51
|
Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci 2015; 9:372. [PMID: 26539073 PMCID: PMC4612505 DOI: 10.3389/fnins.2015.00372] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
High levels of pro-inflammatory substances such as cytokines have been described in the blood and cerebrospinal fluid of schizophrenia patients. Animal models of schizophrenia show that under certain conditions an immune disturbance during early life, such as an infection-triggered immune activation, might trigger lifelong increased immune reactivity. A large epidemiological study clearly demonstrated that severe infections and autoimmune disorders are risk factors for schizophrenia. Genetic studies have shown a strong signal for schizophrenia on chromosome 6p22.1, in a region related to the human leucocyte antigen (HLA) system and other immune functions. Another line of evidence demonstrates that chronic (dis)stress is associated with immune activation. The vulnerability-stress-inflammation model of schizophrenia includes the contribution of stress on the basis of increased genetic vulnerability for the pathogenesis of schizophrenia, because stress may increase pro-inflammatory cytokines and even contribute to a lasting pro-inflammatory state. Immune alterations influence the dopaminergic, serotonergic, noradrenergic, and glutamatergic neurotransmission. The activated immune system in turn activates the enzyme indoleamine 2,3-dioxygenase (IDO) of the tryptophan/kynurenine metabolism which influences the serotonergic and glutamatergic neurotransmission via neuroactive metabolites such as kynurenic acid. The described loss of central nervous system volume and the activation of microglia, both of which have been clearly demonstrated in neuroimaging studies of schizophrenia patients, match the assumption of a (low level) inflammatory neurotoxic process. Further support for the inflammatory hypothesis comes from the therapeutic benefit of anti-inflammatory medication. Metaanalyses have shown an advantageous effect of cyclo-oxygenase-2 inhibitors in early stages of schizophrenia. Moreover, intrinsic anti-inflammatory, and immunomodulatory effects of antipsychotic drugs are known since a long time. Anti-inflammatory effects of antipsychotics, therapeutic effects of anti-inflammtory compounds, genetic, biochemical, and immunological findings point to a major role of inflammation in schizophrenia.
Collapse
Affiliation(s)
- Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Germany
| | - Elif Weidinger
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Germany
| | - Bianka Leitner
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Germany
| | - Markus J Schwarz
- Department of Laboratory Medicine, Ludwig Maximilian University Munich, Germany
| |
Collapse
|
52
|
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
53
|
Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus. Neurochem Res 2015; 40:621-7. [PMID: 25708016 DOI: 10.1007/s11064-014-1504-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
In general, pro-inflammatory cytokines (PICs) contribute to regulation of epilepsy-associated pathophysiological processes in the central nerve system. In this report, we examined the specific activation of PICs, namely IL-1β, IL-6 and TNF-α in rat brain after kainic acid (KA)-induced status epilepticus (SE). Also, we examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively), which are the two important subtypes of GATs responsible for the regulation of extracellular GABA levels in the brain. Our results show that IL-1β, IL-6 and TNF-α were significantly increased in the parietal cortex, hippocampus and amygdala of KA-rats as compared with sham control animals (P < 0.05, KA rats vs. control rats). KA-induced SE also significantly increased (P < 0.05 vs. controls) the protein expression of GAT-1 and GAT-3 in those brain regions. In addition, central administration of antagonists to IL-1β and TNF-α receptors significantly attenuated amplified GAT-1 and GAT-3 (P < 0.05 vs. vehicle control for each antagonist group). However, antagonist to IL-6 receptor failed to attenuate enhancement in expression of GAT-1 and GAT-3 induced by KA-induced SE. Overall, our data demonstrate that PIC pathways are activated in the specific brain regions during SE which thereby selectively leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is increased in the brain. This support a role for PICs in engagement of the adaptive mechanisms associated with epileptic activity, and has pharmacological implications to target specific PICs for neuronal dysfunction and vulnerability related to epilepsy.
Collapse
|
54
|
Dhama K, Kesavan M, Karthik K, . A, Tiwari R, Sunkara LT, Singh R. Neuroimmunomodulation Countering Various Diseases, Disorders, Infections, Stress and Aging. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.76.94] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
55
|
Fonseka TM, Tiwari AK, Gonçalves VF, Lieberman JA, Meltzer HY, Goldstein BI, Kennedy JL, Kennedy SH, Müller DJ. The role of genetic variation across IL-1β, IL-2, IL-6, and BDNF in antipsychotic-induced weight gain. World J Biol Psychiatry 2015; 16:45-56. [PMID: 25560300 DOI: 10.3109/15622975.2014.984631] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Antipsychotics with high weight gain-inducing propensities influence the expression of immune and neurotrophin genes, which have been independently related to obesity indices. Thus, we investigated whether variants in the genes encoding interleukin (IL)-1β, IL-2, and IL-6 and brain-derived neurotrophic factor (BDNF) Val66Met are associated with antipsychotic-induced weight gain (AIWG). METHODS Nineteen polymorphisms were genotyped using Taqman(®) assays in 188 schizophrenia patients on antipsychotic treatment for up to 14 weeks. Mean weight change (%) from baseline was compared across genotypic groups using analysis of covariance (ANCOVA). Epistatic effects between cytokine polymorphisms and BDNF Val66Met were tested using Model-Based Multifactor Dimensionality Reduction. RESULTS In European patients, IL-1β rs16944*GA (P = 0.013, Pcorrected = 0.182), IL-1β rs1143634*G (P = 0.001, Pcorrected = 0.014), and BDNF Val66Met (Val/Val, P = 0.004, Pcorrected = 0.056) were associated with greater AIWG, as were IL-1β rs4849127*A (P = 0.049, Pcorrected = 0.784), and IL-1β rs16944*GA (P = 0.012, Pcorrected = 0.192) in African Americans. BDNF Val66Met interacted with both IL-1β rs13032029 (Val/Met+ TT, PPerm = 0.029), and IL-6 rs2069837 (Val/Val+ AA, PPerm = 0.021) in Europeans, in addition to IL-1β rs16944 (Val/Val+ GA, PPerm = 0.006) in African Americans. CONCLUSIONS SNPs across IL-1β and BDNF Val66Met may influence AIWG. Replication of these findings in larger, independent samples is warranted.
