51
|
Quicke P, Howe CL, Song P, Jadan HV, Song C, Knöpfel T, Neil M, Dragotti PL, Schultz SR, Foust AJ. Subcellular resolution three-dimensional light-field imaging with genetically encoded voltage indicators. NEUROPHOTONICS 2020; 7:035006. [PMID: 32904628 PMCID: PMC7456658 DOI: 10.1117/1.nph.7.3.035006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 05/13/2023]
Abstract
Significance: Light-field microscopy (LFM) enables high signal-to-noise ratio (SNR) and light efficient volume imaging at fast frame rates. Voltage imaging with genetically encoded voltage indicators (GEVIs) stands to particularly benefit from LFM's volumetric imaging capability due to high required sampling rates and limited probe brightness and functional sensitivity. Aim: We demonstrate subcellular resolution GEVI light-field imaging in acute mouse brain slices resolving dendritic voltage signals in three spatial dimensions. Approach: We imaged action potential-induced fluorescence transients in mouse brain slices sparsely expressing the GEVI VSFP-Butterfly 1.2 in wide-field microscopy (WFM) and LFM modes. We compared functional signal SNR and localization between different LFM reconstruction approaches and between LFM and WFM. Results: LFM enabled three-dimensional (3-D) localization of action potential-induced fluorescence transients in neuronal somata and dendrites. Nonregularized deconvolution decreased SNR with increased iteration number compared to synthetic refocusing but increased axial and lateral signal localization. SNR was unaffected for LFM compared to WFM. Conclusions: LFM enables 3-D localization of fluorescence transients, therefore eliminating the need for structures to lie in a single focal plane. These results demonstrate LFM's potential for studying dendritic integration and action potential propagation in three spatial dimensions.
Collapse
Affiliation(s)
- Peter Quicke
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Carmel L. Howe
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Pingfan Song
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Herman V. Jadan
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Chenchen Song
- Imperial College London, Department of Brain Sciences, London, United Kingdom
| | - Thomas Knöpfel
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Brain Sciences, London, United Kingdom
| | - Mark Neil
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Physics, London, United Kingdom
| | - Pier L. Dragotti
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Simon R. Schultz
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Address all correspondence to Simon R. Schultz, E-mail: ; Amanda J. Foust, E-mail:
| | - Amanda J. Foust
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Address all correspondence to Simon R. Schultz, E-mail: ; Amanda J. Foust, E-mail:
| |
Collapse
|
52
|
Tan Y, Chiam CPL, Zhang Y, Tey HL, Ng LG. Research Techniques Made Simple: Optical Clearing and Three-Dimensional Volumetric Imaging of Skin Biopsies. J Invest Dermatol 2020; 140:1305-1314.e1. [PMID: 32571496 DOI: 10.1016/j.jid.2020.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 11/25/2022]
Abstract
Skin histology is traditionally carried out using two-dimensional tissue sections, which allows for rapid staining, but these sections cannot accurately represent three-dimensional structures in skin such as nerves, vasculature, hair follicles, and sebaceous glands. Although it may be ideal to image skin in a three-dimensional manner, it is technically challenging to image deep into tissue because of light scattering from collagen fibrils in the dermis and refractive index mismatch owing to the presence of differing biological materials such as cytoplasm, and lipids in the skin. Different optical clearing methods have been developed recently, making it possible to render tissues transparent using different approaches. Here, we discuss the steps involved in tissue preparation for three-dimensional volumetric imaging and provide a brief overview of the different optical clearing methods as well as different imaging modalities for three-dimensional imaging.
Collapse
Affiliation(s)
- Yingrou Tan
- Department of Research, National Skin Centre, Singapore; Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Carolyn Pei Lyn Chiam
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Yuning Zhang
- Faculty of Science, National University of Singapore, Singapore
| | - Hong Liang Tey
- Department of Research, National Skin Centre, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore.
| |
Collapse
|
53
|
Pham C, Moro DH, Mouffle C, Didienne S, Hepp R, Pfrieger FW, Mangin JM, Legendre P, Martin C, Luquet S, Cauli B, Li D. Mapping astrocyte activity domains by light sheet imaging and spatio-temporal correlation screening. Neuroimage 2020; 220:117069. [PMID: 32585347 DOI: 10.1016/j.neuroimage.2020.117069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are a major type of glial cell in the mammalian brain, essentially regulating neuronal development and function. Quantitative imaging represents an important approach to study astrocytic signaling in neural circuits. Focusing on astrocytic Ca2+ activity, a key pathway implicated in astrocye-neuron interaction, we here report a strategy combining fast light sheet fluorescence microscopy (LSFM) and correlative screening-based time series analysis, to map activity domains in astrocytes in living mammalian nerve tissue. Light sheet of micron-scale thickness enables wide-field optical sectioning to image astrocytes in acute mouse brain slices. Using both chemical and genetically encoded Ca2+ indicators, we demonstrate the complementary advantages of LSFM in mapping Ca2+ domains in astrocyte populations as compared to epifluorescence and two-photon microscopy. Our approach then revealed distinct kinetics of Ca2+ signals between cortical and hypothalamic astrocytes in resting conditions and following the activation of adrenergic G protein coupled receptor (GPCR). This observation highlights the activity heterogeneity across regionally distinct astrocyte populations, and indicates the potential of our method for investigating dynamic signals in astrocytes.
Collapse
Affiliation(s)
- Cuong Pham
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, UPMC UMCR18, Paris, 75005, France
| | - Daniela Herrera Moro
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche Scientifique, Unité Mixte de Recherche 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Christine Mouffle
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, UPMC UMCR18, Paris, 75005, France
| | - Steve Didienne
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, UPMC UMCR18, Paris, 75005, France
| | - Régine Hepp
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, UPMC UMCR18, Paris, 75005, France
| | - Frank W Pfrieger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Jean-Marie Mangin
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, UPMC UMCR18, Paris, 75005, France
| | - Pascal Legendre
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, UPMC UMCR18, Paris, 75005, France
| | - Claire Martin
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche Scientifique, Unité Mixte de Recherche 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche Scientifique, Unité Mixte de Recherche 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | - Bruno Cauli
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, UPMC UMCR18, Paris, 75005, France
| | - Dongdong Li
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, UPMC UMCR18, Paris, 75005, France.
| |
Collapse
|
54
|
Ricci P, Sancataldo G, Gavryusev V, Franceschini A, Müllenbroich MC, Silvestri L, Pavone FS. Fast multi-directional DSLM for confocal detection without striping artifacts. BIOMEDICAL OPTICS EXPRESS 2020; 11:3111-3124. [PMID: 32637245 PMCID: PMC7316030 DOI: 10.1364/boe.390916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 05/02/2023]
Abstract
In recent years light-sheet fluorescence microscopy (LSFM) has become a cornerstone technology for neuroscience, improving the quality and capabilities of 3D imaging. By selectively illuminating a single plane, it provides intrinsic optical sectioning and fast image recording, while minimizing out of focus fluorescence background, sample photo-damage and photo-bleaching. However, images acquired with LSFM are often affected by light absorption or scattering effects, leading to un-even illumination and striping artifacts. In this work we present an optical solution to this problem, via fast multi-directional illumination of the sample, based on an acousto-optical deflector (AOD). We demonstrate that this pivoting system is compatible with confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) by using a pivoted elliptical-Gaussian beam. We tested its performance by acquiring signals emitted by specific fluorophores in several mouse brain areas, comparing the pivoting beam illumination and a traditional static one, measuring the point spread function response and quantifying the striping reduction. We observed real-time shadow suppression, while preserving the advantages of confocal detection for image contrast.
Collapse
Affiliation(s)
- Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy
- University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | - Giuseppe Sancataldo
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy
- University of Palermo, Department of Physics and Chemistry, Palermo, 90128, Italy
| | - Vladislav Gavryusev
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy
- University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | - Alessandra Franceschini
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy
- National Institute of Optics, Sesto Fiorentino, 50019, Italy
| | | | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy
- University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
- National Institute of Optics, Sesto Fiorentino, 50019, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy
- University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
- National Institute of Optics, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
55
|
Light-Sheet Fluorescence Microscopy with Scanning Non-diffracting Beams. Sci Rep 2020; 10:8501. [PMID: 32444603 PMCID: PMC7244762 DOI: 10.1038/s41598-020-63847-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/05/2020] [Indexed: 12/02/2022] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) has now become a unique tool in different fields ranging from three-dimensional (3D) tissue imaging to real-time functional imaging of neuronal activities. Nevertheless, obtaining high-quality artifact-free images from large, dense and inhomogeneous samples is the main challenge of the method that still needs to be adequately addressed. Here, we demonstrate significant enhancement of LSFM image qualities by using scanning non-diffracting illuminating beams, both through experimental and numerical investigations. The effect of static and scanning illumination with several beams are analyzed and compared, and it is shown that scanning 2D Airy light-sheet is minimally affected by the inhomogeneities in the samples, and provides higher contrasts and uniform resolution over a wide field-of-view, due to its reduced spatial coherence, self-healing feature and longer penetration depth. Further, the capabilities of the illumination scheme is utilized for both single-and double-wavelength 3D imaging of large and dense mammospheres of cancer tumor cells as complex inhomogeneous biological samples.
