
The type III secretion system (T3SS) of Edwardsiella piscicida plays a crucial role in its pathogenesis. Our previous study indicated that the T3SS effector protein EseJ inhibits the bacterium's adhesion to epithelioma papillosum cyprini (EPC) cells, while the mechanism of the inhibition remains elusive. In this study, we revealed that EseJ negatively regulates the fimA gene, as demonstrated by comparative transcription analysis of ΔeseJ and wild-type (WT) strains. As well, the dramatically increased production of FimA was detected in the absence of EseJ compared to that by the WT strain. The adherence of the ΔeseJ strain decreased far below that of the WT strain in the absence of FimA, demonstrating that FimA plays a pivotal role in the hyperadhesion of the ΔeseJ strain. Adherence analysis with a strain with truncated eseJ demonstrated that the C-terminal region of EseJ (Gly1191 to Ile1359) is necessary to inhibit the transcription of the type 1 fimbrial operon. Binding between the EseJ fragment from amino acid residues 1191 to 1359 and the DNA fragment upstream of fimA was not detected, indicating that EseJ might indirectly regulate the type 1 fimbrial operon. Our study reveals that EseJ controls E. piscicida adherence to EPC cells by negatively regulating the type 1 fimbrial operon.
Collapse
|
88
|
Genome-Wide Identification of Fitness Factors in Seawater for Edwardsiella piscicida. Appl Environ Microbiol 2019; 85:AEM.00233-19. [PMID: 30877123 DOI: 10.1128/aem.00233-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022] Open
Abstract
Marine pathogens are transmitted from one host to another through seawater. Therefore, it is important for marine pathogens to maintain survival or growth in seawater. However, little is known about how marine pathogens adapt to living in seawater environments. Here, transposon insertion sequencing was performed to explore the genetic determinants of Edwardsiella piscicida survival in seawater at 16 and 28°C. Seventy-one mutants with mutations mainly in metabolism-, transportation-, and type III secretion system (T3SS)-related genes showed significantly increased or impaired fitness in 16°C water. In 28°C seawater, 63 genes associated with transcription and translation, as well as energy production and conversion, were essential for optimal survival of the bacterium. In particular, 11 T3SS-linked mutants displayed enhanced fitness in 16°C seawater but not in 28°C seawater. In addition, 13 genes associated with oxidative phosphorylation and 4 genes related to ubiquinone synthesis were identified for survival in 28°C seawater but not in 16°C seawater, which suggests that electron transmission and energy-producing aerobic respiration chain factors are indispensable for E. piscicida to maintain survival in higher-temperature seawater. In conclusion, we defined genes and processes related to metabolism and virulence that operate in E. piscicida to facilitate survival in low- and high-temperature seawater, which may underlie the infection outbreak mechanisms of E. piscicida and facilitate the development of improved vaccines against marine pathogens.IMPORTANCE Edwardsiella piscicida is one of the most important marine pathogens and causes serious edwardsiellosis in farmed fish during the summer-autumn seasonal changes, resulting in enormous losses to aquaculture industries worldwide. Survival and transmission of the pathogen in seawater are critical steps that increase the risk of outbreaks. To investigate the mechanism of survival in seawater for this marine pathogen, we used transposon insertion sequencing analysis to explore the fitness determinants in summer and autumn seawater. Approximately 127 genes linked to metabolism and virulence, as well as other processes, were revealed in E. piscicida to contribute to better adaptations to the seasonal alternations of seawater environments; these genes provide important insights into the infection outbreak mechanisms of E. piscicida and potential improved treatments or vaccines against marine pathogens.
