51
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
52
|
Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation. Proc Natl Acad Sci U S A 2015; 112:E3327-36. [PMID: 26080448 DOI: 10.1073/pnas.1509658112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain-containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70's function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.
Collapse
|
53
|
Rzymski T, Mikula M, Wiklik K, Brzózka K. CDK8 kinase--An emerging target in targeted cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1617-29. [PMID: 26006748 DOI: 10.1016/j.bbapap.2015.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinase (CDK) inhibitors have been developed as potential anticancer therapeutics and several nonselective compounds are currently in advanced clinical trials. This review is focused on the key biological roles of CDK8 kinase, which provide a proof-of-principle for continued efforts toward effective cancer treatment, targeting activity of this CDK family member. Among currently identified kinase inhibitors, several displayed significant selectivity for CDK8 and notably the effectiveness in targeting cancer specific gene expression programs. Structural features of CDK8 and available ligands were discussed from a perspective of the rational drug design process. Current state of the art confirms that further development of CDK8 inhibitors will translate into targeted therapies in oncology. This article is part of a Special Issue entitled:Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
| | - Michał Mikula
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | |
Collapse
|
54
|
Fukasawa R, Iida S, Tsutsui T, Hirose Y, Ohkuma Y. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation. J Biochem 2015; 158:373-84. [PMID: 26002960 DOI: 10.1093/jb/mvv055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 02/05/2023] Open
Abstract
The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation.
Collapse
Affiliation(s)
- Rikiya Fukasawa
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Satoshi Iida
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Taiki Tsutsui
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Cellular and Molecular Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA; and
| | - Yutaka Hirose
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiaki Ohkuma
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
55
|
Ryu KW, Kim DS, Kraus WL. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 2015; 115:2453-81. [PMID: 25575290 PMCID: PMC4378458 DOI: 10.1021/cr5004248] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Keun Woo Ryu
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dae-Seok Kim
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - W. Lee Kraus
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
56
|
Walko TD, Di Caro V, Piganelli J, Billiar TR, Clark RSB, Aneja RK. Poly(ADP-ribose) polymerase 1-sirtuin 1 functional interplay regulates LPS-mediated high mobility group box 1 secretion. Mol Med 2015; 20:612-24. [PMID: 25517228 DOI: 10.2119/molmed.2014.00156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Pathophysiological conditions that lead to the release of the prototypic damage-associated molecular pattern molecule high mobility group box 1 (HMGB1) also result in activation of poly(ADP-ribose) polymerase 1 (PARP1; now known as ADP-ribosyl transferase 1 [ARTD1]). Persistent activation of PARP1 promotes energy failure and cell death. The role of poly(ADP-ribosyl)ation in HMGB1 release has been explored previously; however, PARP1 is a versatile enzyme and performs several other functions including cross-talk with another nicotinamide adenine dinucleotide- (NAD(+)) dependent member of the Class III histone deacetylases (HDACs), sirtuin-1 (SIRT1). Previously, it has been shown that the hyperacetylation of HMGB1 is a seminal event prior to its secretion, a process that also is dependent on HDACs. Therefore, in this study, we seek to determine if PARP1 inhibition alters LPS-mediated HMGB1 hyperacetylation and subsequent secretion due to its effect on SIRT1. We demonstrate in an in vitro model that LPS treatment leads to hyperacetylated HMGB1 with concomitant reduction in nuclear HDAC activity. Treatment with PARP1 inhibitors mitigates the LPS-mediated reduction in nuclear HDAC activity and decreases HMGB1 acetylation. By utilizing an NAD(+)-based mechanism, PARP1 inhibition increases the activity of SIRT1. Consequently, there is an increased nuclear retention and decreased extracellular secretion of HMGB1. We also demonstrate that PARP1 physically interacts with SIRT1. Further confirmation of this data was obtained in a murine model of sepsis, that is, administration of PJ-34, a specific PARP1 inhibitor, led to decreased serum HMGB1 concentrations in mice subjected to cecal ligation and puncture (CLP) as compared with untreated mice. In conclusion, our study provides new insights in understanding the molecular mechanisms of HMGB1 secretion in sepsis.
Collapse
Affiliation(s)
- Thomas D Walko
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Valentina Di Caro
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jon Piganelli
- Department of Immunology, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert S B Clark
- Departments of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rajesh K Aneja
- Departments of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
57
|
Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16:155-66. [PMID: 25693131 DOI: 10.1038/nrm3951] [Citation(s) in RCA: 659] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
Collapse
Affiliation(s)
- Benjamin L Allen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
58
|
Maluchenko NV, Kulaeva OI, Kotova EY, Chupyrkina AA, Nikitin DV, Kirpichnikov MP, Studitsky VM. Molecular mechanisms of transcriptional regulation by Poly(ADP-ribose) polymerase 1. Mol Biol 2015. [DOI: 10.1134/s0026893315010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
60
|
Mostocotto C, Carbone M, Battistelli C, Ciotti A, Amati P, Maione R. Poly(ADP-ribosyl)ation is required to modulate chromatin changes at c-MYC promoter during emergence from quiescence. PLoS One 2014; 9:e102575. [PMID: 25047032 PMCID: PMC4105440 DOI: 10.1371/journal.pone.0102575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of various proteins and participates in the regulation of chromatin structure and transcription through complex mechanisms not completely understood. We have previously shown that PARP-1, the major family member of poly(ADP-ribose)polymerases, plays an important role in the cell cycle reactivation of resting cells by regulating the expression of Immediate Early Response Genes, such as c-MYC, c-FOS, JUNB and EGR-1. In the present work we have investigated the molecular mechanisms by which the enzyme induces c-MYC transcription upon serum stimulation of quiescent cells. We show that PARP-1 is constitutively associated in vivo to a c-MYC promoter region recognized as biologically relevant for the transcriptional regulation of the gene. Moreover, we report that serum stimulation causes the prompt accumulation of ADP-ribose polymers on the same region and that this modification is required for chromatin decondensation and for the exchange of negative for positive transcriptional regulators. Finally we provide evidence that the inhibition of PARP activity along with serum stimulation impairs c-MYC induction by preventing the proper accumulation of histone H3 phosphoacetylation, a specific chromatin mark for the activation of Immediate Early Response Genes. These findings not only suggest a novel strategy by which PARP-1 regulates the transcriptional activity of promoters but also provide new information about the complex regulation of c-MYC expression, a critical determinant of the transition from quiescence to proliferation.
Collapse
Affiliation(s)
- Cassandra Mostocotto
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Mariarosaria Carbone
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cecilia Battistelli
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Agnese Ciotti
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Paolo Amati
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Maione
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
- * E-mail:
| |
Collapse
|
61
|
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is an abundant, ubiquitously expressed NAD(+)-dependent nuclear enzyme that has prognostic value for a multitude of human cancers. PARP1 activity serves to poly (ADP-ribose)-ylate the vast majority of known client proteins and affects a number of cellular and biologic outcomes, by mediating the DNA damage response (DDR), base-excision repair (BER), and DNA strand break (DSB) pathways. PARP1 is also critically important for the maintenance of genomic integrity, as well as chromatin dynamics and transcriptional regulation. Evidence also indicates that PARP-directed therapeutics are "synthetic lethal" in BRCA1/2-deficient model systems. Strikingly, recent studies have unearthed exciting new transcriptional-regulatory roles for PARP1, which has profound implications for human malignancies and will be reviewed herein.