Collapse
|
56
|
Campbell PD, Granato M. Zebrafish as a tool to study schizophrenia-associated copy number variants. Dis Model Mech 2020; 13:dmm043877. [PMID: 32433025 PMCID: PMC7197721 DOI: 10.1242/dmm.043877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia remains one of the most debilitating human neurodevelopmental disorders, with few effective treatments and striking consequences felt by individuals, communities and society as a whole. As such, there remains a critical need for further investigation into the mechanistic underpinnings of schizophrenia so that novel therapeutic targets can be identified. Because schizophrenia is a highly heritable disorder, genetic risk factors remain an attractive avenue for this research. Given their clear molecular genetic consequences, recurrent microdeletions and duplications, or copy number variants (CNVs), represent one of the most tractable genetic entry points to elucidating these mechanisms. To date, eight CNVs have been shown to significantly increase the risk of schizophrenia. Although rodent models of these CNVs that exhibit behavioral phenotypes have been generated, the underlying molecular mechanisms remain largely elusive. Over the past decades, the zebrafish has emerged as a powerful vertebrate model that has led to fundamental discoveries in developmental neurobiology and behavioral genetics. Here, we review the attributes that make zebrafish exceptionally well suited to investigating individual and combinatorial gene contributions to CNV-mediated brain dysfunction in schizophrenia. With highly conserved genetics and neural substrates, an ever-expanding molecular genetic and imaging toolkit, and ability to perform high-throughput and high-content genetic and pharmacologic screens, zebrafish is poised to generate deep insights into the molecular genetic mechanisms of schizophrenia-associated neurodevelopmental and behavioral deficits, and to facilitate the identification of therapeutic targets.
Collapse
Affiliation(s)
- Philip D Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
57
|
Lloyd-Lewis B. Multidimensional Imaging of Mammary Gland Development: A Window Into Breast Form and Function. Front Cell Dev Biol 2020; 8:203. [PMID: 32296702 PMCID: PMC7138012 DOI: 10.3389/fcell.2020.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
An in-depth appreciation of organ form and function relies on the ability to image intact tissues across multiple scales. Difficulties associated with imaging deep within organs, however, can preclude high-resolution multidimensional imaging of live and fixed tissues. This is particularly challenging in the mammary gland, where the epithelium lies deeply encased within a stromal matrix. Recent advances in deep-tissue and live imaging methodologies are increasingly facilitating the visualization of complex cellular structures within their native environment. Alongside, refinements in optical tissue clearing and immunostaining methods are enabling 3D fluorescence imaging of whole organs at unprecedented resolutions. Collectively, these methods are illuminating the dynamic biological processes underlying tissue morphogenesis, homeostasis, and disease. This review provides a snapshot of the current and state-of-the-art multidimensional imaging techniques applied to the postnatal mammary gland, illustrating how these approaches have revealed important new insights into mammary gland ductal development and lactation. Continual evolution of multidimensional image acquisition and analysis methods will undoubtedly offer further insights into mammary gland biology that promises to shed new light on the perturbations leading to breast cancer.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
58
|
Xiong B, Han X, Wu J, Xie H, Dai Q. Improving axial resolution of Bessel beam light-sheet fluorescence microscopy by photobleaching imprinting. OPTICS EXPRESS 2020; 28:9464-9476. [PMID: 32225553 DOI: 10.1364/oe.388808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Light-sheet microscopy has been widely used in high-speed fluorescence imaging with low phototoxicity, while the trade-off between the field-of-view and optical sectioning capability limits its application in large-scale imaging. Although Bessel beam light-sheet microscopy greatly enhances the light-sheet length with the self-healing ability, it suffers from the strong side-lobe effect. To solve these problems, we introduce the photobleaching imprinting technique in Bessel beam light-sheet microscopy. By extracting the non-linear photobleaching-induced fluorescence decay, we get rid of the large concentric side lobe structures of the Bessel beam to achieve uniform isotropic resolution across a large field-of-view for large-scale fluorescence imaging. Both numerical simulations and experimental results on various samples are demonstrated to show our enhanced resolution and contrast over traditional Bessel-beam light-sheet microscopy.
Collapse
|
59
|
Miletto Petrazzini ME, Sovrano VA, Vallortigara G, Messina A. Brain and Behavioral Asymmetry: A Lesson From Fish. Front Neuroanat 2020; 14:11. [PMID: 32273841 PMCID: PMC7113390 DOI: 10.3389/fnana.2020.00011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/05/2020] [Indexed: 11/27/2022] Open
Abstract
It is widely acknowledged that the left and right hemispheres of human brains display both anatomical and functional asymmetries. For more than a century, brain and behavioral lateralization have been considered a uniquely human feature linked to language and handedness. However, over the past decades this idea has been challenged by an increasing number of studies describing structural asymmetries and lateralized behaviors in non-human species extending from primates to fish. Evidence suggesting that a similar pattern of brain lateralization occurs in all vertebrates, humans included, has allowed the emergence of different model systems to investigate the development of brain asymmetries and their impact on behavior. Among animal models, fish have contributed much to the research on lateralization as several fish species exhibit lateralized behaviors. For instance, behavioral studies have shown that the advantages of having an asymmetric brain, such as the ability of simultaneously processing different information and perform parallel tasks compensate the potential costs associated with poor integration of information between the two hemispheres thus helping to better understand the possible evolutionary significance of lateralization. However, these studies inferred how the two sides of the brains are differentially specialized by measuring the differences in the behavioral responses but did not allow to directly investigate the relation between anatomical and functional asymmetries. With respect to this issue, in recent years zebrafish has become a powerful model to address lateralization at different level of complexity, from genes to neural circuitry and behavior. The possibility of combining genetic manipulation of brain asymmetries with cutting-edge in vivo imaging technique and behavioral tests makes the zebrafish a valuable model to investigate the phylogeny and ontogeny of brain lateralization and its relevance for normal brain function and behavior.
Collapse
Affiliation(s)
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | | | - Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
60
|
Betzel RF. Organizing principles of whole-brain functional connectivity in zebrafish larvae. Netw Neurosci 2020; 4:234-256. [PMID: 32166210 PMCID: PMC7055648 DOI: 10.1162/netn_a_00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Network science has begun to reveal the fundamental principles by which large-scale brain networks are organized, including geometric constraints, a balance between segregative and integrative features, and functionally flexible brain areas. However, it remains unknown whether whole-brain networks imaged at the cellular level are organized according to similar principles. Here, we analyze whole-brain functional networks reconstructed from calcium imaging data recorded in larval zebrafish. Our analyses reveal that functional connections are distance-dependent and that networks exhibit hierarchical modular structure and hubs that span module boundaries. We go on to show that spontaneous network structure places constraints on stimulus-evoked reconfigurations of connections and that networks are highly consistent across individuals. Our analyses reveal basic organizing principles of whole-brain functional brain networks at the mesoscale. Our overarching methodological framework provides a blueprint for studying correlated activity at the cellular level using a low-dimensional network representation. Our work forms a conceptual bridge between macro- and mesoscale network neuroscience and opens myriad paths for future studies to investigate network structure of nervous systems at the cellular level.
Collapse
Affiliation(s)
- Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
61
|
Zerti D, Collin J, Queen R, Cockell SJ, Lako M. Understanding the complexity of retina and pluripotent stem cell derived retinal organoids with single cell RNA sequencing: current progress, remaining challenges and future prospective. Curr Eye Res 2020; 45:385-396. [PMID: 31794277 PMCID: PMC7034531 DOI: 10.1080/02713683.2019.1697453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Single-cell sequencing technologies have emerged as a revolutionary tool with transformative new methods to profile genetic, epigenetic, spatial, and lineage information in individual cells. Single-cell RNA sequencing (scRNA-Seq) allows researchers to collect large datasets detailing the transcriptomes of individual cells in space and time and is increasingly being applied to reveal cellular heterogeneity in retinal development, normal physiology, and disease, and provide new insights into cell-type specific markers and signaling pathways. In recent years, scRNA-Seq datasets have been generated from retinal tissue and pluripotent stem cell-derived retinal organoids. Their cross-comparison enables staging of retinal organoids, identification of specific cells in developing and adult human neural retina and provides deeper insights into cell-type sub-specification and geographical differences. In this article, we review the recent rapid progress in scRNA-Seq analyses of retina and retinal organoids, the questions that remain unanswered and the technical challenges that need to be overcome to achieve consistent results that reflect the complexity, functionality, and interactions of all retinal cell types.
