51
|
ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol 2021; 6:467-478. [PMID: 33727702 DOI: 10.1038/s41564-021-00884-1] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19.
Collapse
|
52
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
53
|
Saiz M, Martinez-Salas E. Uncovering targets of the Leader protease: Linking RNA-mediated pathways and antiviral defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1645. [PMID: 33605051 PMCID: PMC8244099 DOI: 10.1002/wrna.1645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
RNA viruses have developed specialized mechanisms to subvert host RNA‐binding proteins (RBPs) favoring their own gene expression. The Leader (L) protein of foot‐and‐mouth disease virus, a member of the Picornaviridae family, is a papain‐like cysteine protease that self‐cleaves from the polyprotein. Early in infection, the L protease cleaves the translation initiation factors eIF4GI and eIF4GII, inducing the shutdown of cap‐dependent translation. However, the cleavage sites on the viral polyprotein, eIF4GI, and eIF4GII differ in sequence, challenging the definition of a consensus site for L targets. Identification of Gemin5 and Daxx proteolytic products in infected cells unveiled a motif centered on the RKAR sequence. The RBP Gemin5 is a member of the survival of motor neurons complex, a ribosome interacting protein, and a translation downregulator. Likewise, the Fas‐ligand Daxx is a multifunctional adaptor that plays key roles in transcription control, apoptosis, and innate immune antiviral response. Remarkably, the cleavage site on the RNA helicases MDA5 and LGP2, two relevant immune sensors of the retinoic acid‐inducible gene‐I (RIG‐I)‐like receptors family, resembles the L target site of Gemin5 and Daxx, and similar cleavage sites have been reported in ISG15 and TBK1, two proteins involved in type I interferon response and signaling pathway, respectively. In this review we dissect the features of the L cleavage sites in essential RBPs, eventually helping in the discovery of novel L targets. This article is categorized under:RNA in Disease and Development > RNA in Disease Translation > Translation Regulation
Collapse
Affiliation(s)
- Margarita Saiz
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, Madrid, Spain
| | | |
Collapse
|
54
|
Donsbach P, Klostermeier D. Regulation of RNA helicase activity: principles and examples. Biol Chem 2021; 402:529-559. [PMID: 33583161 DOI: 10.1515/hsz-2020-0362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
RNA helicases are a ubiquitous class of enzymes involved in virtually all processes of RNA metabolism, from transcription, mRNA splicing and export, mRNA translation and RNA transport to RNA degradation. Although ATP-dependent unwinding of RNA duplexes is their hallmark reaction, not all helicases catalyze unwinding in vitro, and some in vivo functions do not depend on duplex unwinding. RNA helicases are divided into different families that share a common helicase core with a set of helicase signature motives. The core provides the active site for ATP hydrolysis, a binding site for non-sequence-specific interaction with RNA, and in many cases a basal unwinding activity. Its activity is often regulated by flanking domains, by interaction partners, or by self-association. In this review, we summarize the regulatory mechanisms that modulate the activities of the helicase core. Case studies on selected helicases with functions in translation, splicing, and RNA sensing illustrate the various modes and layers of regulation in time and space that harness the helicase core for a wide spectrum of cellular tasks.
Collapse
Affiliation(s)
- Pascal Donsbach
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| | - Dagmar Klostermeier
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| |
Collapse
|
55
|
Kato K, Ahmad S, Zhu Z, Young JM, Mu X, Park S, Malik HS, Hur S. Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases. Mol Cell 2021; 81:599-613.e8. [PMID: 33373584 PMCID: PMC8183676 DOI: 10.1016/j.molcel.2020.11.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 01/28/2023]
Abstract
RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution.
Collapse
MESH Headings
- Cryoelectron Microscopy
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- DEAD Box Protein 58/ultrastructure
- Epitopes
- Evolution, Molecular
- HEK293 Cells
- Humans
- Immunity, Innate
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Interferon-Induced Helicase, IFIH1/ultrastructure
- Models, Molecular
- Phylogeny
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/ultrastructure
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Tripartite Motif Proteins/ultrastructure
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/ultrastructure
Collapse
Affiliation(s)
- Kazuki Kato
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xin Mu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sehoon Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
56
|
Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021; 13:170. [PMID: 33498715 PMCID: PMC7912342 DOI: 10.3390/v13020170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -β) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.
Collapse
Affiliation(s)
- Hina Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
57
|
Marin-Gonzalez A, Aicart-Ramos C, Marin-Baquero M, Martín-González A, Suomalainen M, Kannan A, Vilhena JG, Greber UF, Moreno-Herrero F, Pérez R. Double-stranded RNA bending by AU-tract sequences. Nucleic Acids Res 2021; 48:12917-12928. [PMID: 33245767 PMCID: PMC7736806 DOI: 10.1093/nar/gkaa1128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Sequence-dependent structural deformations of the DNA double helix (dsDNA) have been extensively studied, where adenine tracts (A-tracts) provide a striking example for global bending in the molecule. However, in contrast to dsDNA, sequence-dependent structural features of dsRNA have received little attention. In this work, we demonstrate that the nucleotide sequence can induce a bend in a canonical Watson-Crick base-paired dsRNA helix. Using all-atom molecular dynamics simulations, we identified a sequence motif consisting of alternating adenines and uracils, or AU-tracts, that strongly bend the RNA double-helix. This finding was experimentally validated using atomic force microscopy imaging of dsRNA molecules designed to display macroscopic curvature via repetitions of phased AU-tract motifs. At the atomic level, this novel phenomenon originates from a localized compression of the dsRNA major groove and a large propeller twist at the position of the AU-tract. Moreover, the magnitude of the bending can be modulated by changing the length of the AU-tract. Altogether, our results demonstrate the possibility of modifying the dsRNA curvature by means of its nucleotide sequence, which may be exploited in the emerging field of RNA nanotechnology and might also constitute a natural mechanism for proteins to achieve recognition of specific dsRNA sequences.
Collapse
Affiliation(s)
- Alberto Marin-Gonzalez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Mikel Marin-Baquero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Abhilash Kannan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - J G Vilhena
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.,Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,IFIMAC - Condensed Matter Physics Center, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
58
|
Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020; 21:E9045. [PMID: 33260713 PMCID: PMC7730420 DOI: 10.3390/ijms21239045] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unable to adopt a unique 3D structure under physiological conditions and thus exist as highly dynamic conformational ensembles. IDPs are ubiquitous and widely spread in the protein realm. In the last decade, compelling experimental evidence has been gathered, pointing to the ability of IDPs and intrinsically disordered regions (IDRs) to undergo liquid-liquid phase separation (LLPS), a phenomenon driving the formation of membrane-less organelles (MLOs). These biological condensates play a critical role in the spatio-temporal organization of the cell, where they exert a multitude of key biological functions, ranging from transcriptional regulation and silencing to control of signal transduction networks. After introducing IDPs and LLPS, we herein survey available data on LLPS by IDPs/IDRs of viral origin and discuss their functional implications. We distinguish LLPS associated with viral replication and trafficking of viral components, from the LLPS-mediated interference of viruses with host cell functions. We discuss emerging evidence on the ability of plant virus proteins to interfere with the regulation of MLOs of the host and propose that bacteriophages can interfere with bacterial LLPS, as well. We conclude by discussing how LLPS could be targeted to treat phase separation-associated diseases, including viral infections.