Collapse
Affiliation(s)
| | - Karen E Knudsen
- Kimmel Cancer Center, Departments of Cancer Biology, Urology, and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
62
|
Antoniali G, Lirussi L, Poletto M, Tell G. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example. Antioxid Redox Signal 2014; 20:621-39. [PMID: 23879289 PMCID: PMC3901381 DOI: 10.1089/ars.2013.5491] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/22/2013] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. RECENT ADVANCES After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. CRITICAL ISSUES A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. FUTURE DIRECTIONS A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world.
Collapse
Affiliation(s)
- Giulia Antoniali
- Department of Medical and Biological Sciences, University of Udine , Udine, Italy
| | | | | | | |
Collapse
|
63
|
Wu T, Wang XJ, Tian W, Jaramillo MC, Lau A, Zhang DD. Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription. Free Radic Biol Med 2014; 67:69-80. [PMID: 24140708 PMCID: PMC3945083 DOI: 10.1016/j.freeradbiomed.2013.10.806] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/29/2013] [Accepted: 10/14/2013] [Indexed: 12/18/2022]
Abstract
The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein level through redox-sensitive modifications on critical cysteine residues in Keap1, a component of an E3 ubiquitin ligase complex that targets Nrf2 for proteasomal degradation. Poly(ADP-ribose) polymerase-1 (PARP-1) is historically known to function in DNA damage detection and repair; however, recently PARP-1 has been shown to play an important role in other biochemical activities, such as DNA methylation and imprinting, insulator activity, chromosome organization, and transcriptional regulation. The exact role of PARP-1 in transcription modulation and the underlying mechanisms remain poorly defined. In this study, we report that PARP-1 forms complexes with the antioxidant response element (ARE) within the promoter region of Nrf2 target genes and upregulates the transcriptional activity of Nrf2. Interestingly, PARP-1 neither physically interacts with Nrf2 nor promotes the expression of Nrf2. In addition, PARP-1 does not target Nrf2 for poly(ADP-ribosyl)ation. Instead, PARP-1 interacts directly with small Maf proteins and the ARE of Nrf2 target genes, which augments ARE-specific DNA-binding of Nrf2 and enhances the transcription of Nrf2 target genes. Collectively, these results suggest that PARP-1 serves as a transcriptional coactivator, upregulating the transcriptional activity of Nrf2 by enhancing the interaction among Nrf2, MafG, and the ARE.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Xiao-Jun Wang
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Wang Tian
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Melba C Jaramillo
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Alexandria Lau
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Donna D Zhang
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
64
|
Kawasaki Y, Lee J, Matsuzawa A, Kohda T, Kaneko-Ishino T, Ishino F. Active DNA demethylation is required for complete imprint erasure in primordial germ cells. Sci Rep 2014; 4:3658. [PMID: 24413819 PMCID: PMC3888974 DOI: 10.1038/srep03658] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/16/2013] [Indexed: 01/23/2023] Open
Abstract
In mammalian primordial germ cells (PGCs), DNA demethylation is indispensible for parental imprint erasure, which is a reprogramming process essential for normal developmental potential. Thus, it is important to elucidate how DNA demethylation occurs in each imprinted region in PGCs and to determine which DNA demethylation pathway, passive or active, essentially contributes to the erasure of the imprint. Here, we report that active DNA demethylation via a putative Poly(ADP-ribose) polymerase (PARP) pathway is involved in H19-DMR imprint erasure in PGCs, as shown by an in vivo small molecule inhibitor assay. To the best of our knowledge, this is the first direct demonstration of a DNA replication-independent active DNA demethylation pathway in the erasure process of genomic imprinting in PGCs in vivo. The data also suggest that active DNA demethylation plays a significant role in the complete erasure of paternal imprinting in the female germ line.
Collapse
Affiliation(s)
- Yuki Kawasaki
- Department of Epigenetics, Medical Research Institute, Japan
- Global Center of Excellence Program for International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- These authors contributed equally to this work
| | - Jiyoung Lee
- Department of Epigenetics, Medical Research Institute, Japan
- Global Center of Excellence Program for International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Japan Science and Technology Agency, PRESTO, Japan
- These authors contributed equally to this work
| | - Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Japan
| | - Tomoko Kaneko-Ishino
- School of Health Sciences, Tokai University, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Japan
- Global Center of Excellence Program for International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
65
|
Aprile-Garcia F, Antunica-Noguerol M, Budziñski ML, Liberman AC, Arzt E. Novel insights into the neuroendocrine control of inflammation: the role of GR and PARP1. Endocr Connect 2014; 3:R1-R12. [PMID: 24243533 PMCID: PMC3869961 DOI: 10.1530/ec-13-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inflammatory responses are elicited after injury, involving release of inflammatory mediators that ultimately lead, at the molecular level, to the activation of specific transcription factors (TFs; mainly activator protein 1 and nuclear factor-κB). These TFs propagate inflammation by inducing the expression of cytokines and chemokines. The neuroendocrine system has a determinant role in the maintenance of homeostasis, to avoid exacerbated inflammatory responses. Glucocorticoids (GCs) are the key neuroendocrine regulators of the inflammatory response. In this study, we describe the molecular mechanisms involved in the interplay between inflammatory cytokines, the neuroendocrine axis and GCs necessary for the control of inflammation. Targeting and modulation of the glucocorticoid receptor (GR) and its activity is a common therapeutic strategy to reduce pathological signaling. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that catalyzes the addition of PAR on target proteins, a post-translational modification termed PARylation. PARP1 has a central role in transcriptional regulation of inflammatory mediators, both in neuroendocrine tumors and in CNS cells. It is also involved in modulation of several nuclear receptors. Therefore, PARP1 and GR share common inflammatory pathways with antagonic roles in the control of inflammatory processes, which are crucial for the effective maintenance of homeostasis.
Collapse
Affiliation(s)
- Fernando Aprile-Garcia
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - María Antunica-Noguerol
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - Maia Ludmila Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Correspondence should be addressed to E Arzt
| |
Collapse
|
66
|
Weaver AN, Yang ES. Beyond DNA Repair: Additional Functions of PARP-1 in Cancer. Front Oncol 2013; 3:290. [PMID: 24350055 PMCID: PMC3841914 DOI: 10.3389/fonc.2013.00290] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/13/2013] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are DNA-dependent nuclear enzymes that transfer negatively charged ADP-ribose moieties from cellular nicotinamide-adenine-dinucleotide (NAD(+)) to a variety of protein substrates, altering protein-protein and protein-DNA interactions. The most studied of these enzymes is poly(ADP-ribose) polymerase-1 (PARP-1), which is an excellent therapeutic target in cancer due to its pivotal role in the DNA damage response. Clinical studies have shown susceptibility to PARP inhibitors in DNA repair defective cancers with only mild adverse side effects. Interestingly, additional studies are emerging which demonstrate a role for this therapy in DNA repair proficient tumors through a variety of mechanisms. In this review, we will discuss additional functions of PARP-1 - including regulation of inflammatory mediators, cellular energetics and death pathways, gene transcription, sex hormone- and ERK-mediated signaling, and mitosis - and the role these PARP-1-mediated processes play in oncogenesis, cancer progression, and the development of therapeutic resistance. As PARP-1 can act in both a pro- and anti-tumor manner depending on the context, it is important to consider the global effects of this protein in determining when, and how, to best use PARP inhibitors in anticancer therapy.
Collapse
Affiliation(s)
- Alice N. Weaver
- Department of Radiation Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eddy S. Yang
- Department of Radiation Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pharmacology and Toxicology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
67
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
68
|
Pelham C, Jimenez T, Rodova M, Rudolph A, Chipps E, Islam MR. Regulation of HFE expression by poly(ADP-ribose) polymerase-1 (PARP1) through an inverted repeat DNA sequence in the distal promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1257-1265. [PMID: 24184271 DOI: 10.1016/j.bbagrm.2013.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/28/2013] [Accepted: 10/22/2013] [Indexed: 02/08/2023]
Abstract
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700bp (-1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression.
