51
|
Ansen-Wilson LJ, Lipinski RJ. Gene-environment interactions in cortical interneuron development and dysfunction: A review of preclinical studies. Neurotoxicology 2017; 58:120-129. [PMID: 27932026 PMCID: PMC5328258 DOI: 10.1016/j.neuro.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 12/26/2022]
Abstract
Cortical interneurons (cINs) are a diverse group of locally projecting neurons essential to the organization and regulation of neural networks. Though they comprise only ∼20% of neurons in the neocortex, their dynamic modulation of cortical activity is requisite for normal cognition and underlies multiple aspects of learning and memory. While displaying significant morphological, molecular, and electrophysiological variability, cINs collectively function to maintain the excitatory-inhibitory balance in the cortex by dampening hyperexcitability and synchronizing activity of projection neurons, primarily through use of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Disruption of the excitatory-inhibitory balance is a common pathophysiological feature of multiple seizure and neuropsychiatric disorders, including epilepsy, schizophrenia, and autism. While most studies have focused on genetic disruption of cIN development in these conditions, emerging evidence indicates that cIN development is exquisitely sensitive to teratogenic disruption. Here, we review key aspects of cIN development, including specification, migration, and integration into neural circuits. Additionally, we examine the mechanisms by which prenatal exposure to common chemical and environmental agents disrupt these events in preclinical models. Understanding how genetic and environmental factors interact to disrupt cIN development and function has tremendous potential to advance prevention and treatment of prevalent seizure and neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Lydia J Ansen-Wilson
- Department of Comparative Biosciences School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| | - Robert J Lipinski
- Department of Comparative Biosciences School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1010B McArdle Building, 1400 University Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
52
|
Franchi SA, Astro V, Macco R, Tonoli D, Barnier JV, Botta M, de Curtis I. Identification of a Protein Network Driving Neuritogenesis of MGE-Derived GABAergic Interneurons. Front Cell Neurosci 2016; 10:289. [PMID: 28066185 PMCID: PMC5174131 DOI: 10.3389/fncel.2016.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022] Open
Abstract
Interneurons are essential modulators of brain activity and their abnormal maturation may lead to neural and intellectual disabilities. Here we show that cultures derived from murine medial ganglionic eminences (MGEs) produce virtually pure, polarized γ-aminobutyric acid (GABA)-ergic interneurons that can form morphologically identifiable inhibitory synapses. We show that Rac GTPases and a protein complex including the GIT family scaffold proteins are expressed during maturation in vitro, and are required for the normal development of neurites. GIT1 promotes neurite extension in a conformation-dependent manner, while affecting its interaction with specific partners reduces neurite branching. Proteins of the GIT network are concentrated at growth cones, and interaction mutants may affect growth cone behavior. Our findings identify the PIX/GIT1/liprin-α1/ERC1 network as critical for the regulation of interneuron neurite differentiation in vitro, and show that these cultures represent a valuable system to identify the molecular mechanisms driving the maturation of cortical/hippocampal interneurons.
Collapse
Affiliation(s)
- Sira A Franchi
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Veronica Astro
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Romina Macco
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Diletta Tonoli
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Jean-Vianney Barnier
- Neuroscience Paris-Saclay Institute, UMR 9197, Centre National de la Recherche Scientifique-Université Paris-Sud Orsay, France
| | - Martina Botta
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Ivan de Curtis
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| |
Collapse
|
53
|
Zechel S, Nakagawa Y, Ibáñez CF. Thalamo-cortical axons regulate the radial dispersion of neocortical GABAergic interneurons. eLife 2016; 5:20770. [PMID: 27935475 PMCID: PMC5167520 DOI: 10.7554/elife.20770] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022] Open
Abstract
Neocortical GABAergic interneuron migration and thalamo-cortical axon (TCA) pathfinding follow similar trajectories and timing, suggesting they may be interdependent. The mechanisms that regulate the radial dispersion of neocortical interneurons are incompletely understood. Here we report that disruption of TCA innervation, or TCA-derived glutamate, affected the laminar distribution of GABAergic interneurons in mouse neocortex, resulting in abnormal accumulation in deep layers of interneurons that failed to switch from tangential to radial orientation. Expression of the KCC2 cotransporter was elevated in interneurons of denervated cortex, and KCC2 deletion restored normal interneuron lamination in the absence of TCAs. Disruption of interneuron NMDA receptors or pharmacological inhibition of calpain also led to increased KCC2 expression and defective radial dispersion of interneurons. Thus, although TCAs are not required to guide the tangential migration of GABAergic interneurons, they provide crucial signals that restrict interneuron KCC2 levels, allowing coordinated neocortical invasion of TCAs and interneurons. DOI:http://dx.doi.org/10.7554/eLife.20770.001
Collapse
Affiliation(s)
- Sabrina Zechel
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, United States
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
54
|
Irala D, Bonafina A, Fontanet PA, Alsina FC, Paratcha G, Ledda F. The GDNF-GFRα1 complex promotes the development of hippocampal dendritic arbors and spines via NCAM. Development 2016; 143:4224-4235. [PMID: 27707798 DOI: 10.1242/dev.140350] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022]
Abstract
The formation of synaptic connections during nervous system development requires the precise control of dendrite growth and synapse formation. Although glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are expressed in the forebrain, the role of this system in the hippocampus remains unclear. Here, we investigated the consequences of GFRα1 deficiency for the development of hippocampal connections. Analysis of conditional Gfra1 knockout mice shows a reduction in dendritic length and complexity, as well as a decrease in postsynaptic density specializations and in the synaptic localization of postsynaptic proteins in hippocampal neurons. Gain- and loss-of-function assays demonstrate that the GDNF-GFRα1 complex promotes dendritic growth and postsynaptic differentiation in cultured hippocampal neurons. Finally, in vitro assays revealed that GDNF-GFRα1-induced dendrite growth and spine formation are mediated by NCAM signaling. Taken together, our results indicate that the GDNF-GFRα1 complex is essential for proper hippocampal circuit development.
Collapse
Affiliation(s)
- Dolores Irala
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Antonela Bonafina
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Paula Aldana Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Fernando Cruz Alsina
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| | - Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Buenos Aires 1121, Argentina
| |
Collapse
|
55
|
Yuzwa SA, Yang G, Borrett MJ, Clarke G, Cancino GI, Zahr SK, Zandstra PW, Kaplan DR, Miller FD. Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks. Neuron 2016; 91:988-1004. [PMID: 27545711 DOI: 10.1016/j.neuron.2016.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/29/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022]
Abstract
The neural stem cell decision to self-renew or differentiate is tightly regulated by its microenvironment. Here, we have asked about this microenvironment, focusing on growth factors in the embryonic cortex at a time when it is largely comprised of neural precursor cells (NPCs) and newborn neurons. We show that cortical NPCs secrete factors that promote their maintenance, while cortical neurons secrete factors that promote differentiation. To define factors important for these activities, we used transcriptome profiling to identify ligands produced by NPCs and neurons, cell-surface mass spectrometry to identify receptors on these cells, and computational modeling to integrate these data. The resultant model predicts a complex growth factor environment with multiple autocrine and paracrine interactions. We tested this communication model, focusing on neurogenesis, and identified IFNγ, Neurturin (Nrtn), and glial-derived neurotrophic factor (GDNF) as ligands with unexpected roles in promoting neurogenic differentiation of NPCs in vivo.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Guang Yang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Michael J Borrett
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Geoff Clarke
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Gonzalo I Cancino
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Siraj K Zahr
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5G 1A8, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5G 1A8, Canada; McEwen Centre for Regenerative Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada; Departments of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada.