Collapse
|
89
|
Thioredoxin H (TrxH) contributes to adversity adaptation and pathogenicity of Edwardsiella piscicida. Vet Res 2019; 50:26. [PMID: 30992061 PMCID: PMC6466703 DOI: 10.1186/s13567-019-0645-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Thioredoxins (Trxs) play an important role in defending against oxidative stress and keeping disulfide bonding correct to maintain protein function. Edwardsiella piscicida, a severe fish pathogen, has been shown to encode several thioredoxins including TrxA, TrxC, and TrxH, but their biological roles remain unknown. In this study, we characterized TrxH of E. piscicida (named TrxHEp) and examined its expression and function. TrxHEp is composed of 125 residues and possesses typical thioredoxin H motifs. Expression of trxHEp was upregulated under conditions of oxidative stress, iron starvation, low pH, and during infection of host cells. trxHEp expression was also regulated by ferric uptake regulator (Fur), an important global regulatory of E. piscicida. Compared to the wild type TX01, a markerless trxHEp in-frame mutant strain TX01∆trxH exhibited markedly compromised tolerance of the pathogen to hydrogen peroxide, acid stress, and iron deficiency. Deletion of trxHEp significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis shows that the inactivation of trxHEp significantly impaired the ability of E. piscicida to invade host cells, reproduce in macrophages, and infect host tissues. Introduction of a trans-expressed trxH gene restored the lost virulence of TX01∆trxH. There is likely to be a complex relationship of functional complementation or expression regulation between TrxH and another two thioredoxins, TrxA and TrxC, of E. piscicida. This is the first functional report of TrxH in fish pathogens, and the findings suggest that TrxHEp is essential for coping with adverse circumstances and contributes to host infection of E. piscicida.
Collapse
|
90
|
Guan XL, Zhang BC, Sun L. pol-miR-194a of Japanese flounder (Paralichthys olivaceus) suppresses type I interferon response and facilitates Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:220-225. [PMID: 30641186 DOI: 10.1016/j.fsi.2019.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that participate in diverse cellular processes including microbial invasion and immune defense. In a previous study, we identified a large amount of Japanese flounder (Paralichthys olivaceus) miRNAs responsive to megalocytivirus infection. In the present study, we examined the function of one of these miRNAs, pol-miR-194a, in association with the infectivity of Edwardsiella tarda, an intracellular bacterial pathogen to many fish species including flounder. We found that pol-miR-194a was induced in expression to a significant extent in the spleen, liver, and gill of Japanese flounder infected by E. tarda. Transfection of flounder cells with pol-miR-194a mimic significantly enhanced the intracellular replication of E. tarda. pol-miR-194a was able to interact specifically with the 3'UTR of IRF7 in a negative manner, resulting in inhibition of IRF7 expression. Consistently, pol-miR-194a significantly blocked the promoter activity of type Ⅰ interferon. Taken together, these results indicate that pol-miR-194a plays an important role in the regulation of flounder immune response as well as microbial infection, and that pol-miR-194a probably serves as a target for E. tarda to manipulate and escape host immune defense.
Collapse
Affiliation(s)
- Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Cun Zhang
- Department of Biomedicine and Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
91
|
De novo whole transcriptome profiling of Edwardsiella tarda isolated from infected fish (Labeo catla). Gene 2019; 701:152-160. [PMID: 30910556 DOI: 10.1016/j.gene.2019.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 11/22/2022]
Abstract
Edwardsiella tarda belongs to the genera of Gram negative bacterium mainly associated with edwardsiellosis, the most commonly found infectious fish disease throughout the globe. E. tarda is also a widespread pathogen which cause infections such as cellulitis or gas gangrene and generalized infections in humans. To control the escalating infection of E. trada on various species, it is essential to decoded the mysterious mechanism behind the bacterial infection at transcript level. In this present study, we carry out a de novo E. tarda Whole transcriptome sequencing, isolated from infected fish intestine using SOLiD sequencing platform. RNA-Seq data analysis was performed using various bioinformatics pipelines. Protein-protein interaction study for pathway enrichment and gene ontology study were executed for further investigation. Assembly statistics for E. tarda dataset showed that the number of transcript contigs was 9657 out of which 6749 were GO annotated whereas 1528 were not assigned any GO terms. GO analysis showed that the expressed genes were enhanced with molecular function, cellular component and biological process. A KEGG enrichment study showed that pathway's that are directly linked with immune diseases like Rheumatoid arthritis (0.2%), Tuberculosis (0.3%) Endocytosis (0.6%) was considerably enriched. Protein-protein interaction study showed that most of the expressed proteins were involved in metabolic pathways, flagellar assembly, Propanoate metabolism, Microbial metabolism in diverse environments, Butanoate metabolism and Carbon. The present study provides novel E. tarda transcriptome sequence data, allowing us to identify biologically significant genes and their functional relationship with fish diseases, and will be useful in recognize the reliable therapeutic targets in near feature.