Collapse
Affiliation(s)
- Darin Zerti
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Rachel Queen
- Bioinformatics Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Simon J. Cockell
- Bioinformatics Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
62
|
Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, Keller PJ. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci 2020; 21:61-79. [PMID: 31896771 PMCID: PMC8121164 DOI: 10.1038/s41583-019-0250-1] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
State-of-the-art tissue-clearing methods provide subcellular-level optical access to intact tissues from individual organs and even to some entire mammals. When combined with light-sheet microscopy and automated approaches to image analysis, existing tissue-clearing methods can speed up and may reduce the cost of conventional histology by several orders of magnitude. In addition, tissue-clearing chemistry allows whole-organ antibody labelling, which can be applied even to thick human tissues. By combining the most powerful labelling, clearing, imaging and data-analysis tools, scientists are extracting structural and functional cellular and subcellular information on complex mammalian bodies and large human specimens at an accelerated pace. The rapid generation of terabyte-scale imaging data furthermore creates a high demand for efficient computational approaches that tackle challenges in large-scale data analysis and management. In this Review, we discuss how tissue-clearing methods could provide an unbiased, system-level view of mammalian bodies and human specimens and discuss future opportunities for the use of these methods in human neuroscience.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, University of Tokyo, Tokyo, Japan.
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Japan.
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian University of Munich, Munich, Germany
- Institute of Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eli & Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for NanoMedicine, Institute for Basic Science, Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
63
|
Ren YX, Wu J, Lai QTK, Lai HM, Siu DMD, Wu W, Wong KKY, Tsia KK. Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array. LIGHT, SCIENCE & APPLICATIONS 2020; 9:8. [PMID: 31993126 PMCID: PMC6971027 DOI: 10.1038/s41377-020-0245-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 05/12/2023]
Abstract
Parallelized fluorescence imaging has been a long-standing pursuit that can address the unmet need for a comprehensive three-dimensional (3D) visualization of dynamical biological processes with minimal photodamage. However, the available approaches are limited to incomplete parallelization in only two dimensions or sparse sampling in three dimensions. We hereby develop a novel fluorescence imaging approach, called coded light-sheet array microscopy (CLAM), which allows complete parallelized 3D imaging without mechanical scanning. Harnessing the concept of an "infinity mirror", CLAM generates a light-sheet array with controllable sheet density and degree of coherence. Thus, CLAM circumvents the common complications of multiple coherent light-sheet generation in terms of dedicated wavefront engineering and mechanical dithering/scanning. Moreover, the encoding of multiplexed optical sections in CLAM allows the synchronous capture of all sectioned images within the imaged volume. We demonstrate the utility of CLAM in different imaging scenarios, including a light-scattering medium, an optically cleared tissue, and microparticles in fluidic flow. CLAM can maximize the signal-to-noise ratio and the spatial duty cycle, and also provides a further reduction in photobleaching compared to the major scanning-based 3D imaging systems. The flexible implementation of CLAM regarding both hardware and software ensures compatibility with any light-sheet imaging modality and could thus be instrumental in a multitude of areas in biological research.
Collapse
Affiliation(s)
- Yu-Xuan Ren
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077 China
| | - Jianglai Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077 China
- Department of Physics, University of California, Berkeley, CA 94720 USA
| | - Queenie T. K. Lai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077 China
| | - Hei Ming Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR 999077 China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077 China
| | - Dickson M. D. Siu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077 China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR 999077 China
- GHM Institute of CNS Regeneration, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632 China
- Re-Stem Biotechnology, Suzhou, 215007 China
| | - Kenneth K. Y. Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077 China
| | - Kevin K. Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 999077 China
| |
Collapse
|
64
|
Wang S, Lin B, Lin G, Lin R, Huang F, Liu W, Wang X, Liu X, Zhang Y, Wang F, Lin Y, Chen L, Chen J. Automated label-free detection of injured neuron with deep learning by two-photon microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960062. [PMID: 31602806 DOI: 10.1002/jbio.201960062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Stroke is a significant cause of morbidity and long-term disability globally. Detection of injured neuron is a prerequisite for defining the degree of focal ischemic brain injury, which can be used to guide further therapy. Here, we demonstrate the capability of two-photon microscopy (TPM) to label-freely identify injured neurons on unstained thin section and fresh tissue of rat cerebral ischemia-reperfusion model, revealing definite diagnostic features compared with conventional staining images. Moreover, a deep learning model based on convolutional neural network is developed to automatically detect the location of injured neurons on TPM images. We then apply deep learning-assisted TPM to evaluate the ischemic regions based on tissue edema, two-photon excited fluorescence signal intensity, as well as neuronal injury, presenting a novel manner for identifying the infarct core, peri-infarct area, and remote area. These results propose an automated and label-free method that could provide supplementary information to augment the diagnostic accuracy, as well as hold the potential to be used as an intravital diagnostic tool for evaluating the effectiveness of drug interventions and predicting potential therapeutics.
Collapse
Affiliation(s)
- Shu Wang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Bingbing Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guimin Lin
- College of Physics & Electronic Information Engineering, Minjiang University, Fuzhou, China
| | - Ruolan Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Feng Huang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xingfu Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xueyong Liu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
65
|
Abstract
Fluorescence microscopy has long been a valuable tool for biological and medical imaging. Control of optical parameters such as the amplitude, phase, polarization and propagation angle of light gives fluorescence imaging great capabilities ranging from super-resolution imaging to long-term real-time observation of living organisms. In this review, we discuss current fluorescence imaging techniques in terms of the use of tailored or structured light for the sample illumination and fluorescence detection, providing a clear overview of their working principles and capabilities.
Collapse
Affiliation(s)
- Jialei Tang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
- These authors contributed equally to this work
| | - Jinhan Ren
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
- These authors contributed equally to this work
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
66
|
Ii K, Mashimo K, Ozeki M, Yamada TG, Hiroi N, Funahashi A. XitoSBML: A Modeling Tool for Creating Spatial Systems Biology Markup Language Models From Microscopic Images. Front Genet 2019; 10:1027. [PMID: 31749833 PMCID: PMC6842926 DOI: 10.3389/fgene.2019.01027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/24/2019] [Indexed: 11/26/2022] Open
Abstract
XitoSBML is a software tool designed to create an SBML (Systems Biology Markup Language) Level 3 Version 1 document from microscopic cellular images. It is implemented as an ImageJ plug-in and is designed to create spatial models that reflect the three-dimensional cellular geometry. With XitoSBML, users can perform spatial model simulations based on realistic cellular geometry by using SBML-supported software tools, including simulators such as Virtual Cell and Spatial Simulator. XitoSBML is open-source and is available at https://github.com/spatialsimulator/XitoSBML/. XitoSBML is confirmed to run on most 32/64-bit operating systems: Windows, MacOS, and Linux.
Collapse
Affiliation(s)
- Kaito Ii
- Systems Biology Laboratory, Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Kota Mashimo
- Systems Biology Laboratory, Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Mitsunori Ozeki
- Systems Biology Laboratory, Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Takahiro G Yamada
- Systems Biology Laboratory, Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Noriko Hiroi
- Systems Biology Laboratory, Department of Biosciences and Informatics, Keio University, Yokohama, Japan.,Laboratory of Physical Chemistry for Life Science, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda City, Japan
| | - Akira Funahashi
- Systems Biology Laboratory, Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| |
Collapse
|
67
|
Matsumoto K, Mitani TT, Horiguchi SA, Kaneshiro J, Murakami TC, Mano T, Fujishima H, Konno A, Watanabe TM, Hirai H, Ueda HR. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nat Protoc 2019; 14:3506-3537. [DOI: 10.1038/s41596-019-0240-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022]
|
68
|
Wan Y, McDole K, Keller PJ. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu Rev Cell Dev Biol 2019; 35:655-681. [PMID: 31299171 DOI: 10.1146/annurev-cellbio-100818-125311] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to visualize and quantitatively measure dynamic biological processes in vivo and at high spatiotemporal resolution is of fundamental importance to experimental investigations in developmental biology. Light-sheet microscopy is particularly well suited to providing such data, since it offers exceptionally high imaging speed and good spatial resolution while minimizing light-induced damage to the specimen. We review core principles and recent advances in light-sheet microscopy, with a focus on concepts and implementations relevant for applications in developmental biology. We discuss how light-sheet microcopy has helped advance our understanding of developmental processes from single-molecule to whole-organism studies, assess the potential for synergies with other state-of-the-art technologies, and introduce methods for computational image and data analysis. Finally, we explore the future trajectory of light-sheet microscopy, discuss key efforts to disseminate new light-sheet technology, and identify exciting opportunities for further advances.