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5G 1A8, Canada; McEwen Centre for Regenerative Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
56
|
Saini V, Loers G, Kaur G, Schachner M, Jakovcevski I. Impact of neural cell adhesion molecule deletion on regeneration after mouse spinal cord injury. Eur J Neurosci 2016; 44:1734-46. [PMID: 27178448 DOI: 10.1111/ejn.13271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023]
Abstract
The neural cell adhesion molecule (NCAM) plays important functional roles in development of the nervous system. We investigated the influence of a constitutive ablation of NCAM on the outcome of spinal cord injury. Transgenic mice lacking NCAM (NCAM-/-) were subjected to severe compression injury of the lower thoracic spinal cord using wild-type (NCAM+/+) littermates as controls. According to the single-frame motion analysis, the NCAM-/- mice showed reduced locomotor recovery in comparison to control mice at 3 and 6 weeks after injury, indicating an overall positive impact of NCAM on recovery after injury. Also the Basso Mouse Scale score was lower in NCAM-/- mice at 3 weeks after injury, whereas at 6 weeks after injury the difference between genotypes was not statistically significant. Worse locomotor function was associated with decreased monoaminergic and cholinergic innervation of the spinal cord caudal to the injury site and decreased axonal regrowth/sprouting at the site of injury. Astrocytic scar formation at the injury site, as assessed by immunohistology for glial fibrillary acidic protein at and around the lesion site was increased in NCAM-/- compared with NCAM+/+ mice. Migration of cultured monolayer astrocytes from NCAM-/- mice was reduced as assayed by scratch wounding. Numbers of Iba-1 immunopositive microglia were not different between genotypes. We conclude that constitutive NCAM deletion in young adult mice reduces recovery after spinal cord injury, validating the hypothesized beneficial role of this molecule in recovery after injury.
Collapse
Affiliation(s)
- Vedangana Saini
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
- Department of Biotechnology, Guru Nanak Dev University, Punjab, India
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Punjab, India
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Igor Jakovcevski
- Institute for Molecular and Behavioral Neuroscience, University Hospital Cologne, Köln, Germany
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| |
Collapse
|
57
|
Jiang X, Lachance M, Rossignol E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. PROGRESS IN BRAIN RESEARCH 2016; 226:81-126. [PMID: 27323940 DOI: 10.1016/bs.pbr.2016.04.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABAergic interneurons of the parvalbumin-positive fast-spiking basket cells subtype (PV INs) are important regulators of cortical network excitability and of gamma oscillations, involved in signal processing and cognition. Impaired development or function of PV INs has been associated with epilepsy in various animal models of epilepsy, as well as in some genetic forms of epilepsy in humans. In this review, we provide an overview of some of the experimental data linking PV INs dysfunction with epilepsy, focusing on disorders of the specification, migration, maturation, synaptic function, or connectivity of PV INs. Furthermore, we reflect on the potential therapeutic use of cell-type specific stimulation of PV INs within active networks and on the transplantation of PV INs precursors in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- X Jiang
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - M Lachance
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - E Rossignol
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada.
| |
Collapse
|
58
|
Unachukwu UJ, Warren A, Li Z, Mishra S, Zhou J, Sauane M, Lim H, Vazquez M, Redenti S. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina. Sci Rep 2016; 6:22392. [PMID: 26935401 PMCID: PMC4776098 DOI: 10.1038/srep22392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α – CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.
Collapse
Affiliation(s)
- Uchenna John Unachukwu
- Biochemistry Doctoral Program, The Graduate School, City University of New York, New York, NY, USA.,Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| | - Alice Warren
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| | - Ze Li
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| | - Shawn Mishra
- Department of Biomedical Engineering, City College of New York, City University of New York, NY, USA
| | - Jing Zhou
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA.,Neuroscience Doctoral Program, The Graduate School, City University of New York, New York, NY, USA
| | - Moira Sauane
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| | - Hyungsik Lim
- Departments of Physics and Biology, Hunter College of the City University of New York, New York, NY USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, City College of New York, City University of New York, NY, USA
| | - Stephen Redenti
- Biochemistry Doctoral Program, The Graduate School, City University of New York, New York, NY, USA.,Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, USA
| |
Collapse
|
59
|
Abstract
Heparan sulfate proteoglycans (HSPGs) have long been implicated in a wide range of cell-cell signaling and cell-matrix interactions, both in vitro and in vivo in invertebrate models. Although many of the genes that encode HSPG core proteins and the biosynthetic enzymes that generate and modify HSPG sugar chains have not yet been analyzed by genetics in vertebrates, recent studies have shown that HSPGs do indeed mediate a wide range of functions in early vertebrate development, for example during left-right patterning and in cardiovascular and neural development. Here, we provide a comprehensive overview of the various roles of HSPGs in these systems and explore the concept of an instructive heparan sulfate sugar code for modulating vertebrate development. Summary: This Review article examines the role of heparan sulfate proteoglycans in vertebrate development and explores the concept of an instructive 'sugar code' for modulating development.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - H Joseph Yost
- University of Utah, Department of Neurobiology and Anatomy, Department of Pediatrics, Salt Lake City, UT 84132, USA
| |
Collapse
|
60
|
Lipid Rafts Are Physiologic Membrane Microdomains Necessary for the Morphogenic and Developmental Functions of Glial Cell Line-Derived Neurotrophic Factor In Vivo. J Neurosci 2015; 35:13233-43. [PMID: 26400951 DOI: 10.1523/jneurosci.2935-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes PNS development and kidney morphogenesis via a receptor complex consisting of the glycerophosphatidylinositol (GPI)-anchored, ligand binding receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Although Ret signal transduction in vitro is augmented by translocation into lipid rafts via GFRα1, the existence and importance of lipid rafts in GDNF-Ret signaling under physiologic conditions is unresolved. A knock-in mouse was produced that replaced GFRα1 with GFRα1-TM, which contains a transmembrane (TM) domain instead of the GPI anchor. GFRα1-TM still binds GDNF and promotes Ret activation but does not translocate into rafts. In Gfrα1(TM/TM) mice, GFRα1-TM is expressed, trafficked, and processed at levels identical to GFRα1. Although Gfrα1(+/TM) mice are viable, Gfrα1(TM/TM) mice display bilateral renal agenesis, lack enteric neurons in the intestines, and have motor axon guidance deficits, similar to Gfrα1(-/-) mice. Therefore, the recruitment of Ret into lipid rafts by GFRα1 is required for the physiologic functions of GDNF in vertebrates. Significance statement: Membrane microdomains known as lipid rafts have been proposed to be unique subdomains in the plasma membrane that are critical for the signaling functions of multiple receptor complexes. Their existence and physiologic relevance has been debated. Based on in vitro studies, lipid rafts have been reported to be necessary for the function of the Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors. The receptor for GDNF comprises the lipid raft-resident, glycerophosphatidylinositol-anchored receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Here we demonstrate, using a knock-in mouse model in which GFRα1 is no longer located in lipid rafts, that the developmental functions of GDNF in the periphery require the translocation of the GDNF receptor complex into lipid rafts.
Collapse
|
61
|
Zechel S, Zajac P, Lönnerberg P, Ibáñez CF, Linnarsson S. Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq. Genome Biol 2015; 15:486. [PMID: 25344199 PMCID: PMC4234883 DOI: 10.1186/s13059-014-0486-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cortical interneurons originating from the medial ganglionic eminence, MGE, are among the most diverse cells within the CNS. Different pools of proliferating progenitor cells are thought to exist in the ventricular zone of the MGE, but whether the underlying subventricular and mantle regions of the MGE are spatially patterned has not yet been addressed. Here, we combined laser-capture microdissection and multiplex RNA-sequencing to map the transcriptome of MGE cells at a spatial resolution of 50 μm. RESULTS Distinct groups of progenitor cells showing different stages of interneuron maturation are identified and topographically mapped based on their genome-wide transcriptional pattern. Although proliferating potential decreased rather abruptly outside the ventricular zone, a ventro-lateral gradient of increasing migratory capacity was identified, revealing heterogeneous cell populations within this neurogenic structure. CONCLUSIONS We demonstrate that spatially resolved RNA-seq is ideally suited for high resolution topographical mapping of genome-wide gene expression in heterogeneous anatomical structures such as the mammalian central nervous system.
