51
|
Lera RF, Norman RX, Dumont M, Dennee A, Martin‐Koob J, Fachinetti D, Burkard ME. Plk1 protects kinetochore-centromere architecture against microtubule pulling forces. EMBO Rep 2019; 20:e48711. [PMID: 31468671 PMCID: PMC6776907 DOI: 10.15252/embr.201948711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022] Open
Abstract
During mitosis, sister chromatids attach to microtubules which generate ~ 700 pN pulling force focused on the centromere. We report that chromatin-localized signals generated by Polo-like kinase 1 (Plk1) maintain the integrity of the kinetochore and centromere against this force. Without sufficient Plk1 activity, chromosomes become misaligned after normal condensation and congression. These chromosomes are silent to the mitotic checkpoint, and many lag and mis-segregate in anaphase. Their centromeres and kinetochores lack CENP-A, CENP-C, CENP-T, Hec1, Nuf2, and Knl1; however, CENP-B is retained. CENP-A loss occurs coincident with secondary misalignment and anaphase onset. This disruption occurs asymmetrically prior to anaphase and requires tension generated by microtubules. Mechanistically, centromeres highly recruit PICH DNA helicase and PICH depletion restores kinetochore disruption in pre-anaphase cells. Furthermore, anaphase defects are significantly reduced by tethering Plk1 to chromatin, including H2B, and INCENP, but not to CENP-A. Taken as a whole, this demonstrates that Plk1 signals are crucial for stabilizing centromeric architecture against tension.
Collapse
Affiliation(s)
- Robert F Lera
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Roshan X Norman
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Marie Dumont
- Institut CurieCNRS, UMR 144PSL Research UniversityParisFrance
| | - Alexandra Dennee
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Joanne Martin‐Koob
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | | | - Mark E Burkard
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| |
Collapse
|
52
|
Raab M, Strebhardt K, Rudd CE. Immune adaptor SKAP1 acts a scaffold for Polo-like kinase 1 (PLK1) for the optimal cell cycling of T-cells. Sci Rep 2019; 9:10462. [PMID: 31320682 PMCID: PMC6639320 DOI: 10.1038/s41598-019-45627-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
While the immune cell adaptor protein SKAP1 mediates LFA-1 activation induced by antigen-receptor (TCR/CD3) ligation on T-cells, it is unclear whether the adaptor interacts with other mediators of T-cell function. In this context, the serine/threonine kinase, polo-like kinase (PLK1) regulates multiple steps in the mitotic and cell cycle progression of mammalian cells. Here, we show that SKAP1 is phosphorylated by and binds to PLK1 for the optimal cycling of T-cells. PLK1 binds to the N-terminal residue serine 31 (S31) of SKAP1 and the interaction is needed for optimal PLK1 kinase activity. Further, siRNA knock-down of SKAP1 reduced the rate of T-cell division concurrent with a delay in the expression of PLK1, Cyclin A and pH3. Reconstitution of these KD cells with WT SKAP1, but not the SKAP1 S31 mutant, restored normal cell division. SKAP1-PLK1 binding is dynamically regulated during the cell cycle of T-cells. Our findings identify a novel role for SKAP1 in the regulation of PLK1 and optimal cell cycling needed for T-cell clonal expansion in response to antigenic activation.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
- Centre de Recherch-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, Quebec, H1T 2M4, Canada.
- Département de Medicine, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
53
|
Abdelfatah S, Berg A, Böckers M, Efferth T. A selective inhibitor of the Polo-box domain of Polo-like kinase 1 identified by virtual screening. J Adv Res 2019; 16:145-156. [PMID: 30899597 PMCID: PMC6412170 DOI: 10.1016/j.jare.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 12/04/2022] Open
Abstract
Polo-like kinase 1 (PLK1), a member of the Polo-like kinase family, plays an important regulatory role in mitosis and cell cycle progression. PLK1 overexpression is correlated with tumourigenesis and poor prognosis in cancer patients. Therefore, the identification of novel compounds that inhibit PLK1 would provide attractive therapeutic approaches. Although some PLK1 kinase inhibitors have been developed, their application has been limited by off-target effects. PLK1 contains a regulatory domain named the Polo-box domain (PBD), which is characteristic only for the Polo-like kinase family. This domain represents an alternative therapeutic target with higher selectivity for PLK1. In this study, we applied in silico virtual drug screening, fluorescence polarization and microscale thermophoresis to identify new scaffolds targeting the PBD of PLK1. One compound, 3-{[(1R,9S)-3-(naphthalen-2-yl)-6-oxo-7,11-diazatricyclo[7.3.1.02,7]trideca-2,4-dien-11-yl]methyl}benzonitrile (designated compound (1)), out of a total of 30,793 natural product derivatives, inhibited the PLK1 PBD with high selectivity (IC50: 17.9 ± 0.5 µM). This compound inhibited the growth of cultured leukaemia cells (CCRF-CEM and CEM/ADR5000) and arrested the cell cycle in the G2/M phase, which is characteristic for PLK1 inhibitors. Immunofluorescence analyses showed that treatment with compound (1) disrupted spindle formation due to the aberrant localization of PLK1 during the mitotic process, leading to G2/M arrest and ultimately cell death. In conclusion, compound (1) is a selective PLK1 inhibitor that inhibits cancer cell growth. It represents a chemical scaffold for the future synthesis of new selective PLK1 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | - Angela Berg
- Leipzig University, Institute of Organic Chemistry Johannisallee 29, 04103 Leipzig, Germany
| | - Madeleine Böckers
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| |
Collapse
|
54
|
Moon J, Roh S. Expression of polo-like kinase 1 in pre-implantation stage murine somatic cell nuclear transfer embryos. J Vet Sci 2019; 20:2-9. [PMID: 30481982 PMCID: PMC6351765 DOI: 10.4142/jvs.2019.20.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/23/2018] [Accepted: 11/06/2018] [Indexed: 11/23/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has various applications in research, as well as in the medical field and animal husbandry. However, the efficiency of SCNT is low and the accurate mechanism of SCNT in murine embryo development is unreported. In general, the developmental rate of SCNT murine embryos is lower than in vivo counterparts. In previous studies, polo-like kinase 1 (Plk1) was reported to be a crucial element in cell division including centrosome maturation, cytokinesis, and spindle formation. In an initial series of experiments in this study, BI2536, a Plk1 inhibitor, was treated to in vivo-fertilized embryos and the embryos failed to develop beyond the 2-cell stage. This confirmed previous findings that Plk1 is crucial for the first mitotic division of murine embryos. Next, we investigated Plk1's localization and intensity by immunofluorescence analysis. In contrast to normally developed embryos, SCNT murine embryos that failed to develop exhibited two types of Plk1 expressions; a low Plk1 expression pattern and ectopic expression of Plk1. The results show that Plk1 has a critical role in SCNT murine embryos. In conclusion, this study demonstrated that the SCNT murine embryos fail to develop beyond the 2-cell stage, and the embryos show abnormal Plk1 expression patterns, which may one of the main causes of developmental failure of early SCNT murine embryos.
Collapse
Affiliation(s)
- Jeonghyeon Moon
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21 PLUS Dental Life Science, Seoul National University School of Dentistry, Seoul 08826, Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21 PLUS Dental Life Science, Seoul National University School of Dentistry, Seoul 08826, Korea
| |
Collapse
|
55
|
Inhibition of Polo-like Kinase 1 Prevents the Male Pronuclear Formation Via Alpha-tubulin Recruiting in In Vivo-fertilized Murine Embryos. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
56
|
Wang X, Chen D, Gao J, Long H, Zha H, Zhang A, Shu C, Zhou L, Yang F, Zhu B, Wu W. Centromere protein U expression promotes non-small-cell lung cancer cell proliferation through FOXM1 and predicts poor survival. Cancer Manag Res 2018; 10:6971-6984. [PMID: 30588102 PMCID: PMC6298391 DOI: 10.2147/cmar.s182852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Centromere protein U (CENPU) abnormally exhibits high expression in various types of human tumor tissues and participates in tumor progression; however, its expression pattern and biological function in lung cancer have not yet been elucidated. In the present study, we explored the clinical significance and biological function of CENPU in lung cancer. Materials and methods The Cancer Genome Atlas (TCGA) data analyses, quantitative real-time PCR (RT-PCR), and Western blotting were performed to quantify CENPU and FOXM1 expression in non-small-cell lung cancer (NSCLC) samples. Survival data were obtained from Kaplan–Meier plotter or PROGgene V2 prognostic database. The function of CENPU in lung cancer cell proliferation was determined using 5-ethynyl-2′-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and cell cycle assays, and the underlying mechanism was determined through bioinformatic analyses and validated by in vitro siRNA or plasmid transfection experiments. Results CENPU was abnormally overexpressed in NSCLC samples compared with matched paired normal tissues. Higher expression of CENPU predicted worse overall survival (OS) and relapse-free survival (RFS) in NSCLC patients. Knockdown of CENPU expression by siRNA significantly inhibited proliferation and delayed cell cycle progression of lung cancer cells. To figure out the mechanism, bioinformatic analyses were performed and the results showed that the transcription factor, FOXM1, positively correlated with CENPU. Further in vitro experiments indicated that FOXM1 was the possible downstream transcription factor of CENPU as the knockdown of CENPU led to lower expression of FOXM1 and the overexpression of FOXM1 significantly reversed the inhibition of proliferation caused by CENPU knockdown. Furthermore, FOXM1 was highly expressed in NSCLC. The knockdown of FOXM1 also attenuated proliferation and induced G1 arrest in lung cancer cells. Conclusion CENPU was highly expressed in NSCLC tissues, wherein it promoted lung cancer cell proliferation via the transcription factor, FOXM1, which could be a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Xinxin Wang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Diangang Chen
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Jianbao Gao
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Haoran Zha
- Department of Oncology, The General Hospital of the People's Liberation Army Rocket Force, Beijing, China
| | - Anmei Zhang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Chi Shu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Li Zhou
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Fei Yang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Wei Wu
- Department of Cardiothoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China,
| |
Collapse
|
57
|
Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton (Hoboken) 2018; 75:481-494. [PMID: 30414309 PMCID: PMC7113694 DOI: 10.1002/cm.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
During cell division, duplicated genetic material is separated into two distinct daughter cells. This process is essential for initial tissue formation during development and to maintain tissue integrity throughout an organism's lifetime. To ensure the efficacy and efficiency of this process, the cell employs a variety of regulatory and signaling proteins that function as mitotic regulators and checkpoint proteins. One vital mitotic regulator is polo-like kinase 1 (PLK1), a highly conserved member of the polo-like kinase family. Unique from its paralogues, it functions specifically during mitosis as a regulator of cell division. PLK1 is spatially and temporally enriched at three distinct subcellular locales; the mitotic centrosomes, kinetochores, and the cytokinetic midbody. These localization patterns allow PLK1 to phosphorylate specific downstream targets to regulate mitosis. In this review, we will explore how polo-like kinases were originally discovered and diverged into the five paralogues (PLK1-5) in mammals. We will then focus specifically on the most conserved, PLK1, where we will discuss what is known about how its activity is modulated, its role during the cell cycle, and new, innovative tools that have been developed to examine its function and interactions in cells.