Collapse
Affiliation(s)
- Yinan Wan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Katie McDole
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
69
|
Wang Y, DelRosso NV, Vaidyanathan TV, Cahill MK, Reitman ME, Pittolo S, Mi X, Yu G, Poskanzer KE. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat Neurosci 2019; 22:1936-1944. [PMID: 31570865 PMCID: PMC6858541 DOI: 10.1038/s41593-019-0492-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
Abstract
Recent work examining astrocytic physiology centers on fluorescence imaging, due to development of sensitive fluorescent indicators and observation of spatiotemporally complex calcium activity. However, the field remains hindered in characterizing these dynamics, both within single cells and at the population level, because of the insufficiency of current region-of-interest (ROI)-based approaches to describe activity that is often spatially unfixed, size-varying, and propagative. Here, we present an analytical framework that releases astrocyte biologists from ROI-based tools. The Astrocyte Quantitative Analysis (AQuA) software takes an event-based perspective to model and accurately quantify complex calcium and neurotransmitter activity in fluorescence imaging datasets. We apply AQuA to a range of ex vivo and in vivo imaging data, and uncover novel physiological phenomena. Since AQuA is data-driven and based on machine learning principles, it can be applied across model organisms, fluorescent indicators, experimental modes, and imaging resolutions and speeds, enabling researchers to elucidate fundamental neural physiology.
Collapse
Affiliation(s)
- Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Nicole V DelRosso
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Trisha V Vaidyanathan
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle K Cahill
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Michael E Reitman
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Silvia Pittolo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA.
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA. .,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA. .,Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA.
| |
Collapse
|
70
|
Li Q, Nan K, Le Floch P, Lin Z, Sheng H, Blum TS, Liu J. Cyborg Organoids: Implantation of Nanoelectronics via Organogenesis for Tissue-Wide Electrophysiology. NANO LETTERS 2019; 19:5781-5789. [PMID: 31347851 DOI: 10.1021/acs.nanolett.9b02512] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tissue-wide electrophysiology with single-cell and millisecond spatiotemporal resolution is critical for heart and brain studies. Issues arise, however, from the invasive, localized implantation of electronics that destroys well-connected cellular networks within matured organs. Here, we report the creation of cyborg organoids: the three-dimensional (3D) assembly of soft, stretchable mesh nanoelectronics across the entire organoid by the cell-cell attraction forces from 2D-to-3D tissue reconfiguration during organogenesis. We demonstrate that stretchable mesh nanoelectronics can migrate with and grow into the initial 2D cell layers to form the 3D organoid structure with minimal impact on tissue growth and differentiation. The intimate contact between the dispersed nanoelectronics and cells enables us to chronically and systematically observe the evolution, propagation, and synchronization of the bursting dynamics in human cardiac organoids through their entire organogenesis.
Collapse
Affiliation(s)
- Qiang Li
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Kewang Nan
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Paul Le Floch
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Zuwan Lin
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Hao Sheng
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Thomas S Blum
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
71
|
Light sheet microscopy for histopathology applications. Biomed Eng Lett 2019; 9:279-291. [PMID: 31456889 DOI: 10.1007/s13534-019-00122-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/21/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
Light sheet microscopy (LSM) is an evolving optical imaging technique with a plane illumination for optical sectioning and volumetric imaging spanning cell biology, embryology, and in vivo live imaging. Here, we focus on emerging biomedical applications of LSM for tissue samples. Decoupling of the light sheet illumination from detection enables high-speed and large field-of-view imaging with minimal photobleaching and phototoxicity. These unique characteristics of the LSM technique can be easily adapted and potentially replace conventional histopathological procedures. In this review, we cover LSM technology from its inception to its most advanced technology; in particular, we highlight the human histopathological imaging applications to demonstrate LSM's rapid diagnostic ability in comparison with conventional histopathological procedures. We anticipate that the LSM technique can become a useful three-dimensional imaging tool for assessing human biopsies in the near future.
Collapse
|
72
|
Luo L, Callaway EM, Svoboda K. Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron 2019; 98:256-281. [PMID: 29673479 DOI: 10.1016/j.neuron.2018.03.040] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/24/2023]
Abstract
Tremendous progress has been made since Neuron published our Primer on genetic dissection of neural circuits 10 years ago. Since then, cell-type-specific anatomical, neurophysiological, and perturbation studies have been carried out in a multitude of invertebrate and vertebrate organisms, linking neurons and circuits to behavioral functions. New methods allow systematic classification of cell types and provide genetic access to diverse neuronal types for studies of connectivity and neural coding during behavior. Here we evaluate key advances over the past decade and discuss future directions.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
73
|
Abstract
Light-sheet microscopy is an imaging approach that offers unique advantages for a diverse range of neuroscience applications. Unlike point-scanning techniques such as confocal and two-photon microscopy, light-sheet microscopes illuminate an entire plane of tissue, while imaging this plane onto a camera. Although early implementations of light sheet were optimized for longitudinal imaging of embryonic development in small specimens, emerging implementations are capable of capturing light-sheet images in freely moving, unconstrained specimens and even the intact in vivo mammalian brain. Meanwhile, the unique photobleaching and signal-to-noise benefits afforded by light-sheet microscopy's parallelized detection deliver the ability to perform volumetric imaging at much higher speeds than can be achieved using point scanning. This review describes the basic principles and evolution of light-sheet microscopy, followed by perspectives on emerging applications and opportunities for both imaging large, cleared, and expanded neural tissues and high-speed, functional imaging in vivo.
Collapse
Affiliation(s)
- Elizabeth M C Hillman
- Departments of Biomedical Engineering and Radiology and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Venkatakaushik Voleti
- Departments of Biomedical Engineering and Radiology and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Wenze Li
- Departments of Biomedical Engineering and Radiology and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Hang Yu
- Departments of Biomedical Engineering and Radiology and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
74
|
Hasegawa S, Susaki EA, Tanaka T, Komaba H, Wada T, Fukagawa M, Ueda HR, Nangaku M. Comprehensive three-dimensional analysis (CUBIC-kidney) visualizes abnormal renal sympathetic nerves after ischemia/reperfusion injury. Kidney Int 2019; 96:129-138. [DOI: 10.1016/j.kint.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 11/26/2022]
|
75
|
Cantu Gutierrez A, Cantu Gutierrez M, Rhyner AM, Ruiz OE, Eisenhoffer GT, Wythe JD. FishNET: An automated relational database for zebrafish colony management. PLoS Biol 2019; 17:e3000343. [PMID: 31220074 PMCID: PMC6605666 DOI: 10.1371/journal.pbio.3000343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/02/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The zebrafish Danio rerio is a powerful model system to study the genetics of development and disease. However, maintenance of zebrafish husbandry records is both time intensive and laborious, and a standardized way to manage and track the large amount of unique lines in a given laboratory or centralized facility has not been embraced by the field. Here, we present FishNET, an intuitive, open-source, relational database for managing data and information related to zebrafish husbandry and maintenance. By creating a "virtual facility," FishNET enables users to remotely inspect the rooms, racks, tanks, and lines within a given facility. Importantly, FishNET scales from one laboratory to an entire facility with several laboratories to multiple facilities, generating a cohesive laboratory and community-based platform. Automated data entry eliminates confusion regarding line nomenclature and streamlines maintenance of individual lines, while flexible query forms allow researchers to retrieve database records based on user-defined criteria. FishNET also links associated embryonic and adult biological samples with data, such as genotyping results or confocal images, to enable robust and efficient colony management and storage of laboratory information. A shared calendar function with email notifications and automated reminders for line turnover, automated tank counts, and census reports promote communication with both end users and administrators. The expected benefits of FishNET are improved vivaria efficiency, increased quality control for experimental numbers, and flexible data reporting and retrieval. FishNET's easy, intuitive record management and open-source, end-user-modifiable architecture provides an efficient solution to real-time zebrafish colony management for users throughout a facility and institution and, in some cases, across entire research hubs.