Collapse
Affiliation(s)
- Trehani M Fonseka
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto , Toronto, ON , Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Coates JR, Jeffery ND. Perspectives on Meningoencephalomyelitis of Unknown Origin. Vet Clin North Am Small Anim Pract 2014; 44:1157-85. [DOI: 10.1016/j.cvsm.2014.07.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
57
|
De Jesus EEV, Santos ABD, Ribeiro CSO, Pinheiro AM, Freire SM, El-Bachá RS, Costa SL, de Fatima Dias Costa M. Role of IFN-γ and LPS on neuron/glial co-cultures infected by Neospora caninum. Front Cell Neurosci 2014; 8:340. [PMID: 25386119 PMCID: PMC4209861 DOI: 10.3389/fncel.2014.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/02/2014] [Indexed: 12/03/2022] Open
Abstract
Neospora caninum causes cattle abortion and neurological symptoms in dogs. Although infection is usually asymptomatic, classical neurological symptoms of neosporosis may be associated with encephalitis. This parasite can grow in brain endothelial cells without markedly damages, but it can modulate the cellular environment to promote its survival in the brain. In previous studies, we described that IFN-γ decreased the parasite proliferation and down regulated nitric oxide (NO) production in astrocyte/microglia cultures. However, it remains unclear how glial cells respond to N. caninum in the presence of neurons. Therefore, we evaluated the effect of 300 IU/mL IFN-γ or 1.0 mg/mL of LPS on infected rat neuron/glial co-cultures. After 72 h of infection, LPS did not affect the mitochondrial dehydrogenase activity. However, IFN-γ decreased this parameter by 15.5 and 12.0% in uninfected and infected cells, respectively. The number of tachyzoites decreased 54.1 and 44.3% in cells stimulated with IFN-γ and LPS, respectively. Infection or LPS treatment did not change NO production. On the other hand, IFN-γ induced increased nitrite release in 55.7%, but the infection reverted this induction. IL-10 levels increased only in infected cultures (treated or not), meanwhile PGE2 release was improved in IFN-γ/infected or LPS/infected cells. Although IFN-γ significantly reduced the neurite length in uninfected cultures (42.64%; p < 0.001), this inflammatory cytokine reverted the impairment of neurite outgrowth induced by the infection (81.39%). The results suggest a neuroprotective potential response of glia to N. caninum infection under IFN-γ stimulus. This observation contributes to understand the immune mediated mechanisms of neosporosis in central nervous system (CNS).
Collapse
Affiliation(s)
- Erica Etelvina Viana De Jesus
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Alex Barbosa Dos Santos
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Catia Suse Oliveira Ribeiro
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Alexandre Moraes Pinheiro
- Laboratório de Bioquímica e Imunologia Veterinária, Centro de Ciências Agrárias Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia Cruz das Almas, Brazil
| | - Songeli Menezes Freire
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Ramon Santos El-Bachá
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Silvia Lima Costa
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Maria de Fatima Dias Costa
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| |
Collapse
|
58
|
Liu X, Mei Z, Qian J, Zeng Y, Wang M. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway. Neural Regen Res 2014; 8:3203-15. [PMID: 25206641 PMCID: PMC4146182 DOI: 10.3969/j.issn.1673-5374.2013.34.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/29/2013] [Indexed: 01/09/2023] Open
Abstract
Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that anti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic anti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be involved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) reduced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-α in brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-κB) inhibition. These observations were inhibited by the alpha7 nicotinic acetylcholine receptor (α7nAchR) antagonist α-bungarotoxin (α-BGT). In addition, puerarin pretreatment increased the expression of α7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory response. Our results also indicated that the anti-inflammatory effect of puerarin may partly be mediated through the activation of the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Xiaojie Liu
- Medical College of China Three Gorges University, Yichang 443002, Hubei Province, China
| | - Zhigang Mei
- Medical College of China Three Gorges University, Yichang 443002, Hubei Province, China
| | - Jingping Qian
- Medical College of China Three Gorges University, Yichang 443002, Hubei Province, China
| | - Yongbao Zeng
- Medical College of China Three Gorges University, Yichang 443002, Hubei Province, China
| | - Mingzhi Wang
- Medical College of China Three Gorges University, Yichang 443002, Hubei Province, China
| |
Collapse
|
59
|
Emotional regulatory function of receptor interacting protein 140 revealed in the ventromedial hypothalamus. Brain Behav Immun 2014; 40:226-34. [PMID: 24726835 PMCID: PMC4102625 DOI: 10.1016/j.bbi.2014.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/13/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
Receptor-interacting protein (RIP140) is a transcription co-regulator highly expressed in macrophages to regulate inflammatory and metabolic processes. However, its implication in neurological, cognitive and emotional conditions, and the cellular systems relevant to its biological activity within the central nervous system are currently less clear. A transgenic mouse line with macrophage-specific knockdown of RIP140 was generated (MΦRIPKD mice) and brain-region specific RIP140 knockdown efficiency evaluated. Mice were subjected to a battery of tests, designed to evaluate multiple behavioral domains at naïve or following site-specific RIP140 re-expression. Gene expression analysis assessed TNF-α, IL-1β, TGF-1β, IL1-RA and neuropeptide Y (NPY) expression, and in vitro studies examined the effects of macrophage's RIP140 on astrocytes' NPY production. We found that RIP140 expression was dramatically reduced in macrophages within the ventromedial hypothalamus (VMH) and the cingulate cortex of MΦRIPKD mice. These animals exhibited increased anxiety- and depressive-like behaviors. VMH-targeted RIP140 re-expression in MΦRIPKD mice reversed its depressive- but not its anxiety-like phenotype. Analysis of specific neurochemical changes revealed reduced astrocytic-NPY expression within the hypothalamus of MΦRIPKD mice, and in vitro analysis confirmed that conditioned medium of RIP140-silnenced macrophage culture could no longer stimulate NPY production from astrocytes. The current study revealed an emotional regulatory function of macrophage-derived RIP140 in the VMH, and secondary dysregulation of NPY within hypothalamic astrocyte population, which might be associated with the observed behavioral phenotype of MΦRIPKD mice. This study highlights RIP140 as a novel target for the development of potential therapeutic and intervention strategies for emotional regulation disorders.
