51
|
Sypek EI, Tassou A, Collins HY, Huang K, McCallum WM, Bourdillon AT, Barres BA, Bohlen CJ, Scherrer G. Diversity of microglial transcriptional responses during opioid exposure and neuropathic pain. Pain 2024; 165:2615-2628. [PMID: 39073407 PMCID: PMC11474913 DOI: 10.1097/j.pain.0000000000003275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 07/30/2024]
Abstract
ABSTRACT Microglia take on an altered morphology during chronic opioid treatment. This morphological change is broadly used to identify the activated microglial state associated with opioid side effects, including tolerance and opioid-induced hyperalgesia (OIH). Microglia display similar morphological responses in the spinal cord after peripheral nerve injury (PNI). Consistent with this observation, functional studies have suggested that microglia activated by opioids or PNI engage common molecular mechanisms to induce hypersensitivity. In this article, we conducted deep RNA sequencing (RNA-seq) and morphological analysis of spinal cord microglia in male mice to comprehensively interrogate transcriptional states and mechanistic commonality between multiple models of OIH and PNI. After PNI, we identify an early proliferative transcriptional event across models that precedes the upregulation of histological markers of microglial activation. However, we found no proliferative transcriptional response associated with opioid-induced microglial activation, consistent with histological data, indicating that the number of microglia remains stable during morphine treatment, whereas their morphological response differs from PNI models. Collectively, these results establish the diversity of pain-associated microglial transcriptomic responses and point towards the targeting of distinct insult-specific microglial responses to treat OIH, PNI, or other central nervous system pathologies.
Collapse
Affiliation(s)
- Elizabeth I. Sypek
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
- Stanford Neurosciences Institute, Stanford, CA, United States
- Stanford University Neurosciences Graduate Program, Stanford, CA, United States
| | - Adrien Tassou
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hannah Y. Collins
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Karen Huang
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William M. McCallum
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Ben A. Barres
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Christopher J. Bohlen
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- New York Stem Cell Foundation—Robertson Investigator Chapel Hill, NC, United States
| |
Collapse
|
52
|
Rosete C, Ciernia AV. The Two Faces of HDAC3: Neuroinflammation in Disease and Neuroprotection in Recovery. Epigenomics 2024; 16:1373-1388. [PMID: 39513228 PMCID: PMC11728336 DOI: 10.1080/17501911.2024.2419357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Histone deacetylase 3 (HDAC3) is a critical regulator of gene expression, influencing a variety of cellular processes in the central nervous system. As such, dysfunction of this enzyme may serve as a key driver in the pathophysiology of various neuropsychiatric disorders and neurodegenerative diseases. HDAC3 plays a crucial role in regulating neuroinflammation, and is now widely recognized as a major contributor to neurological conditions, as well as in promoting neuroprotective recovery following brain injury, hemorrhage and stroke. Emerging evidence suggests that pharmacological inhibition of HDAC3 can mitigate behavioral and neuroimmune deficits in various brain diseases and disorders, offering a promising therapeutic strategy. Understanding HDAC3 in the healthy brain lays the necessary foundation to define and resolve its dysfunction in a disease state. This review explores the mechanisms of HDAC3 in various cell types and its involvement in disease pathology, emphasizing the potential of HDAC3 inhibition to address neuroimmune, gene expression and behavioral deficits in a range of neurodegenerative and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cal Rosete
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| |
Collapse
|
53
|
Fiore NT, Hayes JP, Williams SI, Moalem-Taylor G. Interleukin-35 alleviates neuropathic pain and induces an anti-inflammatory shift in spinal microglia in nerve-injured male mice. Brain Behav Immun 2024; 122:287-300. [PMID: 39097202 DOI: 10.1016/j.bbi.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Immune cells are critical in promoting neuroinflammation and neuropathic pain and in facilitating pain resolution, depending on their inflammatory and immunoregulatory cytokine response. Interleukin (IL)-35, secreted by regulatory immune cells, is a member of the IL-12 family with a potent immunosuppressive function. In this study, we investigated the effects of IL-35 on pain behaviors, spinal microglia phenotype following peripheral nerve injury, and in vitro microglial cultures in male and female mice. Intrathecal recombinant IL-35 treatment alleviated mechanical pain hypersensitivity prominently in male mice, with only a modest effect in female mice after sciatic nerve chronic constriction injury (CCI). IL-35 treatment resulted in sex-specific microglial changes following CCI, reducing inflammatory microglial markers and upregulating anti-inflammatory markers in male mice. Spatial transcriptomic analysis revealed that IL-35 suppressed microglial complement activation in the superficial dorsal horn in male mice after CCI. Moreover, in vitro studies showed that IL-35 treatment of cultured inflammatory microglia mitigated their hypertrophied morphology, increased their cell motility, and decreased their phagocytic activity, indicating a phenotypic shift towards homeostatic microglia. Further, IL-35 altered microglial cytokines/chemokines in vitro, suppressing the release of IL-9 and monocyte-chemoattractant protein-1 and increasing IL-10 in the supernatant of male microglial cultures. Our findings indicate that treatment with IL-35 modulates spinal microglia and alleviates neuropathic pain in male mice, suggesting IL-35 as a potential sex-specific targeted immunomodulatory treatment for neuropathic pain.
Collapse
Affiliation(s)
- Nathan T Fiore
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia
| | - Jessica P Hayes
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia
| | - Sarah I Williams
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia.
| |
Collapse
|
54
|
Hintermayer MA, Juźwik CA, Morquette B, Hua E, Zhang J, Drake S, Shi SS, Rambaldi I, Vangoor V, Pasterkamp J, Moore C, Fournier AE. A miR-383-5p Signaling Hub Coordinates the Axon Regeneration Response to Inflammation. J Neurosci 2024; 44:e1822232024. [PMID: 39266301 PMCID: PMC11529811 DOI: 10.1523/jneurosci.1822-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration. We found that miR-383-5p is downregulated in retinal ganglion cells in response to zymosan-induced intraocular inflammation. MiR-383-5p downregulation in neurons is sufficient to promote axon growth in vitro, and the intravitreal injection of a miR-383-5p inhibitor into the eye promotes axon regeneration following optic nerve crush. MiR-383-5p directly targets ciliary neurotrophic factor (CNTF) receptor components, and miR-383-5p inhibition sensitizes adult retinal neurons to the outgrowth-promoting effects of CNTF. Interestingly, we also demonstrate that CNTF treatment is sufficient to reduce miR-383-5p levels in neurons, constituting a positive-feedback module, whereby initial CNTF treatment reduces miR-383-5p levels, which then disinhibits CNTF receptor components to sensitize neurons to the ligand. Additionally, miR-383-5p inhibition derepresses the mitochondrial antioxidant protein peroxiredoxin-3 (PRDX3) which was required for the proregenerative effects associated with miR-383-5p loss-of-function in vitro. We have thus identified a positive-feedback mechanism that facilitates neuronal CNTF sensitivity in neurons and a new molecular signaling module that promotes inflammation-induced axon regeneration.
Collapse
Affiliation(s)
- Matthew A Hintermayer
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Camille A Juźwik
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Barbara Morquette
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elizabeth Hua
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Julia Zhang
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Sienna Drake
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Shan Shan Shi
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Isabel Rambaldi
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Vamshi Vangoor
- Department of Translation Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Jeroen Pasterkamp
- Department of Translation Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht 3584 CG, Netherlands
| | - Craig Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Alyson E Fournier
- Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
55
|
Huynh TN, Fikse EN, Havrda MC, Chang CCY, Chang TY. Inhibiting the cholesterol storage enzyme ACAT1/SOAT1 in aging Apolipoprotein E4 mice alter their brains inflammatory profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620063. [PMID: 39484620 PMCID: PMC11527143 DOI: 10.1101/2024.10.24.620063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aging and Apolipoprotein E4 (APOE4) are the two most significant risk factors for late-onset Alzheimer's disease (LOAD). Compared to APOE3, APOE4 disrupts cholesterol homeostasis, increases cholesteryl esters (CEs), and exacerbates neuroinflammation in brain cells including microglia. Targeting CEs and neuroinflammation could be a novel strategy to ameliorate APOE4 dependent phenotypes. Toll-like receptor 4 (TLR4) is a key player in inflammation, its regulation is associated with cholesterol content of lipid rafts in cell membranes. We previously demonstrated that in normal microglia expressing APOE3, inhibiting the cholesterol storage enzyme acylCoA:cholesterol acyltransferase 1 (ACAT1/SOAT1) reduces CEs, dampened neuroinflammation via modulating the fate of TLR4. We also showed that treating myelin debris-loaded normal microglia with ACAT inhibitor F12511 reduced cellular CEs and activated ABC transporter 1 (ABCA1) for cholesterol efflux. In this study, we found that treating primary microglia expressing APOE4 with F12511 also reduces CEs, activated ABCA1, and dampened LPS dependent NFkB activation. In vivo, a two-week injections of nanoparticle F12511, which consists of DSPE-PEG 2000 , phosphatidylcholine, and F12511, to aged female APOE4 mice reduced TLR4 protein content and decreased proinflammatory cytokines including IL-1β in APOE4 mice brains. Overall, our work suggests nanoparticle F12511 is a novel agent to ameliorate LOAD.