Collapse
Affiliation(s)
- Abiud Cantu Gutierrez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Manuel Cantu Gutierrez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander M. Rhyner
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Oscar E. Ruiz
- Department of Genetics, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - George T. Eisenhoffer
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Genetics, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
76
|
Sun S, He M, Zhang Z, Wang W, Yang X, Kuang C, Liu X. Enhancing the axial resolution of two-photon imaging. APPLIED OPTICS 2019; 58:4892-4897. [PMID: 31503805 DOI: 10.1364/ao.58.004892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
An axial-resolution-enhanced two-photon laser scanning microscopy system is presented in this paper. In the proposed method, we use a spatial light modulator (SLM) for the phase modulation of the excitation light. The axially split point spread function (PSF) is generated by loading a 0-π pattern on the SLM. The final quality-enhanced images are acquired by subtracting the two consecutive images acquired by the original PSF and the split PSF. Because of the fluorescence differential processing, the axial elongation of the particles images is suppressed, and the axial resolution is enhanced accordingly. With the axial resolution enhanced, the overlap between layer images is also reduced, which decreases the background noise of the images and enhances the contrast and image quality of the acquired fluorescence images. The capability of axial resolution and contrast enhancement is successfully demonstrated by both theoretical calculation and experimental results.
Collapse
|
77
|
Kasai A, Seiriki K, Hashimoto H. [Whole-brain activity mapping at single-cell resolution]. Nihon Yakurigaku Zasshi 2019; 153:278-283. [PMID: 31178533 DOI: 10.1254/fpj.153.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The neuronal activity forms the basis of functional circuits and brain functions. To understand how the brain operates, recording of neural activity at micro-, meso-, and macro-scales is required. Recently, improved optical microscopic technology helps us to develop a whole-brain imaging system at a single-cell resolution. The combination of a whole-brain imaging system and a reporter system of neuronal activation enables a whole-brain mapping of neuronal activity. In this review, we first describe the high-speed and scalable whole-brain imaging system including our recently developed system, named FAST, and then present the instances of whole-brain mapping of neuronal activity and its analytical methods.
Collapse
Affiliation(s)
- Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University.,Institute for Transdisciplinary Graduate Degree Programs, Osaka University
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui.,Institute for Datability Science, Osaka University.,Open and Transdisciplinary Research Initiatives, Osaka University
| |
Collapse
|
78
|
Multiplane Calcium Imaging Reveals Disrupted Development of Network Topology in Zebrafish pcdh19 Mutants. eNeuro 2019; 6:ENEURO.0420-18.2019. [PMID: 31061071 PMCID: PMC6525332 DOI: 10.1523/eneuro.0420-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Functional brain networks self-assemble during development, although the molecular basis of network assembly is poorly understood. Protocadherin-19 (pcdh19) is a homophilic cell adhesion molecule that is linked to neurodevelopmental disorders, and influences multiple cellular and developmental events in zebrafish. Although loss of PCDH19 in humans and model organisms leads to functional deficits, the underlying network defects remain unknown. Here, we employ multiplane, resonant-scanning in vivo two-photon calcium imaging of developing zebrafish, and use graph theory to characterize the development of resting state functional networks in both wild-type and pcdh19 mutant larvae. We find that the brain networks of pcdh19 mutants display enhanced clustering and an altered developmental trajectory of network assembly. Our results show that functional imaging and network analysis in zebrafish larvae is an effective approach for characterizing the developmental impact of lesions in genes of clinical interest.
Collapse
|
79
|
Hubert A, Harms F, Juvénal R, Treimany P, Levecq X, Loriette V, Farkouh G, Rouyer F, Fragola A. Adaptive optics light-sheet microscopy based on direct wavefront sensing without any guide star. OPTICS LETTERS 2019; 44:2514-2517. [PMID: 31090720 DOI: 10.1364/ol.44.002514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We propose an adaptive optics light-sheet fluorescence microscope (AO-LSFM) for closed-loop aberrations' correction at the emission path, providing intrinsic instrumental simplicity and high accuracy when compared to previously reported schemes. The approach is based on direct wavefront sensing, i.e., not on time-consuming iterative algorithms, and does not require the use of any guide star, thus reducing instrumental complexity and/or sample preparation constraints. The design is based on a modified Shack-Hartmann wavefront sensor providing compatibility with extended sources such as images from optical sectioning microscopes. We report an AO-LSFM setup based on such sensors, including characterization of the sensor performance, and demonstrate for the first time to the best of our knowledge a significant contrast improvement on neuronal structures of the ex vivo adult drosophila brain in depth.
Collapse
|
80
|
Sych Y, Chernysheva M, Sumanovski LT, Helmchen F. High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat Methods 2019; 16:553-560. [PMID: 31086339 DOI: 10.1038/s41592-019-0400-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022]
Abstract
Animal behavior originates from neuronal activity distributed across brain-wide networks. However, techniques available to assess large-scale neural dynamics in behaving animals remain limited. Here we present compact, chronically implantable, high-density arrays of optical fibers that enable multi-fiber photometry and optogenetic perturbations across many regions in the mammalian brain. In mice engaged in a texture discrimination task, we achieved simultaneous photometric calcium recordings from networks of 12-48 brain regions, including striatal, thalamic, hippocampal and cortical areas. Furthermore, we optically perturbed subsets of regions in VGAT-ChR2 mice by targeting specific fiber channels with a spatial light modulator. Perturbation of ventral thalamic nuclei caused distributed network modulation and behavioral deficits. Finally, we demonstrate multi-fiber photometry in freely moving animals, including simultaneous recordings from two mice during social interaction. High-density multi-fiber arrays are versatile tools for the investigation of large-scale brain dynamics during behavior.
Collapse
Affiliation(s)
- Yaroslav Sych
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| | - Maria Chernysheva
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | | | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland. .,Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
81
|
Corsetti S, Gunn-Moore F, Dholakia K. Light sheet fluorescence microscopy for neuroscience. J Neurosci Methods 2019; 319:16-27. [DOI: 10.1016/j.jneumeth.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/03/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
|
82
|
Valle AF, Seelig JD. Two-photon Bessel beam tomography for fast volume imaging. OPTICS EXPRESS 2019; 27:12147-12162. [PMID: 31052759 DOI: 10.1364/oe.27.012147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Light microscopy on dynamic samples, for example neural activity in the brain, often requires imaging volumes that extend over several 100 µm in axial direction at a rate of at least several tens of Hertz. Here, we develop a tomography approach for scanning fluorescence microscopy which allows recording a volume image in a single frame scan. Volumes are imaged by simultaneously recording four independent projections at different angles using temporally multiplexed, tilted Bessel beams. From the resulting projections, three-dimensional images are reconstructed using inverse Radon transforms combined with convolutional neural networks (U-net).
Collapse
|
83
|
Abstract
We describe the implementation and use of an adaptive imaging framework for optimizing spatial resolution and signal strength in a light-sheet microscope. The framework, termed AutoPilot, comprises hardware and software modules for automatically measuring and compensating for mismatches between light-sheet and detection focal planes in living specimens. Our protocol enables researchers to introduce adaptive imaging capabilities in an existing light-sheet microscope or use our SiMView microscope blueprint to set up a new adaptive multiview light-sheet microscope. The protocol describes (i) the mechano-optical implementation of the adaptive imaging hardware, including technical drawings for all custom microscope components; (ii) the algorithms and software library for automated adaptive imaging, including the pseudocode and annotated source code for all software modules; and (iii) the execution of adaptive imaging experiments, as well as the configuration and practical use of the AutoPilot framework. Setup of the adaptive imaging hardware and software takes 1-2 weeks each. Previous experience with light-sheet microscopy and some familiarity with software engineering and building of optical instruments are recommended. Successful implementation of the protocol recovers near diffraction-limited performance in many parts of typical multicellular organisms studied with light-sheet microscopy, such as fruit fly and zebrafish embryos, for which resolution and signal strength are improved two- to fivefold.