Collapse
Affiliation(s)
- Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille University and CNRS, 13288 Marseille, France
| | - Vladimir Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33601, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
59
|
Zhang Z, Urban S. Interplay between Hepatitis D Virus and the Interferon Response. Viruses 2020; 12:v12111334. [PMID: 33233762 PMCID: PMC7699955 DOI: 10.3390/v12111334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, with rapid progression of liver-related diseases and high rates of development of hepatocellular carcinoma. The causative agent, hepatitis D virus (HDV), contains a small (approximately 1.7 kb) highly self-pairing single-strand circular RNA genome that assembles with the HDV antigen to form a ribonucleoprotein (RNP) complex. HDV depends on hepatitis B virus (HBV) envelope proteins for envelopment and de novo hepatocyte entry; however, its intracellular RNA replication is autonomous. In addition, HDV can amplify HBV independently through cell division. Cellular innate immune responses, mainly interferon (IFN) response, are crucial for controlling invading viruses, while viruses counteract these responses to favor their propagation. In contrast to HBV, HDV activates profound IFN response through the melanoma differentiation antigen 5 (MDA5) pathway. This cellular response efficiently suppresses cell-division-mediated HDV spread and, to some extent, early stages of HDV de novo infection, but only marginally impairs RNA replication in resting hepatocytes. In this review, we summarize the current knowledge on HDV structure, replication, and persistence and subsequently focus on the interplay between HDV and IFN response, including IFN activation, sensing, antiviral effects, and viral countermeasures. Finally, we discuss crosstalk with HBV.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-564-902
| |
Collapse
|
60
|
Liu G, Lee JH, Parker ZM, Acharya D, Chiang JJ, van Gent M, Riedl W, Davis-Gardner ME, Wies E, Chiang C, Gack MU. ISG15-dependent Activation of the RNA Sensor MDA5 and its Antagonism by the SARS-CoV-2 papain-like protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33140045 PMCID: PMC7605552 DOI: 10.1101/2020.10.26.356048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Activation of the RIG-I-like receptors, RIG-I and MDA5, establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15 whose mechanistic roles in innate immunity still remain enigmatic. Here we report that ISGylation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISG15 conjugation to the caspase activation and recruitment domains of MDA5 promotes the formation of higher-order assemblies of MDA5 and thereby triggers activation of innate immunity against a range of viruses including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease (PLpro) of SARS-CoV-2, a recently emerged coronavirus that causes the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a novel immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19.
Collapse
Affiliation(s)
- GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, FL 34987, USA.,Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jung-Hyun Lee
- Florida Research and Innovation Center, Cleveland Clinic, FL 34987, USA.,Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Zachary M Parker
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, FL 34987, USA.,Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica J Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, FL 34987, USA.,Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - William Riedl
- Florida Research and Innovation Center, Cleveland Clinic, FL 34987, USA.,Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Effi Wies
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, FL 34987, USA.,Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, FL 34987, USA.,Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
61
|
Pulido MR, Martínez-Salas E, Sobrino F, Sáiz M. MDA5 cleavage by the Leader protease of foot-and-mouth disease virus reveals its pleiotropic effect against the host antiviral response. Cell Death Dis 2020; 11:718. [PMID: 32879301 PMCID: PMC7468288 DOI: 10.1038/s41419-020-02931-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
The RIG-I-like receptor (RLR) melanoma differentiation-associated gene 5 (MDA5) plays a key role in triggering innate antiviral response during infection by RNA viruses. MDA5 activation leads to transcription induction of type-I interferon (IFN) and proinflammatory cytokines. MDA5 has also been associated with autoimmune and autoinflammatory diseases by dysfunctional activation of innate immune response in the absence of infection. Here, we show how foot-and-mouth disease virus (FMDV) counteracts the specific antiviral effect exerted by MDA5 targeting the protein for cleavage by the viral Leader protease (Lpro). MDA5 overexpression had an inhibitory effect on FMDV infection in IFN-competent cells. Remarkably, immunostimulatory viral RNA co-immunoprecipitated with MDA5 in infected cells. Moreover, specific cleavage of MDA5 by Lpro was detected in co-transfected cells, as well as during the course of FMDV infection. A significant reduction in IFN induction associated with MDA5 cleavage was detected by comparison with a non-cleavable MDA5 mutant protein with preserved antiviral activity. The Lpro cleavage site in MDA5 was identified as the RGRAR sequence in the conserved helicase motif VI, coinciding with that recently reported for Lpro in LGP2, another member of the RLRs family involved in antiviral defenses. Interestingly, specific mutations within the MDA5 Lpro target sequence have been associated with immune disease in mice and humans. Our results reveal a pleiotropic strategy for immune evasion based on a viral protease targeting phylogenetically conserved domains of immune sensors. Identification of viral strategies aimed to disrupt MDA5 functionality may also contribute to develop new treatment tools for MDA5-related disorders.
Collapse
Affiliation(s)
| | | | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
62
|
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are key sensors of virus infection, mediating the transcriptional induction of type I interferons and other genes that collectively establish an antiviral host response. Recent studies have revealed that both viral and host-derived RNAs can trigger RLR activation; this can lead to an effective antiviral response but also immunopathology if RLR activities are uncontrolled. In this Review, we discuss recent advances in our understanding of the types of RNA sensed by RLRs in the contexts of viral infection, malignancies and autoimmune diseases. We further describe how the activity of RLRs is controlled by host regulatory mechanisms, including RLR-interacting proteins, post-translational modifications and non-coding RNAs. Finally, we discuss key outstanding questions in the RLR field, including how our knowledge of RLR biology could be translated into new therapeutics.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
63
|
Stok JE, Vega Quiroz ME, van der Veen AG. Self RNA Sensing by RIG-I–like Receptors in Viral Infection and Sterile Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 205:883-891. [DOI: 10.4049/jimmunol.2000488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
|
64
|
Liu G, Gack MU. Distinct and Orchestrated Functions of RNA Sensors in Innate Immunity. Immunity 2020; 53:26-42. [PMID: 32668226 PMCID: PMC7367493 DOI: 10.1016/j.immuni.2020.03.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022]
Abstract
Faithful maintenance of immune homeostasis relies on the capacity of the cellular immune surveillance machinery to recognize "nonself", such as the presence of pathogenic RNA. Several families of pattern-recognition receptors exist that detect immunostimulatory RNA and then induce cytokine-mediated antiviral and proinflammatory responses. Here, we review the distinct features of bona fide RNA sensors, Toll-like receptors and retinoic-acid inducible gene-I (RIG-I)-like receptors in particular, with a focus on their functional specificity imposed by cell-type-dependent expression, subcellular localization, and ligand preference. Furthermore, we highlight recent advances on the roles of nucleotide-binding oligomerization domain (NOD)-like receptors and DEAD-box or DEAH-box RNA helicases in an orchestrated RNA-sensing network and also discuss the relevance of RNA sensor polymorphisms in human disease.
Collapse
Affiliation(s)
- GuanQun Liu
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
65
|
Anjum FR, Anam S, Rahman SU, Ali S, Aslam MA, Rizvi F, Asif M, Abdullah RM, Abaidullah M, Shakir MZ, Goraya MU. Anti-chicken type I IFN countermeasures by major avian RNA viruses. Virus Res 2020; 286:198061. [PMID: 32561378 DOI: 10.1016/j.virusres.2020.198061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022]
Abstract
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken innate immune system and are considered potent antiviral agents against avian viral pathogens. Chicken type I IFNs are divided into three subtypes namely, chIFN-α, chIFN-β, and chIFN-κ. Viral pathogen-associated molecular patterns (PAMPs) recognized by their corresponding specific PRRs (pattern recognition receptors) induce the expression of chicken type I IFNs. Interaction of chicken type I IFNs with their subsequent IFN receptors results in the activation of the JAK-STAT pathway, which in turn activates hundreds of chicken interferon-stimulated genes (chISGs). These chISGs establish an antiviral state in neighboring cells and prevent the replication and dissemination of viruses within chicken cells. Chicken type I IFNs activate different pathways that constitute major antiviral innate defense mechanisms in chickens. However, evolutionary mechanisms in viruses have made them resistant to these antiviral players by manipulating host innate immune pathways. This review focuses on the underlying molecular mechanisms employed by avian RNA viruses to counteract chicken type I IFNs and chISGs through different viral proteins. This may help to understand host-pathogen interactions and the development of novel therapeutic strategies to control viral infections in poultry.