Collapse
|
92
|
Gao D, Zhang Y, Liu R, Fang Z, Lu C. EsR240, a non-coding sRNA, is required for the resistance of Edwardsiella tarda to stresses in macrophages and for virulence. Vet Microbiol 2019; 231:254-263. [PMID: 30955819 DOI: 10.1016/j.vetmic.2019.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 11/19/2022]
Abstract
Bacterial small non-coding RNAs (sRNAs) are gene expression modulators that respond to environmental changes and pathogenic conditions. In this study, 13 novel sRNAs were identified in the intracellular pathogen, Edwardsiella tarda (E. tarda) ET13 strain, based on RNA sequencing and bioinformatic analyses. Eight of the 13 putative sRNAs from the ET13 strain were transcribed (as indicated by RT-PCR) following exposure to different stresses. The transcription levels of three sRNAs (EsR128, EsR139 and EsR240) were all highly induced under these stress conditions. Northern blot hybridization was employed to verify that EsR240 was expressed in the ET13 strain under both logarithmic and stationary growth phases, and that it formed a single copy transcript in the chromosomes of the ET13 strain. The precise start and end points of EsR240 were determined using 5'and 3' RACE. The conservation of EsR240 was in agreement with the characteristics of sRNA, as indicated by a BLAST analysis. Furthermore, the survival rates of EsR240 mutant were lower than the rates of the wild type ET13 under stress conditions. When the infection time was extended 4 or 6 h, the CFUs of the wild type bacteria increased more significantly within macrophages compared to the mutant. When the intra-peritoneal (i.p.) route of infection was used in mice, the bacterial loads of the tissues in the mice infected with the wild type bacteria were significantly higher than in the mice infected with the mutants. The virulence of the EsR240 mutant was 6.79-fold lower than the wild type bacterium based on the LD50. In addition, the IntaRNA program was used to predict the target genes of EsR240. Out of the top 10 predicted target genes, 9 genes were regulated by EsR240. These target genes may encode FtsH protease modulator YccA, Na+ and H+ antiporters, FtsX-like permease family protein, glycoside hydrolases or various other proteins. Therefore, EsR240 may positively regulate its target genes in E. tarda to maintain intracellular survival within host macrophages and to increase its virulence.
Collapse
Affiliation(s)
- Daqing Gao
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China.
| | - Yuanyuan Zhang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Rui Liu
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Zhengzou Fang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Chengping Lu
- Department of Microbiology and Immunology, Agricultural University, College of Veterinary Medicine, Nanjing, China
| |
Collapse
|
93
|
Edwardsiella piscicida Enters Nonphagocytic Cells via a Macropinocytosis-Involved Hybrid Mechanism. J Bacteriol 2019; 201:JB.00548-18. [PMID: 30530518 DOI: 10.1128/jb.00548-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
Edwardsiella piscicida is an important pathogen that infects a wide range of hosts from fish to human. Recent studies demonstrated that E. piscicida can invade and survive within multiple nonphagocytic cells, but the internalization mechanism remains poorly understood. Here, we used HeLa cells as a nonphagocytic cell model to investigate the endocytic strategy used by the pathogenic E. piscicida isolate EIB202. Using a combination of optical and electron microscopy, we observed obvious membrane ruffles and F-actin rearrangements in HeLa cells after EIB202 infection. We also revealed that EIB202 internalization significantly depended on the activity of Na+/H+ exchangers and multiple intracellular signaling events related to macropinocytosis, suggesting that E. piscicida utilizes the host macropinocytosis pathway to enter HeLa cells. Further, using inhibitory drugs and shRNAs to block specific endocytic pathways, we found that a caveolin-dependent but not clathrin-dependent pathway is involved in E. piscicida entry and that its entry requires dynamin and membrane cholesterol. Together, these data suggest that E. piscicida enters nonphagocytic cells via macropinocytosis and caveolin-dependent endocytosis involving cholesterol and dynamin, improving the understanding of how E. piscicida interacts with nonphagocytic cells.IMPORTANCE Bacterial internalization is the first step in breaking through the host cell defense. Therefore, studying the mechanism of bacterial internalization improves the understanding of the pathogenic mechanism of bacteria. In this study, the internalization process on nonphagocytic cells by Edwardsiella piscicida was evaluated. Our results showed that E. piscicida can be internalized into nonphagocytic cells via macropinocytosis and caveolin-mediated endocytosis, and that cholesterol and dynamin are involved in this process. These results reveal a new method for inhibiting E. piscicida infection, providing a foundation for further studies of bacterial pathogenicity.