Collapse
|
60
|
Zhu D, Liu M, Yang Y, Ma L, Jiang Y, Zhou L, Huang Q, Pi R, Chen X. Ginsenoside Rd ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neurosci Res 2014; 92:1217-26. [PMID: 24798871 DOI: 10.1002/jnr.23397] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/26/2014] [Accepted: 04/01/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Dongliang Zhu
- Department of Neurology; The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou; Guangdong China
| | - Mei Liu
- Department of Neurology; The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou; Guangdong China
| | - Yaowu Yang
- Department of Traditional Chinese Medicine; The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou; Guangdong China
| | - Lili Ma
- Department of Neurology; The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou; Guangdong China
| | - Ying Jiang
- Department of Neurology; The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou; Guangdong China
| | - Linli Zhou
- Department of Neurology; The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou; Guangdong China
| | - Qiling Huang
- Department of Neurology; The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou; Guangdong China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology; School of Pharmaceutical Sciences; Sun Yat-sen University, Guangzhou; Guangdong China
| | - Xiaohong Chen
- Department of Neurology; The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou; Guangdong China
| |
Collapse
|
61
|
Inflammatory profiling of Schwann cells in contact with growing axons distal to nerve injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:691041. [PMID: 24877128 PMCID: PMC4022316 DOI: 10.1155/2014/691041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/28/2014] [Indexed: 11/18/2022]
Abstract
Activated Schwann cells distal to nerve injury upregulate inflammatory mediators, including cytokines. The goal of the present study was to investigate expression of proinflammatory (IL-1β, TNFα) and anti-inflammatory cytokines (IL-4, IL-10) in activated Schwann cells in relation to growing axons distal to crush injury of rat sciatic nerves. Seven days from sciatic nerve crush, transverse cryostat sections were cut 5 mm distal to lesion and incubated for double immunostaining to indicate Schwann cells (GFAP or S100b) and individual investigated cytokines or to demonstrate growing axons (GAP43). The Schwann cells of naïve sciatic nerves and those removed from sham-operated rats displayed similar weak immunoreactivity for the investigated cytokines. In contrast, increased intensity of cytokine immunofluorescence was found in Schwann cells distal to crush lesion. The cytokine-positive Schwann cells were found in close contact with growing axons detected by immunostaining for GAP43. The results of immunohistochemical analysis distal to nerve crush injury suggest that inflammatory profiling of Schwann cells including upregulation of both pro- and anti-inflammatory cytokines does not prevent growth of axons distal to nerve crush injury.
Collapse
|
62
|
Medvedeva EV, Dmitrieva VG, Povarova OV, Limborska SA, Skvortsova VI, Myasoedov NF, Dergunova LV. The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis. BMC Genomics 2014; 15:228. [PMID: 24661604 PMCID: PMC3987924 DOI: 10.1186/1471-2164-15-228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/18/2014] [Indexed: 01/09/2023] Open
Abstract
Background The nootropic neuroprotective peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) has proved efficient in the therapy of brain stroke; however, the molecular mechanisms underlying its action remain obscure. Our genome-wide study was designed to investigate the response of the transcriptome of ischemized rat brain cortex tissues to the action of Semax in vivo. Results The gene-expression alteration caused by the action of the peptide Semax was compared with the gene expression of the “ischemia” group animals at 3 and 24 h after permanent middle cerebral artery occlusion (pMCAO). The peptide predominantly enhanced the expression of genes related to the immune system. Three hours after pMCAO, Semax influenced the expression of some genes that affect the activity of immune cells, and, 24 h after pMCAO, the action of Semax on the immune response increased considerably. The genes implicated in this response represented over 50% of the total number of genes that exhibited Semax-induced altered expression. Among the immune-response genes, the expression of which was modulated by Semax, genes that encode immunoglobulins and chemokines formed the most notable groups. In response to Semax administration, 24 genes related to the vascular system exhibited altered expression 3 h after pMCAO, whereas 12 genes were changed 24 h after pMCAO. These genes are associated with such processes as the development and migration of endothelial tissue, the migration of smooth muscle cells, hematopoiesis, and vasculogenesis. Conclusions Semax affects several biological processes involved in the function of various systems. The immune response is the process most markedly affected by the drug. Semax altered the expression of genes that modulate the amount and mobility of immune cells and enhanced the expression of genes that encode chemokines and immunoglobulins. In conditions of rat brain focal ischemia, Semax influenced the expression of genes that promote the formation and functioning of the vascular system. The immunomodulating effect of the peptide discovered in our research and its impact on the vascular system during ischemia are likely to be the key mechanisms underlying the neuroprotective effects of the peptide.