Collapse
|
84
|
Sancataldo G, Gavryusev V, de Vito G, Turrini L, Locatelli M, Fornetto C, Tiso N, Vanzi F, Silvestri L, Pavone FS. Flexible Multi-Beam Light-Sheet Fluorescence Microscope for Live Imaging Without Striping Artifacts. Front Neuroanat 2019; 13:7. [PMID: 30800060 PMCID: PMC6376877 DOI: 10.3389/fnana.2019.00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/21/2019] [Indexed: 11/24/2022] Open
Abstract
The development of light-sheet fluorescence microscopy (LSFM) has greatly expanded the experimental capabilities in many biological and biomedical research fields, enabling for example live studies of murine and zebrafish neural activity or of cell growth and division. The key feature of the method is the selective illumination of a sample single plane, providing an intrinsic optical sectioning and allowing direct 2D image recording. On the other hand, this excitation scheme is more affected by absorption or scattering artifacts in comparison to point scanning methods, leading to un-even illumination. We present here an easily implementable method, based on acousto-optical deflectors (AOD), to overcome this obstacle. We report the advantages provided by flexible and fast AODs in generating simultaneous angled multiple beams from a single laser beam and in fast light sheet pivoting and we demonstrate the suppression of illumination artifacts.
Collapse
Affiliation(s)
- Giuseppe Sancataldo
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.,European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Vladislav Gavryusev
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.,European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - Lapo Turrini
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.,European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Massimiliano Locatelli
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.,European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Chiara Fornetto
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.,European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padua, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy.,Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.,European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
85
|
Albert-Smet I, Marcos-Vidal A, Vaquero JJ, Desco M, Muñoz-Barrutia A, Ripoll J. Applications of Light-Sheet Microscopy in Microdevices. Front Neuroanat 2019; 13:1. [PMID: 30760983 PMCID: PMC6362405 DOI: 10.3389/fnana.2019.00001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 11/23/2022] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) has been present in cell biology laboratories for quite some time, mainly as custom-made systems, with imaging applications ranging from single cells (in the micrometer scale) to small organisms (in the millimeter scale). Such microscopes distinguish themselves for having very low phototoxicity levels and high spatial and temporal resolution, properties that make them ideal for a large range of applications. These include the study of cellular dynamics, in particular cellular motion which is essential to processes such as tumor metastasis and tissue development. Experimental setups make extensive use of microdevices (bioMEMS) that provide better control over the substrate environment than traditional cell culture experiments. For example, to mimic in vivo conditions, experiment biochemical dynamics, and trap, move or count cells. Microdevices provide a higher degree of empirical complexity but, so far, most have been designed to be imaged through wide-field or confocal microscopes. Nonetheless, the properties of LSFM render it ideal for 3D characterization of active cells. When working with microdevices, confocal microscopy is more widespread than LSFM even though it suffers from higher phototoxicity and slower acquisition speeds. It is sometimes possible to illuminate with a light-sheet microdevices designed for confocal microscopes. However, these bioMEMS must be redesigned to exploit the full potential of LSFM and image more frequently on a wider scale phenomena such as motion, traction, differentiation, and diffusion of molecules. The use of microdevices for LSFM has extended beyond cell tracking studies into experiments regarding cytometry, spheroid cultures and lab-on-a-chip automation. Due to light-sheet microscopy being in its early stages, a setup of these characteristics demands some degree of optical expertise; and designing three-dimensional microdevices requires facilities, ingenuity, and experience in microfabrication. In this paper, we explore different approaches where light-sheet microscopy can achieve single-cell and subcellular resolution within microdevices, and provide a few pointers on how these experiments may be improved.
Collapse
Affiliation(s)
- Ignacio Albert-Smet
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Asier Marcos-Vidal
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan José Vaquero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| |
Collapse
|
86
|
Ronzitti E, Emiliani V, Papagiakoumou E. Methods for Three-Dimensional All-Optical Manipulation of Neural Circuits. Front Cell Neurosci 2018; 12:469. [PMID: 30618626 PMCID: PMC6304748 DOI: 10.3389/fncel.2018.00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Optical means for modulating and monitoring neuronal activity, have provided substantial insights to neurophysiology and toward our understanding of how the brain works. Optogenetic actuators, calcium or voltage imaging probes and other molecular tools, combined with advanced microscopies have allowed an "all-optical" readout and modulation of neural circuits. Completion of this remarkable work is evolving toward a three-dimensional (3D) manipulation of neural ensembles at a high spatiotemporal resolution. Recently, original optical methods have been proposed for both activating and monitoring neurons in a 3D space, mainly through optogenetic compounds. Here, we review these methods and anticipate possible combinations among them.
Collapse
Affiliation(s)
| | | | - Eirini Papagiakoumou
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris, France
| |
Collapse
|
87
|
Hay EA, Parthasarathy R. Performance of convolutional neural networks for identification of bacteria in 3D microscopy datasets. PLoS Comput Biol 2018; 14:e1006628. [PMID: 30507940 PMCID: PMC6292638 DOI: 10.1371/journal.pcbi.1006628] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/13/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional microscopy is increasingly prevalent in biology due to the development of techniques such as multiphoton, spinning disk confocal, and light sheet fluorescence microscopies. These methods enable unprecedented studies of life at the microscale, but bring with them larger and more complex datasets. New image processing techniques are therefore called for to analyze the resulting images in an accurate and efficient manner. Convolutional neural networks are becoming the standard for classification of objects within images due to their accuracy and generalizability compared to traditional techniques. Their application to data derived from 3D imaging, however, is relatively new and has mostly been in areas of magnetic resonance imaging and computer tomography. It remains unclear, for images of discrete cells in variable backgrounds as are commonly encountered in fluorescence microscopy, whether convolutional neural networks provide sufficient performance to warrant their adoption, especially given the challenges of human comprehension of their classification criteria and their requirements of large training datasets. We therefore applied a 3D convolutional neural network to distinguish bacteria and non-bacterial objects in 3D light sheet fluorescence microscopy images of larval zebrafish intestines. We find that the neural network is as accurate as human experts, outperforms random forest and support vector machine classifiers, and generalizes well to a different bacterial species through the use of transfer learning. We also discuss network design considerations, and describe the dependence of accuracy on dataset size and data augmentation. We provide source code, labeled data, and descriptions of our analysis pipeline to facilitate adoption of convolutional neural network analysis for three-dimensional microscopy data.
Collapse
Affiliation(s)
- Edouard A. Hay
- Department of Physics, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Raghuveer Parthasarathy
- Department of Physics, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
88
|
Jiao ZF, Shang CF, Wang YF, Yang Z, Yang C, Li FN, Xie JZ, Pan JW, Fu L, Du JL. All-optical imaging and manipulation of whole-brain neuronal activities in behaving larval zebrafish. BIOMEDICAL OPTICS EXPRESS 2018; 9:6154-6169. [PMID: 31065420 PMCID: PMC6491009 DOI: 10.1364/boe.9.006154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
All-optical interrogation of population neuron activity is a promising approach to deciphering the neural circuit mechanisms supporting brain functions. However, this interrogation is currently limited to local brain areas. Here, we incorporate patterned photo-stimulation into light-sheet microscopy, allowing simultaneous targeted optogenetic manipulation and brain-wide monitoring of the neuronal activities of head-restrained behaving larval zebrafish. Using this system, we photo-stimulate arbitrarily selected neurons (regions as small as ~10-20 neurons in 3D) in zebrafish larvae with pan-neuronal expression of a spectrally separated calcium indicator, GCaMP6f, and an activity actuator, ChrimsonR, and observe downstream neural circuit activation and behavior generation. This approach allows us to dissect the causal role of neural circuits in brain functions and behavior generation.
Collapse
Affiliation(s)
- Zhen-Fei Jiao
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- These authors contributed equally to this work
| | - Chun-Feng Shang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- These authors contributed equally to this work
| | - Yu-Fan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- These authors contributed equally to this work
| | - Zhe Yang
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chen Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Fu-Ning Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Jin-Ze Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Jing-Wei Pan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
89
|
Migault G, van der Plas TL, Trentesaux H, Panier T, Candelier R, Proville R, Englitz B, Debrégeas G, Bormuth V. Whole-Brain Calcium Imaging during Physiological Vestibular Stimulation in Larval Zebrafish. Curr Biol 2018; 28:3723-3735.e6. [PMID: 30449666 PMCID: PMC6288061 DOI: 10.1016/j.cub.2018.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/25/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
The vestibular apparatus provides animals with postural and movement-related information that is essential to adequately execute numerous sensorimotor tasks. In order to activate this sensory system in a physiological manner, one needs to macroscopically rotate or translate the animal's head, which in turn renders simultaneous neural recordings highly challenging. Here we report on a novel miniaturized, light-sheet microscope that can be dynamically co-rotated with a head-restrained zebrafish larva, enabling controlled vestibular stimulation. The mechanical rigidity of the microscope allows one to perform whole-brain functional imaging with state-of-the-art resolution and signal-to-noise ratio while imposing up to 25° in angular position and 6,000°/s2 in rotational acceleration. We illustrate the potential of this novel setup by producing the first whole-brain response maps to sinusoidal and stepwise vestibular stimulation. The responsive population spans multiple brain areas and displays bilateral symmetry, and its organization is highly stereotypic across individuals. Using Fourier and regression analysis, we identified three major functional clusters that exhibit well-defined phasic and tonic response patterns to vestibular stimulation. Our rotatable light-sheet microscope provides a unique tool for systematically studying vestibular processing in the vertebrate brain and extends the potential of virtual-reality systems to explore complex multisensory and motor integration during simulated 3D navigation.