Collapse
Affiliation(s)
| | - Sidra Anam
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Farzana Rizvi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asif
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Abaidullah
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | | | | |
Collapse
|
66
|
Chen Z, Wang Z, Zhao X, Guan Y, Xue Q, Li J, Liu Z, Zhao B, He Z, Huang J, Liao M, Song Y, Jiao P. Pathogenicity of different H5N6 highly pathogenic avian influenza virus strains and host immune responses in chickens. Vet Microbiol 2020; 246:108745. [PMID: 32605756 DOI: 10.1016/j.vetmic.2020.108745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
The H5N6 highly pathogenic avian influenza virus (HPAIV) has been circulating in China since 2013. In this report, we describe our recent chicken experimental studies investigating the pathogenicity and transmission of four H5N6 HPAIV field strains of different origins (GS39, CK44, DK47 and CK74) and the host immune responses. Four-week-old specific-pathogen-free chickens were inoculated intranasally with one of the four H5N6 HPAIV strains (one strain per group). Among the contact chickens, the GS39 and CK74 strains caused 100 % mortality, the CK44 strain caused 80 % mortality, and the DK47 strain caused 40 % mortality. The viruses were effectively replicated in multiple tissues of the inoculated chickens, in which high viral titers were detected in virus-infected tissues, and significantly upregulated expression of immune-related genes was found in the infected chickens at 24 hpi. The chicken serum antibody levels increased from 5log2 at 7 dpe to 7.67-8log2 at 14 dpe. The major histocompatibility complex molecules were upregulated 21.22- to 32.98-fold in lungs and 5.10- to 18.47-fold in spleens. In summary, H5N6 viruses can replicate within chickens and be effectively transmitted between chickens. Our study contributes to further understanding the pathogenesis of clade 2.3.4.4 H5N6 avian influenza viruses in chickens.
Collapse
Affiliation(s)
- Zuxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhenyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiya Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yun Guan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Xue
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jinrong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiting Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingbing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuoliang He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianni Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yafen Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; China Institute of Veterinary Drug Control, Beijing, 100081, China.
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
67
|
Ren X, Linehan MM, Iwasaki A, Pyle AM. RIG-I Selectively Discriminates against 5'-Monophosphate RNA. Cell Rep 2020; 26:2019-2027.e4. [PMID: 30784585 DOI: 10.1016/j.celrep.2019.01.107] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
The innate immune sensor RIG-I must sensitively detect and respond to viral RNAs that enter the cytoplasm, while remaining unresponsive to the abundance of structurally similar RNAs that are the products of host metabolism. In the case of RIG-I, these viral and host targets differ by only a few atoms, and a molecular mechanism for such selective differentiation has remained elusive. Using a combination of quantitative biophysical and immunological studies, we show that RIG-I, which is normally activated by duplex RNAs containing a 5'-tri- or diphosphate (5'-ppp or 5'-pp RNAs), is actively antagonized by RNAs containing 5'-monophosphates (5'-p RNAs). This is accomplished by a gating mechanism in which an alternative RIG-I conformation blocks the C-terminal domain (CTD) upon 5'-p RNA binding, thereby short circuiting the activation of signaling.
Collapse
Affiliation(s)
- Xiaoming Ren
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Melissa M Linehan
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
68
|
Anjum FR, Rahman SU, Aslam MA, Qureshi AS. Comprehensive network map of transcriptional activation of chicken type I IFNs and IFN-stimulated genes. Comp Immunol Microbiol Infect Dis 2019; 68:101407. [PMID: 31877494 DOI: 10.1016/j.cimid.2019.101407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken immune system and mediate the first line of defense against viral pathogens infecting the avian species. Recognition of viral pathogens by specific pattern recognition receptors (PRRs) induce chicken type I IFNs expression followed by their subsequent interaction to IFN receptors and induction of a variety of IFN stimulated antiviral proteins. These antiviral effectors establish the antiviral state in neighboring cells and thus protect the host from infection. Three subtypes of chicken type I IFNs; chIFN-α, chIFN-β, and a recently discovered chIFN-κ have been identified and characterized in chicken. Chicken type I IFNs are activated by various host cell pathways and constitute a major antiviral innate defense in chicken. This review will help to understand the chicken type 1 IFNs, host cellular pathways that are involved in activation of chicken type I IFNs and IFN stimulated antiviral effectors along with the gaps in knowledge which will be important for future investigation. These findings will help us to comprehend the role of chicken type I IFNs and to develop different strategies for controlling viral infection in poultry.
Collapse
Affiliation(s)
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anas Sarwar Qureshi
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
69
|
Ren X, Linehan MM, Iwasaki A, Pyle AM. RIG-I Recognition of RNA Targets: The Influence of Terminal Base Pair Sequence and Overhangs on Affinity and Signaling. Cell Rep 2019; 29:3807-3815.e3. [PMID: 31851914 DOI: 10.1016/j.celrep.2019.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Within the complex environment of the human cell, the RIG-I innate immune receptor must detect the presence of double-stranded viral RNA molecules and differentiate them from a diversity of host RNA molecules. In an ongoing effort to understand the molecular basis for RIG-I target specificity, here, we evaluate the ability of this sensor to respond to triphosphorylated, double-stranded RNA molecules that contain all possible terminal base pairs and common mismatches. In addition, we test the response to duplexes with various types of 5' and 3' overhangs. We conducted quantitative measurements of RNA ligand affinity, then tested RNA variants for their ability to stimulate the RIG-I-dependent interferon response in cells and in whole animals. The resulting data provide insights into the design of RNA therapeutics that prevent RIG-I activation, and they provide valuable insights into the mechanisms of evasion by deadly pathogens such as the Ebola and Marburg viruses.
Collapse
Affiliation(s)
- Xiaoming Ren
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Melissa M Linehan
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
70
|
Streicher F, Jouvenet N. Stimulation of Innate Immunity by Host and Viral RNAs. Trends Immunol 2019; 40:1134-1148. [PMID: 31735513 DOI: 10.1016/j.it.2019.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
The interferon (IFN) response, a major vertebrate defense mechanism against viral infections, is initiated by RIG-I-like receptor (RLR)-mediated recognition of viral replicative intermediates in the cytosol. RLR purification methods coupled to RNA sequencing have recently led to the characterization of viral nucleic acid features recognized by RLRs in infected cells. This work revealed that some cellular RNAs can bind to RLRs and stimulate the IFN response. We provide an overview of self and non-self RNAs that activate innate immunity, and discuss the cellular dysregulation that allows recognition of cellular RNAs by RLRs, including RNA mislocalization and downregulation of RNA-shielding proteins. These discussions are relevant because manipulating RLR activation presents opportunities for treating viral infections and autoimmune disorders.
Collapse
Affiliation(s)
- Felix Streicher
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Paris, France; Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Nolwenn Jouvenet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Paris, France.
| |
Collapse
|
71
|
Xu L, Yu D, Fan Y, Liu YP, Yao YG. Evolutionary selection on MDA5 and LGP2 in the chicken preserves antiviral competence in the absence of RIG-I. J Genet Genomics 2019; 46:499-503. [PMID: 31761721 DOI: 10.1016/j.jgg.2019.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yi-Ping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ - CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
72
|
Santhakumar D, Rohaim MA, Munir M. Genome-Wide Classification of Type I, Type II and Type III Interferon-Stimulated Genes in Chicken Fibroblasts. Vaccines (Basel) 2019; 7:E160. [PMID: 31717701 PMCID: PMC6963425 DOI: 10.3390/vaccines7040160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Interferons (IFNs) play central roles in establishing innate immunity and mediating adaptive immunity against multiple pathogens. Three known types of IFNs identify their cognate receptors, initiate cascades of signalling events and eventually result in the induction of a myriad of IFN-stimulated genes (ISGs). These ISGs perform a multitude of functions and cumulatively corroborate a bespoke antiviral state to safeguard hosts against invading viruses. Owing to the unique nature of a chicken's immune system and the lack of foundational profiling information on the nature and dynamic expression of IFN-specific ISGs at the genome scale, we performed a systematic and extensive analysis of type I, II and III IFN-induced genes in chicken. Employing pan-IFN responsive chicken fibroblasts coupled with transcriptomics, we observed an over-representation of up-regulated ISGs compared to down-regulated ISGs by all types of IFNs. Intriguingly, prediction of IFN-stimulated response element (ISRE) and gamma-IFN activation sequence (GAS) revealed a substantial number of GAS motifs in selective and significantly induced ISGs in chicken. Extensive comparative, genome-wide and differential expression analysis of ISGs under equivalent signalling input catalogue a set of genes that were either IFN-specific or independent of types of IFNs used to prime fibroblasts. These comprehensive datasets, first of their kinds in chicken, will establish foundations to elucidate the mechanisms of actions and breadth of antiviral action of ISGs, which may propose alternative avenues for targeted antiviral therapy against viruses of poultry of public health importance.