Collapse
Affiliation(s)
- Sabrina Zechel
- Department of Neuroscience, Karolinska Institute, Stockholm SE-171 77, Sweden
| | | | | | | | | |
Collapse
|
62
|
Abstract
In the developing telencephalon, the medial ganglionic eminence (MGE) generates many cortical and virtually all striatal interneurons. While the molecular mechanisms controlling the migration of interneurons to the cortex have been extensively studied, very little is known about the nature of the signals that guide interneurons to the striatum. Here we report that the allocation of MGE-derived interneurons in the developing striatum of the mouse relies on a combination of chemoattractive and chemorepulsive activities. Specifically, interneurons migrate toward the striatum in response to Nrg1/ErbB4 chemoattraction, and avoid migrating into the adjacent cortical territories by a repulsive activity mediated by EphB/ephrinB signaling. Our results also suggest that the responsiveness of MGE-derived striatal interneurons to these cues is at least in part controlled by the postmitotic activity of the transcription factor Nkx2-1. This study therefore reveals parallel mechanisms for the migration of MGE-derived interneurons to the striatum and the cerebral cortex.
Collapse
|
63
|
Fukuzaki Y, Shin H, Kawai HD, Yamanoha B, Kogure S. 532 nm Low-Power Laser Irradiation Facilitates the Migration of GABAergic Neural Stem/Progenitor Cells in Mouse Neocortex. PLoS One 2015; 10:e0123833. [PMID: 25919297 PMCID: PMC4412395 DOI: 10.1371/journal.pone.0123833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/21/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Accumulating evidence has shown that low-power laser irradiation (LLI) affects cell proliferation and survival, but little is known about LLI effects on neural stem/progenitor cells (NSPCs). Here we investigate whether transcranial 532 nm LLI affects NSPCs in adult murine neocortex and in neurospheres from embryonic mice. STUDY DESIGN/MATERIALS AND METHODS We applied 532 nm LLI (Nd:YVO4, CW, 60 mW) on neocortical surface via cranium in adult mice and on cultured cells from embryonic mouse brains in vitro to investigate the proliferation and migration of NSPCs and Akt expression using immunohistochemical assays and Western blotting techniques. RESULTS In vivo experiments demonstrated that 532 nm LLI significantly facilitated the migration of GABAergic NSPCs that were induced to proliferate in layer 1 by mild ischemia. In vitro experiments using GABAergic NSPCs derived from embryonic day 14 ganglionic eminence demonstrated that 532 nm LLI for 60 min promoted the migration of GAD67-immunopositive NSPCs with a significant increase of Akt expression. Meanwhile, the LLI induced proliferation, but not migration, of NSPCs that give rise to excitatory neurons. CONCLUSION It is concluded that 532 nm LLI promoted the migration of GABAergic NSPCs into deeper layers of the neocortex in vivo by elevating Akt expression.
Collapse
Affiliation(s)
- Yumi Fukuzaki
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Hyeryun Shin
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Hideki D. Kawai
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Banri Yamanoha
- Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Shinichi Kogure
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
- * E-mail:
| |
Collapse
|
64
|
Peyre E, Silva CG, Nguyen L. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex. Front Cell Neurosci 2015; 9:129. [PMID: 25926769 PMCID: PMC4396449 DOI: 10.3389/fncel.2015.00129] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.
Collapse
Affiliation(s)
- Elise Peyre
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Carla G Silva
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium ; Wallon Excellence in Lifesciences and Biotechnology, University of Liège Liège, Belgium
| |
Collapse
|
65
|
Fleming MS, Vysochan A, Paixão S, Niu J, Klein R, Savitt JM, Luo W. Cis and trans RET signaling control the survival and central projection growth of rapidly adapting mechanoreceptors. eLife 2015; 4:e06828. [PMID: 25838128 PMCID: PMC4408446 DOI: 10.7554/elife.06828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/01/2015] [Indexed: 01/26/2023] Open
Abstract
RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the physiological roles of trans signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfrα2 and depend on Ret for survival and central projection growth. Here, we show that Ret and Gfrα2 null mice display comparable early central projection deficits, but Gfrα2 null RA mechanoreceptors recover later. Loss of Gfrα1, the co-receptor implicated in activating RET in trans, causes no significant central projection or cell survival deficit, but Gfrα1;Gfrα2 double nulls phenocopy Ret nulls. Finally, we demonstrate that GFRα1 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that trans and cis RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling.
Collapse
Affiliation(s)
- Michael S Fleming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Anna Vysochan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Sόnia Paixão
- Molecules - Signals - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Jingwen Niu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Rüdiger Klein
- Molecules - Signals - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Joseph M Savitt
- Parkinson's Disease and Movement Disorder Center of Maryland, Elkridge, United States
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
66
|
Uhlén P, Fritz N, Smedler E, Malmersjö S, Kanatani S. Calcium signaling in neocortical development. Dev Neurobiol 2015; 75:360-8. [DOI: 10.1002/dneu.22273] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Per Uhlén
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Nicolas Fritz
- The Science for Life Laboratory; The Royal Institute of Technology; SE-171 77 Stockholm Sweden
| | - Erik Smedler
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Seth Malmersjö
- Department of Chemical and Systems Biology; School of Medicine, Stanford University; Stanford California 94305
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; SE-171 77 Stockholm Sweden
| |
Collapse
|
67
|
Development of cortical interneurons. Neuropsychopharmacology 2015; 40:16-23. [PMID: 25103177 PMCID: PMC4262895 DOI: 10.1038/npp.2014.171] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 01/15/2023]
Abstract
Inhibitory local circuit neurons (LCNs), often called interneurons, have vital roles in the development and function of cortical networks. Their inhibitory influences regulate both the excitability of cortical projection neurons on the level of individual cells, and the synchronous activity of projection neuron ensembles that appear to be a neural basis for major aspects of cognitive processing. Dysfunction of LCNs has been associated with neurological and psychiatric diseases, such as epilepsy, schizophrenia, and autism. Here we review progress in understanding LCN fate determination, their nonradial migration to the cortex, their maturation within the cortex, and the contribution of LCN dysfunction to neuropsychiatric disorders.
Collapse
|
68
|
Shabtay-Orbach A, Amit M, Binenbaum Y, Na'ara S, Gil Z. Paracrine regulation of glioma cells invasion by astrocytes is mediated by glial-derived neurotrophic factor. Int J Cancer 2014; 137:1012-20. [PMID: 25487790 DOI: 10.1002/ijc.29380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 11/19/2014] [Indexed: 12/12/2022]
Abstract
It was suggested that the brain microenvironment plays a role in glioma progression. Here we investigate the mechanism by which astrocytes which are abundant in glioma tumors, promote cancer cell invasion. In this study, we evaluated the effects of astrocytes on glioma biology both in vitro and in vivo and determined the downstream paracrine effect of glial-derived neurotrophic factor (GDNF) on tumor invasion. Astrocytes-conditioned media (ACM) significantly increased human and murine glioma cells migration compared to controls. This effect was inhibited when the activity of GDNF on glioma cells was blocked by RET-Fc chimera or anti-GDNF Ab and by small interfering RNA directed against GDNF expression by astrocytes. Glioma cells incubated with ACM led to time dependent phosphorylation of the GDNF receptor, RET and downstream activation of AKT. Tumor migration and GDNF-RET-AKT activation was inhibited by the RET small-molecule inhibitor pyrazolopyrimidine-1 (PP1) and by the AKT inhibitor LY294002. Finally, blocking of RET by PP1 or knockout of the RET coreceptor GFRα1 in glioma cells reduced the size of brain tumors in immunocompetent mice. We suggest a mechanism by which astrocytes attracted to the glioma tumors facilitate brain invasion by secretion of GDNF and activation of RET/GFRα1 receptors expressed by the cancer cells.
