51
|
Universal Immunohistochemistry for Lynch Syndrome: A Systematic Review and Meta-analysis of 58,580 Colorectal Carcinomas. Clin Gastroenterol Hepatol 2022; 20:e496-e507. [PMID: 33887476 DOI: 10.1016/j.cgh.2021.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Lynch syndrome is a form of hereditary colorectal cancer (CRC) caused by pathogenic germline variants (PV) in DNA mismatch repair (MMR) genes. Currently, many Western countries perform universal immunohistochemistry testing on CRC to increase the identification of Lynch syndrome patients and their relatives. For a clear understanding of health benefits and costs, data on its outcomes are required: proportions of Lynch syndrome, sporadic MMR-deficient (MMRd) cases, and unexplained MMRd cases. METHODS Ovid Medline, Embase, and Cochrane CENTRAL were searched for studies reporting on universal MMR immunohistochemistry, followed by MMR germline analysis, until March 20, 2020. Proportions were calculated, subgroup analyses were performed based on age and diagnostics used, and random effects meta-analyses were conducted. Quality was assessed using the Joanna Briggs Critical Appraisal Tool for Prevalence Studies. RESULTS Of 2723 identified articles, 56 studies covering 58,580 CRCs were included. In 6.22% (95% CI, 5.08%-7.61%; I2 = 96%) MMRd was identified. MMR germline PV was present in 2.00% (95% CI, 1.59%-2.50%; I2 = 92%), ranging from 1.80% to 7.27% based on completeness of diagnostics and age restriction. Immunohistochemistry outcomes were missing in 11.81%, and germline testing was performed in 76.30% of eligible patients. In 7 studies, including 6848 CRCs completing all diagnostic stages, germline PV and biallelic somatic MMR inactivation were found in 3.01% and 1.75%, respectively; 0.61% remained unexplained MMRd. CONCLUSIONS Age, completeness, and type of diagnostics affect the percentage of MMR PV and unexplained MMRd percentages. Complete diagnostics explain almost all MMRd CRCs, reducing the amount of subsequent multigene panel testing. This contributes to optimizing testing and surveillance in MMRd CRC patients and relatives.
Collapse
|
52
|
Bleijenberg AGC, IJspeert JEG, Mulder JBG, Drillenburg P, Stel HV, Lodder EM, Carvalho B, Jansen J, Meijer G, van Eeden S, Dekker E, van Noesel CJM. The earliest events in BRAF-mutant colorectal cancer: exome sequencing of sessile serrated lesions with a tiny focus dysplasia or cancer reveals recurring mutations in two distinct progression pathways. J Pathol 2022; 257:239-249. [PMID: 35143042 PMCID: PMC9314978 DOI: 10.1002/path.5881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022]
Abstract
Around 15–30% of colorectal cancers (CRC) develop from sessile serrated lesions (SSLs). After many years of indolent growth, SSLs can develop dysplasia and rapidly progress to CRC through events that are only partially understood. We studied molecular events at the very early stages of progression of SSLs via the MLH1‐proficient and deficient pathways to CRC. We collected a cohort of rare SSLs with a small focus (<10 mm) of dysplasia or cancer from the pathology archives of three hospitals. Whole‐exome sequencing was performed on DNA from nonprogressed and progressed components of each SSL. Putative somatic driver mutations were identified in known cancer genes that were differentially mutated in the progressed component. All analyses were stratified by MLH1 proficiency. Forty‐five lesions with a focus dysplasia or cancer were included, of which 22 (49%) were MLH1‐deficient. Lesions had a median diameter of 10 mm (interquartile range [IQR] 8–15), while the progressed component had a median diameter of 3.5 mm (IQR 1.75–4.75). Tumor mutational burden (TMB) was high in MLH1‐deficient lesions (23.9 mutations per MB) as compared to MLH1‐proficient lesions (6.3 mutations per MB). We identified 34 recurrently mutated genes in MLH1‐deficient lesions. Most prominently, ACVR2A and RNF43 were affected in 18/22 lesions, with mutations clustered in three hotspots. Most lesions with RNF43 mutations had concurrent mutations in ZNRF3. In MLH1‐proficient lesions APC (10/23 lesions) and TP53 (6/23 lesions) were recurrently mutated. Our results show that the mutational burden is exceptionally high even in the earliest MLH1‐deficient lesions. We demonstrate that hotspot mutations in ACVR2A and in the RNF43/ZNRF3 complex are extremely common in the early progression of SSLs along the MLH1‐deficient serrated pathway, while APC and TP53 mutations are early events in the the MLH1‐proficient pathway. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Arne G C Bleijenberg
- Amsterdam University Medical Centers, location AMC, Department of Gastroenterology and Hepatology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Joep E G IJspeert
- Amsterdam University Medical Centers, location AMC, Department of Gastroenterology and Hepatology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Jos B G Mulder
- Amsterdam University Medical Centers, location AMC, Department of Pathology, University of Amsterdam, the Netherlands
| | - Paul Drillenburg
- Onze Lieve Vrouwen Gasthuis (OLVG), Department of Pathology, Amsterdam, the Netherlands
| | - Herbert V Stel
- Tergooi Ziekenhuizen, Department of Pathology, Hilversum, the Netherlands
| | - Elisabeth M Lodder
- Amsterdam University Medical Centers, Core Facility Genomics, Department of Clinical Genetics, University of Amsterdam, Amsterdam, the Netherlands
| | - Beatriz Carvalho
- Netherlands Cancer Institute, Department of Pathology, Amsterdam, the Netherlands
| | - Jade Jansen
- Amsterdam University Medical Centers, location AMC, Department of Pathology, University of Amsterdam, the Netherlands
| | - Gerrit Meijer
- Netherlands Cancer Institute, Department of Pathology, Amsterdam, the Netherlands
| | - Susanne van Eeden
- Amsterdam University Medical Centers, location AMC, Department of Pathology, University of Amsterdam, the Netherlands
| | - Evelien Dekker
- Amsterdam University Medical Centers, location AMC, Department of Gastroenterology and Hepatology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Amsterdam University Medical Centers, location AMC, Department of Pathology, University of Amsterdam, the Netherlands
| |
Collapse
|
53
|
Ros J, Saoudi N, Salvà F, Baraibar I, Alonso G, Tabernero J, Elez E. Ongoing and evolving clinical trials enhancing future colorectal cancer treatment strategies. Expert Opin Investig Drugs 2022; 31:235-247. [PMID: 35133234 DOI: 10.1080/13543784.2022.2040016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Molecular profiling has led to significantly longer survival in metastatic colorectal cancer (CRC) patients. Clinical guidelines recommend testing for KRAS/NRAS, BRAF and MSI status and over the last few years several promising new biomarkers have also been identified. Circulating tumor DNA has reshaped the prognosis of localized CRC. These genomic findings can guide treatment management to improve clinical outcomes. AREAS COVERED Preclinical and clinical data over the last decade were reviewed for known and novel biomarkers with clinical implications in refractory and metastatic CRC. In the localized stage, al clinical trials involving new approaches such as liquid biopsy or neoadjuvant immunotherapy are also discussed. Molecular alterations and targeted agents are described, and data from completed and ongoing studies with targeted therapy and immunotherapies are presented. EXPERT OPINION The implementation of liquid biopsies in the localized CRC setting has reshaped management of this disease. The expanded use of biomarkers to guide the treatment of patients with CRC has revealed a level of complexity arising from interactions between different biomarkers. Prevalence of most established targetable biomarkers is low, however the number of identified biomarkers in CRC is increasing. Thus, metastatic CRC may ultimately be considered an umbrella diagnosis encompassing numerous rare disease subtypes.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Precision Medicine, Medical Oncology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Campania, Italy
| | - Nadia Saoudi
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Francesc Salvà
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Guzman Alonso
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
54
|
The Current State of Chromatin Immunoprecipitation (ChIP) from FFPE Tissues. Int J Mol Sci 2022; 23:ijms23031103. [PMID: 35163027 PMCID: PMC8834906 DOI: 10.3390/ijms23031103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer cells accumulate epigenomic aberrations that contribute to cancer initiation and progression by altering both the genomic stability and the expression of genes. The awareness of such alterations could improve our understanding of cancer dynamics and the identification of new therapeutic strategies and biomarkers to refine tumor classification and treatment. Formalin fixation and paraffin embedding (FFPE) is the gold standard to preserve both tissue integrity and organization, and, in the last decades, a huge number of biological samples have been archived all over the world following this procedure. Recently, new chromatin immunoprecipitation (ChIP) techniques have been developed to allow the analysis of histone post-translational modifications (PTMs) and transcription factor (TF) distribution in FFPE tissues. The application of ChIP to genome-wide chromatin studies using real archival samples represents an unprecedented opportunity to conduct retrospective clinical studies thanks to the possibility of accessing large cohorts of samples and their associated diagnostic records. However, although recent attempts to standardize have been made, fixation and storage conditions of clinical specimens are still extremely variable and can affect the success of chromatin studies. The procedures introduced in the last few years dealt with this problem proponing successful strategies to obtain high-resolution ChIP profiles from FFPE archival samples. In this review, we compare the different FFPE-ChIP techniques, highlighting their strengths, limitations, common features, and peculiarities, as well as pitfalls and caveats related to ChIP studies in FFPE samples, in order to facilitate their application.