Collapse
Affiliation(s)
- Erica G. Colicino
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
| | - Heidi Hehnly
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
- Department of BiologySyracuse UniversitySyracuseNew York
| |
Collapse
|
58
|
Reconstitution of a 26-Subunit Human Kinetochore Reveals Cooperative Microtubule Binding by CENP-OPQUR and NDC80. Mol Cell 2018; 71:923-939.e10. [PMID: 30174292 PMCID: PMC6162344 DOI: 10.1016/j.molcel.2018.07.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore’s microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex. The kinetochore CENP-OPQUR complex is reconstituted and functionally dissected A kinetochore particle with 26 subunits and defined stoichiometry is reconstituted EM structure of an 11-subunit inner kinetochore complex reveals globular shape CENP-Q and the Ndc80 complex bind microtubules cooperatively
Collapse
|
59
|
Raab M, Sanhaji M, Pietsch L, Béquignon I, Herbrand AK, Süß E, Gande SL, Caspar B, Kudlinzki D, Saxena K, Sreeramulu S, Schwalbe H, Strebhardt K, Biondi RM. Modulation of the Allosteric Communication between the Polo-Box Domain and the Catalytic Domain in Plk1 by Small Compounds. ACS Chem Biol 2018; 13:1921-1931. [PMID: 29927572 DOI: 10.1021/acschembio.7b01078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Polo-like kinases (Plks) are an evolutionary conserved family of Ser/Thr protein kinases that possess, in addition to the classical kinase domain at the N-terminus, a C-terminal polo-box domain (PBD) that binds to phosphorylated proteins and modulates the kinase activity and its localization. Plk1, which regulates the formation of the mitotic spindle, has emerged as a validated drug target for the treatment of cancer, because it is required for numerous types of cancer cells but not for the cell division in noncancer cells. Here, we employed chemical biology methods to investigate the allosteric communication between the PBD and the catalytic domain of Plk1. We identified small compounds that bind to the catalytic domain and inhibit or enhance the interaction of Plk1 with the phosphorylated peptide PoloBoxtide in vitro. In cells, two new allosteric Plk1 inhibitors affected the proliferation of cancer cells in culture and the cell cycle but had distinct phenotypic effects on spindle formation. Both compounds inhibited Plk1 signaling, indicating that they specifically act on Plk1 in cultured cells.
Collapse
Affiliation(s)
- Monika Raab
- Department of Gynecology , Goethe-University , 60323 Frankfurt , Germany
| | - Mourad Sanhaji
- Department of Gynecology , Goethe-University , 60323 Frankfurt , Germany
| | - Larissa Pietsch
- Research Group PhosphoSites, Medizinische Klinik 1 , Universitätsklinikum Frankfurt , Frankfurt am Main , Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Isabelle Béquignon
- Research Group PhosphoSites, Medizinische Klinik 1 , Universitätsklinikum Frankfurt , Frankfurt am Main , Germany
| | - Amanda K Herbrand
- Research Group PhosphoSites, Medizinische Klinik 1 , Universitätsklinikum Frankfurt , Frankfurt am Main , Germany
| | - Evelyn Süß
- Research Group PhosphoSites, Medizinische Klinik 1 , Universitätsklinikum Frankfurt , Frankfurt am Main , Germany
| | - Santosh L Gande
- Center for Biomolecular Magnetic Resonance , Johann Wolfgang Goethe University , 60438 Frankfurt , Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Birgit Caspar
- Center for Biomolecular Magnetic Resonance , Johann Wolfgang Goethe University , 60438 Frankfurt , Germany
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance , Johann Wolfgang Goethe University , 60438 Frankfurt , Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance , Johann Wolfgang Goethe University , 60438 Frankfurt , Germany
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance , Johann Wolfgang Goethe University , 60438 Frankfurt , Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance , Johann Wolfgang Goethe University , 60438 Frankfurt , Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Klaus Strebhardt
- Department of Gynecology , Goethe-University , 60323 Frankfurt , Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Ricardo M Biondi
- Research Group PhosphoSites, Medizinische Klinik 1 , Universitätsklinikum Frankfurt , Frankfurt am Main , Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society , Buenos Aires C1425FQD , Argentina
| |
Collapse
|
60
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
61
|
Pintard L, Archambault V. A unified view of spatio-temporal control of mitotic entry: Polo kinase as the key. Open Biol 2018; 8:180114. [PMID: 30135239 PMCID: PMC6119860 DOI: 10.1098/rsob.180114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022] Open
Abstract
The Polo kinase is an essential regulator of cell division. Its ability to regulate multiple events at distinct subcellular locations and times during mitosis is remarkable. In the last few years, a much clearer mechanistic understanding of the functions and regulation of Polo in cell division has emerged. In this regard, the importance of coupling changes in activity with changes in localization is striking, both for Polo itself and for its upstream regulators. This review brings together several new pieces of the puzzle that are gradually revealing how Polo is regulated, in space and time, to enable its functions in the early stages of mitosis in animal cells. As a result, a unified view of how mitotic entry is spatio-temporally regulated is emerging.
Collapse
Affiliation(s)
- Lionel Pintard
- Cell Cycle and Development Team, Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, Ligue contre le Cancer, Paris, France
- Equipe labellisée, Ligue contre le Cancer, Paris, France
| | - Vincent Archambault
- Institut de recherche en immunologie et en cancérologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
62
|
Schleicher K, Porter M, Ten Have S, Sundaramoorthy R, Porter IM, Swedlow JR. The Ndc80 complex targets Bod1 to human mitotic kinetochores. Open Biol 2018; 7:rsob.170099. [PMID: 29142109 PMCID: PMC5717335 DOI: 10.1098/rsob.170099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022] Open
Abstract
Regulation of protein phosphatase activity by endogenous protein inhibitors is an important mechanism to control protein phosphorylation in cells. We recently identified Biorientation defective 1 (Bod1) as a small protein inhibitor of protein phosphatase 2A containing the B56 regulatory subunit (PP2A-B56). This phosphatase controls the amount of phosphorylation of several kinetochore proteins and thus the establishment of load-bearing chromosome-spindle attachments in time for accurate separation of sister chromatids in mitosis. Like PP2A-B56, Bod1 directly localizes to mitotic kinetochores and is required for correct segregation of mitotic chromosomes. In this report, we have probed the spatio-temporal regulation of Bod1 during mitotic progression. Kinetochore localization of Bod1 increases from nuclear envelope breakdown until metaphase. Phosphorylation of Bod1 at threonine 95 (T95), which increases Bod1's binding to and inhibition of PP2A-B56, peaks in prometaphase when PP2A-B56 localization to kinetochores is highest. We demonstrate here that kinetochore targeting of Bod1 depends on the outer kinetochore protein Ndc80 and not PP2A-B56. Crucially, Bod1 depletion functionally affects Ndc80 phosphorylation at the N-terminal serine 55 (S55), as well as a number of other phosphorylation sites within the outer kinetochore, including Knl1 at serine 24 and 60 (S24, S60), and threonine T943 and T1155 (T943, T1155). Therefore, Ndc80 recruits a phosphatase inhibitor to kinetochores which directly feeds forward to regulate Ndc80, and Knl1 phosphorylation, including sites that mediate the attachment of microtubules to kinetochores.