Collapse
|
56
|
Gern OL, Pavlou A, Mulenge F, Busker LM, Ghita L, Aringo A, Costa B, Spanier J, Waltl I, Stangel M, Kalinke U. MAVS signaling shapes microglia responses to neurotropic virus infection. J Neuroinflammation 2024; 21:264. [PMID: 39425188 PMCID: PMC11490141 DOI: 10.1186/s12974-024-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Viral encephalitis is characterized by a series of immunological reactions that can control virus infection in the brain, but dysregulated responses may cause excessive inflammation and brain damage. Microglia are brain-resident myeloid cells that are specialized in surveilling the local CNS environment and in case of viral brain infection they contribute to the control of the infection and to restriction of viral dissemination. Here, we report that after exposure to neurotropic vesicular stomatitis virus (VSV), murine in vitro microglia cultures showed rapid upregulation of a broad range of pro-inflammatory and antiviral genes, which were stably expressed over the entire 8 h infection period. Additionally, a set of immunomodulatory genes was upregulated between 6 and 8 h post infection. In microglia cultures, the induction of several immune response pathways including cytokine responses was dependent on mitochondrial antiviral-signaling protein (MAVS). Consequently, in Mavs-deficient microglia the control of virus propagation failed as indicated by augmented virus titers and the accumulation of viral transcripts. Thus, in the analyzed in vitro system, MAVS signaling is critically required to achieve full microglia activation and to mediate profound antiviral effects. In Mavs-deficient mice, intranasal VSV instillation caused higher disease severity than in WT mice and virus dissemination was noticed beyond the olfactory bulb. Virus spread to inner regions of the olfactory bulb, i.e., the granular cell layer, correlated with the recruitment of highly inflammatory non-microglia myeloid cells into the olfactory bulb in Mavs-/- mice. Furthermore, increased cytokine levels were detected in the nasal cavity, the olfactory bulb and in other brain regions. Thus, microglial MAVS signaling is critically needed for virus sensing, full microglia activation, and for orchestration of protective immunity in the virus-infected CNS.
Collapse
Affiliation(s)
- Olivia Luise Gern
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Genentech, South San Francisco, CA, USA
| | - Angela Aringo
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
- Translational Medicine Neuroscience, Biomedical Research, Novartis Pharma AG, Basel, 4056, Switzerland
- Center of Systems Neuroscience, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
57
|
Chang CP, Wu CW, Chern Y. Metabolic dysregulation in Huntington's disease: Neuronal and glial perspectives. Neurobiol Dis 2024; 201:106672. [PMID: 39306013 DOI: 10.1016/j.nbd.2024.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutant huntingtin protein with an abnormal CAG/polyQ expansion in the N-terminus of HTT exon 1. HD is characterized by progressive neurodegeneration and metabolic abnormalities, particularly in the brain, which accounts for approximately 20 % of the body's resting metabolic rate. Dysregulation of energy homeostasis in HD includes impaired glucose transporters, abnormal functions of glycolytic enzymes, changes in tricarboxylic acid (TCA) cycle activity and enzyme expression in the basal ganglia and cortical regions of both HD mouse models and HD patients. However, current understanding of brain cell behavior during energy dysregulation and its impact on neuron-glia crosstalk in HD remains limited. This review provides a comprehensive summary of the current understanding of the differences in glucose metabolism between neurons and glial cells in HD and how these differences contribute to disease development compared with normal conditions. We also discuss the potential impact of metabolic shifts on neuron-glia communication in HD. A deeper understanding of these metabolic alterations may reveal potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
58
|
Lopez-Ortiz AO, Eyo UB. Astrocytes and microglia in the coordination of CNS development and homeostasis. J Neurochem 2024; 168:3599-3614. [PMID: 37985374 PMCID: PMC11102936 DOI: 10.1111/jnc.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Glia have emerged as important architects of central nervous system (CNS) development and maintenance. While traditionally glial contributions to CNS development and maintenance have been studied independently, there is growing evidence that either suggests or documents that glia may act in coordinated manners to effect developmental patterning and homeostatic functions in the CNS. In this review, we focus on astrocytes, the most abundant glia in the CNS, and microglia, the earliest glia to colonize the CNS highlighting research that documents either suggestive or established coordinated actions by these glial cells in various CNS processes including cell and/or debris clearance, neuronal survival and morphogenesis, synaptic maturation, and circuit function, angio-/vasculogenesis, myelination, and neurotransmission. Some molecular mechanisms underlying these processes that have been identified are also described. Throughout, we categorize the available evidence as either suggestive or established interactions between microglia and astrocytes in the regulation of the respective process and raise possible avenues for further research. We conclude indicating that a better understanding of coordinated astrocyte-microglial interactions in the developing and mature brain holds promise for developing effective therapies for brain pathologies where these processes are perturbed.
Collapse
Affiliation(s)
- Aída Oryza Lopez-Ortiz
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
59
|
Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol 2024; 45:824-836. [PMID: 39332912 DOI: 10.1016/j.it.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.
Collapse
Affiliation(s)
- Theodore M Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
60
|
Nemec KM, Uy G, Chaluvadi VS, Purnell FS, Elfayoumi B, O'Brien CA, Aisenberg WH, Lombroso SI, Guo X, Blank N, Oon CH, Yaqoob F, Temsamrit B, Rawat P, Thaiss CA, Wang Q, Bennett ML, Bennett FC. Microglia replacement by ER-Hoxb8 conditionally immortalized macrophages provides insight into Aicardi-Goutières Syndrome neuropathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613629. [PMID: 39345609 PMCID: PMC11430044 DOI: 10.1101/2024.09.18.613629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Microglia, the brain's resident macrophages, can be reconstituted by surrogate cells - a process termed "microglia replacement." To expand the microglia replacement toolkit, we here introduce estrogen-regulated (ER) homeobox B8 (Hoxb8) conditionally immortalized macrophages, a cell model for generation of immune cells from murine bone marrow, as a versatile model for microglia replacement. We find that ER-Hoxb8 macrophages are highly comparable to primary bone marrow-derived (BMD) macrophages in vitro, and, when transplanted into a microglia-free brain, engraft the parenchyma and differentiate into microglia-like cells. Furthermore, ER-Hoxb8 progenitors are readily transducible by virus and easily stored as stable, genetically manipulated cell lines. As a demonstration of this system's power for studying the effects of disease mutations on microglia in vivo, we created stable, Adar1-mutated ER-Hoxb8 lines using CRISPR-Cas9 to study the intrinsic contribution of macrophages to Aicardi-Goutières Syndrome (AGS), an inherited interferonopathy that primarily affects the brain and immune system. We find that Adar1 knockout elicited interferon secretion and impaired macrophage production in vitro, while preventing brain macrophage engraftment in vivo - phenotypes that can be rescued with concurrent mutation of Ifih1 (MDA5) in vitro, but not in vivo. Lastly, we extended these findings by generating ER-Hoxb8 progenitors from mice harboring a patient-specific Adar1 mutation (D1113H). We demonstrated the ability of microglia-specific D1113H mutation to drive interferon production in vivo, suggesting microglia drive AGS neuropathology. In sum, we introduce the ER-Hoxb8 approach to model microglia replacement and use it to clarify macrophage contributions to AGS.
Collapse
Affiliation(s)
- Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Genevieve Uy
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - V Sai Chaluvadi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Freddy S Purnell
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine. Philadelphia, PA, USA
| | - Bilal Elfayoumi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William H Aisenberg
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chet Huan Oon
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Temsamrit
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Priyanka Rawat
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mariko L Bennett
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
61
|
Petry P, Aktories P, Oschwald A, Kierdorf K. Protocol for long-term monocultures of murine macrophages derived from distinct adult tissues. STAR Protoc 2024; 5:103145. [PMID: 38909360 PMCID: PMC11245975 DOI: 10.1016/j.xpro.2024.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Tissue-resident macrophages (TRMs) constitute the first line of defense against infection in all organs and perform organ-specific functions during tissue homeostasis. Here, we present a protocol for long-term monocultures of murine macrophages from different adult organs, including the brain, liver, peritoneal cavity, and lung. We describe steps for tissue preparation and the use of a combination of organotypic conditions to maintain a TRM-like identity in vitro, resulting in an ideal screening platform for a wide range of assays and readouts. For complete details on the use and execution of this protocol, please refer to Aktories et al.1.
Collapse
Affiliation(s)
- Philippe Petry
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp Aktories
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| | - Alexander Oschwald
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
62
|
Milazzo R, Montepeloso A, Kumar R, Ferro F, Cavalca E, Rigoni P, Cabras P, Ciervo Y, Das S, Capotondo A, Pellin D, Peviani M, Biffi A. Therapeutic efficacy of intracerebral hematopoietic stem cell gene therapy in an Alzheimer's disease mouse model. Nat Commun 2024; 15:8024. [PMID: 39271711 PMCID: PMC11399302 DOI: 10.1038/s41467-024-52301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The conditions supporting the generation of microglia-like cells in the central nervous system (CNS) after transplantation of hematopoietic stem/progenitor cells (HSPC) have been studied to advance the treatment of neurodegenerative disorders. Here, we explored the transplantation efficacy of different cell subsets and delivery routes with the goal of favoring the establishment of a stable and exclusive engraftment of HSPCs and their progeny in the CNS of female mice. In this setting, we show that the CNS environment drives the expansion, distribution and myeloid differentiation of the locally transplanted cells towards a microglia-like phenotype. Intra-CNS transplantation of HSPCs engineered to overexpress TREM2 decreased neuroinflammation, Aβ aggregation and improved memory in 5xFAD female mice. Our proof of concept study demonstrates the therapeutic potential of HSPC gene therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Milazzo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Rajesh Kumar
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Francesca Ferro
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Pietro Rigoni
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Paolo Cabras
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Yuri Ciervo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alessia Capotondo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Marco Peviani
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy.