Collapse
Affiliation(s)
- Geoffrey Migault
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Thijs L van der Plas
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Donders Centre for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, the Netherlands
| | - Hugo Trentesaux
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Thomas Panier
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Rémi Proville
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM, U1215, 33077 Bordeaux Cedex, France
| | - Bernhard Englitz
- Donders Centre for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, the Netherlands
| | - Georges Debrégeas
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Volker Bormuth
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France.
| |
Collapse
|
90
|
Logan SL, Dudley C, Baker RP, Taormina MJ, Hay EA, Parthasarathy R. Automated high-throughput light-sheet fluorescence microscopy of larval zebrafish. PLoS One 2018; 13:e0198705. [PMID: 30427839 PMCID: PMC6235235 DOI: 10.1371/journal.pone.0198705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Light sheet fluorescence microscopy enables fast, minimally phototoxic, three-dimensional imaging of live specimens, but is currently limited by low throughput and tedious sample preparation. Here, we describe an automated high-throughput light sheet fluorescence microscope in which specimens are positioned by and imaged within a fluidic system integrated with the sheet excitation and detection optics. We demonstrate the ability of the instrument to rapidly examine live specimens with minimal manual intervention by imaging fluorescent neutrophils over a nearly 0.3 mm3 volume in dozens of larval zebrafish. In addition to revealing considerable inter-individual variability in neutrophil number, known previously from labor-intensive methods, three-dimensional imaging allows assessment of the correlation between the bulk measure of total cellular fluorescence and the spatially resolved measure of actual neutrophil number per animal. We suggest that our simple experimental design should considerably expand the scope and impact of light sheet imaging in the life sciences.
Collapse
Affiliation(s)
- Savannah L. Logan
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Christopher Dudley
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Ryan P. Baker
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Michael J. Taormina
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Edouard A. Hay
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Raghuveer Parthasarathy
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
91
|
Moutaux E, Charlot B, Genoux A, Saudou F, Cazorla M. An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks. LAB ON A CHIP 2018; 18:3425-3435. [PMID: 30289147 DOI: 10.1039/c8lc00694f] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the central nervous system, neurons are organized in specific neural networks with distinct electrical patterns, input integration capacities, and intracellular dynamics. In order to better understand how neurons process information, it is crucial to keep the complex organization of brain circuits. However, performing subcellular investigations with high spatial and temporal resolution in vivo is technically challenging, especially in fine structures, such as axonal projections. Here, we present an on-a-chip system that combines a microfluidic platform with a dedicated matrix of electrodes to study activity-dependent dynamics in the physiological context of brain circuits. Because this system is compatible with high-resolution video-microscopy, it is possible to simultaneously record intracellular dynamics and electrical activity in presynaptic axonal projections and in their postsynaptic neuronal targets. Similarly, specific patterns of electrical activity can be applied to both compartments in order to investigate how intrinsic and network activities influence intracellular dynamics. The fluidic isolation of each compartment further allows the selective application of drugs at identified sites to study activity-dependent synaptic transmission. This integrated microfluidic/microelectrode array (microMEA) platform is a valuable tool for studying various intracellular and synaptic dynamics in response to neuronal activity in a physiologically relevant context that resembles in vivo brain circuits.
Collapse
Affiliation(s)
- Eve Moutaux
- Grenoble Institut des Neurosciences, Univ. Grenoble Alpes, INSERM U1216, Bat. Edmond J. Safra, Chemin F Ferrini, F-38000 Grenoble, France.
| | | | | | | | | |
Collapse
|
92
|
Dussaux C, Szabo V, Chastagnier Y, Fodor J, Léger JF, Bourdieu L, Perroy J, Ventalon C. Fast confocal fluorescence imaging in freely behaving mice. Sci Rep 2018; 8:16262. [PMID: 30389966 PMCID: PMC6214968 DOI: 10.1038/s41598-018-34472-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Fluorescence imaging in the brain of freely behaving mice is challenging due to severe miniaturization constraints. In particular, the ability to image a large field of view at high temporal resolution and with efficient out-of-focus background rejection still raises technical difficulties. Here, we present a novel fiberscope system that provides fast (up to 200 Hz) background-free fluorescence imaging in freely behaving mice over a field of view of diameter 230 μm. The fiberscope is composed of a custom-made multipoint-scanning confocal microscope coupled to the animal with an image guide and a micro-objective. By simultaneously registering a multipoint-scanning confocal image and a conventional widefield image, we subtracted the residual out-of-focus background and provided a background-free confocal image. Illumination and detection pinholes were created using a digital micromirror device, providing high adaptability to the sample structure and imaging conditions. Using this novel imaging tool, we demonstrated fast fluorescence imaging of microvasculature up to 120 μm deep in the mouse cortex, with an out-of-focus background reduced by two orders of magnitude compared with widefield microscopy. Taking advantage of the high acquisition rate (200 Hz), we measured red blood cell velocity in the cortical microvasculature and showed an increase in awake, unrestrained mice compared with anaesthetized animals.
Collapse
Affiliation(s)
- Clara Dussaux
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France
| | - Vivien Szabo
- IGF, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, Montpellier, 34094, France
| | - Yan Chastagnier
- IGF, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, Montpellier, 34094, France
| | - Jozsua Fodor
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France
| | - Jean-François Léger
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France
| | - Laurent Bourdieu
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France
| | - Julie Perroy
- IGF, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, Montpellier, 34094, France
| | - Cathie Ventalon
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France.
| |
Collapse
|
93
|
Abstract
Understanding how activity patterns in specific neural circuits coordinate an animal’s behavior remains a key area of neuroscience research. Genetic tools and a brain of tractable complexity make Drosophila a premier model organism for these studies. Here, we review the wealth of reagents available to map and manipulate neuronal activity with light.