Collapse
Affiliation(s)
- Ekaterina V Medvedeva
- Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Increased proinflammatory markers like cytokines have been described in the blood and cerebrospinal fluid of patients suffering from schizophrenia. Animal models have shown that a hit in early life to the immune system might trigger a lifelong increased immune reactivity. Many epidemiological and clinical studies show the role of various infectious agents as risk factors for schizophrenia with overlap to other psychoses. The first large-scale epidemiological study in psychiatry from Denmark clearly demonstrates severe infections and autoimmune disorders during lifetime to be risk factors for schizophrenia. Genetic studies have shown the strongest signal for schizophrenia on chromosome 6p22.1, in a region related to the major histocompatibility complex and other immune functions. The vulnerability-stress-inflammation model is important as stress may increase proinflammatory cytokines and even contribute to a lasting proinflammatory state. The immune system itself is considered an important further piece in the puzzle, as in autoimmune disorders in general, which are always linked to three factors: genes, the environment and the immune system. Alterations of dopaminergic, serotonergic, noradrenergic and glutamatergic neurotransmission have been shown with low-level neuroinflammation and may directly be involved in the generation of schizophrenic symptoms. Loss of central nervous system volume and microglial activation has been demonstrated in schizophrenia in neuroimaging studies, which supports the assumption of a low-level neuroinflammatory process. Further support comes from the therapeutic benefit of anti-inflammatory medications in specific studies and the anti-inflammatory and immunomodulatory intrinsic effects of antipsychotics.
Collapse
Affiliation(s)
- Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University of Munich, Munich, Germany
| |
Collapse
|
64
|
Jiang Y, Zou Y, Chen S, Zhu C, Wu A, Liu Y, Ma L, Zhu D, Ma X, Liu M, Kang Z, Pi R, Peng F, Wang Q, Chen X. The anti-inflammatory effect of donepezil on experimental autoimmune encephalomyelitis in C57 BL/6 mice. Neuropharmacology 2013; 73:415-24. [DOI: 10.1016/j.neuropharm.2013.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
|
65
|
Jiang Y, Wu A, Zhu C, Pi R, Chen S, Liu Y, Ma L, Zhu D, Chen X. The protective effect of berberine against neuronal damage by inhibiting matrix metalloproteinase-9 and laminin degradation in experimental autoimmune encephalomyelitis. Neurol Res 2013; 35:360-8. [PMID: 23540404 DOI: 10.1179/1743132812y.0000000156] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE This study aims to assess the protective effect of berberine against neuronal damage in the brain parenchyma of mice with experimental autoimmune encephalomyelitis (EAE). METHODS EAE was induced in female C57 BL/6 mice with myelin oligodendrocyte glycoprotein 35-55 amino acid peptide. The berberine treatment was initiated on the day of disease onset and administered daily until the mice were sacrificed. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, gelatin gel, and gelatin in situ zymography were analysed in this study. RESULTS Berberine reduced the TUNEL-positive neuronal cells of EAE mice. Gelatin gel and gelatin in situ zymography showed up-regulation of gelatinase activity, which was mainly located in neurons and colocalized with remarkable laminin degradation in EAE mice. Berberine significantly inhibited gelatinase activity and reduced the laminin degradation in EAE mice. DISCUSSION Our data suggest that berberine could provide protection against neuronal damage in EAE by inhibiting gelatinase activity and reducing laminin degradation. These findings provide further support that berberine can be a potential therapeutic agent for multiple sclerosis.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Costa G, Frau L, Wardas J, Pinna A, Plumitallo A, Morelli M. MPTP-induced dopamine neuron degeneration and glia activation is potentiated in MDMA-pretreated mice. Mov Disord 2013; 28:1957-65. [PMID: 24108425 DOI: 10.1002/mds.25646] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/08/2013] [Accepted: 07/23/2013] [Indexed: 12/13/2022] Open
Abstract
Clinical observations report a greater propensity to develop Parkinson's disease (PD) in amphetamine users. 3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is an amphetamine-related drug that is largely consumed by adolescents and young adults, which may have neuroinflammatory and neurotoxic effects. Here, the objective was to evaluate in mice whether consumption of MDMA during adolescence might influence the neuroinflammatory and neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin known to induce PD in humans. The activation of astroglia and microglia by glial fibrillary acidic protein (GFAP) and complement receptor type 3 (CD11b) immunohistochemistry and the degeneration of dopaminergic neurons by tyrosine hydroxylase (TH) immunohistochemistry were evaluated. MPTP (20 mg/kg × 4) was administered to mice treated from ages 8 weeks to 17 weeks with MDMA (10 mg/kg twice daily, two times a week). In mice that were chronically treated with MDMA, administration of MPTP induced a higher microglial and astroglial response in both the striatum and the substantia nigra pars compacta (SNc) compared with vehicle-treated or vehicle + MPTP-treated mice. Inflammatory changes were associated with a decrease in TH immunoreactivity in the SNc of MDMA-treated mice and with a further decrease in the striatum and the SNc of MDMA + MPTP-treated mice compared with vehicle-treated, MDMA-treated, and MPTP-treated mice. The results demonstrate that chronic administration of MDMA during late adolescence in mice exacerbates the neurodegeneration and neuroinflammation caused by MPTP, suggesting that MDMA may constitute a risk factor for dopaminergic neuron degeneration.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
67
|