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
63
|
Profaci CP, Harvey SS, Bajc K, Zhang TZ, Jeffrey DA, Zhang AZ, Nemec KM, Davtyan H, O'Brien CA, McKinsey GL, Longworth A, McMullen TP, Capocchi JK, Gonzalez JG, Lawson DA, Arnold TD, Davalos D, Blurton-Jones M, Dabertrand F, Bennett FC, Daneman R. Microglia are not necessary for maintenance of blood-brain barrier properties in health, but PLX5622 alters brain endothelial cholesterol metabolism. Neuron 2024; 112:2910-2921.e7. [PMID: 39142282 PMCID: PMC11446403 DOI: 10.1016/j.neuron.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/03/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Microglia, the resident immune cells of the central nervous system, are intimately involved in the brain's most basic processes, from pruning neural synapses during development to preventing excessive neuronal activity throughout life. Studies have reported both helpful and harmful roles for microglia at the blood-brain barrier (BBB) in the context of disease. However, less is known about microglia-endothelial cell interactions in the healthy brain. To investigate the role of microglia at a healthy BBB, we used the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to deplete microglia and analyzed the BBB ultrastructure, permeability, and transcriptome. Interestingly, we found that, despite their direct contact with endothelial cells, microglia are not necessary for the maintenance of BBB structure, function, or gene expression in the healthy brain. However, we found that PLX5622 treatment alters brain endothelial cholesterol metabolism. This effect was independent from microglial depletion, suggesting that PLX5622 has off-target effects on brain vasculature.
Collapse
Affiliation(s)
- Caterina P Profaci
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA.
| | - Sean S Harvey
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Kaja Bajc
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Tony Z Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Danielle A Jeffrey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Z Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel L McKinsey
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Longworth
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Timothy P McMullen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Joia K Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jessica G Gonzalez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Daneman
- Department of Pharmacology, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| |
Collapse
|
64
|
Ishibashi K, Hirata E. Multifaceted interactions between cancer cells and glial cells in brain metastasis. Cancer Sci 2024; 115:2871-2878. [PMID: 38992968 PMCID: PMC11462981 DOI: 10.1111/cas.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer brain metastasis has a poor prognosis, is commonly observed in clinical practice, and the number of cases is increasing as overall cancer survival improves. However, experiments in mouse models have shown that brain metastasis itself is an inefficient process. One reason for this inefficiency is the brain microenvironment, which differs significantly from that of other organs, making it difficult for cancer cells to adapt. The brain microenvironment consists of unique resident cell types such as neurons, oligodendrocytes, astrocytes, and microglia. Accumulating evidence over the past decades suggests that the interactions between cancer cells and glial cells can positively or negatively influence the development of brain metastasis. Nevertheless, elucidating the complex interactions between cancer cells and glial cells remains challenging, in part due to the limitations of existing experimental models for glial cell culture. In this review, we first provide an overview of glial cell culture methods and then examine recent discoveries regarding the interactions between brain metastatic cancer cells and the surrounding glial cells, with a special focus on astrocytes and microglia. Finally, we discuss future perspectives for understanding the multifaceted interactions between cancer cells and glial cells for the treatment of metastatic brain tumors.
Collapse
Affiliation(s)
- Kojiro Ishibashi
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
| | - Eishu Hirata
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute, Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
65
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
66
|
Lin D, Gold A, Kaye S, Atkinson JR, Tol M, Sas A, Segal B, Tontonoz P, Zhu J, Gao J. Arachidonic Acid Mobilization and Peroxidation Promote Microglial Dysfunction in Aβ Pathology. J Neurosci 2024; 44:e0202242024. [PMID: 38866484 PMCID: PMC11293449 DOI: 10.1523/jneurosci.0202-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Aberrant increase of arachidonic acid (ARA) has long been implicated in the pathology of Alzheimer's disease (AD), while the underlying causal mechanism remains unclear. In this study, we revealed a link between ARA mobilization and microglial dysfunction in Aβ pathology. Lipidomic analysis of primary microglia from AppNL-GF mice showed a marked increase in free ARA and lysophospholipids (LPLs) along with a decrease in ARA-containing phospholipids, suggesting increased ARA release from phospholipids (PLs). To manipulate ARA-containing PLs in microglia, we genetically deleted lysophosphatidylcholine acyltransferase 3 (Lpcat3), the main enzyme catalyzing the incorporation of ARA into PLs. Loss of microglial Lpcat3 reduced the levels of ARA-containing PLs, free ARA and LPLs, leading to a compensatory increase in monounsaturated fatty acid (MUFA)-containing PLs in both male and female App NL-GF mice. Notably, the reduction of ARA in microglia significantly ameliorated oxidative stress and inflammatory responses while enhancing the phagocytosis of Aβ plaques and promoting the compaction of Aβ deposits. Mechanistically, scRNA seq suggested that LPCAT3 deficiency facilitates phagocytosis by facilitating de novo lipid synthesis while protecting microglia from oxidative damage. Collectively, our study reveals a novel mechanistic link between ARA mobilization and microglial dysfunction in AD. Lowering brain ARA levels through pharmacological or dietary interventions may be a potential therapeutic strategy to slow down AD progression.
Collapse
Affiliation(s)
- Da Lin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Andrew Gold
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Sarah Kaye
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Jeffrey R Atkinson
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Marcus Tol
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Andrew Sas
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Benjamin Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| |
Collapse
|
67
|
Rana AK, Bhatt B, Kumar M. β-Hydroxybutyrate Improves the Redox Status, Cytokine Production and Phagocytic Potency of Glucose-Deprived HMC3 Human Microglia-like Cells. J Neuroimmune Pharmacol 2024; 19:35. [PMID: 39042253 DOI: 10.1007/s11481-024-10139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Brain glucose deprivation is a component of the pathophysiology of ischemia, glucose transporter1 (GLUT1) deficiency, neurological disorders and occurs transiently in diabetes. Microglia, the neuroimmune cells must function effectively to offer immune defence and debris removal in low-energy settings. Brain glucose deprivation may compromise microglial functions further escalating the disease pathology and deteriorating the overall mental health. In the current study, HMC3 human microglia-like cells were cultured in vitro and exposed to glucose deprivation to investigate the effects of glucose deprivation on phenotypic state, redox status, secretion of cytokines and phagocytic capabilities of HMC3 cells. However, HMC3 cells were able to proliferate in the absence of glucose but showed signs of redox imbalance and mitochondrial dysfunction, as demonstrated by decreased MTT reduction and Mito Tracker™ staining of cells, along with a concomitant reduction in NOX2 protein, superoxide, and nitrite levels. Reduced levels of secreted TNF and IL-1β were the signs of compromised cytokine secretion by glucose-deprived HMC3 microglia-like cells. Moreover, glucose-deprived HMC3 cells also showed reduced phagocytic activity as assessed by fluorescently labelled latex beads-based functional phagocytosis assay. β-hydroxybutyrate (BHB) supplementation restored the redox status, mitochondrial health, cytokine secretion, and phagocytic activity of glucose-deprived HMC3 microglia-like cells. Overall, impaired brain glucose metabolism may hinder microglia's capacity to release diffusible immune factors and perform phagocytosis. This could escalate the mental health issues in neurological diseases where brain glucose metabolism is compromised. Moreover, nutritional ketosis or exogenous ketone supplementation such as BHB may be utilized as a potential metabolic therapies for these conditions.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, 140306, India
| | - Babita Bhatt
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, 140306, India
| | - Mohit Kumar
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, 140306, India.
- Adjunct faculty, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
68
|
Berki P, Cserép C, Környei Z, Pósfai B, Szabadits E, Domonkos A, Kellermayer A, Nyerges M, Wei X, Mody I, Kunihiko A, Beck H, Kaikai H, Ya W, Lénárt N, Wu Z, Jing M, Li Y, Gulyás AI, Dénes Á. Microglia contribute to neuronal synchrony despite endogenous ATP-related phenotypic transformation in acute mouse brain slices. Nat Commun 2024; 15:5402. [PMID: 38926390 PMCID: PMC11208608 DOI: 10.1038/s41467-024-49773-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Acute brain slices represent a workhorse model for studying the central nervous system (CNS) from nanoscale events to complex circuits. While slice preparation inherently involves tissue damage, it is unclear how microglia, the main immune cells and damage sensors of the CNS react to this injury and shape neuronal activity ex vivo. To this end, we investigated microglial phenotypes and contribution to network organization and functioning in acute brain slices. We reveal time-dependent microglial phenotype changes influenced by complex extracellular ATP dynamics through P2Y12R and CX3CR1 signalling, which is sustained for hours in ex vivo mouse brain slices. Downregulation of P2Y12R and changes of microglia-neuron interactions occur in line with alterations in the number of excitatory and inhibitory synapses over time. Importantly, functional microglia modulate synapse sprouting, while microglial dysfunction results in markedly impaired ripple activity both ex vivo and in vivo. Collectively, our data suggest that microglia are modulators of complex neuronal networks with important roles to maintain neuronal network integrity and activity. We suggest that slice preparation can be used to model time-dependent changes of microglia-neuron interactions to reveal how microglia shape neuronal circuits in physiological and pathological conditions.