Collapse
Affiliation(s)
- Katharina Schleicher
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael Porter
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Iain M Porter
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jason R Swedlow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
63
|
Kettenbach AN, Schlosser KA, Lyons SP, Nasa I, Gui J, Adamo ME, Gerber SA. Global assessment of its network dynamics reveals that the kinase Plk1 inhibits the phosphatase PP6 to promote Aurora A activity. Sci Signal 2018; 11:eaaq1441. [PMID: 29764989 PMCID: PMC6002859 DOI: 10.1126/scisignal.aaq1441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polo-like kinase 1 (Plk1) is an essential protein kinase that promotes faithful mitotic progression in eukaryotes. The subcellular localization and substrate interactions of Plk1 are tightly controlled and require its binding to phosphorylated residues. To identify phosphorylation-dependent interactions within the Plk1 network in human mitotic cells, we performed quantitative proteomics on HeLa cells cultured with kinase inhibitors or expressing a Plk1 mutant that was deficient in phosphorylation-dependent substrate binding. We found that many interactions were abolished upon kinase inhibition; however, a subset was protected from phosphatase opposition or was unopposed, resulting in persistent interaction of the substrate with Plk1. This subset includes phosphoprotein phosphatase 6 (PP6), whose activity toward Aurora kinase A (Aurora A) was inhibited by Plk1. Our data suggest that this Plk1-PP6 interaction generates a feedback loop that coordinates and reinforces the activities of Plk1 and Aurora A during mitotic entry and is terminated by the degradation of Plk1 during mitotic exit. Thus, we have identified a mechanism for the previously puzzling observation of the Plk1-dependent regulation of Aurora A.
Collapse
Affiliation(s)
- Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Kate A Schlosser
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Scott P Lyons
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Scott A Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
64
|
Feitosa WB, Hwang K, Morris PL. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis. Dev Biol 2018; 434:278-291. [PMID: 29269218 PMCID: PMC5805567 DOI: 10.1016/j.ydbio.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
Abstract
During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization.
Collapse
Affiliation(s)
- Weber Beringui Feitosa
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - KeumSil Hwang
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Patricia L Morris
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA; The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
65
|
Lee KH, Hwang JA, Kim SO, Kim JH, Shin SC, Kim EE, Lee KS, Rhee K, Jeon BH, Bang JK, Cha-Molstad H, Soung NK, Jang JH, Ko SK, Lee HG, Ahn JS, Kwon YT, Kim BY. Phosphorylation of human enhancer filamentation 1 (HEF1) stimulates interaction with Polo-like kinase 1 leading to HEF1 localization to focal adhesions. J Biol Chem 2018; 293:847-862. [PMID: 29191835 PMCID: PMC5777258 DOI: 10.1074/jbc.m117.802587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/09/2017] [Indexed: 11/06/2022] Open
Abstract
Elevated expression of human enhancer filamentation 1 (HEF1; also known as NEDD9 or Cas-L) is an essential stimulus for the metastatic process of various solid tumors. This process requires HEF1 localization to focal adhesions (FAs). Although the association of HEF1 with FAs is considered to play a role in cancer cell migration, the mechanism targeting HEF1 to FAs remains unclear. Moreover, up-regulation of Polo-like kinase 1 (Plk1) positively correlates with human cancer metastasis, yet how Plk1 deregulation promotes metastasis remains elusive. Here, we report that casein kinase 1δ (CK1δ) phosphorylates HEF1 at Ser-780 and Thr-804 and that these phosphorylation events promote a physical interaction between Plk1 and HEF1. We found that this interaction is critical for HEF1 translocation to FAs and for inducing migration of HeLa cells. Plk1-docking phosphoepitopes were mapped/confirmed in HEF1 by various methods, including X-ray crystallography, and mutated for functional analysis in HeLa cells. In summary, our results reveal the role of a phosphorylation-dependent HEF1-Plk1 complex in HEF1 translocation to FAs to induce cell migration. Our findings provide critical mechanistic insights into the HEF1-Plk1 complex-dependent localization of HEF1 to FAs underlying the metastatic process and may therefore contribute to the development of new cancer therapies.
Collapse
Affiliation(s)
- Kyung Ho Lee
- From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea,
| | - Jeong-Ah Hwang
- From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea
- the Research Institute of Medical Sciences, Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sun-Ok Kim
- From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea
| | - Jung Hee Kim
- the Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Sang Chul Shin
- the Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Eunice EunKyeong Kim
- the Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kyung S Lee
- the Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Kunsoo Rhee
- the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Byeong Hwa Jeon
- the Research Institute of Medical Sciences, Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jeong Kyu Bang
- the Division of Magnetic Resonance, Korea Basic Science Institute, Ochang 28119, Korea
| | - Hyunjoo Cha-Molstad
- From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea
| | - Nak-Kyun Soung
- From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea
| | - Jae-Hyuk Jang
- From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea
| | - Sung-Kyun Ko
- From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea
| | - Hee Gu Lee
- the Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea, and
| | - Jong Seog Ahn
- From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea
| | - Yong Tae Kwon
- the Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Bo Yeon Kim
- From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea,
| |
Collapse
|
66
|
Maniswami RR, Prashanth S, Karanth AV, Koushik S, Govindaraj H, Mullangi R, Rajagopal S, Jegatheesan SK. PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets 2017; 22:59-73. [PMID: 29171762 DOI: 10.1080/14728222.2018.1410140] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Polo like kinase (PLK) is known to play a pivotal role in various cell cycle processes to perpetuate proper division and growth of the cells. Polo like kinase-4 (PLK4) is one such kinase that appears in low abundance and plays a well-characterized role in centriole duplication. PLK4 deregulation (i.e. both overexpression and depletion of PLK4), leads to altered mitotic fidelity and thereby triggers tumorigenesis. Hence, over the last few years PLK4 has emerged as a potential therapeutic target for the treatment of various advanced cancers. Areas covered: In this review, we discuss the basic structure, expression, localization and functions of PLK4 along with its regulation by various proteins. We also discuss the role of altered PLK4 activity in the onset of cancer and the current pre-clinical and clinical inhibitors to regulate PLK4. Expert opinion: PLK4 mediated centriole duplication has a crucial role in maintaining mitotic correctness in normal cells, while its deregulation has a greater impact on genesis of cancer. Henceforth, a deep knowledge of the PLK4 levels, its role and interactions with various proteins in cancer is required to design effective inhibitors for clinical use.
Collapse
Affiliation(s)
| | | | | | - Sindhu Koushik
- a Jubilant Biosys Ltd, Bioinformatics , Bangalore , India
| | | | | | | | | |
Collapse
|
67
|
Lee M, Kim IS, Park KC, Kim JS, Baek SH, Kim KI. Mitosis-specific phosphorylation of Mis18α by Aurora B kinase enhances kinetochore recruitment of polo-like kinase 1. Oncotarget 2017; 9:1563-1576. [PMID: 29416714 PMCID: PMC5788582 DOI: 10.18632/oncotarget.22707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/28/2017] [Indexed: 01/11/2023] Open
Abstract
Mis18α, a component of Mis18 complex comprising of Mis18α, Mis18β, and M18BP1, is known to localize at the centromere from late telophase to early G1 phase and plays a priming role in CENP-A deposition. Although its role in CENP-A deposition is well established, the other function of Mis18α remains unknown. Here, we elucidate a new function of Mis18α that is critical for the proper progression of cell cycle independent of its role in CENP-A deposition. We find that Aurora B kinase phosphorylates Mis18α during mitosis not affecting neither centromere localization of Mis18 complex nor centromere loading of CENP-A. However, the replacement of endogenous Mis18α by phosphorylation-defective mutant causes mitotic defects including micronuclei formation, chromosome misalignment, and chromosomal bridges. Together, our data demonstrate that Aurora B kinase-mediated mitotic phosphorylation of Mis18α is a crucial event for faithful cell cycle progression through the enhanced recruitment of polo-like kinase 1 to the kinetochore.
Collapse
Affiliation(s)
- Minkyoung Lee
- Creative Research Initiatives Center for Chromatin Dynamics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ik Soo Kim
- Creative Research Initiatives Center for Chromatin Dynamics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Koog Chan Park
- Department of Biological Sciences, Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, South Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Chromatin Dynamics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Keun Il Kim
- Department of Biological Sciences, Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, South Korea
| |
Collapse
|
68
|
Kachaner D, Garrido D, Mehsen H, Normandin K, Lavoie H, Archambault V. Coupling of Polo kinase activation to nuclear localization by a bifunctional NLS is required during mitotic entry. Nat Commun 2017; 8:1701. [PMID: 29167465 PMCID: PMC5700101 DOI: 10.1038/s41467-017-01876-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
The Polo kinase is a master regulator of mitosis and cytokinesis conserved from yeasts to humans. Polo is composed of an N-term kinase domain (KD) and a C-term polo-box domain (PBD), which regulates its subcellular localizations. The PBD and KD can interact and inhibit each other, and this reciprocal inhibition is relieved when Polo is phosphorylated at its activation loop. How Polo activation and localization are coupled during mitotic entry is unknown. Here we report that PBD binding to the KD masks a nuclear localization signal (NLS). Activating phosphorylation of the KD leads to exposure of the NLS and entry of Polo into the nucleus before nuclear envelope breakdown. Failures of this mechanism result in misregulation of the Cdk1-activating Cdc25 phosphatase and lead to mitotic and developmental defects in Drosophila. These results uncover spatiotemporal mechanisms linking master regulatory enzymes during mitotic entry. Drosophila Polo kinase is the founding member of the Polo-Like Kinase (PLK) family and a master regulator of mitosis and cytokinesis. Here the authors uncover a molecular mechanism for the spatiotemporal regulation of Polo kinase during mitotic entry through a phosphorylation event that triggers nuclear import.