Collapse
Affiliation(s)
- Christopher Pelham
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Tamara Jimenez
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Marianna Rodova
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Angela Rudolph
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Elizabeth Chipps
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - M Rafiq Islam
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| |
Collapse
|
69
|
Huang KC, Yang KC, Lin H, Tsao Tsun-Hui T, Lee WK, Lee SA, Kao CY. Analysis of schizophrenia and hepatocellular carcinoma genetic network with corresponding modularity and pathways: novel insights to the immune system. BMC Genomics 2013; 14 Suppl 5:S10. [PMID: 24564241 PMCID: PMC3852078 DOI: 10.1186/1471-2164-14-s5-s10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Schizophrenic patients show lower incidences of cancer, implicating schizophrenia may be a protective factor against cancer. To study the genetic correlation between the two diseases, a specific PPI network was constructed with candidate genes of both schizophrenia and hepatocellular carcinoma. The network, designated schizophrenia-hepatocellular carcinoma network (SHCN), was analysed and cliques were identified as potential functional modules or complexes. The findings were compared with information from pathway databases such as KEGG, Reactome, PID and ConsensusPathDB. Results The functions of mediator genes from SHCN show immune system and cell cycle regulation have important roles in the eitology mechanism of schizophrenia. For example, the over-expressing schizophrenia candidate genes, SIRPB1, SYK and LCK, are responsible for signal transduction in cytokine production; immune responses involving IL-2 and TREM-1/DAP12 pathways are relevant for the etiology mechanism of schizophrenia. Novel treatments were proposed by searching the target genes of FDA approved drugs with genes in potential protein complexes and pathways. It was found that Vitamin A, retinoid acid and a few other immune response agents modulated by RARA and LCK genes may be potential treatments for both schizophrenia and hepatocellular carcinoma. Conclusions This is the first study showing specific mediator genes in the SHCN which may suppress tumors. We also show that the schizophrenic protein interactions and modulation with cancer implicates the importance of immune system for etiology of schizophrenia.
Collapse
|
70
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
71
|
Wang BW, Wu GJ, Cheng WP, Shyu KG. Mechanical stretch via transforming growth factor-β1 activates microRNA-208a to regulate hypertrophy in cultured rat cardiac myocytes. J Formos Med Assoc 2013; 112:635-43. [PMID: 24120154 DOI: 10.1016/j.jfma.2013.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/09/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/PURPOSE MicroRNA-208a (miR208a) and mechanical stress play a key role in cardiac hypertrophy. The relationship between miR208a and mechanical stress in cultured cardiomyocytes has not been investigated. The molecular mechanisms underlying miR208a-induced hypertrophy of cardiomyocytes by mechanical stress is poorly understood. This study investigated whether miR208a is a critical regulator in cardiomyocyte hypertrophy under mechanical stretch. METHODS Neonatal rat cardiomyocytes grown on a flexible membrane base were stretched at 60 cycles/minute. MiR real-time quantitative assays were used to quantify miRs. A quantitative sandwich enzyme immunoassay technique was used to measure transforming growth factor-β1 (TGF-β1). A (3)H-proline incorporation assay was used to measure protein synthesis. RESULTS Mechanical stretch significantly enhanced miR208a expression. Stretch significantly induced cardiomyocyte hypertrophic protein expression such as β-myosin heavy chain (MHCβ), thyroid hormone receptor-associated protein 100, myostatin, connexin 40, GATA4, and brain natriuretic peptide. MHCα was not induced by stretch. Overexpression of miR208a significantly increased MHCβ protein expression while pretreatment with antagomir208a significantly attenuated MHCβ protein expression induced by stretch and overexpression of miR208a. Mechanical stretch significantly increased the secretion of TGF-β1 from cultured cardiomyocytes. Exogenous addition of TGF-β1 recombinant protein significantly increased miR208a expression and pretreatment with TGF-β1 antibody attenuated miR208a expression induced by stretch. Mechanical stretch and overexpression of miR208a increased protein synthesis while antagomir208a attenuated protein synthesis induced by stretch and overexpression of miR208a. CONCLUSION Cyclic stretch enhances miR208a expression in cultured rat cardiomyocytes. MiR208a plays a role in stretch-induced cardiac hypertrophy. The stretch-induced miR208a is mediated by TGF-β1.
Collapse
Affiliation(s)
- Bao-Wei Wang
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, Taipei County, Taiwan
| | | | | | | |
Collapse
|
72
|
Zilio N, Williamson CT, Eustermann S, Shah R, West SC, Neuhaus D, Ulrich HD. DNA-dependent SUMO modification of PARP-1. DNA Repair (Amst) 2013; 12:761-73. [PMID: 23871147 PMCID: PMC3744807 DOI: 10.1016/j.dnarep.2013.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/13/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) plays an important role in DNA repair, but also contributes to other aspects of nucleic acid metabolism, such as transcriptional regulation. Modification of PARP-1 with the small ubiquitin-related modifier (SUMO) affects its function as a transcriptional co-activator of hypoxia-responsive genes and promotes induction of the heat shock-induced HSP70.1 promoter. We now report that PARP-1 sumoylation is strongly influenced by DNA. Consistent with a function in transcription, we show that sumoylation in vitro is enhanced by binding to intact, but not to damaged DNA, in a manner clearly distinct from the mechanism by which DNA damage stimulates PARP-1's catalytic activity. An enhanced affinity of PARP-1 for the SUMO-conjugating enzyme Ubc9 upon binding to DNA is likely responsible for this effect. Sumoylation does not interfere with the catalytic or DNA-binding properties of PARP-1, and structural analysis reveals no significant impact of SUMO on the conformation of PARP-1's DNA-binding domain. In vivo, sumoylated PARP-1 is associated with chromatin, but the modification is not responsive to DNA damage and is not affected by PARP-1 catalytic activity. Our results suggest that PARP-1's alternative modes of DNA recognition serve as a means to differentiate between distinct aspects of the enzyme's function.
Collapse
Affiliation(s)
- Nicola Zilio
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, United Kingdom
| | - Chris T. Williamson
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, United Kingdom
| | - Sebastian Eustermann
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Rajvee Shah
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, United Kingdom
| | - Stephen C. West
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, United Kingdom
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, United Kingdom
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| |
Collapse
|
73
|
Cho SH, Raybuck A, Wei M, Erickson J, Nam KT, Cox RG, Trochtenberg A, Thomas JW, Williams J, Boothby M. B cell-intrinsic and -extrinsic regulation of antibody responses by PARP14, an intracellular (ADP-ribosyl)transferase. THE JOURNAL OF IMMUNOLOGY 2013; 191:3169-78. [PMID: 23956424 DOI: 10.4049/jimmunol.1301106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The capacity to achieve sufficient concentrations of Ag-specific Ab of the appropriate isotypes is a critical component of immunity that requires efficient differentiation and interactions of Ag-specific B and Th cells along with dendritic cells. Numerous bacterial toxins catalyze mono(ADP-ribosyl)ation of mammalian proteins to influence cell physiology and adaptive immunity. However, little is known about biological functions of intracellular mammalian mono(ADP-ribosyl)transferases, such as any ability to regulate Ab responses. poly-(ADP-ribose) polymerase 14 (PARP14), an intracellular protein highly expressed in lymphoid cells, binds to STAT6 and encodes a catalytic domain with mammalian mono(ADP-ribosyl)transferase activity. In this article, we show that recall IgA as well as the STAT6-dependent IgE Ab responses are impaired in PARP14-deficient mice. Whereas PARP14 regulation of IgE involved a B cell-intrinsic process, the predominant impact on IgA was B cell extrinsic. Of note, PARP14 deficiency reduced the levels of Th17 cells and CD103⁺ DCs, which are implicated in IgA regulation. PARP14 enhanced the expression of RORα, Runx1, and Smad3 after T cell activation, and, importantly, its catalytic activity of PARP14 promoted Th17 differentiation. Collectively, the findings show that PARP14 influences the class distribution, affinity repertoire, and recall capacity of Ab responses in mice, as well as provide direct evidence of the requirement for protein mono-ADP-ribosylation in Th cell differentiation.