Collapse
Affiliation(s)
- Péter Berki
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, H-1083, Hungary
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Neuronal Network and Behaviour, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Andor Domonkos
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Anna Kellermayer
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Miklós Nyerges
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Araki Kunihiko
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - He Kaikai
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wang Ya
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Miao Jing
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary.
| |
Collapse
|
69
|
Chausse B, Malorny N, Lewen A, Poschet G, Berndt N, Kann O. Metabolic flexibility ensures proper neuronal network function in moderate neuroinflammation. Sci Rep 2024; 14:14405. [PMID: 38909138 PMCID: PMC11193723 DOI: 10.1038/s41598-024-64872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Microglia, brain-resident macrophages, can acquire distinct functional phenotypes, which are supported by differential reprogramming of cell metabolism. These adaptations include remodeling in glycolytic and mitochondrial metabolic fluxes, potentially altering energy substrate availability at the tissue level. This phenomenon may be highly relevant in the brain, where metabolism must be precisely regulated to maintain appropriate neuronal excitability and synaptic transmission. Direct evidence that microglia can impact on neuronal energy metabolism has been widely lacking, however. Combining molecular profiling, electrophysiology, oxygen microsensor recordings and mathematical modeling, we investigated microglia-mediated disturbances in brain energetics during neuroinflammation. Our results suggest that proinflammatory microglia showing enhanced nitric oxide release and decreased CX3CR1 expression transiently increase the tissue lactate/glucose ratio that depends on transcriptional reprogramming in microglia, not in neurons. In this condition, neuronal network activity such as gamma oscillations (30-70 Hz) can be fueled by increased ATP production in mitochondria, which is reflected by elevated oxygen consumption. During dysregulated inflammation, high energy demand and low glucose availability can be boundary conditions for neuronal metabolic fitness as revealed by kinetic modeling of single neuron energetics. Collectively, these findings indicate that metabolic flexibility protects neuronal network function against alterations in local substrate availability during moderate neuroinflammation.
Collapse
Affiliation(s)
- Bruno Chausse
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
- MEDISS Doctoral Program, INF 110, Heidelberg University, 69120, Heidelberg, Germany.
| | - Nikolai Malorny
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
- Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
70
|
Di Pietro AA, Pasquini LA. A novel in vitro model for investigating oligodendroglial maturation and myelin deposition under demyelinating and remyelinating conditions: Impact of microglial depletion and repopulation. Mol Cell Neurosci 2024; 129:103937. [PMID: 38796120 DOI: 10.1016/j.mcn.2024.103937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Experimental models of multiple sclerosis (MS) have significantly contributed to our understanding of pathophysiology and the development of therapeutic interventions. Various in vivo animal models have successfully replicated key features of MS and associated pathophysiological processes, shedding light on the sequence of events leading to disease initiation, progression, and resolution. Nevertheless, these models often entail substantial costs and prolonged treatment periods. In contrast, in vitro models offer distinct advantages, including cost-effectiveness and precise control over experimental conditions, thereby facilitating more reproducible results. We have developed a novel in vitro model tailored to the study of oligodendroglial maturation and myelin deposition under demyelinating and remyelinating conditions, which encompasses all the cell types present in the central nervous system (CNS). Of note, our model enables the evaluation of microglial cell commitment through a protocol involving their depletion and subsequent repopulation. Given that the development and survival of microglia are critically reliant on colony-stimulating factor-1 receptor (CSF-1R) signaling, we have employed CSF-1R inhibition to effectively deplete microglia. This versatile model holds promise for the assessment of potential therapies aimed at promoting oligodendroglial differentiation to safeguard and repair myelin, hence mitigate neurodegenerative processes.
Collapse
Affiliation(s)
- Anabella Ayelen Di Pietro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina; Universidad de Buenos Airess, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aire, Argentina.
| | - Laura Andrea Pasquini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina; Universidad de Buenos Airess, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aire, Argentina.
| |
Collapse
|
71
|
Teo F, Kok CYL, Tan MJ, Je HS. Human pluripotent stem cell (hPSC)-derived microglia for the study of brain disorders. A comprehensive review of existing protocols. IBRO Neurosci Rep 2024; 16:497-508. [PMID: 38655500 PMCID: PMC11035045 DOI: 10.1016/j.ibneur.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Microglia, resident immune cells of the brain that originate from the yolk sac, play a critical role in maintaining brain homeostasis by monitoring and phagocytosing pathogens and cellular debris in the central nervous system (CNS). While they share characteristics with myeloid cells, they are distinct from macrophages. In response to injury, microglia release pro-inflammatory factors and contribute to brain homeostasis through activities such as synapse pruning and neurogenesis. To better understand their role in neurological disorders, the generation of in vitro models of human microglia has become essential. These models, derived from patient-specific induced pluripotent stem cells (iPSCs), provide a controlled environment to study the molecular and cellular mechanisms underlying microglia-mediated neuroinflammation and neurodegeneration. The incorporation or generation of microglia into three-dimensional (3D) organoid cultures provides a more physiologically relevant environment that offers further opportunities to study microglial dynamics and disease modeling. This review describes several protocols that have been recently developed for the generation of human-induced microglia. Importantly, it highlights the promise of these in vitro models in advancing our understanding of brain disorders and facilitating personalized drug screening.
Collapse
Affiliation(s)
- Fionicca Teo
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Catherine Yen Li Kok
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mao-Jia Tan
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - H. Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Advanced Bioimaging Centre, SingHealth, Academia, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
72
|
Pesti I, Légrádi Á, Farkas E. Primary microglia cell cultures in translational research: Strengths and limitations. J Biotechnol 2024; 386:10-18. [PMID: 38519034 DOI: 10.1016/j.jbiotec.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Microglia are the resident macrophages in the central nervous system, accounting for 10-15% of the cell mass in the brain. Next to their physiological role in development, monitoring neuronal function and the maintenance of homeostasis, microglia are crucial in the brain's immune defense. Brain injury and chronic neurological disorders are associated with neuroinflammation, in which microglia activation is a central element. Microglia acquire a wide spectrum of activation states in the diseased or injured brain, some of which are neurotoxic. The investigation of microglia (patho)physiology and therapeutic interventions targeting neuroinflammation is a substantial challenge. In addition to in vivo approaches, the application of in vitro model systems has gained significant ground and is essential to complement in vivo work. Primary microglia cultures have proved to be a useful tool. Microglia cultures have offered the opportunity to explore the mechanistic, molecular elements of microglia activation, the microglia secretome, and the efficacy of therapeutic treatments against neuroinflammation. As all model systems, primary microglia cultures have distinct strengths and limitations to be weighed when experiments are designed and when data are interpreted. Here, we set out to provide a succinct overview of the advantages and pitfalls of the use of microglia cultures, which instructs the refinement and further development of this technique to remain useful in the toolbox of microglia researchers. Since there is no conclusive therapy to combat neurotoxicity linked to neuroinflammation in acute brain injury or neurodegenerative disorders, these research tools remain essential to explore therapeutic opportunities.
Collapse
Affiliation(s)
- István Pesti
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Ádám Légrádi
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary.
| |
Collapse
|
73
|
Mancuso R, Fattorelli N, Martinez-Muriana A, Davis E, Wolfs L, Van Den Daele J, Geric I, Premereur J, Polanco P, Bijnens B, Preman P, Serneels L, Poovathingal S, Balusu S, Verfaillie C, Fiers M, De Strooper B. Xenografted human microglia display diverse transcriptomic states in response to Alzheimer's disease-related amyloid-β pathology. Nat Neurosci 2024; 27:886-900. [PMID: 38539015 PMCID: PMC11089003 DOI: 10.1038/s41593-024-01600-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/14/2024] [Indexed: 05/14/2024]
Abstract
Microglia are central players in Alzheimer's disease pathology but analyzing microglial states in human brain samples is challenging due to genetic diversity, postmortem delay and admixture of pathologies. To circumvent these issues, here we generated 138,577 single-cell expression profiles of human stem cell-derived microglia xenotransplanted in the brain of the AppNL-G-F model of amyloid pathology and wild-type controls. Xenografted human microglia adopt a disease-associated profile similar to that seen in mouse microglia, but display a more pronounced human leukocyte antigen or HLA state, likely related to antigen presentation in response to amyloid plaques. The human microglial response also involves a pro-inflammatory cytokine/chemokine cytokine response microglia or CRM response to oligomeric Aβ oligomers. Genetic deletion of TREM2 or APOE as well as APOE polymorphisms and TREM2R47H expression in the transplanted microglia modulate these responses differentially. The expression of other Alzheimer's disease risk genes is differentially regulated across the distinct cell states elicited in response to amyloid pathology. Thus, we have identified multiple transcriptomic cell states adopted by human microglia in a multipronged response to Alzheimer's disease-related pathology, which should be taken into account in translational studies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.
| | - Nicola Fattorelli
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Anna Martinez-Muriana
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Leen Wolfs
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Johanna Van Den Daele
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Ivana Geric
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jessie Premereur
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paula Polanco
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Baukje Bijnens
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Pranav Preman
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lutgarde Serneels
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Suresh Poovathingal
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Sriram Balusu
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Mark Fiers
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Bart De Strooper
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- UK Dementia Research Institute at UCL, University College London, London, UK.
| |
Collapse
|
74
|
Serafini MM, Sepehri S, Midali M, Stinckens M, Biesiekierska M, Wolniakowska A, Gatzios A, Rundén-Pran E, Reszka E, Marinovich M, Vanhaecke T, Roszak J, Viviani B, SenGupta T. Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing. Arch Toxicol 2024; 98:1271-1295. [PMID: 38480536 PMCID: PMC10965660 DOI: 10.1007/s00204-024-03703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.