Collapse
|
55
|
Igarashi K, Nishizawa H, Matsumoto M. Iron in Cancer Progression: Does BACH1 Promote Metastasis by Altering Iron Homeostasis? Subcell Biochem 2022; 100:67-80. [PMID: 36301491 DOI: 10.1007/978-3-031-07634-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The transcription factor BACH1, which is regulated by direct binding of prosthetic group heme, promotes epithelial-mesenchymal transition (EMT) and drives metastasis of diverse types of cancer cells. De-regulated target genes of BACH1 in cancer cells include those for glycolysis, oxidative phosphorylation, epithelial cell adhesion, and mesodermal cell motility. In addition, the canonical target genes of BACH1 include genes for the regulation of iron homeostasis. Importantly, cancer cells are addicted to iron. We summarize known functions of BACH1 in cancer and discuss how BACH1 may affect iron homeostasis in cancer cells to support their progression by increasing mobile iron within cells. The dependency on BACH1 for cancer progression may also confer upon cancer cells susceptibility to iron-dependent cell death ferroptosis. Finally, we discuss that the human transcription factors provide research opportunities for better understanding of cancer cell properties.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
56
|
Jiang P, Li F, Liu Z, Hao S, Gao J, Li S. BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression. Respir Res 2021; 22:320. [PMID: 34949193 PMCID: PMC8697453 DOI: 10.1186/s12931-021-01918-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Growing evidence suggests that cancer stem cells (CSCs) are responsible for cancer initiation in tumors. Bach1 has been identified to contribute to several tumor progression, including lung cancer. The role of Bach1 in CSCs remains poorly known. Therefore, the function of Bach1 on lung CSCs was focused currently. METHODS The expression of Bach1, CD133, CD44, Sox2, Nanog and Oct4 mRNA was assessed using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). Protein expression of Bach1, CD133, CD44, Sox2, Nanog, Oct4, p53, BCL2, BAX, p-p38, p-AKT1, c-Fos and c-Jun protein was analyzed by western blotting. 5-ethynyl-29-deoxyuridine (EdU), colony formation, Flow cytometry analysis and transwell invasion assay were carried out to analyze lung cancer cell proliferation, apoptosis and invasion respectively. Tumor sphere formation assay was utilized to evaluate spheroid capacity. Flow cytometry analysis was carried out to isolate CD133 or CD44 positive lung cancer cells. The relationship between Bach1 and CD44 was verified using ChIP-qPCR and dual-luciferase reporter assay. Xenograft tumor tissues were collected for hematoxylin and eosin (HE) staining and IHC analysis to evaluate histology and Ki-67. RESULTS The ratio of CD44 + CSCs from A549 and SPC-A1 cells were significantly enriched. Tumor growth of CD44 + CSCs was obviously suppressed in vivo compared to CD44- CSCs. Bach1 expression was obviously increased in CD44 + CSCs. Then, via using the in vitro experiment, it was observed that CSCs proliferation and invasion were greatly reduced by the down-regulation of Bach1 while cell apoptosis was triggered by knockdown of Bach1. Loss of Bach1 was able to repress tumor-sphere formation and tumor-initiating CSC markers. A repression of CSCs growth and metastasis of shRNA-Bach1 was confirmed using xenograft models and caudal vein injection. The direct interaction between Bach1 and CD44 was confirmed by ChIP-qPCR and dual-luciferase reporter assay. Furthermore, mitogen-activated protein kinases (MAPK) signaling pathway was selected and we proved the effects of Bach1 on lung CSCs were associated with the activation of the MAPK pathway. As manifested, loss of Bach1 was able to repress p-p38, p-AKT1, c-Fos, c-Jun protein levels in lung CSCs. Inhibition of MAPK signaling remarkably restrained lung CSCs growth and CSCs properties induced by Bach1 overexpression. CONCLUSION In summary, we imply that Bach1 demonstrates great potential for the treatment of lung cancer metastasis and recurrence via activating CD44 and MPAK signaling.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Fan Li
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| |
Collapse
|
57
|
Yen YT, Chien M, Wu PY, Ho CC, Ho CT, Huang KCY, Chiang SF, Chao KSC, Chen WTL, Hung SC. Protein phosphatase 2A inactivation induces microsatellite instability, neoantigen production and immune response. Nat Commun 2021; 12:7297. [PMID: 34911954 PMCID: PMC8674339 DOI: 10.1038/s41467-021-27620-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Microsatellite-instable (MSI), a predictive biomarker for immune checkpoint blockade (ICB) response, is caused by mismatch repair deficiency (MMRd) that occurs through genetic or epigenetic silencing of MMR genes. Here, we report a mechanism of MMRd and demonstrate that protein phosphatase 2A (PP2A) deletion or inactivation converts cold microsatellite-stable (MSS) into MSI tumours through two orthogonal pathways: (i) by increasing retinoblastoma protein phosphorylation that leads to E2F and DNMT3A/3B expression with subsequent DNA methylation, and (ii) by increasing histone deacetylase (HDAC)2 phosphorylation that subsequently decreases H3K9ac levels and histone acetylation, which induces epigenetic silencing of MLH1. In mouse models of MSS and MSI colorectal cancers, triple-negative breast cancer and pancreatic cancer, PP2A inhibition triggers neoantigen production, cytotoxic T cell infiltration and ICB sensitization. Human cancer cell lines and tissue array effectively confirm these signaling pathways. These data indicate the dual involvement of PP2A inactivation in silencing MLH1 and inducing MSI.
Collapse
Affiliation(s)
- Yu-Ting Yen
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - May Chien
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Pei-Yi Wu
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Chi-Chang Ho
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Chun-Te Ho
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Kevin Chih-Yang Huang
- grid.254145.30000 0001 0083 6092Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402 Taiwan
| | - Shu-Fen Chiang
- grid.254145.30000 0001 0083 6092Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, Taiwan 40402 ROC ,grid.454740.6Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055 Taiwan
| | - K. S. Clifford Chao
- grid.254145.30000 0001 0083 6092Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, Taiwan 40402 ROC
| | - William Tzu-Liang Chen
- grid.254145.30000 0001 0083 6092Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302 Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan. .,Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402, Taiwan. .,Department of Orthopaedics, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
58
|
Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M, Gowher H. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer 2021; 3:zcab045. [PMID: 34870206 PMCID: PMC8634572 DOI: 10.1093/narcan/zcab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns. Consequently, the acquired gene expression may increase the proliferative potential of cells, often concomitant with loss of cell identity as found in cancer. Aberrant DNA methylation, including hypermethylation and hypomethylation at various genomic regions, therefore, is a hallmark of most cancers. Additionally, somatic mutations in DNMTs that affect catalytic activity were mapped in Acute Myeloid Leukemia cancer cells. Despite being very effective in some cancers, the clinically approved DNMT inhibitors lack specificity, which could result in a wide range of deleterious effects. Elucidating distinct molecular mechanisms of DNMTs will facilitate the discovery of alternative cancer therapeutic targets. This review is focused on: (i) the structure and characteristics of DNMTs, (ii) the prevalence of mutations and abnormal expression of DNMTs in cancer, (iii) factors that mediate their abnormal expression and (iv) the effect of anomalous DNMT-complexes in cancer.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
59
|
Somatic Hypomethylation of Pericentromeric SST1 Repeats and Tetraploidization in Human Colorectal Cancer Cells. Cancers (Basel) 2021; 13:cancers13215353. [PMID: 34771515 PMCID: PMC8582499 DOI: 10.3390/cancers13215353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Somatic DNA hypomethylation and aneuploidy are hallmarks of cancer, and there is evidence for a causal relationship between them in knockout mice but not in human cancer. The non-mobile pericentromeric repetitive elements SST1 are hypomethylated in about 17% of human colorectal cancers (CRC) with some 5-7% exhibiting strong age-independent demethylation. We studied the frequency of genome doubling, a common event in solid tumors linked to aneuploidy, in randomly selected single cell clones of near-diploid LS174T human CRC cells differing in their level of SST1 demethylation. Near-diploid LS174T cells underwent frequent genome-doubling events generating near-tetraploid clones with lower levels of SST1 methylation. In primary CRC, strong SST1 hypomethylation was significantly associated with global genomic hypomethylation and mutations in TP53. This work uncovers the association of the naturally occurring demethylation of the SST1 pericentromeric repeat with the onset of spontaneous tetraploidization in human CRC cells in culture and with TP53 mutations in primary CRCs. Altogether, our findings provide further support for an oncogenic pathway linking somatic hypomethylation and genetic copy number alterations in a subset of human CRC.
Collapse
|
60
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
61
|
Chen X, Lu Y, Yu H, Du K, Zhang Y, Nan Y, Huang Q. Pan-cancer analysis indicates that MYBL2 is associated with the prognosis and immunotherapy of multiple cancers as an oncogene. Cell Cycle 2021; 20:2291-2308. [PMID: 34585645 DOI: 10.1080/15384101.2021.1982494] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MYBL2 has been demonstrated to be an oncogene in some cancers, but there is no pan-cancer analysis at the macro level. We used multiple online or offline bioinformatic tools to examine the effects of MYBL2 in human cancers. We first identified that MYBL2 was highly expressed and related to the stage and grade of most cancers. The results of survival analysis from two databases showed that high MYBL2 expression was positively correlated with a poor prognosis for most cancer patients. We observed a significant difference in the promoter methylation level of MYBL2 in cancers such as colon adenocarcinoma and liver hepatocellular carcinoma versus normal controls. We found that MYBL2 can affect the tumor immune microenvironment by influencing the immune infiltration level and expression level of CD4+ T cells, CD8+ T cells, cancer-associated fibroblasts (CAFs) and immune checkpoint-associated cells. Functional enrichment analysis of MYBL2 identified that MYBL2 can play a crucial role in cancers by regulating spliceosomes, DNA replication and the cell cycle. Moreover, we verified the function of MYBL2 in three cancer cells of glioma, breast cancers and liver cancers, and the results showed that MYBL2 can regulate the cell cycle and proliferation ability of cancers.
Collapse
Affiliation(s)
- Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Hao Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Kangjie Du
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
62
|
Xiang L, Zeng Q, Liu J, Xiao M, He D, Zhang Q, Xie D, Deng M, Zhu Y, Liu Y, Bo H, Liu X, Zhou M, Xiong W, Zhou Y, Zhou J, Li X, Cao K. MAFG-AS1/MAFG positive feedback loop contributes to cisplatin resistance in bladder urothelial carcinoma through antagonistic ferroptosis. Sci Bull (Beijing) 2021; 66:1773-1788. [PMID: 36654385 DOI: 10.1016/j.scib.2021.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 02/03/2023]
Abstract
Though promoting ferroptosis can reduce cisplatin resistance in tumor cells, ferroptosis and cisplatin resistance in bladder urothelial carcinoma (BUC) following long non-coding RNAs (lncRNAs) is largely unknown. Here, we found the highly expressed lncRNA MAF transcription factor G antisense RNA 1 (MAFG-AS1) in BUC, and its inhibition increased the sensitivity of BUC cells to cisplatin by promoting ferroptosis. Mechanically, binding to iron chaperone poly(rC)-binding protein 2 (PCBP2) facilitated the recruitments of MAFG-AS1 to deubiquitinase ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5), thus stabilizing PCBP2 protein itself. Then PCBP2 was confirmed to interact with ferroportin 1 (FPN1), an iron export protein, leading to inhibition of ferroptosis. Moreover, the expression of MAFG-AS1 was regulated by the transcriptional factor MAFG. Interestingly, MAFG-AS1 stimulated MAFG transcription by recruiting histone acetyltransferase p300 (EP300) to promote the histone 3 at lysine 27 (H3K27ac) at genomic locus of MAFG, forming a MAFG-AS1/MAFG positive feedback loop. In patient samples, higher expression of MAFG-AS1 and MAFG in BUC tissues was significantly correlated with T status and N status, such that MAFG-AS1, MAFG, and the combination of the two were independent prognostic indicators and chemotherapy sensitivity predictive biomarkers for BUC patients. These findings suggest that inhibition of MAFG-AS1 and MAFG can increase the sensitivity of BUC cells to cisplatin through promoting ferroptosis, indicating the novel chemotherapy sensitivity biomarkers and therapeutic target for BUC.