Collapse
|
94
|
Wen Y, Chen S, Jiang Z, Wang Z, Tan J, Hu T, Wang Q, Zhou X, Zhang Y, Liu Q, Yang D. Dysregulated haemolysin promotes bacterial outer membrane vesicles-induced pyroptotic-like cell death in zebrafish. Cell Microbiol 2019; 21:e13010. [DOI: 10.1111/cmi.13010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/29/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Ying Wen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zhiwei Jiang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Jinchao Tan
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Tianjian Hu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| |
Collapse
|
95
|
Miniero Davies Y, Xavier de Oliveira MG, Paulo Vieira Cunha M, Soares Franco L, Pulecio Santos SL, Zanolli Moreno L, Túlio de Moura Gomes V, Zanolli Sato MI, Schiavo Nardi M, Micke Moreno A, Becker Saidenberg A, Rose Marques de Sá L, Knöbl T. Edwardsiella tarda outbreak affecting fishes and aquatic birds in Brazil. Vet Q 2019; 38:99-105. [PMID: 30668277 PMCID: PMC6830998 DOI: 10.1080/01652176.2018.1540070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background:Edwardsiella tarda infections are frequent causes of severe outbreaks in the fish farming industry besides representing possible zoonotic risks. However, naturally occurring outbreaks that affect various species besides fishes are seldom described. Aim: To report an outbreak of acute mortality caused by E. tarda affecting multiple species that inhabited a natural pond in the state of São Paulo, Brazil. Materials and methods: Three adult tilapias, three Mallard ducks and one Snow egret were necropsied and subjected to further microbiological tests. Gross and microscopic lesions were documented. The antibiotic susceptibility and phylogenetic similarities among fish and avian strains were also determined. The E. tarda species was confirmed through MALDI-TOF, partial sodB sequencing and phylogenetic analysis. Results: Macroscopical findings between the three species included intestinal dilatation, mucosal hyperaemia and mucous to liquid contents. Common histopathology findings included acute enteritis, increased number of intraepithelial lymphocytes with bacteria adhered to the intestinal epithelium and lymphoid depletion in the spleen. E. tarda was isolated from several organs from all affected species. The phylogeny employing amplified fragment length polymorphism (AFLP) of eleven strains revealed high similarity (>90%) among the isolates regardless of the affected species or sampled organs. Ten isolates of E. tarda showed susceptibility to all tested antibiotics. Conclusions:E. tarda was identified as the cause of death of the species examined. Further studies would be necessary to determine the virulence of these strains and the possible risks regarding public health.
Collapse
Affiliation(s)
- Yamê Miniero Davies
- a Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | | | - Marcos Paulo Vieira Cunha
- a Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | - Leticia Soares Franco
- a Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | - Sandy Lorena Pulecio Santos
- a Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | - Luisa Zanolli Moreno
- b Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | - Vasco Túlio de Moura Gomes
- b Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | | | - Marcello Schiavo Nardi
- a Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | - Andrea Micke Moreno
- b Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | - Andre Becker Saidenberg
- a Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | - Lilian Rose Marques de Sá
- a Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| | - Terezinha Knöbl
- a Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia da , Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
96
|
Wei L, Qiao H, Liu B, Yin K, Liu Q, Zhang Y, Ma Y, Wang Q. MarTrack: A versatile toolbox of mariner transposon derivatives used for functional genetic analysis of bacterial genomes. Microbiol Res 2019; 219:84-93. [PMID: 30642470 DOI: 10.1016/j.micres.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/28/2022]
Abstract
The mariner transposon family of Himar1 has been widely used for the random mutagenesis of bacteria to generate single insertions into the chromosome. Here, a versatile toolbox of mariner transposon derivatives was generated and applied to the functional genomics investigation of fish pathogen Edwardsiella piscicida. In this study, we combined the merits of the random mutagenesis of mariner transposon and common efficient reporter marker genes or regulatory elements, mcherry, gfp, luxAB, lacZ, sacBR, and PBAD and antibiotic resistance cassettes to construct a series of derivative transposon vectors, pMmch, pMKGR, pMCGR, pMXKGR, pMLKGR, pMSGR, and pMPR, based on the initial transposon pMar2xT7. The function and effectiveness of the modified transposons were verified by introducing them into E. piscicida EIB202. Based on the toolbox, a transposon insertion mutant library containing approximately 3.0 × 105 separated mutants was constructed to explore the upstream regulators of esrB, the master regulator of the type III and type VI secretion systems (T3/T6SS) in E. piscicida. Following analysis by Con-ARTIST, ETAE_2184 (renamed as EsrR) was screened out and identified as a novel regulator mediating T3SS expression. In addition, the esrR mutants displayed critical virulence attenuation. Due to the broad-range host compatibility of mariner transposons, the newly built transposon toolbox can be broadly applied for functional genomics studies in various bacteria.