Collapse
Affiliation(s)
- Melania Maria Serafini
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| | - Sara Sepehri
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Miriam Midali
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Marth Stinckens
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Marta Biesiekierska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Wolniakowska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Alexandra Gatzios
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Elise Rundén-Pran
- The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Center of Research on New Approach Methodologies (NAMs) in chemical risk assessment (SAFE-MI), Università degli Studi di Milano, Milan, Italy
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Center of Research on New Approach Methodologies (NAMs) in chemical risk assessment (SAFE-MI), Università degli Studi di Milano, Milan, Italy
| | - Tanima SenGupta
- The Climate and Environmental Research Institute NILU, Kjeller, Norway
| |
Collapse
|
75
|
Birkle TJ, Willems HM, Skidmore J, Brown GC. Disease phenotypic screening in neuron-glia cocultures identifies blockers of inflammatory neurodegeneration. iScience 2024; 27:109454. [PMID: 38550989 PMCID: PMC10973195 DOI: 10.1016/j.isci.2024.109454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 03/06/2024] [Indexed: 01/30/2025] Open
Abstract
Neuropathology is often mediated by interactions between neurons and glia that cannot be modeled by monocultures. However, cocultures are difficult to use and analyze for high-content screening. Here, we perform compound screening using primary neuron-glia cultures to model inflammatory neurodegeneration, live-cell stains, and automated classification of neurons, astrocytes or microglia using open-source software. Out of 227 compounds with known bioactivities, 29 protected against lipopolysaccharide-induced neuronal loss, including drugs affecting adrenergic, steroid, inflammatory and MAP kinase signaling. The screen also identified physiological compounds, such as noradrenaline and progesterone, that protected and identified neurotoxic compounds, such as a TLR7 agonist, that induced microglial proliferation. Most compounds used here have not been tested in a neuron-glia coculture neurodegeneration assay previously. Thus, combining a complex cellular disease model with high-content screening of known compounds and automated image analysis allows identification of important biology, as well as potential targets and drugs for treatment.
Collapse
Affiliation(s)
| | | | - John Skidmore
- ALBORADA Drug Discovery Institute, Cambridge CB2 0AH, UK
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
76
|
Mizrachi M, Diamond B. Impact of microglia isolation and culture methodology on transcriptional profile and function. J Neuroinflammation 2024; 21:87. [PMID: 38589917 PMCID: PMC11000335 DOI: 10.1186/s12974-024-03076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Microglial isolation and culturing methods continue to be explored to maximize cellular yield, purity, responsiveness to stimulation and similarity to in vivo microglia. This study aims to evaluate five different microglia isolation methods-three variants of microglia isolation from neonatal mice and two variants of microglia isolation from adult mice-on transcriptional profile and response to HMGB1. METHODS Microglia from neonatal mice, age 0-3 days (P0-P3) were isolated from mixed glial cultures (MGC). We included three variations of this protocol that differed by use of GM-CSF in culture (No GM-CSF or 500 pg/mL GM-CSF), and days of culture in MGC before microglial separation (10 or 21). Protocols for studying microglia from adult mice age 6-8 weeks included isolation by adherence properties followed by 7 days of culture with 100 ng/mL GM-CSF and 100 ng/mL M-CSF (Vijaya et al. in Front Cell Neurosci 17:1082180, 2023), or acute isolation using CD11b beads (Bordt et al. in STAR Protoc 1:100035, 2020. https://doi.org/10.1016/j.xpro.2020.100035 ). Purity, yield, and RNA quality of the isolated microglia were assessed by flow cytometry, hemocytometer counting, and Bioanalyzer, respectively. Microglial responsiveness to an inflammatory stimulus, HMGB1, was evaluated by measuring TNFα, IL1β, and IFNβ concentration in supernatant by ELISA and assessing gene expression patterns using bulk mRNA sequencing. RESULTS All five methods demonstrated greater than 90% purity. Microglia from all cultures increased transcription and secretion of TNFα, IL1β, and IFNβ in response to HMGB1. RNA sequencing showed a larger number of differentially expressed genes in response to HMGB1 treatment in microglia cultured from neonates than from adult mice, with sparse changes among the three MGC culturing conditions. Additionally, cultured microglia derived from adult and microglia derived from MGCs from neonates display transcriptional signatures corresponding to an earlier developmental stage. CONCLUSION These findings suggest that while all methods provided high purity, the choice of protocol may significantly influence yield, RNA quality, baseline transcriptional profile and response to stimulation. This comparative study provides valuable insights to inform the choice of microglial isolation and culture method.
Collapse
Affiliation(s)
- Mark Mizrachi
- Feinstein Institutes of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Betty Diamond
- Feinstein Institutes of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
| |
Collapse
|
77
|
Funes S, Jung J, Gadd DH, Mosqueda M, Zhong J, Shankaracharya, Unger M, Stallworth K, Cameron D, Rotunno MS, Dawes P, Fowler-Magaw M, Keagle PJ, McDonough JA, Boopathy S, Sena-Esteves M, Nickerson JA, Lutz C, Skarnes WC, Lim ET, Schafer DP, Massi F, Landers JE, Bosco DA. Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia. Nat Commun 2024; 15:2497. [PMID: 38509062 PMCID: PMC10954694 DOI: 10.1038/s41467-024-46695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Salome Funes
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jonathan Jung
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Del Hayden Gadd
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Michelle Mosqueda
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shankaracharya
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Matthew Unger
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Karly Stallworth
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Debra Cameron
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Melissa S Rotunno
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Megan Fowler-Magaw
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pamela J Keagle
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Sivakumar Boopathy
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey A Nickerson
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Worcester, MA, 01605, USA
| | - Cathleen Lutz
- The Jackson Laboratory Center for Precision Genetics, Rare Disease Translational Center, Bar Harbor, ME, 04609, USA
| | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Elaine T Lim
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Dorothy P Schafer
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
78
|
Kim H, Le B, Goshi N, Zhu K, Grodzki AC, Lein PJ, Zhao M, Seker E. Rat primary cortical cell tri-culture to study effects of amyloid-beta on microglia function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.584736. [PMID: 38558989 PMCID: PMC10979983 DOI: 10.1101/2024.03.15.584736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Introduction The etiology and progression of sporadic Alzheimer's Disease (AD) have been studied for decades. One proposed mechanism is that amyloid-beta (Aβ) proteins induce neuroinflammation, synapse loss, and neuronal cell death. Microglia play an especially important role in Aβ clearance, and alterations in microglial function due to aging or disease may result in Aβ accumulation and deleterious effects on neuronal function. However, studying these complex factors in vivo , where numerous confounding processes exist, is challenging, and until recently, in vitro models have not allowed sustained culture of microglia, astrocytes and neurons in the same culture. Here, we employ a tri-culture model of rat primary neurons, astrocytes, and microglia and compare it to co-culture (neurons and astrocytes) and mono-culture enriched for microglia to study microglial function (i.e., motility and Aβ clearance) and proteomic response to exogenous Aβ. Methods We established cortical co-culture (neurons and astrocytes), tri-culture (neurons, astrocytes, and microglia), and mono-culture (microglia) from perinatal rat pups. On days in vitro (DIV) 7 - 14, the cultures were exposed to fluorescently-labeled Aβ (FITC-Aβ) particles for varying durations. Images were analyzed to determine the number of FITC-Aβ particles after specific lengths of exposure. A group of cells were stained for βIII-tubulin, GFAP, and Iba1 for morphological analysis via quantitative fluorescence microscopy. Cytokine profiles from conditioned media were obtained. Live-cell imaging with images acquired every 5 minutes for 4 hours was employed to extract microglia motility parameters (e.g., Euclidean distance, migration speed, directionality ratio). Results and discussion FITC-Aβ particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aβ particles, as confirmed via epifluorescence and confocal microscopy. Adding FITC-Aβ significantly increased the size of microglia, but had no significant effect on neuronal surface coverage or astrocyte size. Analysis of the cytokine profile upon FITC-Aβ addition revealed a significant increase in proinflammatory cytokines (TNF-α, IL-1α, IL-1β, IL-6) in tri-culture, but not co-culture. In addition, Aβ addition altered microglia motility marked by swarming-like motion with decreased Euclidean distance yet unaltered speed. These results highlight the importance of cell-cell communication in microglia function (e.g., motility and Aβ clearance) and the utility of the tri-culture model to further investigate microglia dysfunction in AD.
Collapse
|
79
|
Kato Y, Takatori S, Akahori A, Etani H, Chu YN, Tomita T. Protocol for gene knockdown using siRNA in primary cultured neonatal murine microglia. STAR Protoc 2024; 5:102867. [PMID: 38341850 PMCID: PMC10867443 DOI: 10.1016/j.xpro.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/13/2024] Open
Abstract
In this protocol, we describe the small interfering RNA (siRNA)-mediated gene knockdown in primary mouse microglia, providing an approach to investigate functions such as phagocytosis and chemotaxis. The approach includes siRNA design, establishment of mixed glial cultures, microglia isolation, and siRNA transfection. Validation of knockdown efficacy employs quantitative immunoblot analysis. This technique empowers the investigation of specific molecular and cellular functions within the intricate microenvironment of the brain, comprising diverse cell types. For complete details on the use and execution of this protocol, please refer to Iguchi et al. (2023).1.