Collapse
Affiliation(s)
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; (D.S.); (M.A.R.)
| |
Collapse
|
73
|
Amador-Cañizares Y, Bernier A, Wilson JA, Sagan SM. miR-122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5' end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Res 2019; 46:5139-5158. [PMID: 29672716 PMCID: PMC6007490 DOI: 10.1093/nar/gky273] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) recruits two molecules of the liver-specific microRNA-122 (miR-122) to the 5′ end of its genome. This interaction promotes viral RNA accumulation, but the precise mechanism(s) remain incompletely understood. Previous studies suggest that miR-122 is able to protect the HCV genome from 5′ exonucleases (Xrn1/2), but this protection is not sufficient to account for the effect of miR-122 on HCV RNA accumulation. Thus, we investigated whether miR-122 was also able to protect the viral genome from innate sensors of RNA or cellular pyrophosphatases. We found that miR-122 does not play a protective role against recognition by PKR, RIG-I-like receptors, or IFITs 1 and 5. However, we found that knockdown of both the cellular pyrophosphatases, DOM3Z and DUSP11, was able to rescue viral RNA accumulation of subgenomic replicons in the absence of miR-122. Nevertheless, pyrophosphatase knockdown increased but did not restore viral RNA accumulation of full-length HCV RNA in miR-122 knockout cells, suggesting that miR-122 likely plays an additional role(s) in the HCV life cycle, beyond 5′ end protection. Overall, our results support a model in which miR-122 stabilizes the HCV genome by shielding its 5′ terminus from cellular pyrophosphatase activity and subsequent turnover by exonucleases (Xrn1/2).
Collapse
Affiliation(s)
| | - Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
| | - Joyce A Wilson
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
74
|
Heaton SM. Harnessing host-virus evolution in antiviral therapy and immunotherapy. Clin Transl Immunology 2019; 8:e1067. [PMID: 31312450 PMCID: PMC6613463 DOI: 10.1002/cti2.1067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 02/06/2023] Open
Abstract
Pathogen resistance and development costs are major challenges in current approaches to antiviral therapy. The high error rate of RNA synthesis and reverse‐transcription confers genome plasticity, enabling the remarkable adaptability of RNA viruses to antiviral intervention. However, this property is coupled to fundamental constraints including limits on the size of information available to manipulate complex hosts into supporting viral replication. Accordingly, RNA viruses employ various means to extract maximum utility from their informationally limited genomes that, correspondingly, may be leveraged for effective host‐oriented therapies. Host‐oriented approaches are becoming increasingly feasible because of increased availability of bioactive compounds and recent advances in immunotherapy and precision medicine, particularly genome editing, targeted delivery methods and RNAi. In turn, one driving force behind these innovations is the increasingly detailed understanding of evolutionarily diverse host–virus interactions, which is the key concern of an emerging field, neo‐virology. This review examines biotechnological solutions to disease and other sustainability issues of our time that leverage the properties of RNA and DNA viruses as developed through co‐evolution with their hosts.
Collapse
Affiliation(s)
- Steven M Heaton
- Department of Biochemistry & Molecular Biology Monash University Clayton VIC Australia
| |
Collapse
|
75
|
Mechanisms of Non-segmented Negative Sense RNA Viral Antagonism of Host RIG-I-Like Receptors. J Mol Biol 2019; 431:4281-4289. [PMID: 31202887 DOI: 10.1016/j.jmb.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
The pattern recognition receptors RIG-I-like receptors (RLRs) are critical molecules for cytosolic viral recognition and for subsequent activation of type I interferon production. The interferon signaling pathway plays a key role in viral detection and generating antiviral responses. Among the many pathogens, the non-segmented negative sense RNA viruses target the RLR pathway using a variety of mechanisms. Here, I review the current state of knowledge on the molecular mechanisms that allow non-segmented negative sense RNA virus recognition and antagonism of RLRs.
Collapse
|
76
|
Hwang MS, Boulanger J, Howe JD, Albecka A, Pasche M, Mureşan L, Modis Y. MAVS polymers smaller than 80 nm induce mitochondrial membrane remodeling and interferon signaling. FEBS J 2019; 286:1543-1560. [PMID: 30715798 PMCID: PMC6513760 DOI: 10.1111/febs.14772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/29/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Double‐stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection and is sensed primarily by RIG‐I‐like receptors (RLRs). Oligomerization of RLRs following binding to cytosolic dsRNA activates and nucleates self‐assembly of the mitochondrial antiviral‐signaling protein (MAVS). In the current signaling model, the caspase recruitment domains of MAVS form helical fibrils that self‐propagate like prions to promote signaling complex assembly. However, there is no conclusive evidence that MAVS forms fibrils in cells or with the transmembrane anchor present. We show here with super‐resolution light microscopy that MAVS activation by dsRNA induces mitochondrial membrane remodeling. Quantitative image analysis at imaging resolutions as high as 32 nm shows that in the cellular context, MAVS signaling complexes and the fibrils within them are smaller than 80 nm. The transmembrane domain of MAVS is required for its membrane remodeling, interferon signaling, and proapoptotic activities. We conclude that membrane tethering of MAVS restrains its polymerization and contributes to mitochondrial remodeling and apoptosis upon dsRNA sensing.
Collapse
Affiliation(s)
- Ming-Shih Hwang
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, UK
| | | | | | - Anna Albecka
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, UK
| | | | - Leila Mureşan
- Cambridge Advanced Imaging Centre, University of Cambridge, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Yorgo Modis
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, UK
| |
Collapse
|
77
|
Li N, Li A, Zheng K, Liu X, Gao L, Liu D, Deng H, Wu W, Liu B, Zhao B, Pang Q. Identification and characterization of an atypical RIG-I encoded by planarian Dugesia japonica and its essential role in the immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:72-84. [PMID: 30355517 DOI: 10.1016/j.dci.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I), an RNA sensor with a conserved structure, activates the host interferon (IFN) system to produce IFNs and cytokines for eliminating pathogens upon recognizing PAMPs. However, the biological functions and the mechanism by which RIG-I regulates the innate immunity response in invertebrates are still unknown at present. Here we identified an atypical RIG-I in planarian Dugesia japonica. Sequence analysis, 3D structure modeling and phylogenetic analysis showed that this atypical protein was clustered into a single clade at the base of the tree in invertebrates, suggesting that DjRIG-I is an ancient and unique protein of the RIG-I-like receptors (RLRs). In situ hybridization analysis revealed that the DjRIG-I mRNAs were predominantly expressed in the pharynx and head of the adult and regenerative planarians. Stimulation with PAMPs induced the over-expression of DjRIG-I in planarians. The molecular simulation demonstrated that DjRIG-I formed a large hole-structure for the docking of dsRNAs, and the pull-down assay confirmed the interaction between DjRIG-I and viral analog poly(I:C). Importantly, some representative antiviral/antibacterial genes in the RIG-I-mediated IFN and P38 signaling pathway, TBK1, IRF-3, Mx, and P38, were significantly upregulated in planarians stimulated with PAMPs. Interference of the DjRIG-I expression by RNAi, inhibited the PAMPs-induced over-expression, suggesting that DjRIG-I is a key player for downstream signaling events. These results indicate that DjRIG-I triggered the intracellular signaling cascades independent of the classical CARD domains and played an essential role in the virus/bacteria-induced innate immunity of planarian.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Ao Li
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Kang Zheng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Xi Liu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Lili Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Weiwei Wu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Baohua Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; Shenzhen University of Health Science Center, Shenzhen, Guangdong, 518060, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China.