Sarkar J, Chaudhary S, Jassim SH, Ozturk O, Chamon W, Ganesh B, Tibrewal S, Gandhi S, Byun YS, Hallak J, Mahmud DL, Mahmud N, Rondelli D, Jain S. CD11b+GR1+ myeloid cells secrete NGF and promote trigeminal ganglion neurite growth: implications for corneal nerve regeneration. Invest Ophthalmol Vis Sci 2013; 54:5920-36. [PMID: 23942970 DOI: 10.1167/iovs.13-12237] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE We characterized fluorescent bone marrow cells (YFP(+) BMCs) in the thy1-YFP mouse and determine if they promote trigeminal ganglion (TG) cell neurite growth. METHODS Excimer laser annular keratectomy was performed in thy1-YFP mice, and corneas were imaged. BMCs were harvested from femur and tibia, and the expression of surface markers on YFP(+) BMCs was analyzed by flow cytometry. The immunosuppressive action of BMCs (YFP(+) and YFP(-)) was evaluated in an allogenic mixed lymphocyte reaction (MLR). Neurotrophic action of BMCs (YFP(+) and YFP(-)) was determined in compartmental and transwell cultures of dissociated TG cells. RESULTS Following annular keratectomy, YFP(+) BMCs infiltrated the cornea. YFP(+) BMCs shared surface markers (CD11b+Gr1+Ly6C+Ly6G-F4/80(low)) with monocytic myeloid-derived suppressor cells (MDSCs), had similar morphology, and suppressed T-cell proliferation in allogenic MLR in a dose-dependent manner. YFP(+) BMCs, but not YFP(-) BMCs, significantly increased growth of TG neurites in vitro. When cultured in a transwell with TG neurites, YFP(+) BMCs expressed neurotrophins and secreted nerve growth factor (NGF) in conditioned medium. YFP(+) BMCs that infiltrated the cornea maintained their phenotype and actions (neuronal and immune). CONCLUSIONS YFP(+) BMCs in thy1-YFP mice have immunophenotypic features of MDSCs. They secrete NGF and promote neuroregeneration. Their immunosuppressive and neurotrophic actions are preserved after corneal infiltration. These findings increase our understanding of the beneficial roles played by leukocyte trafficking in the cornea and may lead to therapeutic strategies that use NGF-secreting myeloid cells to repair diseased or injured neurons.
Collapse
Affiliation(s)
- Joy Sarkar
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Zhang J, Niu N, Li B, McNutt MA. Neuron-derived IgG protects neurons from complement-dependent cytotoxicity. J Histochem Cytochem 2013; 61:869-79. [PMID: 23979841 DOI: 10.1369/0022155413504196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system.
Collapse
|
69
|
Santolaya JL, Kugler L, Francois L, Stefano VD, Ebert GA, Wolf R, Wang B, Santolaya-Forgas J. Baseline TNFα operational capacity in fetal and maternal circulation prior to the onset of labor: "tuned for different purposes". Reprod Sci 2013; 20:838-44. [PMID: 23287097 PMCID: PMC5933195 DOI: 10.1177/1933719112468953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In this study, we sought to characterize the tumor necrosis factor α (TNFα) baseline operational capacity in mature fetuses and their mothers prior to the onset of labor. MATERIALS AND METHODS We used an experimental pregnant nonhuman primate model to measure the plasma concentration of TNFα, TNF transmembrane receptor I (TNFRI), and TNFRII with validated enzyme-linked immunosorbent assays. Coefficients of correlations between the maternal and the fetal values and the soluble TNFα, TNFRI, or TNFRII concentrations and ratios were calculated. RESULTS The TNFα/TNFRI ratio was 3 times lower in fetal circulation than in maternal circulation. No correlations were noted between the maternal and the fetal TNFα, TNFRI, or TNFRII plasma concentrations. CONCLUSIONS These findings suggest that the fetal and maternal baseline circulatory operational capacities of TNFα are independent of each other and tuned differently. This differential regulation of TNFα in fetal and maternal circulation at the end of pregnancy may be guided to protect the fetus from the systemic inflammatory response that is essential for the mechanisms of labor to proceed in the mother.
Collapse
Affiliation(s)
- Jacobo L Santolaya
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of Medicine and Dentistry New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
CD4 positive T helper cells contribute to retinal ganglion cell death in mouse model of ischemia reperfusion injury. Exp Eye Res 2013; 115:131-9. [PMID: 23792169 DOI: 10.1016/j.exer.2013.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/23/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022]
Abstract
Neuron degeneration is a common pathological process associated with many disease conditions in the central nervous system including retina. Although immune responses have been proposed as one potential element in triggering neural damage, the mechanism of action of specific immune components underlying the pathogenesis is unclear. In this study we focus on adaptive immune activities to evaluate CD4 positive helper cells in the retinal ganglion cell (RGC) degeneration in response to transient retinal ischemic/reperfusion (I/R) injury. Transient retinal ischemia was induced in four mouse strains with different immune backgrounds, including wild type mice from C57BL/6 and BABL/c strains, severe combined immunodeficient (SCID) mice lacking T and B lymphocytes, SCID mice with transferred wild type CD4+ T cells, and the STAT6 deficient mice without T helper 2 (TH2) cells. In SCID mice RGCs showed a strong resistance to cell death in response to I/R injury (89% ± 3% of the survival cells in contralateral eye) compared with C57BL/6 (p = 0.018) and BALB/C (p = 0.038) wild types. By transferring the mature CD4+ T cells from matched wild type into SCID mice, the resistance of RGCs to injury was significantly compromised (p < 0.05). Furthermore a significant resistance of RGCs to cell death (p < 0.05) accompanied with an overexpression of STAT1 and STAT3 was confirmed in STAT6 deficient mice in response to I/R injury compared with the wild type controls, indicating that TH2 cells maturation might be involved in RGC damage. Adaptive immunity carried by CD4 T cells plays an essential role in RGC degeneration.