Collapse
Affiliation(s)
- Yuma Kato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Aika Akahori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hayato Etani
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yung Ning Chu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
80
|
Sepulveda J, Kim JY, Binder J, Vicini S, Rebeck GW. APOE4 genotype and aging impair injury-induced microglial behavior in brain slices, including toward Aβ, through P2RY12. Mol Neurodegener 2024; 19:24. [PMID: 38468308 DOI: 10.1186/s13024-024-00714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Microglia are highly dynamic cells that play a critical role in tissue homeostasis through the surveillance of brain parenchyma and response to cues associated with damage. Aging and APOE4 genotype are the strongest risk factors for Alzheimer's disease (AD), but how they affect microglial dynamics remains unclear. Using ex vivo confocal microscopy, we analyzed microglial dynamic behaviors in the entorhinal cortex (EC) and hippocampus CA1 of 6-, 12-, and 21-month-old mice APOE3 or APOE4 knock-in mice expressing GFP under the CX3CR1 promoter. To study microglia surveillance, we imaged microglia baseline motility for 20 min and measured the extension and retraction of processes. We found that APOE4 microglia exhibited significantly less brain surveillance (27%) compared to APOE3 microglia in 6-month-old mice; aging exacerbated this deficit. To measure microglia response to damage, we imaged process motility in response to ATP, an injury-associated signal, for 30 min. We found APOE4 microglia extended their processes significantly slower (0.9 µm/min, p < 0.005) than APOE3 microglia (1.1 μm/min) in 6-month-old animals. APOE-associated alterations in microglia motility were observed in 12- and 21-month-old animals, and this effect was exacerbated with aging in APOE4 microglia. We measured protein and mRNA levels of P2RY12, a core microglial receptor required for process movement in response to damage. We found that APOE4 microglia express significantly less P2RY12 receptors compared to APOE3 microglia despite no changes in P2RY12 transcripts. To examine if the effect of APOE4 on the microglial response to ATP also applied to amyloid β (Aβ), we infused locally Hi-Lyte Fluor 555-labeled Aβ in acute brain slices of 6-month-old mice and imaged microglia movement for 2 h. APOE4 microglia showed a significantly slower (p < 0.0001) process movement toward the Aβ, and less Aβ coverage at early time points after Aβ injection. To test whether P2RY12 is involved in process movement in response to Aβ, we treated acute brain slices with a P2RY12 antagonist before Aβ injection; microglial processes no longer migrated towards Aβ. These results provide mechanistic insights into the impact of APOE4 genotype and aging in dynamic microglial behaviors prior to gross Aβ pathology and could help explain how APOE4 brains are more susceptible to AD pathogenesis.
Collapse
Affiliation(s)
- Jordy Sepulveda
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - Jennifer Yejean Kim
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Joseph Binder
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
81
|
Spiteri AG, Pilkington KR, Wishart CL, Macia L, King NJC. High-Dimensional Methods of Single-Cell Microglial Profiling to Enhance Understanding of Neuropathological Disease. Curr Protoc 2024; 4:e985. [PMID: 38439574 DOI: 10.1002/cpz1.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Microglia are the innate myeloid cells of the central nervous system (CNS) parenchyma, functionally implicated in almost every defined neuroinflammatory and neurodegenerative disorder. Current understanding of disease pathogenesis for many neuropathologies is limited and/or lacks reliable diagnostic markers, vaccines, and treatments. With the increasing aging of society and rise in neurogenerative diseases, improving our understanding of their pathogenesis is essential. Analysis of microglia from murine disease models provides an investigative tool to unravel disease processes. In many neuropathologies, bone-marrow-derived monocytes are recruited to the CNS, adopting a phenotype similar to that of microglia. This significantly confounds the accurate identification of cell-type-specific functions and downstream therapeutic targeting. The increased capacity to analyze more phenotypic markers using spectral-cytometry-based technologies allows improved separation of microglia from monocyte-derived cells. Full-spectrum profiling enables enhanced marker resolution, time-efficient analysis of >40 fluorescence parameters, and extraction of cellular autofluorescence parameters. Coupling this system with additional cytometric technologies, including cell sorting and high-parameter imaging, can improve the understanding of microglial phenotypes in disease. To this end, we provide detailed, step-by-step protocols for the analysis of murine brain tissue by high-parameter ex vivo cytometric analysis using the Aurora spectral cytometer (Cytek), including best practices for unmixing and autofluorescence extraction, cell sorting for single-cell RNA analysis, and imaging mass cytometry. Together, this provides a toolkit for researchers to comprehensively investigate microglial disease processes at protein, RNA, and spatial levels for the identification of therapeutic targets in neuropathology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Processing the mouse brain into a single-cell suspension for microglia isolation Basic Protocol 2: Staining single-cell mouse brain suspensions for microglial phenotyping by spectral cytometry Basic Protocol 3: Flow cytometric sorting of mouse microglia for ex vivo analysis Basic Protocol 4: Processing the mouse brain for imaging mass cytometry for spatial microglia analysis.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | | | - Claire L Wishart
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, Australia
| |
Collapse
|
82
|
Rifat A, Ossola B, Bürli RW, Dawson LA, Brice NL, Rowland A, Lizio M, Xu X, Page K, Fidzinski P, Onken J, Holtkamp M, Heppner FL, Geiger JRP, Madry C. Differential contribution of THIK-1 K + channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia. J Neuroinflammation 2024; 21:58. [PMID: 38409076 PMCID: PMC10895799 DOI: 10.1186/s12974-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1β. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1β release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.
Collapse
Affiliation(s)
- Ali Rifat
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernardino Ossola
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Roland W Bürli
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Lee A Dawson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Nicola L Brice
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Anna Rowland
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Marina Lizio
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Xiao Xu
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Keith Page
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Pawel Fidzinski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia Onken
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank L Heppner
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Madry
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
83
|
Cantando I, Centofanti C, D’Alessandro G, Limatola C, Bezzi P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front Cell Neurosci 2024; 18:1354259. [PMID: 38419654 PMCID: PMC10899402 DOI: 10.3389/fncel.2024.1354259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.
Collapse
Affiliation(s)
- Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Cristiana Centofanti
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
84
|
McLaurin KA, Li H, Khalili K, Mactutus CF, Booze RM. HIV-1 mRNA knockdown with CRISPR/CAS9 enhances neurocognitive function. J Neurovirol 2024; 30:71-85. [PMID: 38355914 PMCID: PMC11035469 DOI: 10.1007/s13365-024-01193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S Limestone Street, Lexington, KY, 40508, USA
| | - Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
- Department of Psychology, Carolina Trustees Professor and Bicentennial Endowed Chair of Behavioral Neuroscience, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
85
|
Izquierdo P, Jolivet RB, Attwell D, Madry C. Amyloid plaques and normal ageing have differential effects on microglial Ca 2+ activity in the mouse brain. Pflugers Arch 2024; 476:257-270. [PMID: 37966547 PMCID: PMC10791787 DOI: 10.1007/s00424-023-02871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
In microglia, changes in intracellular calcium concentration ([Ca2+]i) may regulate process motility, inflammasome activation, and phagocytosis. However, while neurons and astrocytes exhibit frequent spontaneous Ca2+ activity, microglial Ca2+ signals are much rarer and poorly understood. Here, we studied [Ca2+]i changes of microglia in acute brain slices using Fluo-4-loaded cells and mice expressing GCaMP5g in microglia. Spontaneous Ca2+ transients occurred ~ 5 times more frequently in individual microglial processes than in their somata. We assessed whether microglial Ca2+ responses change in Alzheimer's disease (AD) using AppNL-G-F knock-in mice. Proximity to Aβ plaques strongly affected microglial Ca2+ activity. Although spontaneous Ca2+ transients were unaffected in microglial processes, they were fivefold more frequent in microglial somata near Aβ plaques than in wild-type microglia. Microglia away from Aβ plaques in AD mice showed intermediate properties for morphology and Ca2+ responses, partly resembling those of wild-type microglia. By contrast, somatic Ca2+ responses evoked by tissue damage were less intense in microglia near Aβ plaques than in wild-type microglia, suggesting different mechanisms underlying spontaneous vs. damage-evoked Ca2+ signals. Finally, as similar processes occur in neurodegeneration and old age, we studied whether ageing affected microglial [Ca2+]i. Somatic damage-evoked Ca2+ responses were greatly reduced in microglia from old mice, as in the AD mice. In contrast to AD, however, old age did not alter the occurrence of spontaneous Ca2+ signals in microglial somata but reduced the rate of events in processes. Thus, we demonstrate distinct compartmentalised Ca2+ activity in microglia from healthy, aged and AD-like brains.