Collapse
Affiliation(s)
- Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Qun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Xie
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Minhua Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yan Liu
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hao Bo
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410083, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ming Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Wei Xiong
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Yanhong Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xiaohui Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, China; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
63
|
Ratti M, Grizzi G, Passalacqua R, Lampis A, Cereatti F, Grassia R, Hahne JC. NTRK fusions in colorectal cancer: clinical meaning and future perspective. Expert Opin Ther Targets 2021; 25:677-683. [PMID: 34488530 DOI: 10.1080/14728222.2021.1978070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Despite the efforts of the scientific community, the prognosis of metastatic colorectal cancer (mCRC) remains poor. Actionable gene fusions such as Neurotrophic Tropomyosin Receptor Kinases (NTRK) rearrangements are rare but might represent a new target to improve outcomes in this setting. The first-generation TRK inhibitors, larotrectinib and entrectinib, have demonstrated efficacy and safety in mCRC cancer patients exhibiting NTRK pathogenic fusions. Moreover, second-generation molecules are emerging, able to overcome the acquired resistance to NTRK blocking. AREAS COVERED This review aims to report the current knowledge and the available evidence on NTRK fusion in mCRC, with a focus on molecular bases, clinical characteristics, prognostic meaning, and new therapeutic approaches, from the perspective of the clinical oncologist. EXPERT OPINION Considering the limited options associated with the treatment of mCRC patients, the possibility of identifying new molecular biomarkers is an urgent clinical need. The availability of new molecular targets and the combinations of different agents might represent the true breakthrough point, allowing for change in the clinical course of colorectal cancer patients.
Collapse
Affiliation(s)
- Margherita Ratti
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Giulia Grizzi
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Rodolfo Passalacqua
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Fabrizio Cereatti
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Roberto Grassia
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
64
|
Beech C, Hechtman JF. Molecular Approach to Colorectal Carcinoma: Current Evidence and Clinical Application. Surg Pathol Clin 2021; 14:429-441. [PMID: 34373094 DOI: 10.1016/j.path.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Colorectal carcinoma is one of the most common cancer types in men and women, responsible for both the third highest incidence of new cancer cases and the third highest cause of cancer deaths. In the last several decades, the molecular mechanisms surrounding colorectal carcinoma's tumorigenesis have become clearer through research, providing new avenues for diagnostic testing and novel approaches to therapeutics. Laboratories are tasked with providing the most current information to help guide clinical decisions. In this review, we summarize the current knowledge surrounding colorectal carcinoma tumorigenesis and highlight clinically relevant molecular testing.
Collapse
Affiliation(s)
- Cameron Beech
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Jaclyn F Hechtman
- Molecular and GI Pathologist, NeoGenomics Laboratories, Fort Myers, FL, USA.
| |
Collapse
|
65
|
Orjuela S, Parker HR, Sajibu S, Cereatti F, Sauter M, Buffoli F, Robinson MD, Marra G. Disentangling tumorigenesis-associated DNA methylation changes in colorectal tissues from those associated with ageing. Epigenetics 2021; 17:677-694. [PMID: 34369258 DOI: 10.1080/15592294.2021.1952375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Physiological ageing and tumorigenesis are both associated with epigenomic alterations in human tissue cells, the most extensively investigated of which entails de novo cytosine methylation (i.e., hypermethylation) within the CpG dinucleotides of CpG islands. Genomic regions that become hypermethylated during tumorigenesis are generally believed to overlap regions that acquire methylation in normal tissues as an effect of ageing. To define the extension of this overlap, we analysed the DNA methylomes of 48 large-bowel tissue samples taken from women of different ages during screening colonoscopy: 18 paired samples of normal and lesional tissues from donors harbouring a precancerous lesion and 12 samples of normal mucosa from tumour-free donors. Each sample was subjected to targeted, genome-wide bisulphite sequencing of ~2.5% of the genome, including all CpG islands. In terms of both its magnitude and extension along the chromatin, tumour-associated DNA hypermethylation in these regions was much more conspicuous than that observed in the normal mucosal samples from older (vs. younger) tumour-free donors. 83% of the ageing-associated hypermethylated regions (n = 2501) coincided with hypermethylated regions observed in tumour samples. However, 86% of the regions displaying hypermethylation in precancerous lesions (n = 16,772) showed no methylation changes in the ageing normal mucosa. The tumour-specificity of this latter hypermethylation was validated using published sets of data on DNA methylation in normal and neoplastic colon tissues. This extensive set of genomic regions displaying tumour-specific hypermethylation represents a rich vein of putative biomarkers for the early, non-invasive detection of colorectal tumours in women of all ages.
Collapse
Affiliation(s)
- Stephany Orjuela
- Institute of Molecular Cancer Research, University of Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Switzerland
| | - Hannah R Parker
- Institute of Molecular Cancer Research, University of Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Switzerland
| | - Sija Sajibu
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | | | - Matthias Sauter
- Division of Gastroenterology, Triemli Hospital Zurich, Switzerland
| | | | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| |
Collapse
|
66
|
Igarashi K, Nishizawa H, Saiki Y, Matsumoto M. The transcription factor BACH1 at the crossroads of cancer biology: From epithelial-mesenchymal transition to ferroptosis. J Biol Chem 2021; 297:101032. [PMID: 34339740 PMCID: PMC8387770 DOI: 10.1016/j.jbc.2021.101032] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer involves not only the gradual evolution of cells by mutations in DNA but also alterations in the gene expression induced by those mutations and input from the surrounding microenvironment. Such alterations contribute to cancer cells' abilities to reprogram metabolic pathways and undergo epithelial-to-mesenchymal transition (EMT), which facilitate the survival of cancer cells and their metastasis to other organs. Recently, BTB and CNC homology 1 (BACH1), a heme-regulated transcription factor that represses genes involved in iron and heme metabolism in normal cells, was shown to shape the metabolism and metastatic potential of cancer cells. The growing list of BACH1 target genes in cancer cells reveals that BACH1 promotes metastasis by regulating various sets of genes beyond iron metabolism. BACH1 represses the expression of genes that mediate cell–cell adhesion and oxidative phosphorylation but activates the expression of genes required for glycolysis, cell motility, and matrix protein degradation. Furthermore, BACH1 represses FOXA1 gene encoding an activator of epithelial genes and activates SNAI2 encoding a repressor of epithelial genes, forming a feedforward loop of EMT. By synthesizing these observations, we propose a “two-faced BACH1 model”, which accounts for the dynamic switching between metastasis and stress resistance along with cancer progression. We discuss here the possibility that BACH1-mediated promotion of cancer also brings increased sensitivity to iron-dependent cell death (ferroptosis) through crosstalk of BACH1 target genes, imposing programmed vulnerability upon cancer cells. We also discuss the future directions of this field, including the dynamics and plasticity of EMT.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
67
|
An Y, Zhou J, Lin G, Wu H, Cong L, Li Y, Qiu X, Shi W. Clinicopathological and Molecular Characteristics of Colorectal Signet Ring Cell Carcinoma: A Review. Pathol Oncol Res 2021; 27:1609859. [PMID: 34381313 PMCID: PMC8351516 DOI: 10.3389/pore.2021.1609859] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
Colorectal signet ring cell carcinoma (SRCC) is a rare subtype of colorectal cancer (CRC) with unique characteristics. Due to the limited researches on it, a comprehensive and in-depth understanding of this subtype is still lacking. In this article, we summarize the clinicopathological features and molecular characteristics of colorectal SRCC based on a literature review. Clinically, SRCC has been associated with young age, proximal site preference, advanced tumor stage, high histological grade, high rate of lymph node involvement, frequent peritoneal metastasis, and a significantly poor prognosis. Regarding molecular characteristics, in SRCC, the mutation burden of the classic signaling pathways that include WNT/β-catenin, RAS/RAF/MAPK, and PI3K/AKT/mTOR signaling pathways are generally reduced. In contrast, some genes related to the “epithelial-mesenchymal transition (EMT) process” and the “stem cell properties”, including RNF43, CDH1, and SMAD4, as well as the related TGF-β signaling pathway have been observed more frequently altered in SRCC than in conventional adenocarcinoma (AC). In many studies but not in others, SRCC showed a higher frequency of BRAF mutation, microsatellite instability-high (MSI-H) and CpG island methylator phenotype (CIMP) positive status compared to AC. It has been proposed that colorectal SRCC consists of two subtypes, in which the MSI+/CIMP+/BRAF+/CD3+/PD-L1+ hypermethylated genotype is more common in the proximal colon, and may represent the potential candidate for immunotherapy. Understanding the special molecular mechanisms related to the aggressive biology of SRCC is of great importance, which may provide a theoretical basis for the development of more targeted and effective treatments for this refractory disease.
Collapse
Affiliation(s)
- Yang An
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaolin Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guole Lin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyuan Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weikun Shi
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
68
|
Chan DKH, Buczacki SJA. Tumour heterogeneity and evolutionary dynamics in colorectal cancer. Oncogenesis 2021; 10:53. [PMID: 34272358 PMCID: PMC8285471 DOI: 10.1038/s41389-021-00342-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) has a global burden of disease. Our current understanding of CRC has progressed from initial discoveries which focused on the stepwise accumulation of key driver mutations, as encapsulated in the Vogelstein model, to one in which marked heterogeneity leads to a complex interplay between clonal populations. Current evidence suggests that an initial explosion, or “Big Bang”, of genetic diversity is followed by a period of neutral dynamics. A thorough understanding of this interplay between clonal populations during neutral evolution gives insights into the roles in which driver genes may participate in the progress from normal colonic epithelium to adenoma and carcinoma. Recent advances have focused not only on genetics, transcriptomics, and proteomics but have also investigated the ecological and evolutionary processes which transform normal cells into cancer. This review first describes the role which driver mutations play in the Vogelstein model and subsequently demonstrates the evidence which supports a more complex model. This article also aims to underscore the significance of tumour heterogeneity and diverse clonal populations in cancer progression.
Collapse
Affiliation(s)
- Dedrick Kok Hong Chan
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | | |
Collapse
|
69
|
Vera O, Bok I, Jasani N, Nakamura K, Xu X, Mecozzi N, Angarita A, Wang K, Tsai KY, Karreth FA. A MAPK/miR-29 Axis Suppresses Melanoma by Targeting MAFG and MYBL2. Cancers (Basel) 2021; 13:1408. [PMID: 33808771 PMCID: PMC8003541 DOI: 10.3390/cancers13061408] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
The miR-29 family of microRNAs is encoded by two clusters, miR-29b1~a and miR-29b2~c, and is regulated by several oncogenic and tumor suppressive stimuli. While in vitro evidence suggests a tumor suppressor role for miR-29 in melanoma, the mechanisms underlying its deregulation and contribution to melanomagenesis have remained elusive. Using various in vitro systems, we show that oncogenic MAPK signaling paradoxically stimulates transcription of pri-miR-29b1~a and pri-miR-29b2~c, the latter in a p53-dependent manner. Expression analyses in melanocytes, melanoma cells, nevi, and primary melanoma revealed that pri-miR-29b2~c levels decrease during melanoma progression. Inactivation of miR-29 in vivo with a miRNA sponge in a rapid melanoma mouse model resulted in accelerated tumor development and decreased overall survival, verifying tumor suppressive potential of miR-29 in melanoma. Through integrated RNA sequencing, target prediction, and functional assays, we identified the transcription factors MAFG and MYBL2 as bona fide miR-29 targets in melanoma. Our findings suggest that attenuation of miR-29b2~c expression promotes melanoma development, at least in part, by derepressing MAFG and MYBL2.