Collapse
Affiliation(s)
- Sung Hoon Cho
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Heterogeneous nuclear ribonucleoprotein R cooperates with mediator to facilitate transcription reinitiation on the c-Fos gene. PLoS One 2013; 8:e72496. [PMID: 23967313 PMCID: PMC3742609 DOI: 10.1371/journal.pone.0072496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 07/15/2013] [Indexed: 11/28/2022] Open
Abstract
The c-fos gene responds to extracellular stimuli and undergoes robust but transient transcriptional activation. Here we show that heterogeneous nuclear ribonucleoprotein R (hnRNP R) facilitates transcription reinitiation of the c-fos promoter in vitro in cooperation with Mediator. Consistently, hnRNP R interacts with the Scaffold components (Mediator, TBP, and TFIIH) as well as TFIIB, which recruits RNA polymerase II (Pol II) and TFIIF to Scaffold. The cooperative action of hnRNP R and Mediator is diminished by the cyclin-dependent kinase 8 (CDK8) module, which is comprised of CDK8, Cyclin C, MED12 and MED13 of the Mediator subunits. Interestingly, we find that the length of the G-free cassettes, and thereby their transcripts, influences the hnRNP R-mediated facilitation of reinitiation. Indeed, indicative of a possible role of the transcript in facilitating transcription reinitiation, the RNA transcript produced from the G-free cassette interacts with hnRNP R through its RNA recognition motifs (RRMs) and arginine-glycine-glycine (RGG) domain. Mutational analyses of hnRNP R indicate that facilitation of initiation and reinitiation requires distinct domains of hnRNP R. Knockdown of hnRNP R in mouse cells compromised rapid induction of the c-fos gene but did not affect transcription of constitutive genes. Together, these results suggest an important role for hnRNP R in regulating robust response of the c-fos gene.
Collapse
|
75
|
Ansari SA, Morse RH. Mechanisms of Mediator complex action in transcriptional activation. Cell Mol Life Sci 2013; 70:2743-56. [PMID: 23361037 PMCID: PMC11113466 DOI: 10.1007/s00018-013-1265-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Mediator is a large multisubunit complex that plays a central role in the regulation of RNA Pol II transcribed genes. Conserved in overall structure and function among eukaryotes, Mediator comprises 25-30 protein subunits that reside in four distinct modules, termed head, middle, tail, and CDK8/kinase. Different subunits of Mediator contact other transcriptional regulators including activators, co-activators, general transcription factors, subunits of RNA Pol II, and specifically modified histones, leading to the regulated expression of target genes. This review is focused on the interactions of specific Mediator subunits with diverse transcription regulators and how those interactions contribute to Mediator function in transcriptional activation.
Collapse
Affiliation(s)
- Suraiya A. Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
| | - Randall H. Morse
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
- Department of Biomedical Science, University at Albany School of Public Health, Albany, NY USA
| |
Collapse
|
76
|
Dantzer F, Santoro R. The expanding role of PARPs in the establishment and maintenance of heterochromatin. FEBS J 2013; 280:3508-18. [DOI: 10.1111/febs.12368] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/26/2013] [Accepted: 05/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Françoise Dantzer
- UMR7242; Centre National de la Recherche Scientifique Université de Strasbourg; Laboratoire d'Excellence Medalis; Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg; Ecole Supérieure de Biotechnologie de Strasbourg; Illkirch France
| | - Raffaella Santoro
- Institute of Veterinary Biochemistry and Molecular Biology; University of Zürich; Zürich Switzerland
| |
Collapse
|
77
|
Flajollet S, Rachez C, Ploton M, Schulz C, Gallais R, Métivier R, Pawlak M, Leray A, Issulahi AA, Héliot L, Staels B, Salbert G, Lefebvre P. The elongation complex components BRD4 and MLLT3/AF9 are transcriptional coactivators of nuclear retinoid receptors. PLoS One 2013; 8:e64880. [PMID: 23762261 PMCID: PMC3677938 DOI: 10.1371/journal.pone.0064880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022] Open
Abstract
Nuclear all-trans retinoic acid receptors (RARs) initiate early transcriptional events which engage pluripotent cells to differentiate into specific lineages. RAR-controlled transactivation depends mostly on agonist-induced structural transitions in RAR C-terminus (AF-2), thus bridging coactivators or corepressors to chromatin, hence controlling preinitiation complex assembly. However, the contribution of other domains of RAR to its overall transcriptional activity remains poorly defined. A proteomic characterization of nuclear proteins interacting with RAR regions distinct from the AF-2 revealed unsuspected functional properties of the RAR N-terminus. Indeed, mass spectrometry fingerprinting identified the Bromodomain-containing protein 4 (BRD4) and ALL1-fused gene from chromosome 9 (AF9/MLLT3), known to associate with and regulates the activity of Positive Transcription Elongation Factor b (P-TEFb), as novel RAR coactivators. In addition to promoter sequences, RAR binds to genomic, transcribed regions of retinoid-regulated genes, in association with RNA polymerase II and as a function of P-TEFb activity. Knockdown of either AF9 or BRD4 expression affected differentially the neural differentiation of stem cell-like P19 cells. Clusters of retinoid-regulated genes were selectively dependent on BRD4 and/or AF9 expression, which correlated with RAR association to transcribed regions. Thus RAR establishes physical and functional links with components of the elongation complex, enabling the rapid retinoid-induced induction of genes required for neuronal differentiation. Our data thereby extends the previously known RAR interactome from classical transcriptional modulators to components of the elongation machinery, and unravel a functional role of RAR in transcriptional elongation.
Collapse
Affiliation(s)
- Sébastien Flajollet
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Rachez
- Unité de Régulation Epigénétique, URA 2578 du CNRS, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Maheul Ploton
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Céline Schulz
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Rozenn Gallais
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Raphaël Métivier
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Michal Pawlak
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Aymeric Leray
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Al Amine Issulahi
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Laurent Héliot
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Gilles Salbert
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
- * E-mail:
| |
Collapse
|
78
|
Tsutsui T, Fukasawa R, Shinmyouzu K, Nakagawa R, Tobe K, Tanaka A, Ohkuma Y. Mediator complex recruits epigenetic regulators via its two cyclin-dependent kinase subunits to repress transcription of immune response genes. J Biol Chem 2013; 288:20955-20965. [PMID: 23749998 DOI: 10.1074/jbc.m113.486746] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mediator complex (Mediator) plays pivotal roles in activating transcription by RNA polymerase II, but relatively little is known about its roles in repression. Here, we identified the histone arginine methyltransferase PRMT5 and WD repeat protein 77/methylosome protein 50 (WDR77/MEP50) as Mediator cyclin-dependent kinase (CDK)-interacting proteins and studied the roles of PRMT5 in the transcriptional regulation of CCAAT enhancer-binding protein (C/EBP) β target genes. First, we purified CDK8- and CDK19-containing complexes from HeLa nuclear extracts and subjected these purified complexes to mass spectrometric analyses. These experiments revealed that two Mediator CDKs, CDK8 and CDK19, individually interact with PRMT5 and WDR77, and their interactions with PRMT5 cause transcriptional repression of C/EBPβ target genes by regulating symmetric dimethylation of histone H4 arginine 3 (H4R3me2s) in the promoter regions of those genes. Furthermore, the recruitment of the DNA methyltransferase DNMT3A correlated with H4R3 dimethylation potentially leading to DNA methylation at the promoter proximal region and tight inhibition of preinitiation complex formation. In vertebrates, C/EBPβ regulates many genes involved in immune responses and cell differentiation. These findings shed light on the molecular mechanisms of the repressive roles of Mediator CDKs in transcription of C/EBPβ target genes and might provide clues that enable future studies of the functional associations between Mediators and epigenetic regulation.