Collapse
Affiliation(s)
- Pablo Izquierdo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Renaud B Jolivet
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, The Netherlands
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.
| | - Christian Madry
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Institute of Neurophysiology, 10117, Berlin, Germany.
| |
Collapse
|
86
|
Xu L, Min H, Saha A, Gunaratne A, Schwartzman J, Parrott R, Kurtzberg J, Filiano AJ. Mesenchymal stromal cells suppress microglial activation and tumor necrosis factor production. Cytotherapy 2024; 26:185-193. [PMID: 38054911 DOI: 10.1016/j.jcyt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AIMS White matter diseases are commonly associated with microglial activation and neuroinflammation. Mesenchymal stromal cells (MSCs) have immunomodulatory properties and thus have the potential to be developed as cell therapy for white matter disease. MSCs interact with resident macrophages to alter the trajectory of inflammation; however, the impact MSCs have on central nervous system macrophages and the effect this has on the progression of white matter disease are unclear. METHODS In this study, we utilized numerous assays of varying complexity to model different aspects of white matter disease. These assays ranged from an in vivo spinal cord acute demyelination model to a simple microglial cell line activation assay. Our goal was to investigate the influence of human umbilical cord tissue MSCs on the activation of microglia. RESULTS MSCs reduced the production of tumor necrosis factor (TNF) by microglia and decreased demyelinated lesions in the spinal cord after acute focal injury. To determine if MSCs could directly suppress the activation of microglia and to develop an efficient potency assay, we utilized isolated primary microglia from mouse brains and the Immortalized MicroGlial Cell Line (IMG). MSCs suppressed the activation of microglia and the release of TNF after stimulation with lipopolysaccharide, a toll-like receptor agonist. CONCLUSIONS In this study, we demonstrated that MSCs altered the immune response after acute injury in the spinal cord. In numerous assays, MSCs suppressed activation of microglia and release of the pro-inflammatory cytokine TNF. Of these assays, IMG could be standardized and used as an effective potency assay to determine the efficacy of MSCs for treating white matter disease or other neuroinflammatory conditions associated with microglial activation.
Collapse
Affiliation(s)
- Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Hyunjung Min
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Arjun Saha
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Aruni Gunaratne
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | | | - Roberta Parrott
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Anthony J Filiano
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Neurosurgery, Duke University, Durham, North Carolina, USA; Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA; Department of Pathology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
87
|
Balak CD, Han CZ, Glass CK. Deciphering microglia phenotypes in health and disease. Curr Opin Genet Dev 2024; 84:102146. [PMID: 38171044 PMCID: PMC12118495 DOI: 10.1016/j.gde.2023.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Microglia are the major immune cells of the central nervous system (CNS) that perform numerous adaptive functions required for normal CNS development and homeostasis but are also linked to neurodegenerative and behavioral diseases. Microglia development and function are strongly influenced by brain environmental signals that are integrated at the level of transcriptional enhancers to drive specific programs of gene expression. Here, we describe a conceptual framework for how lineage-determining and signal-dependent transcription factors interact to select and regulate the ensembles of enhancers that determine microglia development and function. We then highlight recent findings that advance these concepts and conclude with a consideration of open questions that represent some of the major hurdles to be addressed in the future.
Collapse
Affiliation(s)
- Christopher D Balak
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Biomedical Sciences Graduate Program, University of California, San Diego, USA
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Department of Medicine, University of California, San Diego, USA.
| |
Collapse
|
88
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
89
|
Getachew B, Hauser SR, Bennani S, El Kouhen N, Sari Y, Tizabi Y. Adolescent alcohol drinking interaction with the gut microbiome: implications for adult alcohol use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:11881. [PMID: 38322648 PMCID: PMC10846679 DOI: 10.3389/adar.2024.11881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Reciprocal communication between the gut microbiota and the brain, commonly referred to as the "gut-brain-axis" is crucial in maintaining overall physiological homeostasis. Gut microbiota development and brain maturation (neuronal connectivity and plasticity) appear to be synchronized and to follow the same timeline during childhood (immature), adolescence (expansion) and adulthood (completion). It is important to note that the mesolimbic reward circuitry develops early on, whereas the maturation of the inhibitory frontal cortical neurons is delayed. This imbalance can lead to increased acquirement of reward-seeking and risk-taking behaviors during adolescence, and consequently eventuate in heightened risk for substance abuse. Thus, there is high initiation of alcohol drinking in early adolescence that significantly increases the risk of alcohol use disorder (AUD) in adulthood. The underlying causes for heightened AUD risk are not well understood. It is suggested that alcohol-associated gut microbiota impairment during adolescence plays a key role in AUD neurodevelopment in adulthood. Furthermore, alcohol-induced dysregulation of microglia, either directly or indirectly through interaction with gut microbiota, may be a critical neuroinflammatory pathway leading to neurodevelopmental impairments and AUD. In this review article, we highlight the influence of adolescent alcohol drinking on gut microbiota, gut-brain axis and microglia, and eventual manifestation of AUD. Furthermore, novel therapeutic interventions via gut microbiota manipulations are discussed briefly.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
90
|
Delpech JC, Valdearcos M, Nadjar A. Stress and Microglia: A Double-edged Relationship. ADVANCES IN NEUROBIOLOGY 2024; 37:333-342. [PMID: 39207700 DOI: 10.1007/978-3-031-55529-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are highly dynamic cells and acquire different activation states to modulate their multiple functions, which are tightly regulated by the central nervous system microenvironment in which they reside. In response to stress, that is to the appearance of non-physiological signals in their vicinity, microglia will adapt their function in order to promote a return to brain homeostasis. However, when these stress signals are chronically present, microglial response may not be adapted and lead to the establishment of a pathological state. The aim of this book chapter is to examine the substantial literature around the ability of acute and chronic stressors to affect microglial structure and function, with a special focus on psychosocial and nutritional stresses. We also discuss the molecular mechanisms known to date that explain the link between exposure to stressors and microglial activation.
Collapse
Affiliation(s)
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Agnès Nadjar
- Neurocentre Magendie, U1215, INSERM-Université de Bordeaux, Bordeaux, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
91
|
Crockett A, Fuhrmann M, Garaschuk O, Davalos D. Progress in Structural and Functional In Vivo Imaging of Microglia and Their Application in Health and Disease. ADVANCES IN NEUROBIOLOGY 2024; 37:65-80. [PMID: 39207687 DOI: 10.1007/978-3-031-55529-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The first line of defense for the central nervous system (CNS) against injury or disease is provided by microglia. Microglia were long believed to stay in a dormant/resting state, reacting only to injury or disease. This view changed dramatically with the development of modern imaging techniques that allowed the study of microglial behavior in the intact brain over time, to reveal the dynamic nature of their responses. Over the past two decades, in vivo imaging using multiphoton microscopy has revealed numerous new functions of microglia in the developing, adult, aged, injured, and diseased CNS. As the most dynamic cells in the brain, microglia continuously contact all structures and cell types, such as glial and vascular cells, neuronal cell bodies, axons, dendrites, and dendritic spines, and are believed to play a central role in sculpting neuronal networks throughout life. Following trauma, or in neurodegenerative or neuroinflammatory diseases, microglial responses range from protective to harmful, underscoring the need to better understand their diverse roles and states in different pathological conditions. In this chapter, we introduce multiphoton microscopy and discuss recent advances in structural and functional imaging technologies that have expanded our toolbox to study microglial states and behaviors in new ways and depths. We also discuss relevant mouse models available for in vivo imaging studies of microglia and review how such studies are constantly refining our understanding of the multifaceted role of microglia in the healthy and diseased CNS.
Collapse
Affiliation(s)
- Alexis Crockett
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
92
|
Frumer GR, Shin SH, Jung S, Kim JS. Not just Glia-Dissecting brain macrophages in the mouse. Glia 2024; 72:5-18. [PMID: 37501579 DOI: 10.1002/glia.24445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Macrophages have emerged as critical cellular components of the central nervous system (CNS), promoting development, maintenance, and immune defense of the CNS. Here we will review recent advances in our understanding of brain macrophage heterogeneity, including microglia and border-associated macrophages, focusing on the mouse. Emphasis will be given to the discussion of strengths and limitations of the experimental approaches that have led to the recent insights and hold promise to further deepen our mechanistic understanding of brain macrophages that might eventually allow to harness their activities for the management of CNS pathologies.
Collapse
Affiliation(s)
- Gal Ronit Frumer
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sun-Hye Shin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
93
|
Milior G, Di Chiano M, Morin-Brureau M. Specificities of Living Human Microglial Cells. ADVANCES IN NEUROBIOLOGY 2024; 37:569-578. [PMID: 39207713 DOI: 10.1007/978-3-031-55529-9_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are macrophages residing in the central nervous system, where they perform immune surveillance, synaptic remodeling, neurogenesis, and monitor signals arising from brain injuries or potential pathogens.Commonly, rodent models are used for studying microglia because of the available transgenic mouse lines in which specific genetic manipulations are successfully accomplished. However, human and rodents microglia showed significant differences, which are reflected in different morphological and functional properties. These differences are in genetic and transcriptomic, but also in the expression of signaling molecules and age-associated changes.Several strategies are available to study human microglia, as using surgical brain resections from epileptic and tumoral tissues and from post mortem brain samples. In addition, the generation of human-induced pluripotent stem cells (hPSCs) and the possibility to differentiate them in microglia-like cells provide unique opportunities to compare microglia functions between rodents' and human brain.The use of human ex vivo and in vitro brain models allows the study of human microglia, mimicking in vivo conditions. This will be useful for a better understanding of the real live behavior and functions of microglia in the human brain. This chapter aims to highlight significant similarities and differences between human and rodent microglia in order to re-evaluate mouse models of different human brain disorders, proposing the use of in vitro and ex vivo human brain models.Studies on living human microglia in the brain may help to define divergences from animal models and to improve clinical interventions to treat brain pathologies, using alternatives targets.