Collapse
Affiliation(s)
- Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Koji Nakamura
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Nicol Mecozzi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Ariana Angarita
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
| | - Kaizhen Wang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology and Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (O.V.); (I.B.); (N.J.); (K.N.); (X.X.); (N.M.); (A.A.); (K.W.)
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
70
|
Shan HJ, Zhu LQ, Yao C, Zhang ZQ, Liu YY, Jiang Q, Zhou XZ, Wang XD, Cao C. MAFG-driven osteosarcoma cell progression is inhibited by a novel miRNA miR-4660. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:385-402. [PMID: 33868783 PMCID: PMC8039776 DOI: 10.1016/j.omtn.2021.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in the adolescent population. MAFG (v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G) forms a heterodimer with Nrf2 (NF-E2-related factor 2), binding to antioxidant response element (ARE), which is required for Nrf2 signaling activation. We found that MAFG mRNA and protein expression is significantly elevated in human OS tissues as well as in established and primary human OS cells. In human OS cells, MAGF silencing or knockout (KO) largely inhibited OS cell growth, proliferation, and migration, simultaneously inducing oxidative injury and apoptosis activation. Conversely, ectopic overexpression of MAFG augmented OS cell progression in vitro. MicroRNA-4660 (miR-4660) directly binds the 3′ untranslated region (UTR) of MAFG mRNA in the cytoplasm of OS cells. MAFG 3′ UTR luciferase activity and expression as well as OS cell growth were largely inhibited with forced miR-4660 overexpression but augmented with miR-4660 inhibition. In vivo, MAGF short hairpin RNA (shRNA) or forced overexpression of miR-4660 inhibited subcutaneous OS xenograft growth in severe combined immunodeficient mice. Furthermore, MAFG silencing or miR-4660 overexpression inhibited OS xenograft in situ growth in proximal tibia of the nude mice. In summary, MAFG overexpression-driven OS cell progression is inhibited by miR-4660. The miR-4660-MAFG axis could be novel therapeutic target for human OS.
Collapse
Affiliation(s)
- Hua-Jian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215003, China
| | - Lun-Qing Zhu
- Department of Pediatric Orthopedics, The Children's Hospital of Soochow University, Suzhou 215100, China
| | - Chen Yao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Zhi-Qing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yuan-Yuan Liu
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215003, China
| | - Xiao-Dong Wang
- Department of Pediatric Orthopedics, The Children's Hospital of Soochow University, Suzhou 215100, China
| | - Cong Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
71
|
A Novel Therapeutic Target, BACH1, Regulates Cancer Metabolism. Cells 2021; 10:cells10030634. [PMID: 33809182 PMCID: PMC8001775 DOI: 10.3390/cells10030634] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
BTB domain and CNC homology 1 (BACH1) is a transcription factor that is highly expressed in tumors including breast and lung, relative to their non-tumor tissues. BACH1 is known to regulate multiple physiological processes including heme homeostasis, oxidative stress response, senescence, cell cycle, and mitosis. In a tumor, BACH1 promotes invasion and metastasis of cancer cells, and the expression of BACH1 presents a poor outcome for cancer patients including breast and lung cancer patients. Recent studies identified novel functional roles of BACH1 in the regulation of metabolic pathways in cancer cells. BACH1 inhibits mitochondrial metabolism through transcriptional suppression of mitochondrial membrane genes. In addition, BACH1 suppresses activity of pyruvate dehydrogenase (PDH), a key enzyme that converts pyruvate to acetyl-CoA for the citric acid (TCA) cycle through transcriptional activation of pyruvate dehydrogenase kinase (PDK). Moreover, BACH1 increases glucose uptake and lactate secretion through the expression of metabolic enzymes involved such as hexokinase 2 (HK2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for aerobic glycolysis. Pharmacological or genetic inhibition of BACH1 could reprogram by increasing mitochondrial metabolism, subsequently rendering metabolic vulnerability of cancer cells against mitochondrial respiratory inhibition. Furthermore, inhibition of BACH1 decreased antioxidant-induced glycolysis rates as well as reduced migration and invasion of cancer cells, suggesting BACH1 as a potentially useful cancer therapeutic target.
Collapse
|
72
|
Ros J, Baraibar I, Sardo E, Mulet N, Salvà F, Argilés G, Martini G, Ciardiello D, Cuadra JL, Tabernero J, Élez E. BRAF, MEK and EGFR inhibition as treatment strategies in BRAF V600E metastatic colorectal cancer. Ther Adv Med Oncol 2021; 13:1758835921992974. [PMID: 33747149 PMCID: PMC7903827 DOI: 10.1177/1758835921992974] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION BRAF driver mutations are found in up to 15% of patients with colorectal cancer (CRC) and lead to constitutive activation of BRAF kinase and sustained RAS/RAF/MEK/ERK pathway signaling. BRAF mutations define a sub-population characterized by a poor prognosis and dismal median survival. Following successful outcomes with BRAF inhibition in BRAF mutant metastatic melanoma, this approach was evaluated in metastatic colorectal cancer (mCRC). The development and combination of targeted therapies against multiple signaling pathways has proved particularly successful, with improved survival and response rates. AREAS COVERED This review addresses the development of therapeutic strategies with inhibitors targeting MAPK/ERK and EGFR signaling in BRAF V600E mutated mCRC, focusing on encorafenib, binimetinib and cetuximab. A pharmacological and clinical review of these drugs and the therapeutic approaches behind their optimization are presented. EXPERT OPINION Exploiting knowledge of the mechanisms of resistance to BRAF inhibitors has been crucial to developing effective therapeutic strategies in BRAF-V600E mutant mCRC. The BEACON trial is a successful example of this approach, using encorafenib and cetuximab with or without binimetinib in patients with previously treated BRAF V600E mutant mCRC, showing an impressive improvement in clinical outcomes and tolerable toxicity compared with chemotherapy, establishing a new standard of care in this setting.
Collapse
Affiliation(s)
- Javier Ros
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, Barcelona, Catalunya 08035, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Iosune Baraibar
- Department of Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Catalunya, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Emilia Sardo
- Department of Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Catalunya, Spain
| | - Nuria Mulet
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Institut Catala d’ Oncologia, Barcelona, Spain
| | - Francesc Salvà
- Department of Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Catalunya, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Guillem Argilés
- Department of Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Catalunya, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Giulia Martini
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Caserta, Campania, Italy
| | - Davide Ciardiello
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Caserta, Campania, Italy
| | | | - Josep Tabernero
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, UVic-UCC, Passeig Vall d’Hebron, Barcelona, Spain
| | - Elena Élez
- Department of Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Catalunya, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
73
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Long non-coding RNAs: the tentacles of chromatin remodeler complexes. Cell Mol Life Sci 2021; 78:1139-1161. [PMID: 33001247 PMCID: PMC11072783 DOI: 10.1007/s00018-020-03646-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
Abstract
Chromatin remodeler complexes regulate gene transcription, DNA replication and DNA repair by changing both nucleosome position and post-translational modifications. The chromatin remodeler complexes are categorized into four families: the SWI/SNF, INO80/SWR1, ISWI and CHD family. In this review, we describe the subunits of these chromatin remodeler complexes, in particular, the recently identified members of the ISWI family and novelties of the CHD family. Long non-coding (lnc) RNAs regulate gene expression through different epigenetic mechanisms, including interaction with chromatin remodelers. For example, interaction of lncBRM with BRM inhibits the SWI/SNF complex associated with a differentiated phenotype and favors assembly of a stem cell-related SWI/SNF complex. Today, over 50 lncRNAs have been shown to affect chromatin remodeler complexes and we here discuss the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Neve
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France.
| | - Nicolas Jonckheere
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Audrey Vincent
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Isabelle Van Seuningen
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| |
Collapse
|
74
|
Masalmeh RHA, Taglini F, Rubio-Ramon C, Musialik KI, Higham J, Davidson-Smith H, Kafetzopoulos I, Pawlicka KP, Finan HM, Clark R, Wills J, Finch AJ, Murphy L, Sproul D. De novo DNA methyltransferase activity in colorectal cancer is directed towards H3K36me3 marked CpG islands. Nat Commun 2021; 12:694. [PMID: 33514701 PMCID: PMC7846778 DOI: 10.1038/s41467-020-20716-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.
Collapse
Affiliation(s)
| | - Francesca Taglini
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Cristina Rubio-Ramon
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila I Musialik
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Jonathan Higham
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Ioannis Kafetzopoulos
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila P Pawlicka
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Hannah M Finan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Jimi Wills
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Andrew J Finch
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK.
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
75
|
Satorres C, García-Campos M, Bustamante-Balén M. Molecular Features of the Serrated Pathway to Colorectal Cancer: Current Knowledge and Future Directions. Gut Liver 2021; 15:31-43. [PMID: 32340435 PMCID: PMC7817929 DOI: 10.5009/gnl19402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
Serrated lesions are the precursor lesions of a new model of colorectal carcinogenesis. From a molecular standpoint, the serrated pathway is thought to be responsible for up to 30% of all colorectal cancer cases. The three major processes of this molecular mechanism are alterations in the mitogen-activated protein kinase pathway, production of the CpG island methylation phenotype, and generation of microsatellite instability. Other contributing processes are activation of WNT, alterations in the regulation of tumor suppressor genes, and alterations in microRNAs or in MUC5AC hypomethylation. Although alterations in the serrated pathway also contribute, their precise roles remain obscure because of the various methodologies and definitions used by different research groups. This knowledge gap affects clinical assessment of precursor lesions for their carcinogenic risk. The present review describes the current literature reporting the molecular mechanisms underlying each type of serrated lesion and each phenotype of serrated pathway colorectal cancer, identifying those areas that merit additional research. We also propose a unified serrated carcinogenesis pathway combining molecular alterations and types of serrated lesions, which ends in different serrated pathway colorectal cancer phenotypes depending on the route followed. Finally, we describe some key issues that need to be addressed in order to incorporate the newest technologies in serrated pathway research and to improve overall knowledge for developing specific prevention strategies and new therapeutic targets.