| |
Collapse
|
78
|
Abstract
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Collapse
Affiliation(s)
- Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
79
|
Fan X, Jin T. Structures of RIG-I-Like Receptors and Insights into Viral RNA Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:157-188. [DOI: 10.1007/978-981-13-9367-9_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
80
|
Jiang QX. Structural Variability in the RLR-MAVS Pathway and Sensitive Detection of Viral RNAs. Med Chem 2019; 15:443-458. [PMID: 30569868 PMCID: PMC6858087 DOI: 10.2174/1573406415666181219101613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022]
Abstract
Cells need high-sensitivity detection of non-self molecules in order to fight against pathogens. These cellular sensors are thus of significant importance to medicinal purposes, especially for treating novel emerging pathogens. RIG-I-like receptors (RLRs) are intracellular sensors for viral RNAs (vRNAs). Their active forms activate mitochondrial antiviral signaling protein (MAVS) and trigger downstream immune responses against viral infection. Functional and structural studies of the RLR-MAVS signaling pathway have revealed significant supramolecular variability in the past few years, which revealed different aspects of the functional signaling pathway. Here I will discuss the molecular events of RLR-MAVS pathway from the angle of detecting single copy or a very low copy number of vRNAs in the presence of non-specific competition from cytosolic RNAs, and review key structural variability in the RLR / vRNA complexes, the MAVS helical polymers, and the adapter-mediated interactions between the active RLR / vRNA complex and the inactive MAVS in triggering the initiation of the MAVS filaments. These structural variations may not be exclusive to each other, but instead may reflect the adaptation of the signaling pathways to different conditions or reach different levels of sensitivity in its response to exogenous vRNAs.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
81
|
Wu X, Zang F, Liu M, Zhuo L, Wu J, Xia X, Feng Y, Yu R, Huang P, Yang S. Genetic variants in RIG-I-like receptor influences HCV clearance in Chinese Han population. Epidemiol Infect 2019; 147:e195. [PMID: 31364528 PMCID: PMC6518566 DOI: 10.1017/s0950268819000827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
Human innate immune plays an essential role in the spontaneous clearance of acute infection and therapy of HCV. We investigated whether the SNPs in retinoic acid-inducible gene I-like receptor family were associated with HCV spontaneous clearance and response to treatment. To evaluate the clinical value of DDX58 rs3824456, rs10813831 and rs10738889 genotypes on HCV spontaneous clearance and treatment response in Chinese Han population, we genotyped 1001 HCV persistent infectors, 599 participants with HCV natural clearance and 354 patients with PEGylated interferon-α and ribavirin (PEG IFN-α/RBV) treatment. People carrying rs10813831-G allele genotype were more liable to achieve spontaneous clearance than the carriage of the T allele (dominant model: adjusted OR 1.35, 95% CI 1.08-1.71, P = 0.008). In rs10738889, the rate of persistent infection was significantly lower in patients with the TC genotype compared to those with TT genotype (dominant model: adjusted OR 1.36, 95% CI 1.06-1.74, P = 0.015). Multivariate stepwise analysis indicated that rs10738889, age, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were independent predictors for HCV spontaneous clearance. However, there were no significant differences in the three selection SNPs between the non-SVR group and the SVR group. These results suggest the DDX58 rs10813831 and rs10738889 are associated with spontaneous clearance of HCV, which may be identified as a predictive marker in the Chinese Han population of HCV.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Clinical Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Zang
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Mei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Lingyun Zhuo
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongbin Yu
- Department of Epidemiology, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Peng Huang
- Department of Epidemiology, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Sheng Yang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
82
|
Yu Q, Qu K, Modis Y. Cryo-EM Structures of MDA5-dsRNA Filaments at Different Stages of ATP Hydrolysis. Mol Cell 2018; 72:999-1012.e6. [PMID: 30449722 PMCID: PMC6310684 DOI: 10.1016/j.molcel.2018.10.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection. Long cytosolic dsRNA is recognized by MDA5. The cooperative assembly of MDA5 into helical filaments on dsRNA nucleates the assembly of a multiprotein type I interferon signaling platform. Here, we determined cryoelectron microscopy (cryo-EM) structures of MDA5-dsRNA filaments with different helical twists and bound nucleotide analogs at resolutions sufficient to build and refine atomic models. The structures identify the filament-forming interfaces, which encode the dsRNA binding cooperativity and length specificity of MDA5. The predominantly hydrophobic interface contacts confer flexibility, reflected in the variable helical twist within filaments. Mutation of filament-forming residues can result in loss or gain of signaling activity. Each MDA5 molecule spans 14 or 15 RNA base pairs, depending on the twist. Variations in twist also correlate with variations in the occupancy and type of nucleotide in the active site, providing insights on how ATP hydrolysis contributes to MDA5-dsRNA recognition. Cryo-EM structures of MDA5-dsRNA filaments determined for three catalytic states Filament forming interfaces are flexible and predominantly hydrophobic Mutation of filament-forming residues can cause loss or gain of IFN-β signaling ATPase cycle is coupled to changes in filament twist and size of the RNA footprint
Collapse
Affiliation(s)
- Qin Yu
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kun Qu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yorgo Modis
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
83
|
Haunshi S, Burramsetty AK, Ramasamy K, Chatterjee RN. Polymorphisms in pattern recognition receptor genes of indigenous and White Leghorn breeds of chicken. Arch Anim Breed 2018; 61:441-449. [PMID: 32175451 PMCID: PMC7065405 DOI: 10.5194/aab-61-441-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Functional polymorphisms in pattern recognition receptors (PRRs) modulate
innate immunity and play a crucial role in resistance or susceptibility to
diseases. The present study was carried out to explore polymorphic patterns
in the coding sequences of PRR genes TLR3, TLR1LA (TLRs),
MDA5, LGP2 (RLRs) and NOD1 (NLR) in chicken breeds
of India, namely Ghagus (GH), Nicobari (NB) and the exotic
White Leghorn (WLH) breed. Out of 209 SNPs observed in five genes among three
breeds, 117 were synonymous (Syn) and 92 were non-synonymous (NS) SNPs. In
TLR genes the highest polymorphism was observed in NB (16, 28)
compared to GH (14, 16) and WLH (13, 19) breeds. In the MDA5 gene
the highest polymorphism was observed in GH (12) compared to NB (eight) and
WLH (four) breeds. However, an almost similar level of polymorphism was observed
in the LGP2 gene among the three breeds. In the NOD1 gene, the highest
polymorphism was observed in NB (27), followed by WLH (11) and GH (10) breeds.
The overall highest number of SNPs was observed in NB (90), followed by GH (62)
and the WLH (57) breed. With regard to variation in polymorphism among different
classes of PRRs, the study revealed the highest polymorphism in TLRs compared to
NOD1 and the RLR class of PRRs. Further, the domain locations of various Syn and
NS SNPs in each PRR among the three breeds were identified. In silico
analysis of NS SNPs revealed that most of them had a neutral effect on
protein function. However, two each in TLR1LA and LGP2
and one in the MDA5 gene were predicted to be deleterious to
protein function. The present study unravelled extensive polymorphism in the
coding sequences of the TLR and NLR class of PRR genes, and the polymorphism was
higher in indigenous chicken breeds.