Collapse
Affiliation(s)
- Ayelet Shabtay-Orbach
- The Laboratory for Applied Cancer Research, The Clinical Research Center at Rambam, Haifa, Israel
| | - Moran Amit
- The Laboratory for Applied Cancer Research, The Clinical Research Center at Rambam, Haifa, Israel.,Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Rapaport School of Medicine, The Technion Israel Institute of Technology, Haifa, Israel
| | - Yoav Binenbaum
- The Laboratory for Applied Cancer Research, The Clinical Research Center at Rambam, Haifa, Israel
| | - Shorook Na'ara
- The Laboratory for Applied Cancer Research, The Clinical Research Center at Rambam, Haifa, Israel.,Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Rapaport School of Medicine, The Technion Israel Institute of Technology, Haifa, Israel
| | - Ziv Gil
- The Laboratory for Applied Cancer Research, The Clinical Research Center at Rambam, Haifa, Israel.,Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Rapaport School of Medicine, The Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
69
|
Abstract
Proper assembly of cortical circuitry relies on the correct migration of cortical interneurons from their place of birth in the ganglionic eminences to their place of terminal differentiation in the cerebral cortex. Although molecular mechanisms mediating cortical interneuron migration have been well studied, intracellular signals directing their migration are largely unknown. Here we illustrate a novel and essential role for c-Jun N-terminal kinase (JNK) signaling in guiding the pioneering population of cortical interneurons into the mouse cerebral cortex. Migrating cortical interneurons express Jnk proteins at the entrance to the cortical rudiment and have enriched expression of Jnk1 relative to noninterneuronal cortical cells. Pharmacological blockade of JNK signaling in ex vivo slice cultures resulted in dose-dependent and highly specific disruption of interneuron migration into the nascent cortex. Time-lapse imaging revealed that JNK-inhibited cortical interneurons advanced slowly and assumed aberrant migratory trajectories while traversing the cortical entry zone. In vivo analyses of JNK-deficient embryos supported our ex vivo pharmacological data. Deficits in interneuron migration were observed in Jnk1 but not Jnk2 single nulls, and those migratory deficits were further exacerbated when homozygous loss of Jnk1 was combined with heterozygous reduction of Jnk2. Finally, genetic ablation of Jnk1 and Jnk2 from cortical interneurons significantly perturbed migration in vivo, but not in vitro, suggesting JNK activity functions to direct their guidance rather than enhance their motility. These data suggest JNK signaling, predominantly mediated by interneuron expressed Jnk1, is required for guiding migration of cortical interneurons into and within the developing cerebral cortex.
Collapse
|
70
|
Jaumotte JD, Zigmond MJ. Comparison of GDF5 and GDNF as neuroprotective factors for postnatal dopamine neurons in ventral mesencephalic cultures. J Neurosci Res 2014; 92:1425-33. [PMID: 24916473 DOI: 10.1002/jnr.23425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 01/16/2023]
Abstract
Loss of dopamine neurons is associated with the motor deficits that occur in Parkinson's disease. Although many drugs have proven to be useful in the treatment of the symptoms of this disease, none has been shown to have a significant impact on the development of the disease. However, we believe that several neurotrophic factors have the potential to reduce its progression. Glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor-β superfamily of neurotrophic factors, has been extensively studied in this regard. Less attention has been paid to growth/differentiation factor 5 (GDF5), another member of the same superfamily. This study compares GDNF and GDF5 in dissociated cultures prepared from ventral mesencephalon and in organotypic co-cultures containing substantia nigra, striatum, and neocortex. We report that both GDNF (10-500 ng/ml) and GDF5 (100-500 ng/ml) promoted the survival of dopamine neurons from the substantia nigra of postnatal rats, although GDNF was considerably more potent than GDF5. In contrast, neither factor had any significant effect on the survival of dopamine neurons from the rat ventral tegmental area. Using organotypic co-cultures, we also compared GDF5 with GDNF as chemoattractants for the innervation of the striatum and the neocortex by dopamine neurons from the substantia nigra. The addition of either GDF5 or GDNF (100-500 ng/ml) caused innervation by dopamine neurons into the cortex as well as the striatum, which did not occur in untreated cultures. Our results are consistent with similar findings suggesting that GDF5, like GDNF, deserves attention as a possible therapeutic intervention for Parkinson's disease.
Collapse
Affiliation(s)
- Juliann D Jaumotte
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
71
|
Plaza-Menacho I, Mologni L, McDonald NQ. Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal 2014; 26:1743-52. [PMID: 24705026 DOI: 10.1016/j.cellsig.2014.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/30/2014] [Indexed: 11/15/2022]
Abstract
De-regulation of RET signaling by oncogenic mutation, gene rearrangement, overexpression or transcriptional up-regulation is implicated in several human cancers of neuroendocrine and epithelial origin (thyroid, breast, lung). Understanding how RET signaling mechanisms associated with these oncogenic events are deregulated, and their impact in the biological processes driving tumor formation and progression, as well as response to treatment, will be crucial to find and develop better targeted therapeutic strategies. In this review we emphasie the distinct mechanisms of RET signaling in cancer and summarise current knowledge on small molecule inhibitors targeting the tyrosine kinase domain of RET as therapeutic drugs in RET-positive cancers.
Collapse
Affiliation(s)
- I Plaza-Menacho
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK.
| | - L Mologni
- Dept. of Health Sciences, University of Milano-Bicocca, Italy
| | - N Q McDonald
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
72
|
Won C, Lin Z, Kumar T P, Li S, Ding L, Elkhal A, Szabó G, Vasudevan A. Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 2014; 4:2149. [PMID: 23857367 PMCID: PMC3763945 DOI: 10.1038/ncomms3149] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/14/2013] [Indexed: 02/06/2023] Open
Abstract
GABA neurons, born in remote germinative zones in the ventral forebrain (telencephalon), migrate tangentially in two spatially distinct streams to adopt their specific positions in the developing cortex. The cell types and molecular cues that regulate this divided migratory route remains to be elucidated. Here we show that embryonic vascular networks are strategically positioned to fulfill the task of providing support as well as critical guidance cues that regulate the divided migratory routes of GABA neurons in the telencephalon. Interestingly, endothelial cells of the telencephalon are not homogeneous in their gene expression profiles. Endothelial cells of the periventricular vascular network have molecular identities distinct from those of the pial network. Our data suggest that periventricular endothelial cells have intrinsic programs that can significantly mold neuronal development and uncovers new insights into concepts and mechanisms of CNS angiogenesis from both developmental and disease perspectives.
Collapse
Affiliation(s)
- Chungkil Won
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Decision making during interneuron migration in the developing cerebral cortex. Trends Cell Biol 2014; 24:342-51. [PMID: 24388877 DOI: 10.1016/j.tcb.2013.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023]
Abstract
Appropriate interneuron migration and distribution is essential for the construction of functional neuronal circuitry and the maintenance of excitatory/inhibitory balance in the brain. Gamma-aminobutyric acid (GABA)ergic interneurons originating from the ventral telencephalon choreograph a complex pattern of migration to reach their target destinations within the developing brain. This review examines the cellular and molecular underpinnings of the major decision-making steps involved in this process of oriental navigation of cortical interneurons.
Collapse
|
74
|
O'Leary C, Cole SJ, Langford M, Hewage J, White A, Cooper HM. RGMa regulates cortical interneuron migration and differentiation. PLoS One 2013; 8:e81711. [PMID: 24312340 PMCID: PMC3842424 DOI: 10.1371/journal.pone.0081711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 10/23/2013] [Indexed: 11/24/2022] Open
Abstract
The etiology of neuropsychiatric disorders, including schizophrenia and autism, has been linked to a failure to establish the intricate neural network comprising excitatory pyramidal and inhibitory interneurons during neocortex development. A large proportion of cortical inhibitory interneurons originate in the medial ganglionic eminence (MGE) of the ventral telencephalon and then migrate through the ventral subventricular zone, across the corticostriatal junction, into the embryonic cortex. Successful navigation of newborn interneurons through the complex environment of the ventral telencephalon is governed by spatiotemporally restricted deployment of both chemorepulsive and chemoattractive guidance cues which work in concert to create a migratory corridor. Despite the expanding list of interneuron guidance cues, cues responsible for preventing interneurons from re-entering the ventricular zone of the ganglionic eminences have not been well characterized. Here we provide evidence that the chemorepulsive axon guidance cue, RGMa (Repulsive Guidance Molecule a), may fulfill this function. The ventricular zone restricted expression of RGMa in the ganglionic eminences and the presence of its receptor, Neogenin, in the ventricular zone and on newborn and maturing MGE-derived interneurons implicates RGMa-Neogenin interactions in interneuron differentiation and migration. Using an in vitro approach, we show that RGMa promotes interneuron differentiation by potentiating neurite outgrowth. In addition, using in vitro explant and migration assays, we provide evidence that RGMa is a repulsive guidance cue for newborn interneurons migrating out of the ganglionic eminence ventricular zone. Intriguingly, the alternative Neogenin ligand, Netrin-1, had no effect on migration. However, we observed complete abrogation of RGMa-induced chemorepulsion when newborn interneurons were simultaneously exposed to RGMa and Netrin-1 gradients, suggesting a novel mechanism for the tight regulation of RGMa-guided interneuron migration. We propose that during peak neurogenesis, repulsive RGMa-Neogenin interactions drive interneurons into the migratory corridor and prevent re-entry into the ventricular zone of the ganglionic eminences.