Collapse
Affiliation(s)
- David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.,Département de biochimie et médecine moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.,Département de biochimie et médecine moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Haytham Mehsen
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Hugo Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7. .,Département de biochimie et médecine moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.
| |
Collapse
|
69
|
Dumitru AMG, Rusin SF, Clark AEM, Kettenbach AN, Compton DA. Cyclin A/Cdk1 modulates Plk1 activity in prometaphase to regulate kinetochore-microtubule attachment stability. eLife 2017; 6:e29303. [PMID: 29154753 PMCID: PMC5706962 DOI: 10.7554/elife.29303] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022] Open
Abstract
The fidelity of chromosome segregation in mitosis is safeguarded by the precise regulation of kinetochore microtubule (k-MT) attachment stability. Previously, we demonstrated that Cyclin A/Cdk1 destabilizes k-MT attachments to promote faithful chromosome segregation. Here, we use quantitative phosphoproteomics to identify 156 Cyclin A/Cdk1 substrates in prometaphase. One Cyclin A/Cdk1 substrate is myosin phosphatase targeting subunit 1 (MYPT1), and we show that MYPT1 localization to kinetochores depends on Cyclin A/Cdk1 activity and that MYPT1 destabilizes k-MT attachments by negatively regulating Plk1 at kinetochores. Thus, Cyclin A/Cdk1 phosphorylation primes MYPT1 for Plk1 binding. Interestingly, priming of PBIP1 by Plk1 itself (self-priming) increased in MYPT1-depleted cells showing that MYPT1 provides a molecular link between the processes of Cdk1-dependent priming and self-priming of Plk1 substrates. These data demonstrate cross-regulation between Cyclin A/Cdk1-dependent and Plk1-dependent phosphorylation of substrates during mitosis to ensure efficient correction of k-MT attachment errors necessary for high mitotic fidelity.
Collapse
Affiliation(s)
- Ana Maria G Dumitru
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Scott F Rusin
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Amber E M Clark
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Duane A Compton
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| |
Collapse
|
70
|
Martino L, Morchoisne-Bolhy S, Cheerambathur DK, Van Hove L, Dumont J, Joly N, Desai A, Doye V, Pintard L. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans. Dev Cell 2017; 43:157-171.e7. [PMID: 29065307 PMCID: PMC8184135 DOI: 10.1016/j.devcel.2017.09.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 08/02/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023]
Abstract
In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets.
Collapse
Affiliation(s)
- Lisa Martino
- Cell Cycle and Development, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Stéphanie Morchoisne-Bolhy
- Non-conventional Functions of Nuclear Pore, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lucie Van Hove
- Cell Cycle and Development, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Dumont
- Cell Division and Reproduction, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nicolas Joly
- Cell Cycle and Development, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Valérie Doye
- Non-conventional Functions of Nuclear Pore, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lionel Pintard
- Cell Cycle and Development, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
71
|
Ikeda M, Tanaka K. Plk1 bound to Bub1 contributes to spindle assembly checkpoint activity during mitosis. Sci Rep 2017; 7:8794. [PMID: 28821799 PMCID: PMC5562746 DOI: 10.1038/s41598-017-09114-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
For faithful chromosome segregation, the formation of stable kinetochore-microtubule attachment and its monitoring by the spindle assembly checkpoint (SAC) are coordinately regulated by mechanisms that are currently ill-defined. Here, we show that polo-like kinase 1 (Plk1), which is instrumental in forming stable kinetochore-microtubule attachments, is also involved in the maintenance of SAC activity by binding to Bub1, but not by binding to CLASP2 or CLIP-170. The effect of Plk1 on the SAC was found to be mediated through phosphorylation of Mps1, an essential kinase for the SAC, as well as through phosphorylation of the MELT repeats in Knl1. Bub1 acts as a platform for assembling other SAC components on the phosphorylated MELT repeats. We propose that Bub1-bound Plk1 is important for the maintenance of SAC activity by supporting Bub1 localization to kinetochores in prometaphase, a time when the kinetochore Mps1 level is reduced, until the formation of stable kinetochore-microtubule attachment is completed. Our study reveals an intricate mechanism for coordinating the formation of stable kinetochore-microtubule attachment and SAC activity.
Collapse
Affiliation(s)
- Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
72
|
Narvaez AJ, Ber S, Crooks A, Emery A, Hardwick B, Guarino Almeida E, Huggins DJ, Perera D, Roberts-Thomson M, Azzarelli R, Hood FE, Prior IA, Walker DW, Boyce R, Boyle RG, Barker SP, Torrance CJ, McKenzie GJ, Venkitaraman AR. Modulating Protein-Protein Interactions of the Mitotic Polo-like Kinases to Target Mutant KRAS. Cell Chem Biol 2017; 24:1017-1028.e7. [PMID: 28807782 PMCID: PMC5563081 DOI: 10.1016/j.chembiol.2017.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/16/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022]
Abstract
Mutations activating KRAS underlie many forms of cancer, but are refractory to therapeutic targeting. Here, we develop Poloppin, an inhibitor of protein-protein interactions via the Polo-box domain (PBD) of the mitotic Polo-like kinases (PLKs), in monotherapeutic and combination strategies to target mutant KRAS. Poloppin engages its targets in biochemical and cellular assays, triggering mitotic arrest with defective chromosome congression. Poloppin kills cells expressing mutant KRAS, selectively enhancing death in mitosis. PLK1 or PLK4 depletion recapitulates these cellular effects, as does PBD overexpression, corroborating Poloppin's mechanism of action. An optimized analog with favorable pharmacokinetics, Poloppin-II, is effective against KRAS-expressing cancer xenografts. Poloppin resistance develops less readily than to an ATP-competitive PLK1 inhibitor; moreover, cross-sensitivity persists. Poloppin sensitizes mutant KRAS-expressing cells to clinical inhibitors of c-MET, opening opportunities for combination therapy. Our findings exemplify the utility of small molecules modulating the protein-protein interactions of PLKs to therapeutically target mutant KRAS-expressing cancers.
Collapse
Affiliation(s)
- Ana J Narvaez
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Suzan Ber
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Alex Crooks
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Amy Emery
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Bryn Hardwick
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Estrella Guarino Almeida
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - David J Huggins
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; University of Cambridge, Theory of Condensed Matter Group, Cavendish Laboratory, 19 J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - David Perera
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Meredith Roberts-Thomson
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fiona E Hood
- Division of Cellular and Molecular Physiology, Crown Street, University of Liverpool, Liverpool L69 3BX, UK
| | - Ian A Prior
- Division of Cellular and Molecular Physiology, Crown Street, University of Liverpool, Liverpool L69 3BX, UK
| | - David W Walker
- Sentinel Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, UK
| | - Richard Boyce
- Sentinel Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, UK
| | - Robert G Boyle
- Sentinel Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, UK
| | - Samuel P Barker
- PhoreMost Ltd., Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - Grahame J McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; PhoreMost Ltd., Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
73
|
Liu J, Zhang C. The equilibrium of ubiquitination and deubiquitination at PLK1 regulates sister chromatid separation. Cell Mol Life Sci 2017; 74:2127-2134. [PMID: 28188342 PMCID: PMC11107562 DOI: 10.1007/s00018-017-2457-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
PLK1 regulates almost every aspect of mitotic events, including mitotic entry, spindle assembly, chromosome alignment, sister chromatid segregation, metaphase-anaphase transition, cytokinesis, etc. In regulating the chromosome alignment and sister chromatid segregation, PLK1 has to be localized to and removed from kinetochores at the right times, and the underlying mechanism that regulates PLK1 both spatially and temporally only became clearer recently. It has been found that deubiquitination and ubiquitination of PLK1 are responsible for its localization to and dissociation from the kinetochores, respectively. The equilibrium of this ubiquitination and deubiquitination plays an important role in regulating proper chromosome alignment and timely sister chromatid segregation. Here, we summarize and discuss the recent findings in investigating the spatial and temporal regulation of PLK1 during chromosome alignment and sister chromatid segregation.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, 91768, USA.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
74
|
Shirakawa J, Fernandez M, Takatani T, El Ouaamari A, Jungtrakoon P, Okawa ER, Zhang W, Yi P, Doria A, Kulkarni RN. Insulin Signaling Regulates the FoxM1/PLK1/CENP-A Pathway to Promote Adaptive Pancreatic β Cell Proliferation. Cell Metab 2017; 25:868-882.e5. [PMID: 28286049 PMCID: PMC5382039 DOI: 10.1016/j.cmet.2017.02.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/09/2017] [Accepted: 02/08/2017] [Indexed: 12/01/2022]
Abstract
Investigation of cell-cycle kinetics in mammalian pancreatic β cells has mostly focused on transition from the quiescent (G0) to G1 phase. Here, we report that centromere protein A (CENP-A), which is required for chromosome segregation during the M-phase, is necessary for adaptive β cell proliferation. Receptor-mediated insulin signaling promotes DNA-binding activity of FoxM1 to regulate expression of CENP-A and polo-like kinase-1 (PLK1) by modulating cyclin-dependent kinase-1/2. CENP-A deposition at the centromere is augmented by PLK1 to promote mitosis, while knocking down CENP-A limits β cell proliferation and survival. CENP-A deficiency in β cells leads to impaired adaptive proliferation in response to pregnancy, acute and chronic insulin resistance, and aging in mice. Insulin-stimulated CENP-A/PLK1 protein expression is blunted in islets from patients with type 2 diabetes. These data implicate the insulin-FoxM1/PLK1/CENP-A pathway-regulated mitotic cell-cycle progression as an essential component in the β cell adaptation to delay and/or prevent progression to diabetes.