Collapse
Affiliation(s)
- Carla Satorres
- Gastrointestinal Endoscopy Research Group, La Fe Health Research Institute, Valencia, Spain
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain
| | - María García-Campos
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain
| | - Marco Bustamante-Balén
- Gastrointestinal Endoscopy Research Group, La Fe Health Research Institute, Valencia, Spain
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain
| |
Collapse
|
76
|
Wang R, Chen M, Ye X, Poon K. Role and potential clinical utility of ARID1A in gastrointestinal malignancy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108360. [PMID: 34083049 DOI: 10.1016/j.mrrev.2020.108360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
ARID1A (AT-rich interactive domain 1A) is a newly discovered tumor suppressor gene, and its encoded product is an important component of the SWI/SNF chromatin remodeling complex. ARID1A plays an important role in cell proliferation, invasion and metastasis, apoptosis, cell cycle regulation, epithelial mesenchymal transition, and the regulation of other of biological behaviors. Recently, ARID1A mutations have been increasingly reported in esophageal adenocarcinoma, gastric cancer, colorectal cancer, hepatocellular carcinoma, cholangiocarcinoma, pancreatic cancer, and other malignant tumors of the digestive system. This article reviews the relationship between ARID1A mutation and the molecular mechanisms of carcinogenesis, including microsatellite instability and the PI3K/ATK signaling pathway, and relates these mechanisms to the prognostic assessment of digestive malignancy. Further, this review describes the potential for molecular pathologic epidemiology (MPE) to provide new insights into environment-tumor-host interactions.
Collapse
Affiliation(s)
- Ruihua Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong Province, China.
| | - Mei Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong Province, China.
| | - Xiaojun Ye
- Program of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519085, Guangdong Province, China.
| | - Karen Poon
- Program of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519085, Guangdong Province, China.
| |
Collapse
|
77
|
Zhong S, Xue J, Cao JJ, Sun B, Sun QF, Bian LG, Hu LY, Pan SJ. The therapeutic value of XL388 in human glioma cells. Aging (Albany NY) 2020; 12:22550-22563. [PMID: 33159013 PMCID: PMC7746352 DOI: 10.18632/aging.103791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 11/25/2022]
Abstract
XL388 is a highly efficient and orally-available ATP-competitive PI3K-mTOR dual inhibitor. Its activity against glioma cells was studied here. In established and primary human glioma cells, XL388 potently inhibited cell survival and proliferation as well as cell migration, invasion and cell cycle progression. The dual inhibitor induced significant apoptosis activation in glioma cells. In A172 cells and primary human glioma cells, XL388 inhibited Akt-mTORC1/2 activation by blocking phosphorylation of Akt and S6K1. XL388-induced glioma cell death was only partially attenuated by a constitutively-active mutant Akt1. Furthermore, it was cytotoxic against Akt1-knockout A172 glioma cells. XL388 downregulated MAF bZIP transcription factor G (MAFG) and inhibited Nrf2 signaling, causing oxidative injury in glioma cells. Conversely, antioxidants, n-acetylcysteine, pyrrolidine dithiocarbamate and AGI-106, alleviated XL388-induced cytotoxicity and apoptosis in glioma cells. Oral administration of XL388 inhibited subcutaneous A172 xenograft growth in severe combined immunodeficient mice. Akt-S6K1 inhibition and MAFG downregulation were detected in XL388-treated A172 xenograft tissues. Collectively, XL388 efficiently inhibits human glioma cell growth, through Akt-mTOR-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Shan Zhong
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jun Xue
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jiao-Jiao Cao
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qing-Fang Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Liu-Guan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Liang-Yun Hu
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Si-Jian Pan
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
78
|
Buikhuisen JY, Torang A, Medema JP. Exploring and modelling colon cancer inter-tumour heterogeneity: opportunities and challenges. Oncogenesis 2020; 9:66. [PMID: 32647253 PMCID: PMC7347540 DOI: 10.1038/s41389-020-00250-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Colon cancer inter-tumour heterogeneity is installed on multiple levels, ranging from (epi)genetic driver events to signalling pathway rewiring reflected by differential gene expression patterns. Although the existence of heterogeneity in colon cancer has been recognised for a longer period of time, it is sparingly incorporated as a determining factor in current clinical practice. Here we describe how unsupervised gene expression-based classification efforts, amongst which the consensus molecular subtypes (CMS), can stratify patients in biological subgroups associated with distinct disease outcome and responses to therapy. We will discuss what is needed to extend these subtyping efforts to the clinic and we will argue that preclinical models recapitulate CMS subtypes and can be of vital use to increase our understanding of treatment response and resistance and to discover novel targets for therapy.
Collapse
Affiliation(s)
- Joyce Y Buikhuisen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Arezo Torang
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Oncode Institute, Amsterdam, The Netherlands.
| |
Collapse
|
79
|
Russell H, Kedzierska K, Buchanan DD, Thomas R, Tham E, Mints M, Keränen A, Giles GG, Southey MC, Milne RL, Tomlinson I, Church D, Spurdle AB, O'Mara TA, Lewis A. The MLH1 polymorphism rs1800734 and risk of endometrial cancer with microsatellite instability. Clin Epigenetics 2020; 12:102. [PMID: 32641106 PMCID: PMC7346630 DOI: 10.1186/s13148-020-00889-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Both colorectal (CRC, 15%) and endometrial cancers (EC, 30%) exhibit microsatellite instability (MSI) due to MLH1 hypermethylation and silencing. The MLH1 promoter polymorphism, rs1800734 is associated with MSI CRC risk, increased methylation and reduced MLH1 expression. In EC samples, we investigated rs1800734 risk using MSI and MSS cases and controls. We found no evidence that rs1800734 or other MLH1 SNPs were associated with the risk of MSI EC. We found the rs1800734 risk allele had no effect on MLH1 methylation or expression in ECs. We propose that MLH1 hypermethylation occurs by different mechanisms in CRC and EC.
Collapse
Affiliation(s)
- Holly Russell
- Cancer Gene Regulation Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Katarzyna Kedzierska
- Cancer Genomics and Immunology Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, 3010, Australia
| | - Rachael Thomas
- Cancer Gene Regulation Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Miriam Mints
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Anne Keränen
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
| | - Melissa C Southey
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
| | - Ian Tomlinson
- Cancer Genetics and Evolution Laboratory, Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - David Church
- Cancer Genomics and Immunology Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, QLD, Brisbane, 4006, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, QLD, Brisbane, 4006, Australia
| | - Annabelle Lewis
- Cancer Gene Regulation Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
80
|
Kim JH, Kang GH. Evolving pathologic concepts of serrated lesions of the colorectum. J Pathol Transl Med 2020; 54:276-289. [PMID: 32580537 PMCID: PMC7385269 DOI: 10.4132/jptm.2020.04.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we provide an up-to-date review of the histopathology and molecular pathology of serrated colorectal lesions. First, we introduce the updated contents of the 2019 World Health Organization classification for serrated lesions. The sessile serrated lesion (SSL) is a new diagnostic terminology that replaces sessile serrated adenoma and sessile serrated polyp. The diagnostic criteria for SSL were revised to require only one unequivocal distorted serrated crypt, which is sufficient for diagnosis. Unclassified serrated adenomas have been included as a new category of serrated lesions. Second, we review ongoing issues concerning the morphology of serrated lesions. Minor morphologic variants with distinct molecular features were recently defined, including serrated tubulovillous adenoma, mucin-rich variant of traditional serrated adenoma (TSA), and superficially serrated adenoma. In addition to intestinal dysplasia and serrated dysplasia, minimal deviation dysplasia and not otherwise specified dysplasia were newly suggested as dysplasia subtypes of SSLs. Third, we summarize the molecular features of serrated lesions. The critical determinant of CpG island methylation development in SSLs is patient age. Interestingly, there may be ethnic differences in BRAF/KRAS mutation frequencies in SSLs. The molecular pathogenesis of TSAs is divided into KRAS and BRAF mutation pathways. SSLs with MLH1 methylation can progress into favorable prognostic microsatellite instability-positive (MSI+)/CpG island methylator phenotype-positive (CIMP+) carcinomas, whereas MLH1-unmethylated SSLs and BRAF-mutated TSAs can be precursors of poor-prognostic MSI-/CIMP+ carcinomas. Finally, based on our recent data, we propose an algorithm for stratifying risk subgroups of non-dysplastic SSLs.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
81
|
Baraibar I, Ros J, Mulet N, Salvà F, Argilés G, Martini G, Cuadra JL, Sardo E, Ciardiello D, Tabernero J, Élez E. Incorporating traditional and emerging biomarkers in the clinical management of metastatic colorectal cancer: an update. Expert Rev Mol Diagn 2020; 20:653-664. [PMID: 32552041 DOI: 10.1080/14737159.2020.1782194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Molecular profiling has led to significantly longer survival in metastatic colorectal cancer (mCRC) patients. Clinical guidelines recommend testing for KRAS/NRAS, BRAF and MSI status, and new biomarkers such as HER2 amplification and NTRK fusions have emerged more recently in refractory CRC, supported by overwhelming clinical relevance. These biomarkers can guide treatment management to improve clinical outcomes in these patients. AREAS COVERED Preclinical and clinical data over the last decade were reviewed for known and novel biomarkers with clinical implications in refractory CRC. Molecular alterations are described for classic and novel biomarkers, and data for completed and ongoing studies with targeted and immunotherapies are presented. EXPERT OPINION Use of targeted therapies based on biomarker testing in CRC has enabled impressive improvements in clinical outcomes in refractory patients. BRAF, MSI, NRAS and KRAS should be tested upfront in all patients given their indisputable therapeutic implications. Other molecular alterations such as HER2 and NTRK are emerging. Testing for these alterations may further improve outcomes for refractory CRC patients. Nonetheless, many key aspects remain to be defined including the optimal timing and technique for testing, the most adequate panel, and whether all patients should be tested for all alterations.
Collapse
Affiliation(s)
- Iosune Baraibar
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Javier Ros
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Nuria Mulet
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain.,Department of Medical Oncology, Institut Català D' oncologia-IDIBELL , Barcelona, Spain
| | - Francesc Salvà
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Guillem Argilés
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Giulia Martini
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain.,Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania Luigi Vanvitelli , Naples, Italy
| | | | - Emilia Sardo
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain
| | - Davide Ciardiello
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain.,Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania Luigi Vanvitelli , Naples, Italy
| | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Elena Élez
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| |
Collapse
|
82
|
Vaňková B, Vaněček T, Ptáková N, Hájková V, Dušek M, Michal M, Švajdler P, Daum O, Daumová M, Michal M, Mezencev R, Švajdler M. Targeted next generation sequencing of MLH1-deficient, MLH1 promoter hypermethylated, and BRAF/RAS-wild-type colorectal adenocarcinomas is effective in detecting tumors with actionable oncogenic gene fusions. Genes Chromosomes Cancer 2020; 59:562-568. [PMID: 32427409 DOI: 10.1002/gcc.22861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Oncogenic gene fusions represent attractive targets for therapy of cancer. However, the frequency of actionable genomic rearrangements in colorectal cancer (CRC) is very low, and universal screening for these alterations seems to be impractical and costly. To address this problem, several large scale studies retrospectivelly showed that CRC with gene fusions are highly enriched in groups of tumors defined by MLH1 DNA mismatch repair protein deficiency (MLH1d), and hypermethylation of MLH1 promoter (MLH1ph), and/or the presence of microsatellite instability, and BRAF/KRAS wild-type status (BRAFwt/KRASwt). In this study, we used targeted next generation sequencing (NGS) to explore the occurence of potentially therapeutically targetable gene fusions in an unselected series of BRAFwt/KRASwt CRC cases that displayed MLH1d/MLH1ph. From the initially identified group of 173 MLH1d CRC cases, 141 cases (81.5%) displayed MLH1ph. BRAFwt/RASwt genotype was confirmed in 23 of 141 (~16%) of MLH1d/MLH1ph cases. Targeted NGS of these 23 cases identified oncogenic gene fusions in nine patients (39.1%; CI95: 20.5%-61.2%). Detected fusions involved NTRK (four cases), ALK (two cases), and BRAF genes (three cases). As a secondary outcome of NGS testing, we identified PIK3K-AKT-mTOR pathway alterations in two CRC cases, which displayed PIK3CA mutation. Altogether, 11 of 23 (~48%) MLH1d/MLH1ph/BRAFwt/RASwt tumors showed genetic alterations that could induce resistance to anti-EGFR therapy. Our study confirms that targeted NGS of MLH1d/MLH1ph and BRAFwt/RASwt CRCs could be a cost-effective strategy in detecting patients with potentially druggable oncogenic kinase fusions.