Collapse
Affiliation(s)
- Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Haoxian Qiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Bing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, PR China.
| |
Collapse
|
97
|
Phosphothreonine Lyase Promotes p65 Degradation in a Mitogen-Activated Protein Kinase/Mitogen- and Stress-Activated Protein Kinase 1-Dependent Manner. Infect Immun 2018; 87:IAI.00508-18. [PMID: 30396897 DOI: 10.1128/iai.00508-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Bacterial phosphothreonine lyases have been identified to be type III secretion system (T3SS) effectors that irreversibly dephosphorylate host mitogen-activated protein kinase (MAPK) signaling to promote infection. However, the effects of phosphothreonine lyase on nuclear factor κB (NF-κB) signaling remain largely unknown. In this study, we detected significant phosphothreonine lyase-dependent p65 degradation during Edwardsiella piscicida infection in macrophages, and this degradative effect was blocked by the protease inhibitor MG132. Further analysis revealed that phosphothreonine lyase promotes the dephosphorylation and ubiquitination of p65 by inhibiting the phosphorylation of mitogen- and stress-activated protein kinase-1 (MSK1) and by inhibiting the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), p38α, and c-Jun N-terminal kinase (JNK). Moreover, we revealed that the catalytic active site of phosphothreonine lyase plays a critical role in regulating the MAPK-MSK1-p65 signaling axis. Collectively, the mechanism described here expands our understanding of the pathogenic effector in not only regulating MAPK signaling but also regulating p65. These findings uncover a new mechanism by which pathogenic bacteria overcome host innate immunity to promote pathogenesis.
Collapse
|
98
|
Buján N, Toranzo AE, Magariños B. Edwardsiella piscicida: a significant bacterial pathogen of cultured fish. DISEASES OF AQUATIC ORGANISMS 2018; 131:59-71. [PMID: 30324915 DOI: 10.3354/dao03281] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Edwardsiella piscicida, a Gram-negative, facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis in fish and a significant problem in global aquaculture. E. piscicida has been reported from a broad geographical range and has been isolated from more than 20 fish host species to date, but this is likely to be an underestimation, because misidentification of E. piscicida as other species within the genus remains to be resolved. Common clinical signs associated with edwardsiellosis include, but are not limited to, exophthalmia, haemorrhages of the skin and in several internal organs, mild to moderate dermal ulcerations, abdominal distension, discoloration in the fish surface, and erratic swimming. Many antibiotics are currently effective against E. piscicida, although legal restrictions and the cost of medicated feeds have encouraged significant research investment in vaccination for the management of edwardsiellosis in commercial aquaculture. Here we summarise the current understanding of E. piscicida and highlight the difficulties with species assignment and the need for further research on epidemiology and strain variability.