Collapse
Affiliation(s)
- Taiki Tsutsui
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and
| | - Rikiya Fukasawa
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and
| | - Kaori Shinmyouzu
- the Mass Spectrometry Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Reiko Nakagawa
- the Mass Spectrometry Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazuyuki Tobe
- the First Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan and
| | - Aki Tanaka
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and
| | - Yoshiaki Ohkuma
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and.
| |
Collapse
|
79
|
Masutani M, Fujimori H. Poly(ADP-ribosyl)ation in carcinogenesis. Mol Aspects Med 2013; 34:1202-16. [PMID: 23714734 DOI: 10.1016/j.mam.2013.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 12/18/2022]
Abstract
Cancer develops through diverse genetic, epigenetic and other changes, so-called 'multi-step carcinogenesis', and each cancer harbors different alterations and properties. Here in this article we review how poly(ADP-ribosyl)ation is involved in multi-step and diverse pathways of carcinogenesis. Involvement of poly- and mono-ADP-ribosylation in carcinogenesis has been studied at molecular and cellular levels, and further by animal models and human genetic approaches. PolyADP-ribosylation acts in DNA damage repair response and maintenance mechanisms of genomic stability. Several DNA repair pathways, including base-excision repair and double strand break repair pathways, involve PARP and PARG functions. These care-taker functions of poly(ADP-ribosyl)ation suggest that polyADP-ribosyation may mainly act in a tumor suppressive manner because genomic instability caused by defective DNA repair response could serve as a driving force for tumor progression, leading to invasion, metastasis and relapse of cancer. On the other hand, the new concept of 'synthetic lethality by PARP inhibition' suggests the significance of PARP activities for survival of cancer cells that harbor defects in DNA repair. Accumulating evidence has revealed that some PARP family molecules are involved in various signaling cascades other than DNA repair, including epigenetic and transcriptional regulations, inflammation/immune response and epithelial-mesenchymal transition, suggesting that poly(ADP-ribosyl)ation both promotes and suppresses carcinogenic processes depending on the conditions. Expanding understanding of poly(ADP-ribosyl)ation suggests that strategies to achieve cancer prevention targeting poly(ADP-ribosyl)ation for genome protection against life-long exposure to environmental carcinogens and endogenous carcinogenic stimuli.
Collapse
Affiliation(s)
- Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, Japan.
| | | |
Collapse
|
80
|
Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 2013; 54:1761-75. [PMID: 23440512 DOI: 10.1194/jlr.r030833] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin A or retinol is arguably the most multifunctional vitamin in the human body, as it is essential from embryogenesis to adulthood. The pleiotropic effects of vitamin A are exerted mainly by one active metabolite, all-trans retinoic acid (atRA), which regulates the expression of a battery of target genes through several families of nuclear receptors (RARs, RXRs, and PPARβ/δ), polymorphic retinoic acid (RA) response elements, and multiple coregulators. It also involves extranuclear and nontranscriptional effects, such as the activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of several actors of RA signaling. However, vitamin A itself proved recently to be active and RARs to be present in the cytosol to regulate translation and cell plasticity. These new concepts expand the scope of the biologic functions of vitamin A and RA.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U964, CNRS, UMR7104, Université de Strasbourg, 67404 Illkirch Cedex, France
| | | | | |
Collapse
|
81
|
Legrand AJ, Choul-Li S, Spriet C, Idziorek T, Vicogne D, Drobecq H, Dantzer F, Villeret V, Aumercier M. The level of Ets-1 protein is regulated by poly(ADP-ribose) polymerase-1 (PARP-1) in cancer cells to prevent DNA damage. PLoS One 2013; 8:e55883. [PMID: 23405229 PMCID: PMC3566071 DOI: 10.1371/journal.pone.0055883] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022] Open
Abstract
Ets-1 is a transcription factor that regulates many genes involved in cancer progression and in tumour invasion. It is a poor prognostic marker for breast, lung, colorectal and ovary carcinomas. Here, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel interaction partner of Ets-1. We show that Ets-1 activates, by direct interaction, the catalytic activity of PARP-1 and is then poly(ADP-ribosyl)ated in a DNA-independent manner. The catalytic inhibition of PARP-1 enhanced Ets-1 transcriptional activity and caused its massive accumulation in cell nuclei. Ets-1 expression was correlated with an increase in DNA damage when PARP-1 was inhibited, leading to cancer cell death. Moreover, PARP-1 inhibitors caused only Ets-1-expressing cells to accumulate DNA damage. These results provide new insight into Ets-1 regulation in cancer cells and its link with DNA repair proteins. Furthermore, our findings suggest that PARP-1 inhibitors would be useful in a new therapeutic strategy that specifically targets Ets-1-expressing tumours.
Collapse
Affiliation(s)
- Arnaud J Legrand
- CNRS USR 3078, Institut de Recherche Interdisciplinaire, Campus CNRS de la Haute Borne, Université Lille Nord de France, IFR 147, BP 70478, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Kraus WL, Hottiger MO. PARP-1 and gene regulation: progress and puzzles. Mol Aspects Med 2013; 34:1109-23. [PMID: 23357755 DOI: 10.1016/j.mam.2013.01.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), also referred to as ADP-ribosyltransferase Diphtheria toxin-like 1 (ARTD1), is an abundant nuclear protein that plays key roles in a variety of nuclear processes, including the regulation of transcription. PARP-1 possesses an intrinsic enzymatic activity that catalyzes the transfer of ADP-ribose (ADPR) units from nicotinamide adenine dinucleotide (NAD(+)) onto target gene regulatory proteins, thereby modulating their activities. Although great strides have been made in the past decade in deciphering the seemingly opposing and varied roles of PARP-1 in gene regulation, many puzzles remain. In this review, we discuss the current state of understanding in this area, especially how PARP-1 interfaces with various components of gene regulatory pathways (e.g., the basal transcription machinery, DNA-binding transcription factors, coregulators, chromatin remodeling, histone modifications, and DNA methylation). In addition, we discuss some gene-specific, cell type-specific, and cell state-specific effects of PARP-1 on gene regulation, which might contribute to its biological functions. Finally, we review some of the recent progress targeting PARPs using chemical inhibitors, some of which may alter PARP-1-dependent gene regulatory programs to promote therapeutic outcomes.