Collapse
Affiliation(s)
- Bohuslava Vaňková
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Tomáš Vaněček
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Nikola Ptáková
- Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Martin Dušek
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Michael Michal
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Ondřej Daum
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Magdaléna Daumová
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Michal Michal
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| |
Collapse
|
83
|
García-Guede Á, Vera O, Ibáñez-de-Caceres I. When Oxidative Stress Meets Epigenetics: Implications in Cancer Development. Antioxidants (Basel) 2020; 9:antiox9060468. [PMID: 32492865 PMCID: PMC7346131 DOI: 10.3390/antiox9060468] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide and it can affect any part of the organism. It arises as a consequence of the genetic and epigenetic changes that lead to the uncontrolled growth of the cells. The epigenetic machinery can regulate gene expression without altering the DNA sequence, and it comprises methylation of the DNA, histones modifications, and non-coding RNAs. Alterations of these gene-expression regulatory elements can be produced by an imbalance of the intracellular environment, such as the one derived by oxidative stress, to promote cancer development, progression, and resistance to chemotherapeutic treatments. Here we review the current literature on the effect of oxidative stress in the epigenetic machinery, especially over the largely unknown ncRNAs and its consequences toward cancer development and progression.
Collapse
Affiliation(s)
- Álvaro García-Guede
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| | - Inmaculada Ibáñez-de-Caceres
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
84
|
Elshaer M, ElManawy AI, Hammad A, Namani A, Wang XJ, Tang X. Integrated data analysis reveals significant associations of KEAP1 mutations with DNA methylation alterations in lung adenocarcinomas. Aging (Albany NY) 2020; 12:7183-7206. [PMID: 32327612 PMCID: PMC7202502 DOI: 10.18632/aging.103068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/29/2020] [Indexed: 12/17/2022]
Abstract
KEAP1 regulates the cytoprotection induced by NRF2 and has been reported to be a candidate tumor suppressor. Recent evidence has shown that mutations in several driver genes cause aberrant DNA methylation patterns, a hallmark of cancer. However, the correlation between KEAP1 mutations and DNA methylation in lung cancer has still not been investigated. In this study, we systematically carried out an integrated multi-omics analysis to explore the correlation between KEAP1 mutations and DNA methylation and its effect on gene expression in lung adenocarcinoma (LUAD). We found that most of the DNA aberrations associated with KEAP1 mutations in LAUD were hypomethylation. Surprisingly, we found several NRF2-regulated genes among the genes that showed differential DNA methylation. Moreover, we identified an 8-gene signature with altered DNA methylation pattern and elevated gene expression levels in LUAD patients with mutated KEAP1, and evaluated the prognostic value of this signature in various clinical datasets. These results establish that KEAP1 mutations are associated with DNA methylation changes capable of shaping regulatory network functions. Combining both epigenomic and transcriptomic changes along with KEAP1 mutations may provide a better understanding of the molecular mechanisms associated with the progression of lung cancer and may help to provide better therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Ahmed Islam ElManawy
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Akhileshwar Namani
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| |
Collapse
|
85
|
Yeh SJ, Chen SW, Chen BS. Investigation of the Genome-Wide Genetic and Epigenetic Networks for Drug Discovery Based on Systems Biology Approaches in Colorectal Cancer. Front Genet 2020; 11:117. [PMID: 32211020 PMCID: PMC7068214 DOI: 10.3389/fgene.2020.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. The mechanisms leading to the progression of CRC are involved in both genetic and epigenetic regulations. In this study, we applied systems biology methods to identify potential biomarkers and conduct drug discovery in a computational approach. Using big database mining, we constructed a candidate protein-protein interaction network and a candidate gene regulatory network, combining them into a genome-wide genetic and epigenetic network (GWGEN). With the assistance of system identification and model selection approaches, we obtain real GWGENs for early-stage, mid-stage, and late-stage CRC. Subsequently, we extracted core GWGENs for each stage of CRC from their real GWGENs through a principal network projection method, and projected them to the Kyoto Encyclopedia of Genes and Genomes pathways for further analysis. Finally, we compared these core pathways resulting in different molecular mechanisms in each stage of CRC and identified carcinogenic biomarkers for the design of multiple-molecule drugs to prevent the progression of CRC. Based on the identified gene expression signatures, we suggested potential compounds combined with known CRC drugs to prevent the progression of CRC with querying Connectivity Map (CMap).
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Shuo-Wei Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
86
|
MacKenzie DJ, Robertson NA, Rather I, Reid C, Sendzikaite G, Cruickshanks H, McBryan T, Hodges A, Pritchard C, Blyth K, Adams PD. DNMT3B Oncogenic Activity in Human Intestinal Cancer Is Not Linked to CIMP or BRAFV600E Mutation. iScience 2020; 23:100838. [PMID: 32058953 PMCID: PMC7000804 DOI: 10.1016/j.isci.2020.100838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Approximately 10% of human colorectal cancer (CRC) are associated with activated BRAFV600E mutation, typically in absence of APC mutation and often associated with a CpG island methylator (CIMP) phenotype. To protect from cancer, normal intestinal epithelial cells respond to oncogenic BRAFV600E by activation of intrinsic p53 and p16-dependent tumor suppressor mechanisms, such as cellular senescence. Conversely, CIMP is thought to contribute to bypass of these tumor suppressor mechanisms, e.g. via epigenetic silencing of tumor suppressor genes, such as p16. It has been repeatedly proposed that DNMT3B is responsible for BRAFV600E-induced CIMP in human CRC. Here we set out to test this by in silico, in vitro, and in vivo approaches. We conclude that although both BRAFV600E and DNMT3B harbor oncogenic potential in vitro and in vivo and show some evidence of cooperation in tumor promotion, they do not frequently cooperate to promote CIMP and human intestinal cancer.
Collapse
Affiliation(s)
| | - Neil A Robertson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Iqbal Rather
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Claire Reid
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Tony McBryan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Catrin Pritchard
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - Peter D Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
87
|
Li C, Wu R, Xing Y. MAFG-AS1 is a novel clinical biomarker for clinical progression and unfavorable prognosis in gastric cancer. Cell Cycle 2020; 19:601-609. [PMID: 32079456 DOI: 10.1080/15384101.2020.1728017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MAFG antisense 1 (MAFG-AS1) is recently identified as a novel lncRNA and serves as a tumor promoter in several types of human tumor. However, no prior study has been performed to evaluate the role of MAFG-AS1 in gastric cancer. In our study, we found MAFG-AS1 expression was increased in gastric cancer tissue samples compared with normal gastric mucosa tissue samples, and associated with poor overall survival in gastric cancer patients at The Cancer Genome Atlas database. Furthermore, we confirmed the clinical and prognostic significance of MAFG-AS1 in gastric cancer. We found gastric cancer tissues and cell lines had remarkably increased MAFG-AS1 expression in comparison to normal gastric mucosa tissues and normal human gastric epithelial cell line, and high MAFG-AS1 expression was positively associated with diffuse type, advanced clinical stage, extensive depth of invasion, more lymph node metastasis, and present distant metastasis in gastric cancer patients. Moreover, high MAFG-AS1 expression acted as one of the independent poor prognostic factors for overall survival in gastric cancer patients. The loss-of-function study showed knocking down MAFG-AS1 expression inhibited gastric cancer cell proliferation, migration and invasion in vitro. In conclusion, MAFG-AS1 is probable to be a valuable prognostic biomarker, and a novel potential target for gastric cancer.
Collapse
Affiliation(s)
- Chao Li
- Department of Laboratory, Shandong University Hospital, Jinan, Shandong, China
| | - Rongfang Wu
- Department of Gastroenterology, Taishan Sanatorium of Shandong Province, Tai'an, Shandong, China
| | - Youzhong Xing
- Department of Blood Transfusion, Jinan Central Hospital, Jinan, Shandong, China
| |
Collapse
|
88
|
Wheeler MA, Clark IC, Tjon EC, Li Z, Zandee SEJ, Couturier CP, Watson BR, Scalisi G, Alkwai S, Rothhammer V, Rotem A, Heyman JA, Thaploo S, Sanmarco LM, Ragoussis J, Weitz DA, Petrecca K, Moffitt JR, Becher B, Antel JP, Prat A, Quintana FJ. MAFG-driven astrocytes promote CNS inflammation. Nature 2020; 578:593-599. [PMID: 32051591 PMCID: PMC8049843 DOI: 10.1038/s41586-020-1999-0] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the CNS1. Astrocytes contribute to the pathogenesis of multiple sclerosis2, but little is known about the heterogeneity of astrocytes and its regulation. Here we report the analysis of astrocytes in multiple sclerosis and its preclinical model experimental autoimmune encephalomyelitis (EAE) by single-cell RNA sequencing in combination with cell-specific Ribotag RNA profiling, assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), genome-wide analysis of DNA methylation and in vivo CRISPR-Cas9-based genetic perturbations. We identified astrocytes in EAE and multiple sclerosis that were characterized by decreased expression of NRF2 and increased expression of MAFG, which cooperates with MAT2α to promote DNA methylation and represses antioxidant and anti-inflammatory transcriptional programs. Granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling in astrocytes drives the expression of MAFG and MAT2α and pro-inflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, multiple sclerosis. Our results identify candidate therapeutic targets in multiple sclerosis.