Collapse
Affiliation(s)
- Jun Shirakawa
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Megan Fernandez
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Tomozumi Takatani
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Abdelfattah El Ouaamari
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Prapaporn Jungtrakoon
- Section on Genetics and Epidemiology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Erin R Okawa
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Wei Zhang
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Peng Yi
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA.
| |
Collapse
|
75
|
Yang X, Chen G, Li W, Peng C, Zhu Y, Yang X, Li T, Cao C, Pei H. Cervical Cancer Growth Is Regulated by a c-ABL-PLK1 Signaling Axis. Cancer Res 2017; 77:1142-1154. [PMID: 27899378 DOI: 10.1158/0008-5472.can-16-1378] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/15/2016] [Accepted: 11/02/2016] [Indexed: 11/16/2022]
Abstract
The nonreceptor tyrosine kinase c-ABL controls cell growth but its contributions in solid tumors are not fully understood. Here we report that the Polo-like kinase PLK1, an essential mitotic kinase regulator, is an important downstream effector of c-ABL in regulating the growth of cervical cancer. c-ABL interacted with and phosphorylated PLK1. Phosphorylation of PLK1 by c-ABL inhibited PLK1 ubiquitination and degradation and enhanced its activity, leading to cell-cycle progression and tumor growth. Both c-ABL and PLK1 were overexpressed in cervical carcinoma. Notably, PLK1 tyrosine phosphorylation correlated with patient survival in cervical cancer. In a murine xenograft model of human cervical cancer, combination treatment with c-ABL and PLK1 inhibitors yielded additive effects on tumor growth inhibition. Our findings highlight the c-ABL-PLK1 axis as a novel prognostic marker and treatment target for human cervical cancers. Cancer Res; 77(5); 1142-54. ©2016 AACR.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gang Chen
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Beijing Institute of Biotechnology, Haidian District, Beijing, China
- Laboratory of Nuclear and Radiation Damage, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Changmin Peng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yue Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Teng Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.
| | - Cheng Cao
- Beijing Institute of Biotechnology, Haidian District, Beijing, China.
| | - Huadong Pei
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
76
|
Musacchio A, Desai A. A Molecular View of Kinetochore Assembly and Function. BIOLOGY 2017; 6:E5. [PMID: 28125021 PMCID: PMC5371998 DOI: 10.3390/biology6010005] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Kinetochores are large protein assemblies that connect chromosomes to microtubules of the mitotic and meiotic spindles in order to distribute the replicated genome from a mother cell to its daughters. Kinetochores also control feedback mechanisms responsible for the correction of incorrect microtubule attachments, and for the coordination of chromosome attachment with cell cycle progression. Finally, kinetochores contribute to their own preservation, across generations, at the specific chromosomal loci devoted to host them, the centromeres. They achieve this in most species by exploiting an epigenetic, DNA-sequence-independent mechanism; notable exceptions are budding yeasts where a specific sequence is associated with centromere function. In the last 15 years, extensive progress in the elucidation of the composition of the kinetochore and the identification of various physical and functional modules within its substructure has led to a much deeper molecular understanding of kinetochore organization and the origins of its functional output. Here, we provide a broad summary of this progress, focusing primarily on kinetochores of humans and budding yeast, while highlighting work from other models, and present important unresolved questions for future studies.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, Dortmund 44227, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45117, Germany.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.
- Department of Cellular & Molecular Medicine, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
77
|
Qian WJ, Park JE, Grant R, Lai CC, Kelley JA, Yaffe MB, Lee KS, Burke TR. Neighbor-directed histidine N (τ)-alkylation: A route to imidazolium-containing phosphopeptide macrocycles. Biopolymers 2016; 104:663-73. [PMID: 26152807 DOI: 10.1002/bip.22698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/15/2015] [Accepted: 07/04/2015] [Indexed: 12/24/2022]
Abstract
Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.
Collapse
Affiliation(s)
- Wen-Jian Qian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Robert Grant
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Christopher C Lai
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702
| | - James A Kelley
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702
| | - Michael B Yaffe
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702
| |
Collapse
|
78
|
Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration. PLoS Pathog 2016; 12:e1005860. [PMID: 27579920 PMCID: PMC5006980 DOI: 10.1371/journal.ppat.1005860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/11/2016] [Indexed: 01/31/2023] Open
Abstract
Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. Viruses are masters at exploiting host cell machineries for their replication. For human immunodeficiency virus type 1 (HIV-1), the best-studied representative of the Orthoretrovirinae subfamily from the genus lentiviruses, numerous important virus-host interactions have been described. In contrast, only a few cellular proteins are known to influence the replication of foamy viruses (FVs, also known as spumaviruses), an intriguing type of complex retrovirus of the Spumaretrovirinae subfamily that combines features of both retroviruses and hepadnaviruses in its replication strategy. Given the increasing interest in FVs as gene transfer tools and their unique status within the retrovirus family, this discrepancy urged the identification of novel host cell interaction partners of FV structural components. This study focused on prototype FV (PFV), the best-characterized member of FVs, and its capsid protein, Gag, as the central player of viral replication. Members of the mitosis-regulatory, polo-like kinase (PLK) family were identified as novel Gag binding partners. The Gag interaction with PLK1 (and possibly also PLK2) facilitated efficient PFV genome integration into host chromatin, ensuring successful replication and viral spread in infected target cell cultures. Collectively, our results elucidate the first link between cell cycle regulatory networks and the mitosis-dependent PFV integration process.
Collapse
|
79
|
Fontebasso AM, Shirinian M, Khuong-Quang DA, Bechet D, Gayden T, Kool M, De Jay N, Jacob K, Gerges N, Hutter B, Şeker-Cin H, Witt H, Montpetit A, Brunet S, Lepage P, Bourret G, Klekner A, Bognár L, Hauser P, Garami M, Farmer JP, Montes JL, Atkinson J, Lambert S, Kwan T, Korshunov A, Tabori U, Collins VP, Albrecht S, Faury D, Pfister SM, Paulus W, Hasselblatt M, Jones DTW, Jabado N. Non-random aneuploidy specifies subgroups of pilocytic astrocytoma and correlates with older age. Oncotarget 2016; 6:31844-56. [PMID: 26378811 PMCID: PMC4741644 DOI: 10.18632/oncotarget.5571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/15/2015] [Indexed: 11/25/2022] Open
Abstract
Pilocytic astrocytoma (PA) is the most common brain tumor in children but is rare in adults, and hence poorly studied in this age group. We investigated 222 PA and report increased aneuploidy in older patients. Aneuploid genomes were identified in 45% of adult compared with 17% of pediatric PA. Gains were non-random, favoring chromosomes 5, 7, 6 and 11 in order of frequency, and preferentially affecting non-cerebellar PA and tumors with BRAF V600E mutations and not with KIAA1549-BRAF fusions or FGFR1 mutations. Aneuploid PA differentially expressed genes involved in CNS development, the unfolded protein response, and regulators of genomic stability and the cell cycle (MDM2, PLK2),whose correlated programs were overexpressed specifically in aneuploid PA compared to other glial tumors. Thus, convergence of pathways affecting the cell cycle and genomic stability may favor aneuploidy in PA, possibly representing an additional molecular driver in older patients with this brain tumor.
Collapse
Affiliation(s)
- Adam M Fontebasso
- Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, American University Of Beirut, Beirut, Lebanon
| | - Dong-Anh Khuong-Quang
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Denise Bechet
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Tenzin Gayden
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Marcel Kool
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicolas De Jay
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Karine Jacob
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Noha Gerges
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Barbara Hutter
- Division of Theoretical Bioinformatics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Huriye Şeker-Cin
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Hendrik Witt
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Alexandre Montpetit
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Sébastien Brunet
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Pierre Lepage
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Geneviève Bourret
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Almos Klekner
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Peter Hauser
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Miklós Garami
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Jean-Pierre Farmer
- Department of Neurosurgery, Montreal Children's Hospital and McGill University Health Centre, Montreal, Canada
| | - Jose-Luis Montes
- Department of Neurosurgery, Montreal Children's Hospital and McGill University Health Centre, Montreal, Canada
| | - Jeffrey Atkinson
- Department of Neurosurgery, Montreal Children's Hospital and McGill University Health Centre, Montreal, Canada
| | - Sally Lambert
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Tony Kwan
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uri Tabori
- Division of Pediatric Hematology-Oncology and The Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - V Peter Collins
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital and McGill University Health Centre, Montreal, Canada
| | - Damien Faury
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Nada Jabado
- Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada.,Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
80
|
Ferrari S, Gentili C. Maintaining Genome Stability in Defiance of Mitotic DNA Damage. Front Genet 2016; 7:128. [PMID: 27493659 PMCID: PMC4954828 DOI: 10.3389/fgene.2016.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| | - Christian Gentili
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| |
Collapse
|
81
|
An Amino-Terminal Polo Kinase Interaction Motif Acts in the Regulation of Centrosome Formation and Reveals a Novel Function for centrosomin (cnn) in Drosophila. Genetics 2016; 201:685-706. [PMID: 26447129 DOI: 10.1534/genetics.115.181842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The formation of the pericentriolar matrix (PCM) and a fully functional centrosome in syncytial Drosophila melanogaster embryos requires the rapid transport of Cnn during initiation of the centrosome replication cycle. We show a Cnn and Polo kinase interaction is apparently required during embryogenesis and involves the exon 1A-initiating coding exon, suggesting a subset of Cnn splice variants is regulated by Polo kinase. During PCM formation exon 1A Cnn-Long Form proteins likely bind Polo kinase before phosphorylation by Polo for Cnn transport to the centrosome. Loss of either of these interactions in a portion of the total Cnn protein pool is sufficient to remove native Cnn from the pool, thereby altering the normal localization dynamics of Cnn to the PCM. Additionally, Cnn-Short Form proteins are required for polar body formation, a process known to require Polo kinase after the completion of meiosis. Exon 1A Cnn-LF and Cnn-SF proteins, in conjunction with Polo kinase, are required at the completion of meiosis and for the formation of functional centrosomes during early embryogenesis.