Collapse
Affiliation(s)
- Santosh Haunshi
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - Arun Kumar Burramsetty
- Current Address: MEXT Doctoral Scholar, Graduate School of Comprehensive Human Sciences, Department of Biomedical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kannaki Ramasamy
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | | |
Collapse
|
84
|
Lin LL, Huang CC, Wu MT, Hsu WM, Chuang JH. Innate immune sensor laboratory of genetics and physiology 2 suppresses tumor cell growth and functions as a prognostic marker in neuroblastoma. Cancer Sci 2018; 109:3494-3502. [PMID: 30179292 PMCID: PMC6215871 DOI: 10.1111/cas.13790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
The innate immune receptors, such as toll-like receptor 3 (TLR3), melanoma differentiation-associated 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I), have been shown to be differentially expressed in neuroblastoma (NB) and promote dsRNA poly (I:C)-induced NB suppression in vitro and in vivo. However, the role of another important innate immune cytosolic sensor, laboratory of genetics and physiology 2 (LGP2), in the cancer behavior of NB remains unclear. Here, we demonstrated that the expression levels of LGP2 were either low or undetectable in all NB cell lines tested with or without MYCN amplification. LGP2 expression levels were significantly increased only in NB cells without MYCN amplification, including SK-N-AS and SK-N-FI after poly (I:C) treatment in vitro and in mouse xenograft models. Ectopic expression of LGP2 in NB cells significantly enhanced poly (I:C)-induced NB cell death associated with downregulation of MDA5, RIG-I, MAVS and Bcl-2, as well as upregulation of Noxa and tBid. By immunofluorescence analyses, LGP2 localized mainly in the cytoplasm of NB cells after poly (I:C) treatment. In human NB tissue samples, cytoplasmic LGP2 expression was positively correlated with histological differentiation and inversely correlated with MYCN amplification. Positive cytoplasmic LGP2 expression in tumor tissues could predict a favorable outcome in NB patients independent of other prognostic factors. In short, LGP2 was effective in promoting poly (I:C)-induced NB suppression and cytoplasmic LGP2 can serve as an independent favorable prognostic factor in NB patients.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Biobank and Tissue Bank and Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Min-Tsui Wu
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jiin-Haur Chuang
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
85
|
Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:35-136. [PMID: 30904196 PMCID: PMC6445394 DOI: 10.1016/bs.ircmb.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.
Collapse
Affiliation(s)
- Keesha M Matz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
| |
Collapse
|
86
|
Zheng W, Satta Y. Functional Evolution of Avian RIG-I-Like Receptors. Genes (Basel) 2018; 9:genes9090456. [PMID: 30213147 PMCID: PMC6162795 DOI: 10.3390/genes9090456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
RIG-I-like receptors (retinoic acid-inducible gene-I-like receptors, or RLRs) are family of pattern-recognition receptors for RNA viruses, consisting of three members: retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). To understand the role of RLRs in bird evolution, we performed molecular evolutionary analyses on the coding genes of avian RLRs using filtered predicted coding sequences from 62 bird species. Among the three RLRs, conservation score and dN/dS (ratio of nonsynonymous substitution rate over synonymous substitution rate) analyses indicate that avian MDA5 has the highest conservation level in the helicase domain but a lower level in the caspase recruitment domains (CARDs) region, which differs from mammals; LGP2, as a whole gene, has a lower conservation level than RIG-I or MDA5. We found evidence of positive selection across all bird lineages in RIG-I and MDA5 but only on the stem lineage of Galliformes in LGP2, which could be related to the loss of RIG-I in Galliformes. Analyses also suggest that selection relaxation may have occurred in LGP2 during the middle of bird evolution and the CARDs region of MDA5 contains many positively selected sites, which might explain its conservation level. Spearman’s correlation test indicates that species-to-ancestor dN/dS of RIG-I shows a negative correlation with endogenous retroviral abundance in bird genomes, suggesting the possibility of interaction between immunity and endogenous retroviruses during bird evolution.
Collapse
Affiliation(s)
- Wanjing Zheng
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan.
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan.
| |
Collapse
|
87
|
Tan X, Sun L, Chen J, Chen ZJ. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annu Rev Microbiol 2018; 72:447-478. [DOI: 10.1146/annurev-micro-102215-095605] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial infections are recognized by the innate immune system through germline-encoded pattern recognition receptors (PRRs). As most microbial pathogens contain DNA and/or RNA during their life cycle, nucleic acid sensing has evolved as an essential strategy for host innate immune defense. Pathogen-derived nucleic acids with distinct features are recognized by specific host PRRs localized in endolysosomes and the cytosol. Activation of these PRRs triggers signaling cascades that culminate in the production of type I interferons and proinflammatory cytokines, leading to induction of an antimicrobial state, activation of adaptive immunity, and eventual clearance of the infection. Here, we review recent progress in innate immune recognition of nucleic acids upon microbial infection, including pathways involving endosomal Toll-like receptors, cytosolic RNA sensors, and cytosolic DNA sensors. We also discuss the mechanisms by which infectious microbes counteract host nucleic acid sensing to evade immune surveillance.
Collapse
Affiliation(s)
- Xiaojun Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lijun Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | - Jueqi Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| |
Collapse
|
88
|
Dias Junior AG, Sampaio NG, Rehwinkel J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol 2018; 27:75-85. [PMID: 30201512 PMCID: PMC6319154 DOI: 10.1016/j.tim.2018.08.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/28/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Induction of interferons during viral infection is mediated by cellular proteins that recognise viral nucleic acids. MDA5 is one such sensor of virus presence and is activated by RNA. MDA5 is required for immunity against several classes of viruses, including picornaviruses. Recent work showed that mutations in the IFIH1 gene, encoding MDA5, lead to interferon-driven autoinflammatory diseases. Together with observations made in cancer cells, this suggests that MDA5 detects cellular RNAs in addition to viral RNAs. It is therefore important to understand the properties of the RNAs which activate MDA5. New data indicate that RNA length and secondary structure are features sensed by MDA5. We review these developments and discuss how MDA5 strikes a balance between antiviral immunity and autoinflammation. MDA5 is a pattern-recognition receptor for RNA and induces a type I interferon response. MDA5 is activated in a variety of clinically relevant settings. This includes infection with ssRNA, dsRNA, and dsDNA viruses; several autoimmune and autoinflammatory diseases, such as type 1 diabetes and Aicardi–Goutières syndrome; and some forms of cancer treatment. Synthetic, viral, and cellular RNAs can all activate MDA5. The latter may include transcripts from endogenous retroelements such as Alu repeats. Length and secondary structure are important features that determine whether an RNA molecule is detected by MDA5. Indeed, long, base-paired RNA molecules potently activate MDA5 in the test tube.