Collapse
|
71
|
Peripheral elevation of TNF-α leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2013; 110:10306-11. [PMID: 23733958 DOI: 10.1073/pnas.1222895110] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sensory abnormalities such as numbness and paresthesias are often the earliest symptoms in neuroinflammatory diseases including multiple sclerosis. The increased production of various cytokines occurs in the early stages of neuroinflammation and could have detrimental effects on the central nervous system, thereby contributing to sensory and cognitive deficits. However, it remains unknown whether and when elevation of cytokines causes changes in brain structure and function under inflammatory conditions. To address this question, we used a mouse model for experimental autoimmune encephalomyelitis (EAE) to examine the effect of inflammation and cytokine elevation on synaptic connections in the primary somatosensory cortex. Using in vivo two-photon microscopy, we found that the elimination and formation rates of dendritic spines and axonal boutons increased within 7 d of EAE induction--several days before the onset of paralysis--and continued to rise during the course of the disease. This synaptic instability occurred before T-cell infiltration and microglial activation in the central nervous system and was in conjunction with peripheral, but not central, production of TNF-α. Peripheral administration of a soluble TNF inhibitor prevented abnormal turnover of dendritic spines and axonal boutons in presymptomatic EAE mice. These findings indicate that peripheral production of TNF-α is a key mediator of synaptic instability in the primary somatosensory cortex and may contribute to sensory and cognitive deficits seen in autoimmune diseases.
Collapse
|
72
|
Frau L, Simola N, Morelli M. Contribution of Caffeine to the Psychostimulant, Neuroinflammatory and Neurotoxic Effects of Amphetamine-Related Drugs. JOURNAL OF CAFFEINE RESEARCH 2013. [DOI: 10.1089/jcr.2013.0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Frau
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
- CNR, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
73
|
Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination. Mediators Inflamm 2013; 2013:685317. [PMID: 23818742 PMCID: PMC3683504 DOI: 10.1155/2013/685317] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022] Open
Abstract
Demyelination is one of the pathological hallmarks of multiple sclerosis (MS). To date, no therapy is available which directly potentiates endogenous remyelination. Interleukin-11 (IL-11), a member of the gp130 family of cytokines, is upregulated in MS lesions. Systemic IL-11 treatment was shown to ameliorate clinical symptoms in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. IL-11 modulates immune cells and protects oligodendrocytes in vitro. In this study, the cuprizone-induced demyelination mouse model was used to elucidate effects of IL-11 on de- and remyelination, independent of the immune response. Prophylactic-lentiviral- (LV-) mediated overexpression of IL-11 in mouse brain significantly limited acute demyelination, which was accompanied with the preservation of CC1+ mature oligodendrocytes (OLs) and a decrease in microglial activation (Mac-2+). We further demonstrated that IL-11 directly reduces myelin phagocytosis in vitro. When IL-11 expressing LV was therapeutically applied in animals with extensive demyelination, a significant enhancement of remyelination was observed as demonstrated by Luxol Fast Blue staining and electron microscopy imaging. Our results indicate that IL-11 promotes maturation of NG2+ OPCs into myelinating CC1+ OLs and may thus explain the enhanced remyelination. Overall, we demonstrate that IL-11 is of therapeutic interest for MS and other demyelinating diseases by limiting demyelination and promoting remyelination.
Collapse
|
74
|
Pranzatelli MR, Tate ED, McGee NR, Colliver JA. Pediatric reference ranges for proinflammatory and anti-inflammatory cytokines in cerebrospinal fluid and serum by multiplexed immunoassay. J Interferon Cytokine Res 2013; 33:523-8. [PMID: 23659672 DOI: 10.1089/jir.2012.0132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To define cytokine concentrations and detectability in children with noninflammatory neurological disorders (NIND). The multiplex bead assay technology was used for simultaneous measurement of 34 soluble cytokines/chemokines in cerebrospinal fluid (CSF) from 73 NIND. Sera from 36 healthy children and 37 NIND also were analyzed. In CSF, CXCL10 had the highest concentration; CCL2, CXCL10, and interleukin (IL)-6 were detectable in all samples, and CXCL8, CCL22, CXCL1, IL-16, and IL-1 receptor antagonist were found in ≥50% of the samples. In serum, CXCL1 had the highest concentration; sIL-2Ra, CXCL1, CXCL10, and CCL22 were detectable in all samples, and CCL2, IL-12, CCL5, and granulocyte monocyte colony-stimulating factor (GM-CSF) were found in ≥50% of the samples. The mean CSF:serum ratio for CCL2 was several-fold higher than the rest, with the CXCL10 and CXCL8 ratios also >1. Intercorrelations between CSF cytokines included CCL2 versus CXCL8 and IL-6, and CXCL1 versus CCL22, reflecting both T-helper-1 (Th1)/Th1 and Th1/Th2 relations. Serum correlations included CCL11 versus CCL2, GM-CSF, and IL-4. For serum cytokines, the agreement between healthy children and NIND was good, with the exception of higher CCL4 in NIND. Cytokines in children varied greatly in concentration and detectability, with chemokines predominating in the CSF. These data allow investigators to select their own kit cytokines, instead of manufacturer-selected cytokines, for greater cost-effectiveness and interpretability.