Collapse
Affiliation(s)
- Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Iain C Clark
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie E J Zandee
- Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Charles P Couturier
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Giulia Scalisi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Alkwai
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Assaf Rotem
- Department of Physics, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - John A Heyman
- Department of Physics, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Shravan Thaploo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - David A Weitz
- Department of Physics, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Kevin Petrecca
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Alexandre Prat
- Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
89
|
Fanelli GN, Dal Pozzo CA, Depetris I, Schirripa M, Brignola S, Biason P, Balistreri M, Dal Santo L, Lonardi S, Munari G, Loupakis F, Fassan M. The heterogeneous clinical and pathological landscapes of metastatic Braf-mutated colorectal cancer. Cancer Cell Int 2020; 20:30. [PMID: 32015690 PMCID: PMC6990491 DOI: 10.1186/s12935-020-1117-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a complex and molecularly heterogeneous disease representing one of the most frequent causes of cancer-related death worldwide. About 8-15% of CRCs harbor a mutation in BRAF gene, a proto-oncogene involved in cell proliferation, differentiation and survival through the MAPK signaling cascade. The acquisition of BRAF mutation is an early event in the "serrated" CRC carcinogenetic pathway and is associated with specific and aggressive clinico-pathological and molecular features. Despite that the presence of BRAF mutation is a well-recognized negative prognostic biomarker in metastatic CRC (mCRC), a great heterogeneity in survival outcome characterizes these patients, due to the complex, and still not completely fully elucidated, interactions between the clinical, genetic and epigenetic landscape of BRAF mutations. Because of the great aggressiveness of BRAF-mutated mCRCs, only 60% of patients can receive a second-line chemotherapy; so intensive combined and tailored first-line approach could be a potentially effective strategy, but to minimize the selective pressure of resistant clones and to reduce side effects, a better stratification of patients bearing BRAF mutations is needed.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Carlo Alberto Dal Pozzo
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Ilaria Depetris
- Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, Padua, Italy
| | - Marta Schirripa
- Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, Padua, Italy
| | - Stefano Brignola
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Paola Biason
- Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, Padua, Italy
| | - Mariangela Balistreri
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Luca Dal Santo
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, Padua, Italy
| | - Giada Munari
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
- Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, Padua, Italy
| | - Fotios Loupakis
- Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| |
Collapse
|
90
|
Nguyen LH, Goel A, Chung DC. Pathways of Colorectal Carcinogenesis. Gastroenterology 2020; 158:291-302. [PMID: 31622622 PMCID: PMC6981255 DOI: 10.1053/j.gastro.2019.08.059] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is a heterogeneous disease that develops via stepwise accumulation of well-characterized genetic and epigenetic alterations. We review the genetic changes associated with the development of precancerous colorectal adenomas and their progression to tumors, as well as the effects of defective DNA repair, chromosome instability, microsatellite instability, and alterations in the serrated pathway and DNA methylation. We provide insights into the different molecular subgroups of colorectal tumors that develop via each of these different mechanisms and their associations with patient outcomes.
Collapse
Affiliation(s)
- Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Dallas, Texas; Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas; Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Daniel C Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Center for Cancer Risk Assessment, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
91
|
Wu M, Kim YS, Ryu HS, Choi SC, Kim KY, Park WC, Kim MS, Myung JY, Choi HS, Kim EJ, Lee MY. MSI status is associated with distinct clinicopathological features in BRAF mutation colorectal cancer: A systematic review and meta-analysis. Pathol Res Pract 2019; 216:152791. [PMID: 31866097 DOI: 10.1016/j.prp.2019.152791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microsatellite stable (MSS) BRAF p.V600E mutation colorectal cancer (BRAF-CRC) has a poor prognosis, whereas microsatellite instability (MSI) in BRAF-CRC is associated with a favorable prognosis. Although usually considered a single clinical entity, the MSI BRAF-CRC subtype shows some distinct characteristics in comparison with the MSS BRAF-CRC subtype. METHODS We conducted a meta-analysis to investigate the influence of clinicopathological features on MSI status in BRAF-CRC. We searched publications up to March 2019 from PubMed, Embase, and the Cochrane Library. The effect of MSI status on outcome parameters was assessed using odds ratios (ORs) with 95% confidence intervals (CIs) and fixed- or random-effects models according to the heterogeneity. RESULTS After reviewing 2839 reports, 16 eligible studies including 1381 patients with BRAF-CRC met the criteria. The MSI BRAF-CRC subtype was associated with older age, female sex (OR = 1.70; 95% CI = 1.35-2.14; P < 0.00001), proximal tumor location (OR = 5.10; 95% CI = 3.70-7.03; P < 0.00001), early TNM stage (OR = 5.28; 95% CI = 3.93-7.09; P < 0.00001), and poor differentiation (OR = 2.29; 95% CI = 1.60-3.28; P < 0.00001). CONCLUSIONS MSI was significantly correlated with distinct favorable clinicopathological characteristics in BRAF-CRC. These results suggest that MSI status should be considered as a stratification factor for better management of the BRAF-CRC.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China; Department of Physiology, School of Medicine, Wonkwang University, Wonkwang Digestive Disease Research Institute & Institute of Wonkwang Medical Science, Iksan 54538, Republic of Korea
| | - Yong Sung Kim
- Department of Gastroenterology, Wonkwang University, School of Medicine, Wonkwang Digestive Disease Research Institute, Iksan, 54538, Republic of Korea
| | - Han-Seung Ryu
- Department of Gastroenterology, Wonkwang University, School of Medicine, Wonkwang Digestive Disease Research Institute, Iksan, 54538, Republic of Korea
| | - Suck Chei Choi
- Department of Gastroenterology, Wonkwang University, School of Medicine, Wonkwang Digestive Disease Research Institute, Iksan, 54538, Republic of Korea
| | - Keun Young Kim
- Department of General Surgery, Wonkwang University, School of Medicine, Wonkwang Digestive Disease Research Institute, Iksan 54538, Republic of Korea
| | - Won Cheol Park
- Department of General Surgery, Wonkwang University, School of Medicine, Wonkwang Digestive Disease Research Institute, Iksan 54538, Republic of Korea
| | - Min Seob Kim
- Department of Physiology, School of Medicine, Wonkwang University, Wonkwang Digestive Disease Research Institute & Institute of Wonkwang Medical Science, Iksan 54538, Republic of Korea
| | - Ji Yeon Myung
- Department of Physiology, School of Medicine, Wonkwang University, Wonkwang Digestive Disease Research Institute & Institute of Wonkwang Medical Science, Iksan 54538, Republic of Korea
| | - Hyun Seok Choi
- Department of Physiology, School of Medicine, Wonkwang University, Wonkwang Digestive Disease Research Institute & Institute of Wonkwang Medical Science, Iksan 54538, Republic of Korea
| | - Eui Joong Kim
- Department of Physiology, School of Medicine, Wonkwang University, Wonkwang Digestive Disease Research Institute & Institute of Wonkwang Medical Science, Iksan 54538, Republic of Korea
| | - Moon Young Lee
- Department of Physiology, School of Medicine, Wonkwang University, Wonkwang Digestive Disease Research Institute & Institute of Wonkwang Medical Science, Iksan 54538, Republic of Korea.
| |
Collapse
|
92
|
Noreen F, Küng T, Tornillo L, Parker H, Silva M, Weis S, Marra G, Rad R, Truninger K, Schär P. DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways. Clin Epigenetics 2019; 11:196. [PMID: 31842975 PMCID: PMC6916434 DOI: 10.1186/s13148-019-0791-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
Background Aberrations in DNA methylation are widespread in colon cancer (CC). Understanding origin and progression of DNA methylation aberrations is essential to develop effective preventive and therapeutic strategies. Here, we aimed to dissect CC subtype-specific methylation instability to understand underlying mechanisms and functions. Methods We have assessed genome-wide DNA methylation in the healthy normal colon mucosa (HNM), precursor lesions and CCs in a first comprehensive study to delineate epigenetic change along the process of colon carcinogenesis. Mechanistically, we used stable cell lines, genetically engineered mouse model of mutant BRAFV600E and molecular biology analysis to establish the role of BRAFV600E-mediated-TET inhibition in CpG-island methylator phenotype (CIMP) inititation. Results We identified two distinct patterns of CpG methylation instability, determined either by age–lifestyle (CC-neutral CpGs) or genetically (CIMP-CpGs). CC-neutral-CpGs showed age-dependent hypermethylation in HNM, all precursors, and CCs, while CIMP-CpGs showed hypermethylation specifically in sessile serrated adenomas/polyps (SSA/Ps) and CIMP-CCs. BRAFV600E-mutated CCs and precursors showed a significant downregulation of TET1 and TET2 DNA demethylases. Stable expression of BRAFV600E in nonCIMP CC cells and in a genetic mouse model was sufficient to repress TET1/TET2 and initiate hypermethylation at CIMP-CpGs, reversible by BRAFV600E inhibition. BRAFV600E-driven CIMP-CpG hypermethylation occurred at genes associated with established CC pathways, effecting functional changes otherwise achieved by genetic mutation in carcinogenesis. Conclusions Hence, while age–lifestyle-driven hypermethylation occurs generally in colon carcinogenesis, BRAFV600E-driven hypermethylation is specific for the “serrated” pathway. This knowledge will advance the use of epigenetic biomarkers to assess subgroup-specific CC risk and disease progression.
Collapse
Affiliation(s)
- Faiza Noreen
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, 4053, Basel, Switzerland
| | - Taya Küng
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Luigi Tornillo
- Institute of Pathology, University Hospital Basel, 4056, Basel, Switzerland
| | - Hannah Parker
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Miguel Silva
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Stefan Weis
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Kaspar Truninger
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland. .,Gastroenterologie Oberaargau, CH-4900, Langenthal, Switzerland.
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland.