Collapse
Affiliation(s)
- Giampaolo Milior
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Paris, France.
| | - Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Melanie Morin-Brureau
- INSERM, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
94
|
Kim JS, Haimon Z, Boura-Halfon S, Jung S. Translatome Profiling of Tissue-Resident Macrophages Using the RiboTag Approach. Methods Mol Biol 2024; 2713:253-267. [PMID: 37639128 DOI: 10.1007/978-1-0716-3437-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Global gene expression profiling has provided valuable insights into the specific contributions of different cell types to various physiological processes. Notably though, both bulk and single-cell transcriptomics require the prior retrieval of the cells from their tissue context to be analyzed. Isolation protocols for tissue macrophages are, however, notoriously inefficient and, moreover, prone to introduce considerable bias and artifacts. Here, we will discuss a valuable alternative, originally introduced by Amieux and colleagues. This so-called RiboTag approach allows, in combination with respective macrophage-specific Cre transgenic lines, to retrieve macrophage translatomes from crude tissue extracts. We will review our experience with this ingenious method, focusing on the study of brain macrophages, including microglia and border-associated cells. We will elaborate on the advantages of the RiboTag approach that render it a valuable complement to standard cell sorting-based profiling strategies, especially for the investigation of tissue macrophages.
Collapse
Affiliation(s)
- Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Zhana Haimon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
95
|
Hou P, Zielonka M, Serneels L, Martinez-Muriana A, Fattorelli N, Wolfs L, Poovathingal S, T'Syen D, Balusu S, Theys T, Fiers M, Mancuso R, Howden AJM, De Strooper B. The γ-secretase substrate proteome and its role in cell signaling regulation. Mol Cell 2023; 83:4106-4122.e10. [PMID: 37977120 DOI: 10.1016/j.molcel.2023.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/22/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
γ-Secretases mediate the regulated intramembrane proteolysis (RIP) of more than 150 integral membrane proteins. We developed an unbiased γ-secretase substrate identification (G-SECSI) method to study to what extent these proteins are processed in parallel. We demonstrate here parallel processing of at least 85 membrane proteins in human microglia in steady-state cell culture conditions. Pharmacological inhibition of γ-secretase caused substantial changes of human microglial transcriptomes, including the expression of genes related to the disease-associated microglia (DAM) response described in Alzheimer disease (AD). While the overall effects of γ-secretase deficiency on transcriptomic cell states remained limited in control conditions, exposure of mouse microglia to AD-inducing amyloid plaques strongly blocked their capacity to mount this putatively protective DAM cell state. We conclude that γ-secretase serves as a critical signaling hub integrating the effects of multiple extracellular stimuli into the overall transcriptome of the cell.
Collapse
Affiliation(s)
- Pengfei Hou
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Magdalena Zielonka
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Lutgarde Serneels
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Anna Martinez-Muriana
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Nicola Fattorelli
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Leen Wolfs
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Suresh Poovathingal
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Single Cell & Microfluidics Expertise Unit, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium
| | - Dries T'Syen
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven 3000, Belgium
| | - Mark Fiers
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Center for Human Genetics, KU Leuven, Leuven 3000, Belgium; Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Andrew J M Howden
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Center for Human Genetics, KU Leuven, Leuven 3000, Belgium; Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
96
|
King'uyu DN, Nti-Kyemereh L, Bonin JL, Feustel PJ, Tram M, MacNamara KC, Kopec AM. The effect of morphine on rat microglial phagocytic activity: An in vitro study of brain region-, plating density-, sex-, morphine concentration-, and receptor-dependency. J Neuroimmunol 2023; 384:578204. [PMID: 37774553 DOI: 10.1016/j.jneuroim.2023.578204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Opioids have long been used for clinical pain management, but also have addictive properties that have contributed to the ongoing opioid epidemic. While opioid activation of opioid receptors is well known to contribute to reward and reinforcement, data now also suggest that opioid activation of immune signaling via toll-like receptor 4 (TLR4) may also play a role in addiction-like processes. TLR4 expression is enriched in immune cells, and in the nervous system is primarily expressed in microglia. Microglial phagocytosis is important for developmental, homeostatic, and pathological processes. To examine how morphine impacts microglial phagocytosis, we isolated microglia from adult male and female rat cortex and striatum and plated them in vitro at 10,000 (10K) or 50,000 cells/well densities. Microglia were incubated with neutral fluorescent microbeads to stimulate phagocytosis in the presence of one of four morphine concentrations. We found that the brain region from which microglia are isolated and plating density, but not morphine concentration, impacts cell survival in vitro. We found that 10-12 M morphine, but not higher concentrations, increases phagocytosis in striatal microglia in vitro independent of sex and plating density, while 10-12 M morphine increased phagocytosis in cortical microglia in vitro independent of sex, but contingent on a plating density. Finally, we demonstrate that the effect of 10-12 M morphine in striatal microglia plated at 10 K density is mediated via TLR4, and not μORs. Overall, our data suggest that in rats, a morphine-TLR4 signaling pathway increases phagocytic activity in microglia independent of sex. This may is useful information for better understanding the possible neural outcomes associated with morphine exposures.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America.
| | - Lily Nti-Kyemereh
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America; Siena College, Loudonville, NY 12211, United States of America
| | - Jesse L Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| | - Michelle Tram
- Siena College, Loudonville, NY 12211, United States of America
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| |
Collapse
|
97
|
Ochandarena NE, Niehaus JK, Tassou A, Scherrer G. Cell-type specific molecular architecture for mu opioid receptor function in pain and addiction circuits. Neuropharmacology 2023; 238:109597. [PMID: 37271281 PMCID: PMC10494323 DOI: 10.1016/j.neuropharm.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.
Collapse
Affiliation(s)
- Nicole E Ochandarena
- Neuroscience Curriculum, Biological and Biomedical Sciences Program, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
98
|
Park DS, Kozaki T, Tiwari SK, Moreira M, Khalilnezhad A, Torta F, Olivié N, Thiam CH, Liani O, Silvin A, Phoo WW, Gao L, Triebl A, Tham WK, Gonçalves L, Kong WT, Raman S, Zhang XM, Dunsmore G, Dutertre CA, Lee S, Ong JM, Balachander A, Khalilnezhad S, Lum J, Duan K, Lim ZM, Tan L, Low I, Utami KH, Yeo XY, Di Tommaso S, Dupuy JW, Varga B, Karadottir RT, Madathummal MC, Bonne I, Malleret B, Binte ZY, Wei Da N, Tan Y, Wong WJ, Zhang J, Chen J, Sobota RM, Howland SW, Ng LG, Saltel F, Castel D, Grill J, Minard V, Albani S, Chan JKY, Thion MS, Jung SY, Wenk MR, Pouladi MA, Pasqualini C, Angeli V, Cexus ONF, Ginhoux F. iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer. Nature 2023; 623:397-405. [PMID: 37914940 DOI: 10.1038/s41586-023-06713-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.
Collapse
Affiliation(s)
- Dong Shin Park
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Marco Moreira
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Nicolas Olivié
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Chung Hwee Thiam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oniko Liani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Liang Gao
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wai Kin Tham
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Wan Ting Kong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sethi Raman
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Xiao Meng Zhang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charles Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Salanne Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Jia Min Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Ze Ming Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Ivy Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research, Singapore, Singapore
| | - Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Balazs Varga
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ragnhildur Thora Karadottir
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Mufeeda Changaramvally Madathummal
- A*STAR Microscopy Platform Electron Microscopy, Research Support Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Isabelle Bonne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- A*STAR Microscopy Platform Electron Microscopy, Research Support Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zainab Yasin Binte
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Ngan Wei Da
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinqiu Zhang
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shanshan W Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - David Castel
- INSERM U981, Molecular Predictors and New Targets in Oncology & Département de Cancérologie de l'Enfant et de l'Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- INSERM U981, Molecular Predictors and New Targets in Oncology & Département de Cancérologie de l'Enfant et de l'Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Morgane Sonia Thion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Sang Yong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Veronique Angeli
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olivier N F Cexus
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
99
|
Islam M, Behura SK. Role of caveolin-1 in metabolic programming of fetal brain. iScience 2023; 26:107710. [PMID: 37720105 PMCID: PMC10500482 DOI: 10.1016/j.isci.2023.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Mice lacking caveolin-1 (Cav1), a key protein of plasma membrane, exhibit brain aging at an early adult stage. Here, integrative analyses of metabolomics, transcriptomics, epigenetics, and single-cell data were performed to test the hypothesis that metabolic deregulation of fetal brain due to the ablation of Cav1 is linked to brain aging in these mice. The results of this study show that lack of Cav1 caused deregulation in the lipid and amino acid metabolism in the fetal brain, and genes associated with these deregulated metabolites were significantly altered in the brain upon aging. Moreover, ablation of Cav1 deregulated several metabolic genes in specific cell types of the fetal brain and impacted DNA methylation of those genes in coordination with mouse epigenetic clock. The findings of this study suggest that the aging program of brain is confounded by metabolic abnormalities in the fetal stage due to the absence of Cav1.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
100
|
McLaurin KA, Li H, Khalili K, Mactutus CF, Booze RM. HIV-1 mRNA Knockdown with CRISPR/Cas9 Enhances Neurocognitive Function. RESEARCH SQUARE 2023:rs.3.rs-3266933. [PMID: 37886577 PMCID: PMC10602171 DOI: 10.21203/rs.3.rs-3266933/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 mRNA from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 μL) of CRISPR/Cas9 for 72 hours. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n=5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the mPFC. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1 associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 partially restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.
Collapse
|