Collapse
|
82
|
Huang DP, Luo RC. MLF1IP is correlated with progression and prognosis in luminal breast cancer. Biochem Biophys Res Commun 2016; 477:923-926. [PMID: 27378428 DOI: 10.1016/j.bbrc.2016.06.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 11/15/2022]
Abstract
Myeloid leukemia factor 1-interacting protein (MLF1IP) has been found to be involved in the progression of several malignancies. The potential correlation between MLF1IP and clinical outcome in patients with luminal breast cancer, however, remains unknown. In the present study, we demonstrated that MLF1IP was significantly upregulated in luminal breast cancer tissue compared with adjacent normal tissue both in validated cohort and TCGA cohort. Upregulated expression of MLF1IP was correlated with more often lymph node metastasis and negative progesterone receptor expression in TCGA cohorts. Kaplan-Meier analysis indicated that patients with high MLF1IP expression had significantly lower overall survival. Moreover, multivariate analysis revealed that high MLF1IP expression was independent high risk factor as well as old age (>60) and distant metastasis. This study provides new insights and evidences that MLF1IP over-expression plays important roles in progression of luminal breast cancer. However, the precise cellular mechanisms for MLF1IP in luminal breast cancer need to be further explored.
Collapse
Affiliation(s)
- Du-Ping Huang
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Rong-Cheng Luo
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
83
|
Wachowicz P, Fernández-Miranda G, Marugán C, Escobar B, de Cárcer G. Genetic depletion of Polo-like kinase 1 leads to embryonic lethality due to mitotic aberrancies. Bioessays 2016; 38 Suppl 1:S96-S106. [PMID: 27417127 DOI: 10.1002/bies.201670908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays multiple and essential roles during the cell division cycle. Its inhibition in cultured cells leads to severe mitotic aberrancies and cell death. Whereas previous reports suggested that Plk1 depletion in mice leads to a non-mitotic arrest in early embryos, we show here that the bi-allelic Plk1 depletion in mice certainly results in embryonic lethality due to extensive mitotic aberrations at the morula stage, including multi- and mono-polar spindles, impaired chromosome segregation and cytokinesis failure. In addition, the conditional depletion of Plk1 during mid-gestation leads also to severe mitotic aberrancies. Our data also confirms that Plk1 is completely dispensable for mitotic entry in vivo. On the other hand, Plk1 haploinsufficient mice are viable, and Plk1-heterozygous fibroblasts do not harbor any cell cycle alterations. Plk1 is overexpressed in many human tumors, suggesting a therapeutic benefit of inhibiting Plk1, and specific small-molecule inhibitors for this kinase are now being evaluated in clinical trials. Therefore, the different Plk1 mouse models here presented are a valuable tool to reexamine the relevance of the mitotic kinase Plk1 during mammalian development and animal physiology.
Collapse
Affiliation(s)
- Paulina Wachowicz
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gonzalo Fernández-Miranda
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Carlos Marugán
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Beatriz Escobar
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | | |
Collapse
|
84
|
Lera RF, Potts GK, Suzuki A, Johnson JM, Salmon ED, Coon JJ, Burkard ME. Decoding Polo-like kinase 1 signaling along the kinetochore-centromere axis. Nat Chem Biol 2016; 12:411-8. [PMID: 27043190 PMCID: PMC4871769 DOI: 10.1038/nchembio.2060] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
Protein kinase signaling along the kinetochore-centromere axis is crucial to assure mitotic fidelity, yet the details of its spatial coordination are obscure. Here, we examined how pools of human Polo-like kinase 1 (Plk1) within this axis control signaling events to elicit mitotic functions. To do this, we restricted active Plk1 to discrete subcompartments within the kinetochore-centromere axis using chemical genetics and decoded functional and phosphoproteomic signatures of each. We observe distinct phosphoproteomic and functional roles, suggesting that Plk1 exists and functions in discrete pools along this axis. Deep within the centromere, Plk1 operates to assure proper chromosome alignment and segregation. Thus, Plk1 at the kinetochore is a conglomerate of an observable bulk pool coupled with additional functional pools below the threshold of microscopic detection or resolution. Although complex, this multiplicity of locales provides an opportunity to decouple functional and phosphoproteomic signatures for a comprehensive understanding of Plk1's kinetochore functions.
Collapse
Affiliation(s)
- Robert F. Lera
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin Carbone Cancer Center
| | - Gregory K. Potts
- Department of Chemistry, University of Wisconsin, Madison WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin, Madison WI 53706
| | - Aussie Suzuki
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - James M. Johnson
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin Carbone Cancer Center
| | - Edward D. Salmon
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin, Madison WI 53706
- Genome Center, University of Wisconsin, Madison WI 53706
| | - Mark E. Burkard
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin Carbone Cancer Center
| |
Collapse
|
85
|
Abstract
Polo-like kinase 1 (Plk1), a key player in mitosis, is overexpressed in a wide range of tumor types and has been validated as a target for tumor therapy. In addition to its N-terminal kinase domain, Plk1 harbors a C-terminal protein-protein interaction domain, referred to as the polo-box domain (PBD). Because the PBD is unique to the five-member family of polo-like kinases, and its inhibition is sufficient to inhibit the enzyme, the Plk1 PBD is an attractive target for the inhibition of Plk1 function. Although peptide-based inhibitors are invaluable tools for elucidating the nature of the binding interface, small molecules are better suited for the induction of mitotic arrest and apoptosis in tumor cells by Plk1 inhibition. This review describes the considerable progress that has been made in developing small-molecule and peptide-based inhibitors of the Plk1 PBD.
Collapse
Affiliation(s)
- Angela Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|
86
|
Pietilä M, Vijay GV, Soundararajan R, Yu X, Symmans WF, Sphyris N, Mani SA. FOXC2 regulates the G2/M transition of stem cell-rich breast cancer cells and sensitizes them to PLK1 inhibition. Sci Rep 2016; 6:23070. [PMID: 27064522 PMCID: PMC4827390 DOI: 10.1038/srep23070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer cells with stem cell properties (CSCs) underpin the chemotherapy resistance and high therapeutic failure of triple-negative breast cancers (TNBCs). Even though CSCs are known to proliferate more slowly, they are sensitive to inhibitors of G2/M kinases such as polo-like kinase 1 (PLK1). Understanding the cell cycle regulatory mechanisms of CSCs will help target these cells more efficiently. Herein, we identify a novel role for the transcription factor FOXC2, which is mostly expressed in CSCs, in the regulation of cell cycle of CSC-enriched breast cancer cells. We demonstrate that FOXC2 expression is regulated in a cell cycle-dependent manner, with FOXC2 protein levels accumulating in G2, and rapidly decreasing during mitosis. Knockdown of FOXC2 in CSC-enriched TNBC cells delays mitotic entry without significantly affecting the overall proliferation rate of these cells. Moreover, PLK1 activity is important for FOXC2 protein stability, since PLK1 inhibition reduces FOXC2 protein levels. Indeed, FOXC2 expressing CSC-enriched TNBC cells are sensitive to PLK1 inhibition. Collectively, our findings demonstrate a novel role for FOXC2 as a regulator of the G2/M transition and elucidate the reason for the observed sensitivity of CSC-enriched breast cancer cells to PLK1 inhibitor.