Collapse
Affiliation(s)
- W Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and the Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8511, United States.
| | | |
Collapse
|
83
|
Davis MA, Larimore EA, Fissel BM, Swanger J, Taatjes DJ, Clurman BE. The SCF-Fbw7 ubiquitin ligase degrades MED13 and MED13L and regulates CDK8 module association with Mediator. Genes Dev 2013; 27:151-6. [PMID: 23322298 DOI: 10.1101/gad.207720.112] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Mediator complex is an essential transcription regulator that bridges transcription factors with RNA polymerase II. This interaction is controlled by dynamic interactions between Mediator and the CDK8 module, but the mechanisms governing CDK8 module-Mediator association remain poorly understood. We show that Fbw7, a tumor suppressor and ubiquitin ligase, binds to CDK8-Mediator and targets MED13/13L for degradation. MED13/13L physically link the CDK8 module to Mediator, and Fbw7 loss increases CDK8 module-Mediator association. Our work reveals a novel mechanism regulating CDK8 module-Mediator association and suggests an expanded role for Fbw7 in transcriptional control and an unanticipated relationship with the CDK8 oncogene.
Collapse
Affiliation(s)
- Michael A Davis
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98117, USA
| | | | | | | | | | | |
Collapse
|
84
|
Lovato A, Panasci L, Witcher M. Is there an epigenetic component underlying the resistance of triple-negative breast cancers to parp inhibitors? Front Pharmacol 2013; 3:202. [PMID: 23293602 PMCID: PMC3530734 DOI: 10.3389/fphar.2012.00202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/06/2012] [Indexed: 12/15/2022] Open
Abstract
Poly(ADP-ribose) polymerase (Parp) is an enzyme responsible for catalyzing post-translational modifications through the addition of poly(ADP-ribose) chains (known as PARylation). Modification by PARylation modulates numerous cellular processes including transcription, chromatin remodeling, apoptosis, and DNA damage repair. In particular, the role of Parp activation in response to DNA damage has been intensely studied. Tumors bearing mutations of the breast cancer susceptibility genes, Brca1/2, are prone to DNA breakages whose restoration into functional double-strand DNA is Parp dependent. This concept has been exploited therapeutically in Brca mutated breast and ovarian tumors, where acute sensitivity to Parp inhibitors is observed. Based on in vitro and clinical studies it remains unclear to what extent Parp inhibitors can be utilized beyond treating Brca mutated tumors. This review will focus on the often overlooked roles of PARylation in chromatin remodeling, epigenetics, and transcription to explain why some cancers may be unresponsive to Parp inhibition. We predict that understanding the impact of PARylation on gene expression will lead to alternative approaches to manipulate the Parp pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Amanda Lovato
- The Departments of Oncology and Experimental Medicine, The Lady Davis Institute and Segal Cancer Centre of the Jewish General Hospital, McGill University Montreal QC, Canada
| | | | | |
Collapse
|
85
|
Barrero MJ, Malik S. The RNA polymerase II transcriptional machinery and its epigenetic context. Subcell Biochem 2013; 61:237-259. [PMID: 23150254 DOI: 10.1007/978-94-007-4525-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase II (Pol II) is the main engine that drives transcription of protein-encoding genes in eukaryotes. Despite its intrinsic subunit complexity, Pol II is subject to a host of factors that regulate the multistep transcription process. Indeed, the hallmark of the transcription cycle is the dynamic association of Pol II with initiation, elongation and other factors. In addition, Pol II transcription is regulated by a series of cofactors (coactivators and corepressors). Among these, the Mediator has emerged as one of the key regulatory factors for Pol II. Transcription by Pol II takes place in the context of chromatin, which is subject to numerous epigenetic modifications. This chapter mainly summarizes the various biochemical mechanisms that determine formation and function of a Pol II preinitiation complex (PIC) and those that affect its progress along the gene body (elongation). It further examines the various epigenetic modifications that the Pol II machinery encounters, especially in certain developmental contexts, and highlights newer evidence pointing to a likely close interplay between this machinery and factors responsible for the chromatin modifications.
Collapse
Affiliation(s)
- Maria J Barrero
- Center for Regenerative Medicine, Dr Aiguader 88, Barcelona, Spain,
| | | |
Collapse
|
86
|
Poly (ADP-Ribose) Glycohydrolase Regulates Retinoic Acid Receptor-Mediated Gene Expression. Mol Cell 2012; 48:785-98. [DOI: 10.1016/j.molcel.2012.09.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/29/2012] [Accepted: 09/18/2012] [Indexed: 01/08/2023]
|
87
|
Wright RHG, Castellano G, Bonet J, Le Dily F, Font-Mateu J, Ballaré C, Nacht AS, Soronellas D, Oliva B, Beato M. CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells. Genes Dev 2012; 26:1972-83. [PMID: 22948662 DOI: 10.1101/gad.193193.112] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Eukaryotic gene regulation implies that transcription factors gain access to genomic information via poorly understood processes involving activation and targeting of kinases, histone-modifying enzymes, and chromatin remodelers to chromatin. Here we report that progestin gene regulation in breast cancer cells requires a rapid and transient increase in poly-(ADP)-ribose (PAR), accompanied by a dramatic decrease of cellular NAD that could have broad implications in cell physiology. This rapid increase in nuclear PARylation is mediated by activation of PAR polymerase PARP-1 as a result of phosphorylation by cyclin-dependent kinase CDK2. Hormone-dependent phosphorylation of PARP-1 by CDK2, within the catalytic domain, enhances its enzymatic capabilities. Activated PARP-1 contributes to the displacement of histone H1 and is essential for regulation of the majority of hormone-responsive genes and for the effect of progestins on cell cycle progression. Both global chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) and gene expression analysis show a strong overlap between PARP-1 and CDK2. Thus, progestin gene regulation involves a novel signaling pathway that connects CDK2-dependent activation of PARP-1 with histone H1 displacement. Given the multiplicity of PARP targets, this new pathway could be used for the pharmacological management of breast cancer.