Collapse
|
94
|
Sakai C, Ijaz S, Hoffman EJ. Zebrafish Models of Neurodevelopmental Disorders: Past, Present, and Future. Front Mol Neurosci 2018; 11:294. [PMID: 30210288 PMCID: PMC6123572 DOI: 10.3389/fnmol.2018.00294] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
Zebrafish are increasingly being utilized as a model system to investigate the function of the growing list of risk genes associated with neurodevelopmental disorders. This is due in large part to the unique features of zebrafish that make them an optimal system for this purpose, including rapid, external development of transparent embryos, which enable the direct visualization of the developing nervous system during early stages, large progenies, which provide considerable tractability for performing high-throughput pharmacological screens to identify small molecule suppressors of simple behavioral phenotypes, and ease of genetic manipulation, which has been greatly facilitated by the advent of CRISPR/Cas9 gene editing technologies. This review article focuses on studies that have harnessed these advantages of the zebrafish system for the functional analysis of genes that are strongly associated with the following neurodevelopmental disorders: autism spectrum disorders (ASD), epilepsy, intellectual disability (ID) and schizophrenia. We focus primarily on studies describing early morphological and behavioral phenotypes during embryonic and larval stages resulting from loss of risk gene function. We highlight insights into basic mechanisms of risk gene function gained from these studies as well as limitations of studies to date. Finally, we discuss advances in in vivo neural circuit imaging in zebrafish, which promise to transform research using the zebrafish model by illuminating novel circuit-level mechanisms with relevance to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Catalina Sakai
- Child Study Center, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Sundas Ijaz
- Child Study Center, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Ellen J Hoffman
- Child Study Center, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
95
|
Miller GW, Chandrasekaran V, Yaghoobi B, Lein PJ. Opportunities and challenges for using the zebrafish to study neuronal connectivity as an endpoint of developmental neurotoxicity. Neurotoxicology 2018; 67:102-111. [PMID: 29704525 PMCID: PMC6177215 DOI: 10.1016/j.neuro.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/28/2023]
Abstract
Chemical exposures have been implicated as environmental risk factors that interact with genetic susceptibilities to influence individual risk for complex neurodevelopmental disorders, including autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder and intellectual disabilities. Altered patterns of neuronal connectivity represent a convergent mechanism of pathogenesis for these and other neurodevelopmental disorders, and growing evidence suggests that chemicals can interfere with specific signaling pathways that regulate the development of neuronal connections. There is, therefore, a growing interest in developing screening platforms to identify chemicals that alter neuronal connectivity. Cell-cell, cell-matrix interactions and systemic influences are known to be important in defining neuronal connectivity in the developing brain, thus, a systems-based model offers significant advantages over cell-based models for screening chemicals for effects on neuronal connectivity. The embryonic zebrafish represents a vertebrate model amenable to higher throughput chemical screening that has proven useful in characterizing conserved mechanisms of neurodevelopment. Moreover, the zebrafish is readily amenable to gene editing to integrate genetic susceptibilities. Although use of the zebrafish model in toxicity testing has increased in recent years, the diverse tools available for imaging structural differences in the developing zebrafish brain have not been widely applied to studies of the influence of gene by environment interactions on neuronal connectivity in the developing zebrafish brain. Here, we discuss tools available for imaging of neuronal connectivity in the developing zebrafish, review what has been published in this regard, and suggest a path forward for applying this information to developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Galen W. Miller
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
96
|
Du H, Hou P, Zhang W, Li Q. Advances in CLARITY-based tissue clearing and imaging. Exp Ther Med 2018; 16:1567-1576. [PMID: 30186373 PMCID: PMC6122402 DOI: 10.3892/etm.2018.6374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
CLARITY is a novel tissue clearing technique that transforms intact biological tissues into a nanoporous hydrogel-tissue hybrid, preserving anatomical structures, proteins and nucleic acids. The hydrogel-based structure is transparent after the removal of lipids and permits several rounds of immunostaining and imaging. This technique provides an ideal way for researchers to examine the central nervous system (i.e., mouse brain and spinal cord) intact. CLARITY was selected as one of ten breakthroughs in 2013 by Science. However, the original CLARITY technique still has severe technical limitations which impede its application in wider fields. Therefore, many modified clearing methods based on CLARITY have emerged. As all CLARITY-based tissue clearing techniques involve similar procedures, the present review attempted to divide these methods into individual procedures in order to provide new ways to test and combine tissue clearing methods. Furthermore, the combination of clearing methods could help to determine the optimal method for clearing and imaging large samples.
Collapse
Affiliation(s)
- Hao Du
- Department of Anatomy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Peihong Hou
- Department of Anatomy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wenbo Zhang
- Institute of Neuroscience, Department of Human Anatomy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiyu Li
- Department of Anatomy, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
97
|
Kramer EE, Steadman PE, Epp JR, Frankland PW, Josselyn SA. Assessing Individual Neuronal Activity Across the Intact Brain: Using Hybridization Chain Reaction (HCR) to DetectArcmRNA Localized to the Nucleus in Volumes of Cleared Brain Tissue. ACTA ACUST UNITED AC 2018; 84:e49. [DOI: 10.1002/cpns.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Emily E. Kramer
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
| | - Patrick E. Steadman
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
| | - Jonathan R. Epp
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Department of Cell Biology and Anatomy, University of Calgary; Calgary Alberta Canada
- Current address: Hotchkiss Brain Institute, Cumming School of Medicine; Calgary Alberta Canada
| | - Paul W. Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
- Department of Psychology, University of Toronto; Toronto Ontario Canada
- Department of Physiology, University of Toronto; Toronto Ontario Canada
- Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research; Toronto Ontario Canada. Child & Brain Development Program, Canadian Institute for Advanced Research; Toronto Ontario Canada
| | - Sheena A. Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
- Department of Psychology, University of Toronto; Toronto Ontario Canada
- Department of Physiology, University of Toronto; Toronto Ontario Canada
- Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research; Toronto Ontario Canada. Child & Brain Development Program, Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
98
|
Matryba P, Bozycki L, Pawłowska M, Kaczmarek L, Stefaniuk M. Optimized perfusion-based CUBIC protocol for the efficient whole-body clearing and imaging of rat organs. JOURNAL OF BIOPHOTONICS 2018; 11:e201700248. [PMID: 29278446 DOI: 10.1002/jbio.201700248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Whole-organ and whole-body optical tissue clearing methods allowing imaging in 3 dimensions are an area of profound research interest. Originally developed to study nervous tissue, they have been successfully applied to all murine organs, yet clearing and imaging of rat peripheral organs is less advanced. Here, a modification of CUBIC clearing protocol is presented. It provides a rapid and simple approach to clear the entire adult rat organism and thus all organs within as little as 4 days. Upgraded perfusion-based rat CUBIC protocol preserves both anatomical structure of organs and signal from proteinaceous fluorophores, and furthermore is compatible with antibody staining. Finally, it enables also volumetric cells analyses and is tailored for staining of calcium deposits within unsectioned soft tissues.
Collapse
Affiliation(s)
- Paweł Matryba
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Lukasz Bozycki
- Laboratory of Biochemistry of Lipids, Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Pawłowska
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marzena Stefaniuk
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
99
|
Efros AL, Delehanty JB, Huston AL, Medintz IL, Barbic M, Harris TD. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. NATURE NANOTECHNOLOGY 2018; 13:278-288. [PMID: 29636589 DOI: 10.1038/s41565-018-0107-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Success in the projects aimed at providing an advanced understanding of the brain is directly predicated on making critical advances in nanotechnology. This Perspective addresses the unique interface of neuroscience and nanomaterials by considering the foundational problem of sensing neuron membrane voltage and offers a potential solution that may be facilitated by a prototypical nanomaterial. Despite substantial improvements, the visualization of instantaneous voltage changes within individual neurons, whether in cell culture or in vivo, at both the single-cell and network level at high speed remains complex and problematic. The unique properties of semiconductor quantum dots (QDs) have made them powerful fluorophores for bioimaging. What is not widely appreciated, however, is that QD photoluminescence is exquisitely sensitive to proximal electric fields. This property should be suitable for sensing voltage changes that occur in the active neuronal membrane. Here, we examine the potential role of QDs in addressing the important challenge of real-time optical voltage imaging.
Collapse
Affiliation(s)
- Alexander L Efros
- Center for Computational Materials Science (6390), US Naval Research Laboratory, Washington, DC, USA.
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering (6900), US Naval Research Laboratory, Washington, DC, USA
| | - Alan L Huston
- Optical Sciences Division (5611), US Naval Research Laboratory, Washington, DC, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering (6900), US Naval Research Laboratory, Washington, DC, USA
| | - Mladen Barbic
- Applied Physics and Instrumentation Group, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy D Harris
- Applied Physics and Instrumentation Group, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
100
|
Elisa Z, Toon B, De Smedt SC, Katrien R, Kristiaan N, Kevin B. Technical implementations of light sheet microscopy. Microsc Res Tech 2018; 81:941-958. [PMID: 29322581 DOI: 10.1002/jemt.22981] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Fluorescence-based microscopy is among the most successful methods in biological studies. It played a critical role in the visualization of subcellular structures and in the analysis of complex cellular processes, and it is nowadays commonly employed in genetic and drug screenings. Among the fluorescence-based microscopy techniques, light sheet fluorescence microscopy (LSFM) has shown a quite interesting set of benefits. The technique combines the speed of epi-fluorescence acquisition with the optical sectioning capability typical of confocal microscopes. Its unique configuration allows the excitation of only a thin plane of the sample, thus fast, high resolution imaging deep inside tissues is nowadays achievable. The low peak intensity with which the sample is illuminated diminishes phototoxic effects and decreases photobleaching of fluorophores, ensuring data collection for days with minimal adverse consequences on the sample. It is no surprise that LSFM applications have raised in just few years and the technique has been applied to study a wide variety of samples, from whole organism, to tissues, to cell clusters, and single cells. As a consequence, in recent years numerous set-ups have been developed, each one optimized for the type of sample in use and the requirements of the question at hand. Hereby, we aim to review the most advanced LSFM implementations to assist new LSFM users in the choice of the LSFM set-up that suits their needs best. We also focus on new commercial microscopes and "do-it-yourself" strategies; likewise we review recent designs that allow a swift integration of LSFM on existing microscopes.
Collapse
Affiliation(s)
- Zagato Elisa
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Brans Toon
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium
| | - Remaut Katrien
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium
| | - Neyts Kristiaan
- Liquid Crystals and Photonics Group, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Braeckmans Kevin
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| |
Collapse
|