Collapse
Affiliation(s)
- Mika Pietilä
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Geraldine V. Vijay
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Xian Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - William F. Symmans
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Nathalie Sphyris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
- Metastasis Research Centre, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
- Center for Stem Cells and Developmental Biology, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| |
Collapse
|
87
|
Kumar S, Sharma AR, Sharma G, Chakraborty C, Kim J. PLK-1: Angel or devil for cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1865:190-203. [PMID: 26899266 DOI: 10.1016/j.bbcan.2016.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022]
Abstract
PLK-1 is a key player in the eukaryotic cell cycle. Cell cycle progression is precisely controlled by cell cycle regulatory kinases. PLK-1 is a mitotic kinase that actively regulates the G2/M transition, mitosis, mitotic exit, and cytokinesis. During cell cycle progression, PLK-1 controls various events related to the cell cycle maturation, directly and/or indirectly. On the contrary, aberrant expression of PLK-1 is strongly associated with tumorigenesis and its poor prognosis. The misexpression of PLK-1 causes the abnormalities including aneuploidy, mitotic defects, leading to tumorigenesis through inhibiting the p53 and pRB genes. Therefore, we reviewed the role of PLK-1 in the cell cycle progression and in the tumorigenesis either as a cell cycle regulator or on an attractive anti-cancer drug target.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| | - Garima Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida 203201, India.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| |
Collapse
|
88
|
Tame MA, Raaijmakers JA, Afanasyev P, Medema RH. Chromosome misalignments induce spindle-positioning defects. EMBO Rep 2016; 17:317-25. [PMID: 26882550 PMCID: PMC4772978 DOI: 10.15252/embr.201541143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022] Open
Abstract
Cortical pulling forces on astral microtubules are essential to position the spindle. These forces are generated by cortical dynein, a minus-end directed motor. Previously, another dynein regulator termed Spindly was proposed to regulate dynein-dependent spindle positioning. However, the mechanism of how Spindly regulates spindle positioning has remained elusive. Here, we find that the misalignment of chromosomes caused by Spindly depletion is directly provoking spindle misorientation. Chromosome misalignments induced by CLIP-170 or CENP-E depletion or by noscapine treatment are similarly accompanied by severe spindle-positioning defects. We find that cortical LGN is actively displaced from the cortex when misaligned chromosomes are in close proximity. Preventing the KT recruitment of Plk1 by the depletion of PBIP1 rescues cortical LGN enrichment near misaligned chromosomes and re-establishes proper spindle orientation. Hence, KT-enriched Plk1 is responsible for the negative regulation of cortical LGN localization. In summary, we uncovered a compelling molecular link between chromosome alignment and spindle orientation defects, both of which are implicated in tumorigenesis.
Collapse
Affiliation(s)
- Mihoko A Tame
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jonne A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pavel Afanasyev
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - René H Medema
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
89
|
Nerusheva OO, Akiyoshi B. Divergent polo box domains underpin the unique kinetoplastid kinetochore. Open Biol 2016; 6:150206. [PMID: 26984294 PMCID: PMC4821238 DOI: 10.1098/rsob.150206] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/21/2016] [Indexed: 11/12/2022] Open
Abstract
Kinetochores are macromolecular machines that drive eukaryotic chromosome segregation by interacting with centromeric DNA and spindle microtubules. While most eukaryotes possess conventional kinetochore proteins, evolutionarily distant kinetoplastid species have unconventional kinetochore proteins, composed of at least 19 proteins (KKT1-19). Polo-like kinase (PLK) is not a structural kinetochore component in either system. Here, we report the identification of an additional kinetochore protein, KKT20, in Trypanosoma brucei. KKT20 has sequence similarity with KKT2 and KKT3 in the Cys-rich region, and all three proteins have weak but significant similarity to the polo box domain (PBD) of PLK. These divergent PBDs of KKT2 and KKT20 are sufficient for kinetochore localization in vivo. We propose that the ancestral PLK acquired a Cys-rich region and then underwent gene duplication events to give rise to three structural kinetochore proteins in kinetoplastids.
Collapse
Affiliation(s)
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
90
|
Shafique S, Bibi N, Rashid S. In silico identification of putative bifunctional Plk1 inhibitors by integrative virtual screening and structural dynamics approach. J Theor Biol 2016; 388:72-84. [PMID: 26493360 DOI: 10.1016/j.jtbi.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 10/10/2015] [Indexed: 12/31/2022]
Abstract
Polo like kinase (Plk1) is a master regulator of cell cycle and considered as next generation antimitotic target in human. As Plk1 predominantly expresses in the dividing cells with a much higher expression in cancerous cells, it serves as a discriminative target for cancer therapeutics. Here we implied a novel and promising integrative strategy to identify "bifunctional" Plk1 inhibitors that compete simultaneously with ATP and substrate for their binding sites. We integrated structure-based virtual screening (SBVS) and molecular dynamics simulations with emphasis on unique structural properties of Plk1. Through screening of 20,000 compounds, nearly ~2000 hits were enriched and subjected to SBVS against ATP and substrate binding sites of Plk1. Subsequently, on the basis of their binding abilities to Plk1 kinase and polo box domains, filtration of candidate hits resulted in the isolation of 26 compounds. By exclusion of close analogs or isomers, 10 unique compounds were selected for detailed study. A representative compound was subjected to molecular dynamics simulation assay to have deep structural insights and to gauge critical structural crunch for inhibitor binding against kinase and polo box domains. Our integrative approach may complement high-throughput screening and identify bifunctional Plk1 inhibitors that may contribute in selective targeting of Plk1 to elicit desired biological process.
Collapse
Affiliation(s)
- Shagufta Shafique
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Nousheen Bibi
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan.
| |
Collapse
|
91
|
Wynne DJ, Funabiki H. Kinetochore function is controlled by a phospho-dependent coexpansion of inner and outer components. J Cell Biol 2015; 210:899-916. [PMID: 26347137 PMCID: PMC4576862 DOI: 10.1083/jcb.201506020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is widely accepted that the kinetochore is built on CENP-A-marked centromeric chromatin in a hierarchical order from inner to outer kinetochore. Recruitment of many kinetochore proteins depends on microtubule attachment status, but it remains unclear how their assembly/disassembly is orchestrated. Applying 3D structured illumination microscopy to Xenopus laevis egg extracts, here we reveal that in the absence of microtubule attachment, proteins responsible for lateral attachment and spindle checkpoint signaling expand to form micrometer-scale fibrous structures over CENP-A-free chromatin, whereas a core module responsible for end-on attachment (CENP-A, CENP-T, and Ndc80) does not. Both outer kinetochore proteins (Bub1, BubR1, Mad1, and CENP-E) and the inner kinetochore component CENP-C are integral components of the expandable module, whose assembly depends on multiple mitotic kinases (Aurora B, Mps1, and Plx1) and is suppressed by protein phosphatase 1. We propose that phospho-dependent coexpansion of CENP-C and outer kinetochore proteins promotes checkpoint signal amplification and lateral attachment, whereas their selective disassembly enables the transition to end-on attachment.
Collapse
|
92
|
O'Connor A, Maffini S, Rainey MD, Kaczmarczyk A, Gaboriau D, Musacchio A, Santocanale C. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open 2015; 5:11-9. [PMID: 26685311 PMCID: PMC4728306 DOI: 10.1242/bio.014969] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During mitotic arrest induced by microtubule targeting drugs, the weakening of the spindle assembly checkpoint (SAC) allows cells to progress through the cell cycle without chromosome segregation occurring. PLK1 kinase plays a major role in mitosis and emerging evidence indicates that PLK1 is also involved in establishing the checkpoint and maintaining SAC signalling. However, mechanistically, the role of PLK1 in the SAC is not fully understood, with several recent reports indicating that it can cooperate with either one of the major checkpoint kinases, Aurora B or MPS1. In this study, we assess the role of PLK1 in SAC maintenance. We find that in nocodazole-arrested U2OS cells, PLK1 activity is continuously required for maintaining Aurora B protein localisation and activity at kinetochores. Consistent with published data we find that upon PLK1 inhibition, phosphoThr3-H3, a marker of Haspin activity, is reduced. Intriguingly, Aurora B inhibition causes PLK1 to relocalise from kinetochores into fewer and much larger foci, possibly due to incomplete recruitment of outer kinetochore proteins. Importantly, PLK1 inhibition, together with partial inhibition of Aurora B, allows efficient SAC override to occur. This phenotype is more pronounced than the phenotype observed by combining the same PLK1 inhibitors with partial MPS1 inhibition. We also find that PLK1 inhibition does not obviously cooperate with Haspin inhibition to promote SAC override. These results indicate that PLK1 is directly involved in maintaining efficient SAC signalling, possibly by cooperating in a positive feedback loop with Aurora B, and that partially redundant mechanisms exist which reinforce the SAC.
Collapse
Affiliation(s)
- Aisling O'Connor
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Stefano Maffini
- Max-Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Dortmund 44227, Germany
| | - Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Agnieszka Kaczmarczyk
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - David Gaboriau
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Andrea Musacchio
- Max-Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Dortmund 44227, Germany Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, Essen 45141, Germany
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
93
|
Fischer M, Quaas M, Nickel A, Engeland K. Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex. Oncotarget 2015; 6:41402-17. [PMID: 26595675 PMCID: PMC4747163 DOI: 10.18632/oncotarget.6356] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is central to cell cycle control by downregulation of cell cycle-promoting genes upon cell stress such as DNA damage. Survivin (BIRC5), CDC25C, and PLK1 encode important cell cycle regulators that are repressed following p53 activation. Here, we provide evidence that p53-dependent repression of these genes requires activation of p21 (CDKN1A, WAF1, CIP1). Chromatin immunoprecipitation (ChIP) data indicate that promoter binding of B-MYB switches to binding of E2F4 and p130 resulting in a replacement of the MMB (Myb-MuvB) by the DREAM complex. We demonstrate that this replacement depends on p21. Furthermore, transcriptional repression by p53 requires intact DREAM binding sites in the target promoters. The CDE and CHR cell cycle promoter elements are the sites for DREAM binding. These elements as well as the p53 response of Survivin, CDC25C, and PLK1 are evolutionarily conserved. No binding of p53 to these genes is detected by ChIP and mutation of proposed p53 binding sites does not alter the p53 response. Thus, a mechanism for direct p53-dependent transcriptional repression is not supported by the data. In contrast, repression by DREAM is consistent with most previous findings and unifies models based on p21-, E2F4-, p130-, and CDE/CHR-dependent repression by p53. In conclusion, the presented data suggest that the p53-p21-DREAM-CDE/CHR pathway regulates p53-dependent repression of Survivin, CDC25C, and PLK1.