Collapse
Affiliation(s)
- Michael R Pranzatelli
- National Pediatric Myoclonus Center and Neuroimmunology Research Laboratory, Department of Neurology, Southern Illinois University School of Medicine, P.O. Box 19643, Springfield, IL 62794-9643, USA.
| | | | | | | |
Collapse
|
75
|
Song C, Zhang Y, Dong Y. Acute and subacute IL-1β administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration. J Neuroinflammation 2013; 10:59. [PMID: 23651534 PMCID: PMC3656796 DOI: 10.1186/1742-2094-10-59] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
Background In Alzheimer’s disease, stroke and brain injuries, activated microglia can release proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines may change astrocyte and neurotrophin functions, which influences neuronal survival and induces apoptosis. However, the interaction between neuroinflammation and neurotrophin functions in different brain conditions is unknown. The present study hypothesized that acute and subacute elevated IL-1β differentially modulates glial and neurotrophin functions, which are related to their role in neuroprotection and neurodegeneration. Method Rats were i.c.v. injected with saline or IL-1β for 1 or 8 days and tested in a radial maze. mRNA and protein expressions of glial cell markers, neurotrophins, neurotrophin receptors, β-amyloid precursor protein (APP) and the concentrations of pro- and anti-inflammatory cytokines were measured in the hippocampus. Results When compared to controls, memory deficits were found 4 days after IL-1 administrations, however the deficits were attenuated by IL-1 receptor antagonist (RA). Subacute IL-1 administrations increased expressions of APP, microglial active marker CD11b, and p75 neurotrophin receptor, and the concentration of tumor necrosis factor (TNF)-α and IL-1β, but decreased expressions of astrocyte active marker glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and TrK B. By contrast, up-regulations of NGF, BDNF and TrK B expressions were found after acute IL-1 administration, which are associated with the increase in both glial marker expressions and IL-10 concentrations. However, TrK A was down-regulated by acute and up-regulated by subacute IL-1 administrations. Subacute IL-1-induced changes in the glial activities, cytokine concentrations and expressions of BDNF and p75 were reversed by IL-1RA treatment. Conclusion These results indicate that acute and subacute IL-1 administrations induce different changes toward neuroprotection after acute IL-1 administrations but neurodegeneration after subacute ones.
Collapse
Affiliation(s)
- Cai Song
- Research Institute of Marine Drug and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | | | | |
Collapse
|
76
|
Updating the mild encephalitis hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:71-91. [PMID: 22765923 DOI: 10.1016/j.pnpbp.2012.06.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 12/13/2022]
Abstract
Schizophrenia seems to be a heterogeneous disorder. Emerging evidence indicates that low level neuroinflammation (LLNI) may not occur infrequently. Many infectious agents with low overall pathogenicity are risk factors for psychoses including schizophrenia and for autoimmune disorders. According to the mild encephalitis (ME) hypothesis, LLNI represents the core pathogenetic mechanism in a schizophrenia subgroup that has syndromal overlap with other psychiatric disorders. ME may be triggered by infections, autoimmunity, toxicity, or trauma. A 'late hit' and gene-environment interaction are required to explain major findings about schizophrenia, and both aspects would be consistent with the ME hypothesis. Schizophrenia risk genes stay rather constant within populations despite a resulting low number of progeny; this may result from advantages associated with risk genes, e.g., an improved immune response, which may act protectively within changing environments, although they are associated with the disadvantage of increased susceptibility to psychotic disorders. Specific schizophrenic symptoms may arise with instances of LLNI when certain brain functional systems are involved, in addition to being shaped by pre-existing liability factors. Prodrome phase and the transition to a diseased status may be related to LLNI processes emerging and varying over time. The variability in the course of schizophrenia resembles the varying courses of autoimmune disorders, which result from three required factors: genes, the environment, and the immune system. Preliminary criteria for subgrouping neurodevelopmental, genetic, ME, and other types of schizophrenias are provided. A rare example of ME schizophrenia may be observed in Borna disease virus infection. Neurodevelopmental schizophrenia due to early infections has been estimated by others to explain approximately 30% of cases, but the underlying pathomechanisms of transition to disease remain in question. LLNI (e.g. from reactivation related to persistent infection) may be involved and other pathomechanisms including dysfunction of the blood-brain barrier or the blood-CSF barrier, CNS-endogenous immunity and the volume transmission mode balancing wiring transmission (the latter represented mainly by synaptic transmission, which is often described as being disturbed in schizophrenia). Volume transmission is linked to CSF signaling; and together could represent a common pathogenetic link for the distributed brain dysfunction, dysconnectivity, and brain structural abnormalities observed in schizophrenia. In addition, CSF signaling may extend into peripheral tissues via the CSF outflow pathway along brain nerves and peripheral nerves, and it may explain the peripheral topology of neuronal dysfunctions found, like in olfactory dysfunction, dysautonomia, and even in peripheral tissues, i.e., the muscle lesions that were found in 50% of cases. Modulating factors in schizophrenia, such as stress, hormones, and diet, are also modulating factors in the immune response. Considering recent investigations of CSF, the ME schizophrenia subgroup may constitute approximately 40% of cases.
Collapse
|
77
|
Spulber S, Edoff K, Hong L, Morisawa S, Shirahata S, Ceccatelli S. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice. PLoS One 2012; 7:e42078. [PMID: 22860058 PMCID: PMC3409143 DOI: 10.1371/journal.pone.0042078] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 07/02/2012] [Indexed: 02/06/2023] Open
Abstract
Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW) improves the outcome of lipopolysaccharide (LPS)-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p.) or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- α and upregulation of IL-10). In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line), suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen.