Collapse
|
88
|
Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, Liu F, Planck JL, Ravindranathan P, Chinnaiyan AM, McCue P, Gomella LG, Raj GV, Dicker AP, Brody JR, Pascal JM, Centenera MM, Butler LM, Tilley WD, Feng FY, Knudsen KE. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2012; 2:1134-49. [PMID: 22993403 DOI: 10.1158/2159-8290.cd-12-0120] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UNLABELLED PARP-1 is an abundant nuclear enzyme that modifies substrates by poly(ADP-ribose)-ylation. PARP-1 has well-described functions in DNA damage repair and also functions as a context-specific regulator of transcription factors. With multiple models, data show that PARP-1 elicits protumorigenic effects in androgen receptor (AR)-positive prostate cancer cells, in both the presence and absence of genotoxic insult. Mechanistically, PARP-1 is recruited to sites of AR function, therein promoting AR occupancy and AR function. It was further confirmed in genetically defined systems that PARP-1 supports AR transcriptional function, and that in models of advanced prostate cancer, PARP-1 enzymatic activity is enhanced, further linking PARP-1 to AR activity and disease progression. In vivo analyses show that PARP-1 activity is required for AR function in xenograft tumors, as well as tumor cell growth in vivo and generation and maintenance of castration resistance. Finally, in a novel explant system of primary human tumors, targeting PARP-1 potently suppresses tumor cell proliferation. Collectively, these studies identify novel functions of PARP-1 in promoting disease progression, and ultimately suggest that the dual functions of PARP-1 can be targeted in human prostate cancer to suppress tumor growth and progression to castration resistance. SIGNIFICANCE These studies introduce a paradigm shift with regard to PARP-1 function in human malignancy, and suggest that the dual functions of PARP-1 in DNA damage repair and transcription factor regulation can be leveraged to suppress pathways critical for promalignant phenotypes in prostate cancer cells by modulation of the DNA damage response and hormone signaling pathways. The combined studies highlight the importance of dual PARP-1 function in malignancy and provide the basis for therapeutic targeting.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Departments of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Wu X, Ellmann S, Rubin E, Gil M, Jin K, Han L, Chen H, Kwon EM, Guo J, Ha HC, Sukumar S. ADP ribosylation by PARP-1 suppresses HOXB7 transcriptional activity. PLoS One 2012; 7:e40644. [PMID: 22844406 PMCID: PMC3402478 DOI: 10.1371/journal.pone.0040644] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 06/13/2012] [Indexed: 12/29/2022] Open
Abstract
Interactions with cofactors regulate transcriptional activity and also help HOX proteins to achieve the specificity required for transcriptional regulation of target genes. In this study, we describe a novel protein/protein interaction of HOXB7 with poly (ADP-ribose) polymerase-1 (PARP-1) that involves the homeodomain of HOXB7 and the first zinc finger domain of PARP-1. Upon binding to PARP-1, HOXB7 undergoes poly(ADP-ribosyl)altion resulting in a reduction of its transcriptional activity. Since aspartic acid and glutamic acid residues are acceptors of the ADP ribose moiety transferred by PARP-1, deletion of the evolutionarily conserved C-terminal Glu-rich tail of HOXB7 dramatically attenuates ADP-ribosylation of HOXB7 by PARP-1. Further, a mutant of HOXB7 without the Glu-rich tail loses the ability to be negatively regulated by PARP-1 and becomes transcriptionally more active in luciferase reporter assays. Since the homeodomain is highly conserved among HOX proteins, five other HOX proteins were tested. All six showed interaction with, and were poly(ADP-ribosyl)ated by PARP-1. However, among them, this modification altered the DNA binding activity of only HOXA7 and HOXB7. In summary, this study identifies a new interacting partner of HOX proteins. More importantly, this study reveals a novel mechanism whereby polyADP-ribosylation regulates transcriptional activities of HOX proteins such as HOXB7 and HOXA7.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (SS); (XW)
| | - Stephan Ellmann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ethel Rubin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Minchan Gil
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Kideok Jin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Liangfeng Han
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hexin Chen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Erika M. Kwon
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jianhui Guo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Hyo Chol Ha
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (SS); (XW)
| |
Collapse
|
90
|
Bochkis IM, Schug J, Ye DZ, Kurinna S, Stratton SA, Barton MC, Kaestner KH. Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1 and Foxa2. PLoS Genet 2012; 8:e1002770. [PMID: 22737085 PMCID: PMC3380847 DOI: 10.1371/journal.pgen.1002770] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/02/2012] [Indexed: 01/04/2023] Open
Abstract
Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determine by genome-wide location analysis (ChIP-Seq) that, although Foxa1 and Foxa2 share a large fraction of binding sites in the liver, each protein also occupies distinct regulatory elements in vivo. Foxa1-only sites are enriched for p53 binding sites and are frequently found near genes important to cell cycle regulation, while Foxa2-restricted sites show only a limited match to the forkhead consensus and are found in genes involved in steroid and lipid metabolism. Thus, Foxa1 and Foxa2, while redundant during development, have evolved divergent roles in the adult liver, ensuring the maintenance of both genes during evolution. The duplication of a gene from a common ancestor, resulting in two copies known as paralogs, plays an important role in evolution. Newly duplicated genes must acquire new functions in order to remain relevant, otherwise they are lost via mutation over time. We have performed genome-wide location analysis (ChIP–Seq) in adult liver to examine the differences between two paralogous DNA binding proteins, Foxa1 and Foxa2. While Foxa1 and Foxa2 bind a number of common genomic locations, each protein also localizes to distinct regulatory regions. Sites specific for Foxa1 also contain a DNA motif bound by tumor suppressor p53 and are found near genes important to cell cycle regulation, while Foxa2-only sites are found near genes essential to steroid and lipid metabolism. Hence, Foxa1 and Foxa2 have developed unique functions in adult liver, contributing to the maintenance of both genes during evolution.
Collapse
Affiliation(s)
- Irina M. Bochkis
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Diana Z. Ye
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Svitlana Kurinna
- Center for Stem Cell and Developmental Biology, Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Sabrina A. Stratton
- Center for Stem Cell and Developmental Biology, Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michelle C. Barton
- Center for Stem Cell and Developmental Biology, Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
91
|
Ranuncolo SM, Ghosh S, Hanover JA, Hart GW, Lewis BA. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J Biol Chem 2012; 287:23549-61. [PMID: 22605332 DOI: 10.1074/jbc.m111.330910] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II C-terminal domain (CTD), which serves as a scaffold to recruit machinery involved in transcription, is modified post-translationally. Although the O-GlcNAc modification of RNA polymerase II CTD was documented in 1993, its functional significance remained obscure. We show that O-GlcNAc transferase (OGT) modified CTD serine residues 5 and 7. Drug inhibition of OGT and OGA (N-acetylglucosaminidase) blocked transcription during preinitiation complex assembly. Polymerase II and OGT co-immunoprecipitated, and OGT is a component of the preinitiation complex. OGT shRNA experiments showed that reduction of OGT causes a reduction in transcription and RNA polymerase II occupancy at several B-cell promoters. These data suggest that the cycling of O-GlcNAc on and off of polymerase II occurs during assembly of the preinitiation complex. Our results define unexpected roles for both the CTD and O-GlcNAc in the regulation of transcription initiation in higher eukaryotes.
Collapse
Affiliation(s)
- Stella M Ranuncolo
- Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
92
|
Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 2012; 26:417-32. [PMID: 22391446 DOI: 10.1101/gad.183509.111] [Citation(s) in RCA: 586] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular stress responses are mediated through a series of regulatory processes that occur at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These responses require a complex network of sensors and effectors from multiple signaling pathways, including the abundant and ubiquitous nuclear enzyme poly(ADP-ribose) (PAR) polymerase-1 (PARP-1). PARP-1 functions at the center of cellular stress responses, where it processes diverse signals and, in response, directs cells to specific fates (e.g., DNA repair vs. cell death) based on the type and strength of the stress stimulus. Many of PARP-1's functions in stress response pathways are mediated by its regulated synthesis of PAR, a negatively charged polymer, using NAD(+) as a donor of ADP-ribose units. Thus, PARP-1's functions are intimately tied to nuclear NAD(+) metabolism and the broader metabolic profile of the cell. Recent studies in cell and animal models have highlighted the roles of PARP-1 and PAR in the response to a wide variety of extrinsic and intrinsic stress signals, including those initiated by oxidative, nitrosative, genotoxic, oncogenic, thermal, inflammatory, and metabolic stresses. These responses underlie pathological conditions, including cancer, inflammation-related diseases, and metabolic dysregulation. The development of PARP inhibitors is being pursued as a therapeutic approach to these conditions. In this review, we highlight the newest findings about PARP-1's role in stress responses in the context of the historical data.
Collapse
Affiliation(s)
- Xin Luo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
93
|
Orlando L, Schiavone P, Fedele P, Calvani N, Nacci A, Cinefra M, D'Amico M, Mazzoni E, Marino A, Sponziello F, Morelli F, Lombardi L, Silvestris N, Cinieri S. Poly (ADP-ribose) polymerase (PARP): rationale, preclinical and clinical evidences of its inhibition as breast cancer treatment. Expert Opin Ther Targets 2012; 16 Suppl 2:S83-9. [DOI: 10.1517/14728222.2011.648925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
94
|
Galbraith MD, Donner AJ, Espinosa JM. CDK8: a positive regulator of transcription. Transcription 2012; 1:4-12. [PMID: 21327159 DOI: 10.4161/trns.1.1.12373] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 01/09/2023] Open
Abstract
CDK8 belongs to a group of cyclin-dependent kinases involved in transcriptional regulation from yeast to mammals. CDK8 associates with the Mediator complex, but functions outside of Mediator are also likely. Historically, CDK8 has been described mostly as a transcriptional repressor, but a growing body of research provides unequivocal evidence for various roles of CDK8 in gene activation. Several transcriptional programs of biomedical importance employ CDK8 as a co-activator, including the p53 network, the Wnt/β-catenin pathway, the serum response network, and those governed by SMADs and the thyroid hormone receptor, thus highlighting the importance of further investigation into this enigmatic transcriptional regulator.