Collapse
Affiliation(s)
- N Buján
- Departamento de Microbioloxía y Parasitoloxía, Facultade de Bioloxía-Edif, CIBUS, and Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | | | |
Collapse
|
99
|
Yin K, Guan Y, Ma R, Wei L, Liu B, Liu X, Zhou X, Ma Y, Zhang Y, Waldor MK, Wang Q. Critical role for a promoter discriminator in RpoS control of virulence in Edwardsiella piscicida. PLoS Pathog 2018; 14:e1007272. [PMID: 30169545 PMCID: PMC6136808 DOI: 10.1371/journal.ppat.1007272] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/13/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Edwardsiella piscicida is a leading fish pathogen that causes significant economic loses in the aquaculture industry. The pathogen depends on type III and type VI secretion systems (T3/T6SS) for growth and virulence in fish and the expression of both systems is controlled by the EsrB transcription activator. Here, we performed a Tn-seq-based screen to uncover factors that govern esrB expression. Unexpectedly, we discovered that RpoS antagonizes esrB expression and thereby inhibits production of E. piscicida’s T3/T6SS. Using in vitro transcription assays, we showed that RpoS can block RpoD-mediated transcription of esrB. ChIP-seq- and RNA-seq-based profiling, as well as mutational and biochemical analyses revealed that RpoS-repressed promoters contain a -6G in their respective discriminator sequences; moreover, this -6G proved critical for RpoS to inhibit esrB expression. Mutation of the RpoS R99 residue, an amino acid that molecular modeling predicts interacts with -6G in the esrB discriminator, abolished RpoS’ capacity for repression. In a turbot model, an rpoS deletion mutant was attenuated early but not late in infection, whereas a mutant expressing RpoSR99A exhibited elevated fitness throughout the infection period. Collectively, these findings deepen our understanding of how RpoS can inhibit gene expression and demonstrate the temporal variation in the requirement for this sigma factor during infection. Edwardsiella piscicida, a major fish pathogen, relies on T3/T6SSs for virulence and the EsrB transcription activator promotes the expression of these secretion systems and many other genes that enable growth in fish. Here, we found that the alternative sigma factor RpoS inhibits expression of esrB thereby diminishing expression of virulence-associated genes. Transcriptome profiling revealed that, as in many other organisms, RpoS enables expression of hundreds of genes, many of which are linked to stress responses, suggesting that RpoS may mediate a trade-off between stress adaptation and virulence. Consistent with this idea, we found that an rpoS mutant was attenuated early, but not late in infection of turbot, whereas an esrB mutant was attenuated late and not early in infection. Molecular analyses demonstrated that RpoS inhibition of esrB expression involves a direct interaction between RpoS and the esrB promoter; in particular, interactions between RpoS residue R99 and the -6G nucleotide in the esrB promoter discriminator appear to be critical for repression of esrB expression. These findings provide new insight into how a sigma factor can impede transcription and demonstrate the temporal dynamics of the requirement for a sigma factor during the course of infection.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, East China University of Science and Technology, Shanghai, China
| | - Yunpeng Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruiqing Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bing Liu
- Institut de Biotecnologia i Biomedicina, Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, East China University of Science and Technology, Shanghai, China
| | - Matthew K. Waldor
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, East China University of Science and Technology, Shanghai, China
- * E-mail:
| |
Collapse
|
100
|
Edwardsiella piscicida Type III Secretion System Effector EseK Inhibits Mitogen-Activated Protein Kinase Phosphorylation and Promotes Bacterial Colonization in Zebrafish Larvae. Infect Immun 2018; 86:IAI.00233-18. [PMID: 29986890 DOI: 10.1128/iai.00233-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria utilize type III secretion systems (T3SS) to deliver effectors directly into host cells. Hence, it is very important to identify the functions of bacterial (T3SS) effectors to understand host-pathogen interactions. Edwardsiella piscicida encodes a functional T3SS effector, EseK, which can be translocated into host cells and affect bacterial loads. Here, it was demonstrated that an eseK mutant (the ΔeseK mutant) significantly increased the phosphorylation levels of p38α, c-Jun NH2-terminal kinases (JNK), and extracellular signal-regulated protein kinases 1/2 (ERK1/2) in HeLa cells. Overexpression of EseK directly inhibited mitogen-activated protein kinase (MAPK) signaling pathways in HEK293T cells. The ΔeseK mutant consistently promoted the phosphorylation of MAPKs in zebrafish larva infection models. Further, it was shown that the ΔeseK mutant increased the expression of tumor necrosis factor alpha (TNF-α) in an MAPK-dependent manner. Importantly, the EseK-mediated inhibition of MAPKs in vivo attenuated bacterial clearance in larvae. Taken together, this work reveals that the E. piscicida T3SS effector EseK promotes bacterial infection by inhibiting MAPK activation, which provides insights into the molecular pathogenesis of E. piscicida in fish.
Collapse
|