Collapse
Affiliation(s)
- Conor O'Leary
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
75
|
Interneuron development and epilepsy: early genetic defects cause long-term consequences in seizures and susceptibility. Epilepsy Curr 2013; 13:172-6. [PMID: 24009481 DOI: 10.5698/1535-7597-13.4.172] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Errors in the generation of the inhibitory GABAergic interneurons of the cerebral cortex and hippocampus have variable consequences. Studies of the molecular pathways of interneuron development reveal genes that are associated with human epilepsies. Animal models of gene variants exhibit seizures and abnormal electroencephalographic activity, providing unique models for discovering better treatments for individual forms of epilepsy.
Collapse
|
76
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
77
|
Muñoz-Bravo JL, Hidalgo-Figueroa M, Pascual A, López-Barneo J, Leal-Cerro A, Cano DA. GDNF is required for neural colonization of the pancreas. Development 2013; 140:3669-79. [PMID: 23903190 DOI: 10.1242/dev.091256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian pancreas is densely innervated by both the sympathetic and parasympathetic nervous systems, which control exocrine and endocrine secretion. During embryonic development, neural crest cells migrating in a rostrocaudal direction populate the gut, giving rise to neural progenitor cells. Recent studies in mice have shown that neural crest cells enter the pancreatic epithelium at E11.5. However, the cues that guide the migration of neural progenitors into the pancreas are poorly defined. In this study we identify glial cell line-derived neurotrophic factor (GDNF) as a key player in this process. GDNF displays a dynamic expression pattern during embryonic development that parallels the chronology of migration and differentiation of neural crest derivatives in the pancreas. Conditional inactivation of Gdnf in the pancreatic epithelium results in a dramatic loss of neuronal and glial cells and in reduced parasympathetic innervation in the pancreas. Importantly, the innervation of other regions of the gut remains unaffected. Analysis of Gdnf mutant mouse embryos and ex vivo experiments indicate that GDNF produced in the pancreas acts as a neurotrophic factor for gut-resident neural progenitor cells. Our data further show that exogenous GDNF promotes the proliferation of pancreatic progenitor cells in organ culture. In summary, our results point to GDNF as crucial for the development of the intrinsic innervation of the pancreas.
Collapse
Affiliation(s)
- José Luis Muñoz-Bravo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | |
Collapse
|
78
|
Marín O. Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci 2013; 38:2019-29. [DOI: 10.1111/ejn.12225] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias; Consejo Superior de Investigaciones Científicas; Universidad Miguel Hernández; Sant Joan d'Alacant; Spain
| |
Collapse
|
79
|
Kelsom C, Lu W. Development and specification of GABAergic cortical interneurons. Cell Biosci 2013; 3:19. [PMID: 23618463 PMCID: PMC3668182 DOI: 10.1186/2045-3701-3-19] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022] Open
Abstract
GABAergic interneurons are inhibitory neurons of the nervous system that play a vital role in neural circuitry and activity. They are so named due to their release of the neurotransmitter gamma-aminobutyric acid (GABA), and occupy different areas of the brain. This review will focus primarily on GABAergic interneurons of the mammalian cerebral cortex from a developmental standpoint. There is a diverse amount of cortical interneuronal subtypes that may be categorized by a number of characteristics; this review will classify them largely by the protein markers they express. The developmental origins of GABAergic interneurons will be discussed, as well as factors that influence the complex migration routes that these interneurons must take in order to ultimately localize in the cerebral cortex where they will integrate with the neural circuitry set in place. This review will also place an emphasis on the transcriptional network of genes that play a role in the specification and maintenance of GABAergic interneuron fate. Gaining an understanding of the different aspects of cortical interneuron development and specification, especially in humans, has many useful clinical applications that may serve to treat various neurological disorders linked to alterations in interneuron populations.
Collapse
Affiliation(s)
- Corey Kelsom
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Biochemistry and Molecular Biology, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
80
|
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are prominently expressed in the olfactory epithelium (OE) and olfactory bulb (OB), but their importance for olfactory system development is completely unknown. We have investigated the consequences of GFRα1 deficiency for mouse olfactory system development and function. In the OE, GFRα1 was expressed in basal precursors, immature olfactory sensory neurons (OSNs), and olfactory ensheathing cells (OECs), but was excluded from mature OSNs. The OE of newborn Gfra1 knock-out mice was thinner and contained fewer OSNs, but more dividing precursors, suggesting deficient neurogenesis. Immature OSN axon bundles were enlarged and associated OECs increased, indicating impaired migration of OECs and OSN axons. In the OB, GFRα1 was expressed in immature OSN axons and OECs of the nerve layer, as well as mitral and tufted cells, but was excluded from GABAergic interneurons. In newborn knock-outs, the nerve layer was dramatically reduced, exhibiting fewer axons and OECs. Bulbs were smaller and presented fewer and disorganized glomeruli and a significant reduction in mitral cells. Numbers of tyrosine hydroxylase-, calbindin-, and calretinin-expressing interneurons were also reduced in newborn mice lacking Gfra1. At birth, the OE and OB of Gdnf knock-out mice displayed comparable phenotypes. Similar deficits were also found in adult heterozygous Gfra1(+/-) mutants, which in addition displayed diminished responses in behavioral tests of olfactory function. We conclude that GFRα1 is critical for the development and function of the main olfactory system, contributing to the development and allocation of all major classes of neurons and glial cells.
Collapse
|
81
|
Perez-Asensio FJ, Perpiñá U, Planas AM, Pozas E. Interleukin-10 regulates progenitor differentiation and modulates neurogenesis on adult brain. J Cell Sci 2013; 126:4208-19. [DOI: 10.1242/jcs.127803] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adult subventricular zone (SVZ) is the main neurogenic niche in normal adult brain of mice and rats. The adult SVZ contains neural stem cells (NSCs) that mainly differentiate into committed neuroblasts. The new generated neuroblasts accumulate in dorsal SVZ where they further differentiate and initiate a long migration pathway to their final destination the olfactory bulb (OB).
In here we report a new role for Interleukin 10 (IL-10) different from its well known anti-inflammatory properties. We reveal that IL-10 receptor is expressed in Nestin+ progenitors restricted to the dorsal SVZ in adult brain. Through IL-10 gain models we observed that IL-10 maintains neural progenitors in an undifferentiated stage by keeping progenitors in active cycle and up-regulating the presence of pro-neural genes markers (Nestin, Sox genes, Musashi, Mash1) in detriment of neuronal gene expression (Numb, DCX, TUBB3). On top, IL-10 reduces neuronal differentiation and finally impairs endogenous neurogenesis. Consistently, in the absence of IL-10 in vivo neuronal differentiation among SVZ progenitors is enhanced and the incorporation of new neurons in the adult OB is increased.
Thus, our results provide the first evidence that IL-10 acts as a growth factor on SVZ progenitors and regulates adult neurogenesis in adult normal brain.