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana–Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marianne Quaas
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Annina Nickel
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| |
Collapse
|
94
|
Ramkumar P, Lee CM, Moradian A, Sweredoski MJ, Hess S, Sharrocks AD, Haines DS, Reddy EP. JNK-associated Leucine Zipper Protein Functions as a Docking Platform for Polo-like Kinase 1 and Regulation of the Associating Transcription Factor Forkhead Box Protein K1. J Biol Chem 2015; 290:29617-28. [PMID: 26468278 PMCID: PMC4705960 DOI: 10.1074/jbc.m115.664649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/04/2015] [Indexed: 11/06/2022] Open
Abstract
JLP (JNK-associated leucine zipper protein) is a scaffolding protein that interacts with various signaling proteins associated with coordinated regulation of cellular process such as endocytosis, motility, neurite outgrowth, cell proliferation, and apoptosis. Here we identified PLK1 (Polo-like kinase 1) as a novel interaction partner of JLP through mass spectrometric approaches. Our results indicate that JLP is phospho-primed by PLK1 on Thr-351, which is recognized by the Polo box domain of PLK1 leading to phosphorylation of JLP at additional sites. Stable isotope labeling by amino acids in cell culture and quantitative LC-MS/MS analysis was performed to identify PLK1-dependent JLP-interacting proteins. Treatment of cells with the PLK1 kinase inhibitor BI2536 suppressed binding of the Forkhead box protein K1 (FOXK1) transcriptional repressor to JLP. JLP was found to interact with PLK1 and FOXK1 during mitosis. Moreover, knockdown of PLK1 affected the interaction between JLP and FOXK1. FOXK1 is a known transcriptional repressor of the CDK inhibitor p21/WAF1, and knockdown of JLP resulted in increased FOXK1 protein levels and a reduction of p21 transcript levels. Our results suggest a novel mechanism by which FOXK1 protein levels and activity are regulated by associating with JLP and PLK1.
Collapse
Affiliation(s)
- Poornima Ramkumar
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Clement M Lee
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Annie Moradian
- the Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, and
| | - Michael J Sweredoski
- the Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, and
| | - Sonja Hess
- the Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, and
| | - Andrew D Sharrocks
- the Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Dale S Haines
- the Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19122
| | - E Premkumar Reddy
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
95
|
Lee KS, Burke TR, Park JE, Bang JK, Lee E. Recent Advances and New Strategies in Targeting Plk1 for Anticancer Therapy. Trends Pharmacol Sci 2015; 36:858-877. [PMID: 26478211 PMCID: PMC4684765 DOI: 10.1016/j.tips.2015.08.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022]
Abstract
Polo-like kinase 1 (Plk1) plays key roles in regulating mitotic processes that are crucial for cellular proliferation. Overexpression of Plk1 is tightly associated with the development of particular cancers in humans, and a large body of evidence suggests that Plk1 is an attractive target for anticancer therapeutic development. Drugs targeting Plk1 can potentially be directed at two distinct sites: the N-terminal catalytic kinase domain (KD), which phosphorylates substrates, and the C-terminal polo-box domain (PBD) which is essential for protein-protein interactions. In this review we summarize recent advances and new challenges in the development of Plk1 inhibitors targeting these two domains. We also discuss novel strategies for designing and developing next-generation inhibitors to effectively treat Plk1-associated human disorders.
Collapse
Affiliation(s)
- Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeong K Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, 804-1, Yangcheong Ri, Ochang, Chungbuk, Cheongwon 363-883, Republic of Korea
| | - Eunhye Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
96
|
Palmisiano ND, Kasner MT. Polo-like kinase and its inhibitors: Ready for the match to start? Am J Hematol 2015; 90:1071-6. [PMID: 26294255 DOI: 10.1002/ajh.24177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 08/06/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022]
Abstract
Polo-like kinases (Plks) plays a central role in the normal cell cycle and their upregulation has been shown to play a role in the pathogenesis of multiple human cancers. Preclinical work demonstrates that targeting Plk has a significant impact on the treatment of both solid and hematologic malignancies in vitro and in vivo. We review here the basic science and clinical work to date with the Plks as well as future directions with this novel class of mitotic inhibitors.
Collapse
|
97
|
Mori Y, Inoue Y, Tanaka S, Doda S, Yamanaka S, Fukuchi H, Terada Y. Cep169, a Novel Microtubule Plus-End-Tracking Centrosomal Protein, Binds to CDK5RAP2 and Regulates Microtubule Stability. PLoS One 2015; 10:e0140968. [PMID: 26485573 PMCID: PMC4613824 DOI: 10.1371/journal.pone.0140968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022] Open
Abstract
The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs). Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM) around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding–deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2.
Collapse
Affiliation(s)
- Yusuke Mori
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Yoko Inoue
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Sayori Tanaka
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Satoka Doda
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Shota Yamanaka
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Hiroki Fukuchi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Yasuhiko Terada
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
- * E-mail:
| |
Collapse
|
98
|
Kumar S, Kim J. PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:705745. [PMID: 26557691 PMCID: PMC4628734 DOI: 10.1155/2015/705745] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 11/18/2022]
Abstract
Mitotic kinases are the key components of the cell cycle machinery and play vital roles in cell cycle progression. PLK-1 (Polo-like kinase-1) is a crucial mitotic protein kinase that plays an essential role in both the onset of G2/M transition and cytokinesis. The overexpression of PLK-1 is strongly correlated with a wide spectrum of human cancers and poor prognosis. The (si)RNA-mediated depletion of PLK-1 arrests tumor growth and triggers apoptosis in cancer cells without affecting normal cells. Therefore, PLK-1 has been selected as an attractive anticancer therapeutic drug target. Some small molecules have been discovered to target the catalytic and noncatalytic domains of PLK-1. These domains regulate the catalytic activation and subcellular localization of PLK-1. However, while PLK-1 inhibitors block tumor growth, they have been shown to cause severe adverse complications, such as toxicity, neutropenia, and bone marrow suppression during clinical trials, due to a lack of selectivity and specificity within the human kinome. To minimize these toxicities, inhibitors should be tested against all protein kinases in vivo and in vitro to enhance selectivity and specificity against targets. Here, we discuss the potency and selectivity of PLK-1-targeted inhibitors and their molecular interactions with PLK-1 domains.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-do 200-702, Republic of Korea
| |
Collapse
|
99
|
Park JE, Kim TS, Meng L, Bang JK, Kim BY, Lee KS. Putting a bit into the polo-box domain of polo-like kinase 1. J Anal Sci Technol 2015; 6:27. [PMID: 26500787 PMCID: PMC4610673 DOI: 10.1186/s40543-015-0069-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/27/2015] [Indexed: 01/11/2023] Open
Abstract
Polo-like kinase 1 (Plk1) plays key roles in regulating various mitotic processes that are critical for cellular proliferation. A growing body of evidence suggests that Plk1 overexpression is tightly associated with the development of human cancers. Interestingly, various types of cancer cells are shown to be addicted to a high level of Plk1, and the reversal of Plk1 addiction appears to be an effective strategy for selectively killing cancer cells, but not normal cells. Therefore, Plk1 is considered an attractive anticancer drug target. Over the years, a large number of inhibitors that target the catalytic activity of Plk1 have been developed. However, these inhibitors exhibit significant levels of cross-reactivity with related kinases, including Plk2 and Plk3. Consequently, as an alternative approach for developing anti-Plk1 therapeutics, substantial effort is under way to develop inhibitors that target the C-terminal protein–protein interaction domain of Plk1, called the polo-box domain (PBD). In this communication, I will discuss the pros and cons of targeting the PBD in comparison to those of targeting the ATP-binding site within the kinase domain.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892 USA
| | - Tae-Sung Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892 USA
| | - Lingjun Meng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892 USA
| | - Jeong K Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, 804-1, Yangcheong Ri, Ochang, 363-883 Chungbuk Republic of Korea
| | - Bo Y Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, 363-883 Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892 USA
| |
Collapse
|
100
|
Archambault V, Lépine G, Kachaner D. Understanding the Polo Kinase machine. Oncogene 2015; 34:4799-807. [PMID: 25619835 DOI: 10.1038/onc.2014.451] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/26/2022]
Abstract
The Polo Kinase is a central regulator of cell division required for several events of mitosis and cytokinesis. In addition to a kinase domain (KD), Polo-like kinases (Plks) comprise a Polo-Box domain (PBD), which mediates protein interactions with targets and regulators of Plks. In all organisms that contain Plks, one Plk family member fulfills several essential functions in the regulation of cell division, and here we refer to this conserved protein as Polo Kinase (Plk1 in humans). The PBD and the KD are capable of both cooperation and mutual inhibition in their functions. Crystal structures of the PBD, the KD and, recently, a PBD-KD complex have helped understanding the inner workings of the Polo Kinase. In parallel, an impressive array of molecular mechanisms has been found to mediate the regulation of the protein. Moreover, the targeting of Polo Kinase in the development of anti-cancer drugs has yielded several molecules with which to chemically modulate Polo Kinase to study its biological functions. Here we review our current understanding of the protein function and regulation of Polo Kinase as a fascinating molecular device in control of cell division.
Collapse
Affiliation(s)
- V Archambault
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - G Lépine
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - D Kachaner
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|