Collapse
Affiliation(s)
- Antonio Gregorio Dias Junior
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK. https://twitter.com/GregorioDias1
| | - Natalia G Sampaio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
89
|
Ma XX, Ma LN, Chang QY, Ma P, Li LJ, Wang YY, Ma ZR, Cao X. Type I Interferon Induced and Antagonized by Foot-and-Mouth Disease Virus. Front Microbiol 2018; 9:1862. [PMID: 30150977 PMCID: PMC6099088 DOI: 10.3389/fmicb.2018.01862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Viral infections trigger the innate immune system, serving as the first line of defense, and are characterized by the production of type I interferon (IFN). Type I IFN is expressed in a broad spectrum of cells and tissues in the host and includes various subtypes (IFN-α, IFN-β, IFN-δ, IFN-ε, IFN-κ, IFN-τ, IFN-ω, IFN-ν, and IFN-ζ). Since the discovery of type I IFN, our knowledge of the biology of type I IFN has accumulated immensely, and we now have a substantial amount of information on the molecular mechanisms of the response and induction of type I IFN, as well as the strategies utilized by viruses to evade the type I IFN response. Foot-and-mouth disease virus (FMDV) can selectively alter cellular pathways to promote viral replication and evade antiviral immune activation of type I IFN. RNA molecules generated by FMDV are sensed by the cellular receptor for pathogen-associated molecular patterns (PAMPs). FMDV preferentially activates different sensor molecules and various signal transduction pathways. Based on knowledge of the virus or RNA pathogen specificity as well as the function-structure relationship of RNA sensing, it is necessary to summarize numerous signaling adaptors that are reported to participate in the regulation of IFN gene activation.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Li-Na Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiu-Yan Chang
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Peng Ma
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Lin-Jie Li
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Yue-Ying Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhong-Ren Ma
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Xin Cao
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
90
|
Abstract
Microbial nucleic acids are major signatures of invading pathogens, and their recognition by various host pattern recognition receptors (PRRs) represents the first step toward an efficient innate immune response to clear the pathogens. The nucleic acid-sensing PRRs are localized at the plasma membrane, the cytosol, and/or various cellular organelles. Sensing of nucleic acids and signaling by PRRs involve recruitment of distinct signaling components, and PRRs are intensively regulated by cellular organelle trafficking. PRR-mediated innate immune responses are also heavily regulated by posttranslational modifications, including phosphorylation, polyubiquitination, sumoylation, and glutamylation. In this review, we focus on our current understanding of recognition of microbial nucleic acid by PRRs, particularly on their regulation by organelle trafficking and posttranslational modifications. We also discuss how sensing of self nucleic acids and dysregulation of PRR-mediated signaling lead to serious human diseases.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; ,
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; ,
| |
Collapse
|
91
|
Martin B, Decroly É. Mécanismes d’échappement des filovirus à l’immunité innée. Med Sci (Paris) 2018; 34:671-677. [DOI: 10.1051/medsci/20183408013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Le virus Ébola est un pathogène émergent important en Afrique où il a été responsable de plusieurs épidémies de fièvres hémorragiques associées à un taux de mortalité extrêmement élevée (jusqu’à 90 %). La pathogenèse des filovirus est, entre autres, liée à une réponse antivirale inadaptée. Cette famille de virus a en effet développé des stratégies d’échappement aux mécanismes précoces de l’immunité innée. Il en résulte une réplication virale massive qui induit une réponse immunitaire inappropriée à l’origine d’une réaction inflammatoire aiguë associée au syndrome hémorragique. Dans cette revue, nous décrivons les mécanismes utilisés par les filovirus, tels que le virus Ébola, pour échapper à la réponse immunitaire innée.
Collapse
|
92
|
Rodríguez Pulido M, Sánchez-Aparicio MT, Martínez-Salas E, García-Sastre A, Sobrino F, Sáiz M. Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus. PLoS Pathog 2018; 14:e1007135. [PMID: 29958302 PMCID: PMC6042790 DOI: 10.1371/journal.ppat.1007135] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/12/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
The RNA helicase LGP2 (Laboratory of Genetics and Physiology 2) is a non-signaling member of the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), whose pivotal role on innate immune responses against RNA viruses is being increasingly uncovered. LGP2 is known to work in synergy with melanoma differentiation-associated gene 5 (MDA5) to promote the antiviral response induced by picornavirus infection. Here, we describe the activity of the foot-and-mouth disease virus (FMDV) Leader protease (Lpro) targeting LGP2 for cleavage. When LGP2 and Lpro were co-expressed, cleavage products were observed in an Lpro dose-dependent manner while co-expression with a catalytically inactive Lpro mutant had no effect on LGP2 levels or pattern. We further show that Lpro localizes and immunoprecipitates with LGP2 in transfected cells supporting their interaction within the cytoplasm. Evidence of LGP2 proteolysis was also detected during FMDV infection. Moreover, the inhibitory effect of LGP2 overexpression on FMDV growth observed was reverted when Lpro was co-expressed, concomitant with lower levels of IFN-β mRNA and antiviral activity in those cells. The Lpro target site in LGP2 was identified as an RGRAR sequence in a conserved helicase motif whose replacement to EGEAE abrogated LGP2 cleavage by Lpro. Taken together, these data suggest that LGP2 cleavage by the Leader protease of aphthoviruses may represent a novel antagonistic mechanism for immune evasion.
Collapse
Affiliation(s)
| | - María Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
93
|
Abstract
Pattern recognition receptors (PRRs) survey intra- and extracellular spaces for pathogen-associated molecular patterns (PAMPs) within microbial products of infection. Recognition and binding to cognate PAMP ligand by specific PRRs initiates signaling cascades that culminate in a coordinated intracellular innate immune response designed to control infection. In particular, our immune system has evolved specialized PRRs to discriminate viral nucleic acid from host. These are critical sensors of viral RNA to trigger innate immunity in the vertebrate host. Different families of PRRs of virus infection have been defined and reveal a diversity of PAMP specificity for wide viral pathogen coverage to recognize and extinguish virus infection. In this review, we discuss recent insights in pathogen recognition by the RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensor PRRs, to present emerging themes in innate immune signaling during virus infection.
Collapse
Affiliation(s)
- Kwan T Chow
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Michael Gale
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Yueh-Ming Loo
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| |
Collapse
|
94
|
Shah N, Beckham SA, Wilce JA, Wilce M. Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 2018; 46:3169-3186. [PMID: 29346611 PMCID: PMC5887321 DOI: 10.1093/nar/gkx1307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/24/2022] Open
Abstract
RIG-I (retinoic acid inducible gene-I) is a cytosolic innate immune protein that senses viral dsRNA with a 5'-triphosphate overhang. Upon interaction with dsRNA a de-repression of the RIG-I CARD domains takes place that ultimately leads to the production of type I interferons and pro-inflammatory cytokines. Here we investigate the RIG-I conformational rearrangement upon interaction with an activating 5'-triphosphate-10-base pair dsRNA hairpin loop (10bp) compared with a less active 5'-triphosphate-8-base pair dsRNA hairpin loop (8bp). We use size-exclusion chromatography-coupled small-angle X-ray scattering (SAXS) and limited tryptic digest experiments to show that that upon binding to 10 bp, but not 8 bp, RIG-I becomes extended and shows greater flexibility, reflecting the release of its CARDs. We also examined the effect of different ATP analogues on the conformational changes of RIG-I/dsRNA complexes. Of the analogues tested, the addition of ATP transition state analogue ADP-AlFx further assisted in the complete activation of RIG-I in complex with 10bp and also to some extent RIG-I bound to 8bp. Together these data provide solution-based evidence for the molecular mechanism of innate immune signaling by RIG-I as stimulated by short hairpin RNA and ATP.
Collapse
Affiliation(s)
- Neelam Shah
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Simone A Beckham
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Jacqueline A Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Matthew C J Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
95
|
Gebhardt A, Laudenbach BT, Pichlmair A. Discrimination of Self and Non-Self Ribonucleic Acids. J Interferon Cytokine Res 2018; 37:184-197. [PMID: 28475460 DOI: 10.1089/jir.2016.0092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most virus infections are controlled through the innate and adaptive immune system. A surprisingly limited number of so-called pattern recognition receptors (PRRs) have the ability to sense a large variety of virus infections. The reason for the broad activity of PRRs lies in the ability to recognize viral nucleic acids. These nucleic acids lack signatures that are present in cytoplasmic cellular nucleic acids and thereby marking them as pathogen-derived. Accumulating evidence suggests that these signatures, which are predominantly sensed by a class of PRRs called retinoic acid-inducible gene I (RIG-I)-like receptors and other proteins, are not unique to viruses but rather resemble immature forms of cellular ribonucleic acids generated by cellular polymerases. RIG-I-like receptors, and other cellular antiviral proteins, may therefore have mainly evolved to sense nonprocessed nucleic acids typically generated by primitive organisms and pathogens. This capability has not only implications on induction of antiviral immunity but also on the function of cellular proteins to handle self-derived RNA with stimulatory potential.