| |
Collapse
|
93
|
Sohier P, Sanson R, Leduc M, Audebourg A, Broussard C, Salnot V, Just PA, Pasmant E, Mayeux P, Guillonneau F, Romagnolo B, Perret C, Terris B. Proteome analysis of formalin-fixed paraffin-embedded colorectal adenomas reveals the heterogeneous nature of traditional serrated adenomas compared to other colorectal adenomas. J Pathol 2019; 250:251-261. [PMID: 31729028 DOI: 10.1002/path.5366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Traditional serrated adenoma (TSA) remains the least understood of all the colorectal adenomas, although these lesions have been associated with a significant cancer risk, twice that of the conventional adenoma (CAD) and of the sessile serrated adenoma (SSA/P). This study was performed to investigate the proteomic profiles of the different colorectal adenomas to better understand the pathogenesis of TSA. We performed a global quantitative proteome analysis using the label-free quantification (LFQ) method on 44 colorectal adenoma (12 TSAs, 15 CADs, and 17 SSA/Ps) and 17 normal colonic mucosa samples, archived as formalin-fixed paraffin-embedded blocks. Unsupervised consensus hierarchical clustering applied to the whole proteomic profile of the 44 colorectal adenomas identified four subtypes: C1 and C2 were well-individualized clusters composed of all the CADs (15/15) and most of the SSA/Ps (13/17), respectively. This is consistent with the fact that CADs and SSA/Ps are homogeneous and distinct colorectal adenoma entities. In contrast, TSAs were subdivided into C3 and C4 clusters, consistent with the more heterogeneous entity of TSA at the morphologic and molecular levels. Comparison of the proteome expression profile between the adenoma subtypes and normal colonic mucosa further confirmed the heterogeneous nature of TSAs, which overlapped either on CADs or SSA/Ps, whereas CADs and SSAs formed homogeneous and distinct entities. Furthermore, we identified LEFTY1 a new potential marker for TSAs that may be relevant for the pathogenesis of TSA. LEFTY1 is an inhibitor of the Nodal/TGFβ pathway, which we found to be one of the most overexpressed proteins specifically in TSAs. This finding was confirmed by immunohistochemistry. Our study confirms that CADs and SSA/Ps form homogeneous and distinct colorectal adenoma entities, whereas TSAs are a heterogeneous entity and may arise from either SSA/Ps or from normal mucosa evolving through a process related to the CAD pathway. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Pierre Sohier
- Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre, Hôpital Cochin Department, Paris, France.,INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Romain Sanson
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marjorie Leduc
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Plateforme de Protéomique de l'Université Paris Descartes (3P5), Paris, France
| | - Anne Audebourg
- Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre, Hôpital Cochin Department, Paris, France
| | - Cédric Broussard
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Plateforme de Protéomique de l'Université Paris Descartes (3P5), Paris, France
| | - Virginie Salnot
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Plateforme de Protéomique de l'Université Paris Descartes (3P5), Paris, France
| | - Pierre-Alexandre Just
- Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre, Hôpital Cochin Department, Paris, France.,INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Eric Pasmant
- INSERM, U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Molecular Genetics, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Cochin Hospital, Paris, France
| | - Patrick Mayeux
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Plateforme de Protéomique de l'Université Paris Descartes (3P5), Paris, France
| | - François Guillonneau
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Plateforme de Protéomique de l'Université Paris Descartes (3P5), Paris, France
| | - Béatrice Romagnolo
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christine Perret
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoît Terris
- Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre, Hôpital Cochin Department, Paris, France.,INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
94
|
The molecular mechanisms of LncRNA-correlated PKM2 in cancer metabolism. Biosci Rep 2019; 39:220807. [PMID: 31654067 PMCID: PMC6851521 DOI: 10.1042/bsr20192453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Reprogrammed metabolism is an important hallmark of cancer cells. Pyruvate kinase (PK) is one of the major rate-limiting enzymes in glucose metabolism. The M2 isoform of PK (PKM2), is considered to be an important marker of metabolic reprogramming and one of the key enzymes. Recently, through the continuous development of genome-wide analysis and functional studies, accumulating evidence has demonstrated that long non-coding RNAs (LncRNAs) play vital regulatory roles in cancer progression by acting as either potential oncogenes or tumor suppressors. Furthermore, several studies have shown that up-regulation of PKM2 in cancer tissues is associated with LncRNAs expression and patient survival. Thus, scientists have begun to unveil the mechanism of LncRNA-associated PKM2 in cancer metabolic progression. Based on these novel findings, in this mini-review, we summarize the detailed molecular mechanisms of LncRNA related to PKM2 in cancer metabolism. We expect that this work will promote a better understanding of the molecular mechanisms of PKM2, and provide a profound potential for targeting PKM2 to treat tumors.
Collapse
|
95
|
Thomas R, Trapani D, Goodyer-Sait L, Tomkova M, Fernandez-Rozadilla C, Sahnane N, Woolley C, Davis H, Chegwidden L, Kriaucionis S, Maughan T, Leedham S, Palles C, Furlan D, Tomlinson I, Lewis A. The polymorphic variant rs1800734 influences methylation acquisition and allele-specific TFAP4 binding in the MLH1 promoter leading to differential mRNA expression. Sci Rep 2019; 9:13463. [PMID: 31530880 PMCID: PMC6748923 DOI: 10.1038/s41598-019-49952-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
Expression of the mismatch repair gene MutL homolog 1 (MLH1) is silenced in a clinically important subgroup of sporadic colorectal cancers. These cancers exhibit hypermutability with microsatellite instability (MSI) and differ from microsatellite-stable (MSS) colorectal cancers in both prognosis and response to therapies. Loss of MLH1 is usually due to epigenetic silencing with associated promoter methylation; coding somatic mutations rarely occur. Here we use the presence of a colorectal cancer (CRC) risk variant (rs1800734) within the MLH1 promoter to investigate the poorly understood mechanisms of MLH1 promoter methylation and loss of expression. We confirm the association of rs1800734 with MSI+ but not MSS cancer risk in our own data and by meta-analysis. Using sensitive allele-specific detection methods, we demonstrate that MLH1 is the target gene for rs1800734 mediated cancer risk. In normal colon tissue, small allele-specific differences exist only in MLH1 promoter methylation, but not gene expression. In contrast, allele-specific differences in both MLH1 methylation and expression are present in MSI+ cancers. We show that MLH1 transcriptional repression is dependent on DNA methylation and can be reversed by a methylation inhibitor. The rs1800734 allele influences the rate of methylation loss and amount of re-expression. The transcription factor TFAP4 binds to the rs1800734 region but with much weaker binding to the risk than the protective allele. TFAP4 binding is absent on both alleles when promoter methylation is present. Thus we propose that TFAP4 binding shields the protective rs1800734 allele of the MLH1 promoter from BRAF induced DNA methylation more effectively than the risk allele.
Collapse
Affiliation(s)
- Rachael Thomas
- Cancer Gene Regulation Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Davide Trapani
- Anatomic Pathology Unit, Department of Medicine and Surgery and Research Center of Hereditary and Familial Tumors, University of Insubria, Varese, 21100, Italy
| | - Lily Goodyer-Sait
- Institute of Structural and Molecular Biology, Department of, Biological Sciences, Birkbeck, London, UK
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Ceres Fernandez-Rozadilla
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica, IDIS, Santiago de Compostela, Spain
| | - Nora Sahnane
- Anatomic Pathology Unit, Department of Medicine and Surgery and Research Center of Hereditary and Familial Tumors, University of Insubria, Varese, 21100, Italy
| | - Connor Woolley
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hayley Davis
- Intestinal Stem Cell Biology Group, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Laura Chegwidden
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Timothy Maughan
- Oxford Institute of Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Simon Leedham
- Intestinal Stem Cell Biology Group, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniela Furlan
- Anatomic Pathology Unit, Department of Medicine and Surgery and Research Center of Hereditary and Familial Tumors, University of Insubria, Varese, 21100, Italy
| | - Ian Tomlinson
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Annabelle Lewis
- Cancer Gene Regulation Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
- Division of Biosciences, Department of Life Sciences, Brunel University London, Old Road Campus Research Building, Roosevelt Drive, Uxbridge, UB8 3PN, UK.
| |
Collapse
|
96
|
Amirkhah R, Naderi-Meshkin H, Shah JS, Dunne PD, Schmitz U. The Intricate Interplay between Epigenetic Events, Alternative Splicing and Noncoding RNA Deregulation in Colorectal Cancer. Cells 2019; 8:cells8080929. [PMID: 31430887 PMCID: PMC6721676 DOI: 10.3390/cells8080929] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
| | - Hojjat Naderi-Meshkin
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad 9177949367, Iran
| | - Jaynish S Shah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia.
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
97
|
The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11071017. [PMID: 31330830 PMCID: PMC6678087 DOI: 10.3390/cancers11071017] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. It includes different subtypes that differ in their clinical and prognostic features. In the past decade, in addition to the conventional adenoma-carcinoma model, an alternative multistep mechanism of carcinogenesis, namely the “serrated pathway”, has been described. Approximately, 15 to 30% of all CRCs arise from neoplastic serrated polyps, a heterogeneous group of lesions that are histologically classified into three morphologic categories: hyperplastic polyps, sessile serrated adenomas/polyps, and the traditional serrated adenomas/polyps. Serrated polyps are characterized by genetic (BRAF or KRAS mutations) and epigenetic (CpG island methylator phenotype (CIMP)) alterations that cooperate to initiate and drive malignant transformation from normal colon mucosa to polyps, and then to CRC. The high heterogeneity of the serrated lesions renders their diagnostic and pathological interpretation difficult. Hence, novel genetic and epigenetic biomarkers are required for better classification and management of CRCs. To date, several molecular alterations have been associated with the serrated polyp-CRC sequence. In addition, the gut microbiota is emerging as a contributor to/modulator of the serrated pathway. This review summarizes the state of the art of the genetic, epigenetic and microbiota signatures associated with serrated CRCs, together with their clinical implications.
Collapse
|
98
|
Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer 2019; 26:R415-R439. [PMID: 31035251 DOI: 10.1530/erc-19-0093] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.
Collapse
Affiliation(s)
- Carles Zafon
- Diabetes and Metabolism Research Unit (VHIR) and Department of Endocrinology, University Hospital Vall d'Hebron and Autonomous University of Barcelona, Barcelona, Spain
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
| | - Joan Gil
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Beatriz Pérez-González
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Mireia Jordà
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
99
|
Fonti C, Saumet A, Abi‐Khalil A, Orsetti B, Cleroux E, Bender A, Dumas M, Schmitt E, Colinge J, Jacot W, Weber M, Sardet C, du Manoir S, Theillet C. Distinct oncogenes drive different genome and epigenome alterations in human mammary epithelial cells. Int J Cancer 2019; 145:1299-1311. [DOI: 10.1002/ijc.32413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Claire Fonti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Anne Saumet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Amanda Abi‐Khalil
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Béatrice Orsetti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| | - Elouan Cleroux
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Ambre Bender
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Michael Dumas
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Emeline Schmitt
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Jacques Colinge
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - William Jacot
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| | - Michael Weber
- CNRS, University of Strasbourg, UMR 7242 Biotechnology and Cell Signaling Strasbourg France
| | - Claude Sardet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Stanislas du Manoir
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier Montpellier France
- ICM, Institut Régional du Cancer de Montpellier Montpellier France
| |
Collapse
|
100
|
Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 2019; 69:73-92. [PMID: 31028771 DOI: 10.1016/j.mam.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal carcinogenesis is a multistep process involving the accumulation of genetic alterations over time that ultimately leads to disease progression and metastasis. Binding of transcription factors to gene promoter regions alone cannot explain the complex regulation pattern of gene expression during this process. It is the chromatin structure that allows for a high grade of regulatory flexibility for gene expression. Posttranslational modifications on histone proteins such as acetylation, methylation, or phosphorylation determine the accessibility of transcription factors to DNA. DNA methylation, a chemical modification of DNA that modulates chromatin structure and gene transcription acts in concert with these chromatin conformation alterations. Another epigenetic mechanism regulating gene expression is represented by small non-coding RNAs. Only very recently epigenetic alterations have been included in molecular subtype classification of colorectal cancer (CRC). In this chapter, we will provide examples of the different epigenetic players, focus on their role for epithelial-mesenchymal transition and metastatic processes and discuss their prognostic value in CRC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, (IGTP-PMPPC), Campus Can Ruti, 08916, Badalona, Barcelona, Spain
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 22, 91054, Erlangen, Germany.
| |
Collapse
|