Collapse
|
82
|
Glerup S, Lume M, Olsen D, Nyengaard J, Vaegter C, Gustafsen C, Christensen E, Kjolby M, Hay-Schmidt A, Bender D, Madsen P, Saarma M, Nykjaer A, Petersen C. SorLA Controls Neurotrophic Activity by Sorting of GDNF and Its Receptors GFRα1 and RET. Cell Rep 2013; 3:186-99. [DOI: 10.1016/j.celrep.2012.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 10/23/2012] [Accepted: 12/14/2012] [Indexed: 01/01/2023] Open
|
83
|
Neurotrophin-induced migration and neuronal differentiation of multipotent astrocytic stem cells in vitro. PLoS One 2012; 7:e51706. [PMID: 23251608 PMCID: PMC3520915 DOI: 10.1371/journal.pone.0051706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/05/2012] [Indexed: 01/02/2023] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) affects 2-3 per 1000 full-term neonates. Up to 75% of newborns with severe HIE die or have severe neurological handicaps. Stem cell therapy offers the potential to replace HIE-damaged cells and enhances the autoregeneration process. Our laboratory implanted Multipotent Astrocytic Stem Cells (MASCs) into a neonatal rat model of hypoxia-ischemia (HI) and demonstrated that MASCs move to areas of injury in the cortex and hippocampus. However, only a small proportion of the implanted MASCs differentiated into neurons. MASCs injected into control pups did not move into the cortex or differentiate into neurons. We do not know the mechanism by which the MASCs moved from the site of injection to the injured cortex. We found neurotrophins present after the hypoxic-ischemic milieu and hypothesized that neurotrophins could enhance the migration and differentiation of MASCs. Using a Boyden chamber device, we demonstrated that neurotrophins potentiate the in vitro migration of stem cells. NGF, GDNF, BDNF and NT-3 increased stem cell migration when compared to a chemokinesis control. Also, MASCs had increased differentiation toward neuronal phenotypes when these neurotrophins were added to MASC culture tissue. Due to this finding, we believed neurotrophins could guide migration and differentiation of stem cell transplants after brain injury.
Collapse
|
84
|
Tricoire L, Vitalis T. Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Front Neural Circuits 2012; 6:82. [PMID: 23227003 PMCID: PMC3514612 DOI: 10.3389/fncir.2012.00082] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule crucial for many physiological processes such as synaptic plasticity, vasomotricity, and inflammation. Neuronal nitric oxide synthase (nNOS) is the enzyme responsible for the synthesis of NO by neurons. In the juvenile and mature hippocampus and neocortex nNOS is primarily expressed by subpopulations of GABAergic interneurons. Over the past two decades, many advances have been achieved in the characterization of neocortical and hippocampal nNOS expressing neurons. In this review, we summarize past and present studies that have characterized the electrophysiological, morphological, molecular, and synaptic properties of these neurons. We also discuss recent studies that have shed light on the developmental origins and specification of GABAergic neurons with specific attention to neocortical and hippocampal nNOS expressing GABAergic neurons. Finally, we summarize the roles of NO and nNOS-expressing inhibitory neurons.
Collapse
Affiliation(s)
- Ludovic Tricoire
- CNRS-UMR 7102, Laboratoire de Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie Paris, France
| | | |
Collapse
|
85
|
Neurogenin2 expression together with NeuroM regulates GDNF family neurotrophic factor receptor α1 (GFRα1) expression in the embryonic spinal cord. Dev Biol 2012; 370:250-63. [DOI: 10.1016/j.ydbio.2012.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
|
86
|
Promoting engraftment of transplanted neural stem cells/progenitors using biofunctionalised electrospun scaffolds. Biomaterials 2012; 33:9188-97. [PMID: 23022345 DOI: 10.1016/j.biomaterials.2012.09.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/09/2012] [Indexed: 02/02/2023]
Abstract
With the brain's limited capacity for repair, new and innovative approaches are required to promote regeneration. While neural transplantation for a number of neural disease/injuries have been demonstrated, major limitations in the field include poor cell survival and integration. This, in part, is due to the non-conducive environment of the adult brain, failing to provide adequate chemical and physical support for new neurons. Here we examine the capacity of fibrous poly ε-caprolactone (PCL) scaffolds, biofunctionalised with immobilised glial cell-derived neurotrophic factor (GDNF), to influence primary cortical neural stem cells/progenitors in vitro and enhance integration of these cells following transplantation into the brain parenchyma. Immobilisation of GDNF was confirmed prior to in vitro culturing and at 28 days after implantation into the brain, demonstrating long-term delivery of the protein. In vitro, we demonstrate that PCL with immobilised GDNF (iGDNF) significantly enhances cell viability and neural stem cell/progenitor proliferation compared to conventional 2-dimensional cultureware. Upon implantation, PCL scaffolds including iGDNF enhanced the survival, proliferation, migration, and neurite growth of transplanted cortical cells, whilst suppressing inflammatory reactive astroglia.
Collapse
|
87
|
Terauchi A, Umemori H. Specific sets of intrinsic and extrinsic factors drive excitatory and inhibitory circuit formation. Neuroscientist 2012; 18:271-86. [PMID: 21652588 PMCID: PMC4140556 DOI: 10.1177/1073858411404228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How are excitatory (glutamatergic) and inhibitory (GABAergic) synapses established? Do distinct molecular mechanisms direct differentiation of glutamatergic and GABAergic synapses? In the brain, glutamatergic and GABAergic synaptic connections are formed with specific patterns. To establish such precise synaptic patterns, neurons pass through multiple checkpoints during development, such as cell fate determination, cell migration and localization, axonal guidance and target recognition, and synapse formation. Each stage offers key molecules for neurons/synapses to obtain glutamatergic or GABAergic specificity. Some mechanisms are based on intrinsic systems to induce gene expression, whereas others are based on extrinsic systems mediated by cell-cell or axon-target interactions. Recent studies indicate that specific formation of glutamatergic and GABAergic synapses is controlled by the expression or activation of different sets of molecules during development. In this review, the authors outline stages critical to the determination of glutamatergic or GABAergic specificity and describe molecules that act as determinants of specificities in each stage, with a particular focus on the synapse formation stage. They also discuss possible mechanisms underlying glutamatergic and GABAergic synapse formation via synapse-type specific synaptic organizers.
Collapse
Affiliation(s)
- Akiko Terauchi
- Molecular & Behavioral Neuroscience Institute, University
of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Hisashi Umemori
- Molecular & Behavioral Neuroscience Institute, University
of Michigan Medical School, Ann Arbor, MI 48109-2200
- Departments of Biological Chemistry, University of Michigan
Medical School, Ann Arbor, MI 48109-2200
| |
Collapse
|
88
|
Faux C, Rakic S, Andrews W, Britto JM. Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 2012; 20:168-89. [PMID: 22572780 DOI: 10.1159/000334489] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of cortical activity by GABAergic interneurons is required for normal brain function and is achieved through the immense level of heterogeneity within this neuronal population. Cortical interneurons share a common origin in the ventral telencephalon, yet during the maturation process diverse subtypes are generated that form the characteristic laminar arrangement observed in the adult brain. The long distance tangential and short-range radial migration into the cortical plate is regulated by a combination of intrinsic and extrinsic signalling mechanisms, and a great deal of progress has been made to understand these developmental events. In this review, we will summarize current findings regarding the molecular control of subtype specification and provide a detailed account of the migratory cues influencing interneuron migration and lamination. Furthermore, a dysfunctional GABAergic system is associated with a number of neurological and psychiatric conditions, and some of these may have a developmental aetiology with alterations in interneuron generation and migration. We will discuss the notion of additional sources of interneuron progenitors found in human and non-human primates and illustrate how the disruption of early developmental events can instigate a loss in GABAergic function.
Collapse
Affiliation(s)
- Clare Faux
- Centre for Neuroscience, University of Melbourne, Parkville, Vic, Australia
| | | | | | | |
Collapse
|
89
|
Inamura N, Kimura T, Tada S, Kurahashi T, Yanagida M, Yanagawa Y, Ikenaka K, Murakami F. Intrinsic and extrinsic mechanisms control the termination of cortical interneuron migration. J Neurosci 2012; 32:6032-42. [PMID: 22539863 PMCID: PMC6703612 DOI: 10.1523/jneurosci.3446-11.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 03/10/2012] [Accepted: 03/16/2012] [Indexed: 12/25/2022] Open
Abstract
During development, neurons migrate from their site of origin to their final destinations. Upon reaching this destination, the termination of their migration is crucial for building functional architectures such as laminated structures and nuclei. How this termination is regulated, however, is not clear. Here, we investigated the contribution of cell-intrinsic mechanisms and extrinsic factors. Using GAD67-GFP knock-in mice and in utero electroporation cell labeling, we visualized GABAergic neurons and analyzed their motility in vitro. We find that the motility of GABAergic neurons in cortical slices gradually decreases as development proceeds and is almost abolished by the end of the first postnatal week. Consistent with this, a reduction of embryonic interneuron motility occurred in dissociated cultures. This is in part due to cell-intrinsic mechanisms, as a reduction in motility is observed during long-term culturing on glial feeder cells. Cell-intrinsic regulation is further supported by observations that interneurons labeled in early stages migrated more actively than those labeled in late stages in the same cortical explant. We found evidence suggesting that upregulation of the potassium-chloride cotransporter KCC2 underlies this intrinsic regulation. Reduced motility is also observed when embryonic interneurons are plated on postnatal cortical feeder cells, suggesting extrinsic factors derived from the postnatal cortex too contribute to termination. These factors should include secreted molecules, as cultured postnatal cortical cells could exercise this effect without directly contacting the interneuron. These findings suggest that intrinsic mechanisms and extrinsic factors coordinate to reduce the motility of migrating neurons, thereby leading to the termination of migration.