Collapse
Affiliation(s)
- Anna Gebhardt
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry , Munich, Germany
| | | | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry , Munich, Germany
| |
Collapse
|
96
|
van der Veen AG, Maillard PV, Schmidt JM, Lee SA, Deddouche-Grass S, Borg A, Kjær S, Snijders AP, Reis e Sousa C. The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J 2018; 37:e97479. [PMID: 29351913 PMCID: PMC5813259 DOI: 10.15252/embj.201797479] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
In vertebrates, the presence of viral RNA in the cytosol is sensed by members of the RIG-I-like receptor (RLR) family, which signal to induce production of type I interferons (IFN). These key antiviral cytokines act in a paracrine and autocrine manner to induce hundreds of interferon-stimulated genes (ISGs), whose protein products restrict viral entry, replication and budding. ISGs include the RLRs themselves: RIG-I, MDA5 and, the least-studied family member, LGP2. In contrast, the IFN system is absent in plants and invertebrates, which defend themselves from viral intruders using RNA interference (RNAi). In RNAi, the endoribonuclease Dicer cleaves virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that target complementary viral RNA for cleavage. Interestingly, the RNAi machinery is conserved in mammals, and we have recently demonstrated that it is able to participate in mammalian antiviral defence in conditions in which the IFN system is suppressed. In contrast, when the IFN system is active, one or more ISGs act to mask or suppress antiviral RNAi. Here, we demonstrate that LGP2 constitutes one of the ISGs that can inhibit antiviral RNAi in mammals. We show that LGP2 associates with Dicer and inhibits cleavage of dsRNA into siRNAs both in vitro and in cells. Further, we show that in differentiated cells lacking components of the IFN response, ectopic expression of LGP2 interferes with RNAi-dependent suppression of gene expression. Conversely, genetic loss of LGP2 uncovers dsRNA-mediated RNAi albeit less strongly than complete loss of the IFN system. Thus, the inefficiency of RNAi as a mechanism of antiviral defence in mammalian somatic cells can be in part attributed to Dicer inhibition by LGP2 induced by type I IFNs. LGP2-mediated antagonism of dsRNA-mediated RNAi may help ensure that viral dsRNA substrates are preserved in order to serve as targets of antiviral ISG proteins.
Collapse
Affiliation(s)
| | | | | | - Sonia A Lee
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Annabel Borg
- Structural Biology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Platform, The Francis Crick Institute, London, UK
| | | | | |
Collapse
|
97
|
Zhang QM, Zhao X, Li Z, Wu M, Gui JF, Zhang YB. Alternative Splicing Transcripts of Zebrafish LGP2 Gene Differentially Contribute to IFN Antiviral Response. THE JOURNAL OF IMMUNOLOGY 2017; 200:688-703. [PMID: 29203516 DOI: 10.4049/jimmunol.1701388] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023]
Abstract
In mammals, RIG-I like receptors (RLRs) RIG-I and melanoma differentiation-associated gene 5 (MDA5) sense cytosolic viral RNA, leading to IFN antiviral response; however, LGP2 exhibits controversial functions. The same happens to fish LGP2. In this study we report that three zebrafish LGP2 splicing transcripts, a full-length LGP2, and two truncating variants, LGP2v1 and LGP2v2, play distinct roles during IFN antiviral response. Overexpression of the full-length LGP2 not only potentiates IFN response through the RLR pathway, in the absence or presence of poly(I:C) at limited concentrations, but also inhibits IFN response by relative high concentrations of poly(I:C) through functional attenuation of signaling factors involved in the RLR pathway; however, LGP2v1 and LGP2v2 only retain the inhibitory role. Consistently, LGP2 but not LGP2v1 and LGP2v2 confers protection on fish cells against spring viremia of carp virus (SVCV) infection and at limited expression levels, LGP2 exerts more significant protection than either RIG-I or MDA5. Further data suggest that in the early phase of SVCV infection, LGP2 functions as a positive regulator but along with SVCV replicating in cells up to a certain titer, which leads to a far more robust expression of IFN, LGP2 switches to a negative role. These in vitro results suggest an ingenious mechanism where the three zebrafish LGP2 splicing transcripts work cooperatively to shape IFN antiviral responses.
Collapse
Affiliation(s)
- Qi-Min Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; and.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xiang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; and.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; and
| | - Min Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; and.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; and.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; and .,University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
98
|
Trettin KD, Sinha NK, Eckert DM, Apple SE, Bass BL. Loquacious-PD facilitates Drosophila Dicer-2 cleavage through interactions with the helicase domain and dsRNA. Proc Natl Acad Sci U S A 2017; 114:E7939-E7948. [PMID: 28874570 PMCID: PMC5617286 DOI: 10.1073/pnas.1707063114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Loquacious-PD (Loqs-PD) is required for biogenesis of many endogenous siRNAs in Drosophila In vitro, Loqs-PD enhances the rate of dsRNA cleavage by Dicer-2 and also enables processing of substrates normally refractory to cleavage. Using purified components, and Loqs-PD truncations, we provide a mechanistic basis for Loqs-PD functions. Our studies indicate that the 22 amino acids at the C terminus of Loqs-PD, including an FDF-like motif, directly interact with the Hel2 subdomain of Dicer-2's helicase domain. This interaction is RNA-independent, but we find that modulation of Dicer-2 cleavage also requires dsRNA binding by Loqs-PD. Furthermore, while the first dsRNA-binding motif of Loqs-PD is dispensable for enhancing cleavage of optimal substrates, it is essential for enhancing cleavage of suboptimal substrates. Finally, our studies define a previously unrecognized Dicer interaction interface and suggest that Loqs-PD is well positioned to recruit substrates into the helicase domain of Dicer-2.
Collapse
Affiliation(s)
- Kyle D Trettin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Niladri K Sinha
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Debra M Eckert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Sarah E Apple
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
99
|
Lui PY, Wong LYR, Ho TH, Au SWN, Chan CP, Kok KH, Jin DY. PACT Facilitates RNA-Induced Activation of MDA5 by Promoting MDA5 Oligomerization. THE JOURNAL OF IMMUNOLOGY 2017; 199:1846-1855. [PMID: 28760879 DOI: 10.4049/jimmunol.1601493] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/27/2017] [Indexed: 12/24/2022]
Abstract
MDA5 is a RIG-I-like cytoplasmic sensor of dsRNA and certain RNA viruses, such as encephalomyocarditis virus, for the initiation of the IFN signaling cascade in the innate antiviral response. The affinity of MDA5 toward dsRNA is low, and its activity becomes optimal in the presence of unknown cellular coactivators. In this article, we report an essential coactivator function of dsRNA-binding protein PACT in mediating the MDA5-dependent type I IFN response. Virus-induced and polyinosinic-polycytidylic acid-induced activation of MDA5 were severely impaired in PACT-knockout cells and attenuated in PACT-knockdown cells, but they were potentiated when PACT was overexpressed. PACT augmented IRF3-dependent type I IFN production subsequent to dsRNA-induced activation of MDA5. In contrast, PACT had no influence on MDA5-mediated activation of NF-κB. PACT required dsRNA interaction for its action on MDA5 and promoted dsRNA-induced oligomerization of MDA5. PACT had little stimulatory effect on MDA5 mutants deficient for oligomerization and filament assembly. PACT colocalized with MDA5 in the cytoplasm and potentiated MDA5 recruitment to the dsRNA ligand. Taken together, these findings suggest that PACT functions as an essential cellular coactivator of RIG-I, as well as MDA5, and it facilitates RNA-induced formation of MDA5 oligomers.
Collapse
Affiliation(s)
- Pak-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Lok-Yin Roy Wong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Ting-Hin Ho
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Shannon Wing Ngor Au
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Kin-Hang Kok
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057; .,Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; .,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| |
Collapse
|
100
|
Rodríguez Pulido M, Sáiz M. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response. Front Cell Infect Microbiol 2017; 7:252. [PMID: 28660175 PMCID: PMC5468379 DOI: 10.3389/fcimb.2017.00252] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.
Collapse
Affiliation(s)
- Miguel Rodríguez Pulido
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain
| |
Collapse
|