Collapse
|
95
|
Pic E, Gagné JP, Poirier GG. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1. Expert Rev Proteomics 2012; 8:759-74. [PMID: 22087659 DOI: 10.1586/epr.11.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.
Collapse
Affiliation(s)
- Emilie Pic
- Centre de Recherche du CHUQ ? Pavillon CHUL, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | | | | |
Collapse
|
96
|
Cooper KF, Scarnati MS, Krasley E, Mallory MJ, Jin C, Law MJ, Strich R. Oxidative-stress-induced nuclear to cytoplasmic relocalization is required for Not4-dependent cyclin C destruction. J Cell Sci 2012; 125:1015-26. [PMID: 22421358 DOI: 10.1242/jcs.096479] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast cyclin-C-Cdk8p kinase complex represses the transcription of a subset of genes involved in the stress response. To relieve this repression, cyclin C is destroyed in cells exposed to H(2)O(2) by the 26S proteasome. This report identifies Not4p as the ubiquitin ligase mediating H(2)O(2)-induced cyclin C destruction. Not4p is required for H(2)O(2)-induced cyclin C destruction in vivo and polyubiquitylates cyclin C in vitro by utilizing Lys48, a ubiquitin linkage associated with directing substrates to the 26S proteasome. Before its degradation, cyclin C, but not Cdk8p, translocates from the nucleus to the cytoplasm. This translocation requires both the cell-wall-integrity MAPK module and phospholipase C, and these signaling pathways are also required for cyclin C destruction. In addition, blocking cytoplasmic translocation slows the mRNA induction kinetics of two stress response genes repressed by cyclin C. Finally, a cyclin C derivative restricted to the cytoplasm is still subject to Not4p-dependent destruction, indicating that the degradation signal does not occur in the nucleus. These results identify a stress-induced proteolytic pathway regulating cyclin C that requires nuclear to cytoplasmic relocalization and Not4p-mediated ubiquitylation.
Collapse
Affiliation(s)
- Katrina F Cooper
- Department of Molecular Biology, University of Medicine and Dentistry New Jersey, Two Medical Center Drive, Stratford, NJ 08055, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Guetg C, Scheifele F, Rosenthal F, Hottiger MO, Santoro R. Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol Cell 2012; 45:790-800. [PMID: 22405650 DOI: 10.1016/j.molcel.2012.01.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/14/2011] [Accepted: 01/10/2012] [Indexed: 01/13/2023]
Abstract
Faithful propagation of specific chromatin states requires re-establishment of epigenetic marks after every cell division. How the original epigenetic signature is inherited after disruption during DNA replication is still poorly understood. Here, we show that the poly(ADP-ribose)-polymerase-1 (PARP1/ARTD1) is implicated in the maintenance of silent rDNA chromatin during cell division. We demonstrate that PARP1 associates with TIP5, a subunit of the NoRC complex, via the noncoding pRNA and binds to silent rRNA genes after their replication in mid-late S phase. PARP1 represses rRNA transcription and is implicated in the formation of silent rDNA chromatin. Silent rDNA chromatin is a specific substrate for ADP-ribosylation and the enzymatic activity of PARP1 is necessary to establish rDNA silencing. The data unravel a function of PARP1 and ADP-ribosylation that serves to allow for the inheritance of silent chromatin structures, shedding light on how epigenetic marks are transmitted during each cell cycle.
Collapse
Affiliation(s)
- Claudio Guetg
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
98
|
Zhang T, Berrocal JG, Yao J, DuMond ME, Krishnakumar R, Ruhl DD, Ryu KW, Gamble MJ, Kraus WL. Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J Biol Chem 2012; 287:12405-16. [PMID: 22334709 DOI: 10.1074/jbc.m111.304469] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
NMNAT-1 and PARP-1, two key enzymes in the NAD(+) metabolic pathway, localize to the nucleus where integration of their enzymatic activities has the potential to control a variety of nuclear processes. Using a variety of biochemical, molecular, cell-based, and genomic assays, we show that NMNAT-1 and PARP-1 physically and functionally interact at target gene promoters in MCF-7 cells. Specifically, we show that PARP-1 recruits NMNAT-1 to promoters where it produces NAD(+) to support PARP-1 catalytic activity, but also enhances the enzymatic activity of PARP-1 independently of NAD(+) production. Furthermore, using two-photon excitation microscopy, we show that NMNAT-1 catalyzes the production of NAD(+) in a nuclear pool that may be distinct from other cellular compartments. In expression microarray experiments, depletion of NMNAT-1 or PARP-1 alters the expression of about 200 protein-coding genes each, with about 10% overlap between the two gene sets. NMNAT-1 enzymatic activity is required for PARP-1-dependent poly(ADP-ribosyl)ation at the promoters of commonly regulated target genes, as well as the expression of those target genes. Collectively, our studies link the enzymatic activities of NMNAT-1 and PARP-1 to the regulation of a set of common target genes through functional interactions at target gene promoters.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Samarut E, Rochette-Egly C. Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Mol Cell Endocrinol 2012; 348:348-60. [PMID: 21504779 DOI: 10.1016/j.mce.2011.03.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022]
Abstract
The vitamin A derivative, retinoic acid (RA), is essential for embryonic development through the activation of cognate nuclear receptors, RARs, which work as ligand dependent regulators of transcription. In vitro studies revealed how RARs control gene expression at the molecular level and now it appears that it is fine-tuned by a phosphorylation code. In addition, several genetic approaches provided valuable insights on the functions of RARs during development and on the influence of other actors such as the enzymes involved in RA synthesis and degradation and other signaling pathways. It appears that RARs are the conductors of the RA signaling symphony through controlling the dynamics and the coordination of the different players and development steps.
Collapse
Affiliation(s)
- Eric Samarut
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596; CNRS, UMR7104; Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France.
| | | |
Collapse
|
100
|
Petesch SJ, Lis JT. Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 2011; 45:64-74. [PMID: 22178397 DOI: 10.1016/j.molcel.2011.11.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/21/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
Eukaryotic cells possess many transcriptionally regulated mechanisms to alleviate the nucleosome barrier. Dramatic changes to the chromatin structure of Drosophila melanogaster Hsp70 gene loci are dependent on the transcriptional activator, heat shock factor (HSF), and poly(ADP-ribose) polymerase (PARP). Here, we find that PARP is associated with the 5' end of Hsp70, and its enzymatic activity is rapidly induced by heat shock. This activation causes PARP to redistribute throughout Hsp70 loci and Poly(ADP-ribose) to concurrently accumulate in the wake of PARP's spread. HSF is necessary for both the activation of PARP's enzymatic activity and its redistribution. Upon heat shock, HSF triggers these PARP activities mechanistically by directing Tip60 acetylation of histone H2A lysine 5 at the 5' end of Hsp70, where inactive PARP resides before heat shock. This acetylation is critical for the activation and spread of PARP as well as for the rapid nucleosome loss over the Hsp70 loci.
Collapse
Affiliation(s)
- Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|