Collapse
Affiliation(s)
- Naoko Inamura
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Toshiya Kimura
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Tada
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Takashi Kurahashi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Mitsutoshi Yanagida
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yuchio Yanagawa
- Department of Genetics and Behavioural Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan, and
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
90
|
Antypa M, Faux C, Eichele G, Parnavelas JG, Andrews WD. Differential gene expression in migratory streams of cortical interneurons. Eur J Neurosci 2012; 34:1584-94. [PMID: 22103416 PMCID: PMC3401901 DOI: 10.1111/j.1460-9568.2011.07896.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cortical interneurons originate in the ganglionic eminences of the subpallium and migrate into the cortex in well-defined tangential streams. At the start of corticogenesis, two streams of migrating neurons are evident: a superficial one at the level of the preplate (PPL), and a deeper one at the level of the intermediate zone (IZ). Currently, little is known about the signalling mechanisms that regulate interneuron migration, and almost nothing is known about the molecules that may be involved in their choice of migratory stream. Here, we performed a microarray analysis, comparing the changes in gene expression between cells migrating in the PPL and those migrating in the IZ at embryonic day 13.5. This analysis identified genes, many of them novel, that were upregulated in one of the two streams. Moreover, polymerase chain reaction, in situ hybridization experiments and immunohistochemistry showed the expression of these genes in interneurons migrating within the PPL or IZ, suggesting that they play a role in their migration and choice of stream.
Collapse
Affiliation(s)
- Mary Antypa
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
91
|
Li H, Chou SJ, Hamasaki T, Perez-Garcia CG, O'Leary DDM. Neuregulin repellent signaling via ErbB4 restricts GABAergic interneurons to migratory paths from ganglionic eminence to cortical destinations. Neural Dev 2012; 7:10. [PMID: 22376909 PMCID: PMC3353847 DOI: 10.1186/1749-8104-7-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 02/29/2012] [Indexed: 01/08/2023] Open
Abstract
Background Cortical GABAergic interneurons (INs) are generated in the medial ganglionic eminence (MGE) and migrate tangentially into cortex. Because most, if not all, migrating MGE-derived INs express the neuregulin (NRG) receptor, ErbB4, we investigated influences of Nrg1 isoforms and Nrg3 on IN migration through ventral telencephalon (vTel) and within cortex. Results During IN migration, NRG expression domains and distributions of ErbB4-expressing, MGE-derived INs are complementary with minimal overlap, both in vTel and cortex. In wild-type mice, within fields of NRG expression, these INs are focused at positions of low or absent NRG expression. However, in ErbB4-/- HER4heart mutant mice in which INs lack ErbB4, these complementary patterns are degraded with considerable overlap evident between IN distribution and NRG expression domains. These findings suggest that NRGs are repellents for migrating ErbB4-expressing INs, a function supported by in vitro and in vivo experiments. First, in collagen co-cultures, MGE-derived cells preferentially migrate away from a source of secreted NRGs. Second, cells migrating from wild-type MGE explants on living forebrain slices from wild-type embryonic mice tend to avoid endogenous NRG expression domains, whereas this avoidance behavior is not exhibited by ErbB4-deficient cells migrating from MGE explants and instead they have a radial pattern with a more uniform distribution. Third, ectopic NRG expression in the IN migration pathway produced by in utero electroporation blocks IN migration and results in cortex distal to the blockade being largely devoid of INs. Finally, fewer INs reach cortex in ErbB4 mutants, indicating that NRG-ErbB4 signaling is required for directing IN migration from the MGE to cortex. Conclusions Our results show that NRGs act as repellents for migrating ErbB4-expressing, MGE-derived GABAergic INs and that the patterned expression of NRGs funnels INs as they migrate from the MGE to their cortical destinations.
Collapse
Affiliation(s)
- Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
92
|
Lundgren TK, Nakahata K, Fritz N, Rebellato P, Zhang S, Uhlén P. RET PLCγ phosphotyrosine binding domain regulates Ca2+ signaling and neocortical neuronal migration. PLoS One 2012; 7:e31258. [PMID: 22355350 PMCID: PMC3280273 DOI: 10.1371/journal.pone.0031258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 01/04/2012] [Indexed: 12/15/2022] Open
Abstract
The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca2+) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCγ) binding domain Tyr1015. This signaling cascade releases Ca2+ from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCγ block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca2+ and modulates neuronal migration in the developing neocortex through the PLCγ binding domain Tyr1015.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Calcium Signaling/physiology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Glial Cell Line-Derived Neurotrophic Factor/genetics
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Humans
- Immunoenzyme Techniques
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mice
- Neocortex/embryology
- Neocortex/metabolism
- Neurons/cytology
- Neurons/metabolism
- Phospholipase C gamma/antagonists & inhibitors
- Phospholipase C gamma/genetics
- Phospholipase C gamma/metabolism
- Phosphorylation
- Phosphotyrosine/metabolism
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- T. Kalle Lundgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Katsutoshi Nakahata
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Fritz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Paola Rebellato
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Songbai Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
93
|
Girard F, Meszar Z, Marti C, Davis FP, Celio M. Gene expression analysis in the parvalbumin-immunoreactive PV1 nucleus of the mouse lateral hypothalamus. Eur J Neurosci 2011; 34:1934-43. [DOI: 10.1111/j.1460-9568.2011.07918.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
94
|
Vitalis T, Rossier J. New insights into cortical interneurons development and classification: contribution of developmental studies. Dev Neurobiol 2011; 71:34-44. [PMID: 21154908 DOI: 10.1002/dneu.20810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The concerted development of GABAergic interneurons and glutamatergic neurons is a key feature in the construction of the cerebral cortex. In contrast with glutamatergic neurons, GABAergic interneurons are heterogeneous differing by their axonal and dendritic morphologies, biochemical markers, connectivity, and physiology. Furthermore, interneurons have recently been shown to be generated in a variety of telencephalic structures (the ganglionic eminences, the entopeduncular and preoptic areas and the cortex). This review describes the origin, specification and differentiation of interneurons. These recent developmental studies may help to clarify the classification of mature interneurons. In particular recent studies, including our own, provide compelling evidences that most interneurons are specify after their last division in their region of origin before migration. The roles of target tissues in determining the final physiological properties of interneurons are also discussed.
Collapse
Affiliation(s)
- Tania Vitalis
- CNRS-UMR 7637, Laboratoire de Neurobiologie, ESPCI ParisTech, 10 rue Vauquelin, 75005, Paris, France.
| | | |
Collapse
|
95
|
Corbin JG, Butt SJB. Developmental mechanisms for the generation of telencephalic interneurons. Dev Neurobiol 2011; 71:710-32. [PMID: 21485015 DOI: 10.1002/dneu.20890] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interneurons, which release the neurotransmitter γ-aminobutyric acid (GABA), are the major inhibitory cells of the central nervous system (CNS). Despite comprising only 20-30% of the cerebral cortical neuronal population, these cells play an essential and powerful role in modulating the electrical activity of the excitatory pyramidal cells onto which they synapse. Although interneurons are present in all regions of the mature telencephalon, during embryogenesis these cells are generated in specific compartments of the ventral (subpallial) telencephalon known as ganglionic eminences. To reach their final destinations in the mature brain, immature interneurons migrate from the ganglionic eminences to developing telencephalic structures that are both near and far from their site of origin. The specification and migration of these cells is a complex but precisely orchestrated process that is regulated by a combination of intrinsic and extrinsic signals. The final outcome of which is the wiring together of excitatory and inhibitory neurons that were born in separate regions of the developing telencephalon. Disruption of any aspect of this sequence of events during development, either from an environmental insult or due to genetic mutations, can have devastating consequences on normal brain function.
Collapse
Affiliation(s)
- Joshua G Corbin
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA.
| | | |
Collapse
|
96
|
Signaling of Glial Cell Line-Derived Neurotrophic Factor and Its Receptor GFRα1 Induce Nurr1 and Pitx3 to Promote Survival of Grafted Midbrain-Derived Neural Stem Cells in a Rat Model of Parkinson Disease. J Neuropathol Exp Neurol 2011; 70:736-47. [DOI: 10.1097/nen.0b013e31822830e5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
97
|
Perrinjaquet M, Sjöstrand D, Moliner A, Zechel S, Lamballe F, Maina F, Ibáñez CF. MET signaling in GABAergic neuronal precursors of the medial ganglionic eminence restricts GDNF activity in cells that express GFRα1 and a new transmembrane receptor partner. J Cell Sci 2011; 124:2797-805. [DOI: 10.1242/jcs.083717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
GDNF (glial cell line-derived neurotrophic factor) promotes the differentiation and migration of GABAergic neuronal precursors of the medial ganglionic eminence (MGE). These functions are dependent on the GPI-anchored receptor GFRα1, but independent of its two known transmembrane receptor partners RET and NCAM. Here we show that soluble GFRα1 is also able to promote differentiation and migration of GABAergic MGE neurons. These activities require endogenous production of GDNF. Although GDNF responsiveness is abolished in Gfra1−/− neurons, it can be restored upon addition of soluble GFRα1, a result that is only compatible with the existence of a previously unknown transmembrane signaling partner for the GDNF-GFRα1 complex in GABAergic neurons. The roles of two candidate transmembrane receptors previously implicated in GABAergic interneuron development - MET, a receptor for hepatocyte growth factor (HGF), and ErbB4, the neuregulin receptor – were examined. GDNF did not induce the activation of either receptor, nor did inhibition of MET or ErbB4 impair GDNF activity in GABAergic MGE neurons. Unexpectedly, however, inhibition of MET or HGF per se promoted neuronal differentiation and migration and enhanced the activity of GDNF on MGE neurons. These effects were dependent on endogenous GDNF and GFRα1, suggesting that MET signaling negatively regulates GDNF activity in the MGE. In agreement with this, Met mutant MGE neurons showed enhanced responses to GDNF and inhibition of MET or HGF increased Gfra1 mRNA expression in MGE cells. In vivo, expression of MET and GFRα1 overlapped in the MGE, and a loss-of-function mutation in Met increased Gfra1 expression in this region. Together, these observations demonstrate the existence of a novel transmembrane receptor partner for the GDNF–GFRα1 complex and uncover an unexpected interplay between GDNF–GFRα1 and HGF–MET signaling in the early diversification of cortical GABAergic interneuron subtypes.
Collapse
Affiliation(s)
| | - Dan Sjöstrand
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Annalena Moliner
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Sabrina Zechel
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Fabienne Lamballe
- Institut de Biologie du Développement de Marseille Luminy (IBDML), CNRS UMR 6216, Parc scientifique et technologique de Luminy–case 907, 13288 Marseille cedex 09, France
| | - Flavio Maina
- Institut de Biologie du Développement de Marseille Luminy (IBDML), CNRS UMR 6216, Parc scientifique et technologique de Luminy–case 907, 13288 Marseille cedex 09, France
| | - Carlos F. Ibáñez
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden
| |
Collapse
|
98
|
Jovanovic JN, Thomson AM. Development of cortical GABAergic innervation. Front Cell Neurosci 2011; 5:14. [PMID: 21808605 PMCID: PMC3139172 DOI: 10.3389/fncel.2011.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/28/2011] [Indexed: 01/02/2023] Open
Abstract
The mature neocortex contains many different classes of GABAergic inhibitory interneurons, distributed, with some degree of selectivity, through six layers, and through many different regions. Some of the events in the early lives of these neurones that may determine their ultimate destination, their maturation and their selective innervation of targets appropriate for each subtype, are discussed. Both time and place of birth influence the class of interneuron that an early post-mitotic interneuronal precursor will become, driven by the selective expression of different combinations of transcription factors in different regions of their birth places in the ganglionic eminence and ventricular zone. The long distance migration of these precursors along tangential routes in marginal, subventricular, and intermediate zones and their final radial movement, into the developing cortex, is regulated by chemical cues, both attractant and repellent. Once they arrive at their final destination, they must integrate into the developing circuitry. As they mature within the cortex, their axons grow and branch in highly specific patterns that may be partially determined by the genetic blueprint for each interneuronal class and partly by the environment in which they find themselves. Finally, as each interneuron class begins to form synapses with only certain postsynaptic targets, cell–cell recognition, most probably via protein–protein interactions across the synaptic cleft, facilitate the formation of appropriate synapses.
Collapse
|
99
|
Bespalov MM, Sidorova YA, Tumova S, Ahonen-Bishopp A, Magalhães AC, Kulesskiy E, Paveliev M, Rivera C, Rauvala H, Saarma M. Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. ACTA ACUST UNITED AC 2011; 192:153-69. [PMID: 21200028 PMCID: PMC3019558 DOI: 10.1083/jcb.201009136] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Syndecan-3 may act alone or as a coreceptor with RET to promote cell spreading, neurite outgrowth, and migration of cortical neurons by GNDF, NRTN, and ARTN. Glial cell line–derived neurotrophic factor (GDNF) family ligands (GFLs) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson’s disease. Soluble GFLs bind to a ligand-specific glycosylphosphatidylinositol-anchored coreceptor (GDNF family receptor α) and signal through the receptor tyrosine kinase RET. In this paper, we show that all immobilized matrix-bound GFLs, except persephin, use a fundamentally different receptor. They interact with syndecan-3, a transmembrane heparan sulfate (HS) proteoglycan, by binding to its HS chains with high affinity. GFL–syndecan-3 interaction mediates both cell spreading and neurite outgrowth with the involvement of Src kinase activation. GDNF promotes migration of cortical neurons in a syndecan-3–dependent manner, and in agreement, mice lacking syndecan-3 or GDNF have a reduced number of cortical γ-aminobutyric acid–releasing neurons, suggesting a central role for the two molecules in cortical development. Collectively, syndecan-3 may directly transduce GFL signals or serve as a coreceptor, presenting GFLs to the signaling receptor RET.
Collapse
Affiliation(s)
- Maxim M Bespalov
- Institute of Biotechnology, Viikki Biocenter, and 2 Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Salyakina D, Ma DQ, Jaworski JM, Konidari I, Whitehead PL, Henson R, Martinez D, Robinson JL, Sacharow S, Wright HH, Abramson RK, Gilbert JR, Cuccaro ML, Pericak-Vance MA. Variants in several genomic regions associated with asperger disorder. Autism Res 2010; 3:303-10. [PMID: 21182207 PMCID: PMC4435556 DOI: 10.1002/aur.158] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Asperger disorder (ASP) is one of the autism spectrum disorders (ASD) and is differentiated from autism largely on the absence of clinically significant cognitive and language delays. Analysis of a homogenous subset of families with ASP may help to address the corresponding effect of genetic heterogeneity on identifying ASD genetic risk factors. To examine the hypothesis that common variation is important in ASD, we performed a genome-wide association study (GWAS) in 124 ASP families in a discovery data set and 110 ASP families in a validation data set. We prioritized the top 100 association results from both cohorts by employing a ranking strategy. Novel regions on 5q21.1 (P = 9.7 × 10(-7) ) and 15q22.1-q22.2 (P = 7.3 × 10(-6) ) were our most significant findings in the combined data set. Three chromosomal regions showing association, 3p14.2 (P = 3.6 × 10(-6) ), 3q25-26 (P = 6.0 × 10(-5) ) and 3p23 (P = 3.3 × 10(-4) ) overlapped linkage regions reported in Finnish ASP families, and eight association regions overlapped ASD linkage areas. Our findings suggest that ASP shares both ASD-related genetic risk factors, as well as has genetic risk factors unique to the ASP phenotype.
Collapse
Affiliation(s)
- D Salyakina
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|