Collapse
Affiliation(s)
- Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
78
|
Tian L, Ma L, Kaarela T, Li Z. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflammation 2012; 9:155. [PMID: 22747919 PMCID: PMC3410819 DOI: 10.1186/1742-2094-9-155] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023] Open
Abstract
The central nervous system (CNS) is now known to actively communicate with the immune system to control immune responses both centrally and peripherally. Within the CNS, while studies on glial cells, especially microglia, have highlighted the importance of this cell type in innate immune responses of the CNS, the immune regulatory functions of other cell types, especially neurons, are largely unknown. How neuroimmune cross-talk is homeostatically maintained in neurodevelopment and adult plasticity is even more elusive. Inspiringly, accumulating evidence suggests that neurons may also actively participate in immune responses by controlling glial cells and infiltrated T cells. The potential clinical application of this knowledge warrants a deeper understanding of the mutual interactions between neurons and other types of cells during neurological and immunological processes within the CNS, which will help advance diagnosis, prevention, and intervention of various neurological diseases. The aim of this review is to address the immune function of both glial cells and neurons, and the roles they play in regulating inflammatory processes and maintaining homeostasis of the CNS.
Collapse
Affiliation(s)
- Li Tian
- Neuroscience Center, Viikinkaari 4, FIN-00014, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
79
|
Hurst LA, Bunning RAD, Sharrack B, Woodroofe MN. siRNA knockdown of ADAM-10, but not ADAM-17, significantly reduces fractalkine shedding following pro-inflammatory cytokine treatment in a human adult brain endothelial cell line. Neurosci Lett 2012; 521:52-6. [PMID: 22641052 DOI: 10.1016/j.neulet.2012.05.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/24/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
Fractalkine shedding is believed to occur constitutively and following induction via the activity of two membrane-bound enzymes, ADAM-10 and ADAM-17. However, our previous work suggested that ADAM-17 is not involved in the proteolytic release of fractalkine under TNF treatment of a human adult brain endothelial cell line, hCMEC/D3. The pro-inflammatory cytokine, TNF, has previously been shown to be expressed in the perivascular cuffs in multiple sclerosis. Here we sought to identify, using siRNAs to silence the expression of ADAM-10 and ADAM-17, whether ADAM-10 is responsible for TNF-induced shedding of fractalkine from the cell membrane in hCMEC/D3. Our findings suggest that ADAM-10, and not ADAM-17, is the major protease involved in fractalkine release under pro-inflammatory conditions in this human adult brain endothelial cell model.
Collapse
Affiliation(s)
- Louise A Hurst
- Biomedical Research Centre, Sheffield Hallam University, Howard St., Sheffield S1 1WB, UK
| | | | | | | |
Collapse
|
80
|
Reale M, Kamal MA, Velluto L, Gambi D, Di Nicola M, Greig NH. Relationship between inflammatory mediators, Aβ levels and ApoE genotype in Alzheimer disease. Curr Alzheimer Res 2012; 9:447-57. [PMID: 22272623 PMCID: PMC5215089 DOI: 10.2174/156720512800492549] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/05/2011] [Accepted: 11/09/2011] [Indexed: 11/22/2022]
Abstract
Activation of inflammatory processes is observed within the brain as well as periphery of subjects with Alzheimer's disease (AD). Whether or not inflammation represents a possible cause of AD or occurs as a consequence of the disease process, or, alternatively, whether the inflammatory response might be beneficial to slow the disease progression remains to be elucidated. The cytokine IL-18 shares with IL-1 the same pro-inflammatory features. Consequent to these similarities, IL-18 and its endogenous inhibitor, IL-18BP, were investigated in the plasma of AD patients versus healthy controls (HC). An imbalance of IL-18 and IL-18BP was observed in AD, with an elevated IL-18/IL-18BP ratio that might be involved in disease pathogenesis. As part of the inflammatory response, altered levels of RANTES, MCP-1 and ICAM- 1, molecules involved in cell recruitment to inflammatory sites, were observed in AD. Hence, correlations between IL-18 and other inflammatory plasma markers were analyzed. A negative correlation was observed between IL-18 and IL-18BP in both AD and HC groups. A positive correlation was observed between IL-18 and ICAM-1 in AD patients, whereas a negative correlation was evident in the HC group. IL-18 positively correlated with Aβ in both groups, and no significant correlations were observed between IL-18, RANTES and MCP-1. An important piece of evidence supporting a pathophysiologic role for inflammation in AD is the number of inflammatory mediators that have been found to be differentially regulated in AD patients, and specific ones may provide utility as part of a biomarker panel to not only aid early AD diagnosis, but follow its progression.
Collapse
Affiliation(s)
- M Reale
- Dept. of Oncology and Experimental Medicine, Unit of Immunodiagnostic, University "G. D'Annunzio", Chieti, Italy.
| | | | | | | | | | | |
Collapse
|
81
|
Bonnamain V, Neveu I, Naveilhan P. Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system. Front Cell Neurosci 2012; 6:17. [PMID: 22514520 PMCID: PMC3323829 DOI: 10.3389/fncel.2012.00017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/26/2012] [Indexed: 01/18/2023] Open
Abstract
Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other disorders of the central nervous system (CNS) such as Parkinson and Huntington diseases, multiple sclerosis or stroke. Although cell replacement therapy already went through clinical trials for some of these diseases using fetal human neuroblasts, several significant limitations led to the search for alternative cell sources that would be more suitable for intracerebral transplantation.Taking into account logistical and ethical issues linked to the use of tissue derived from human fetuses, and the immunologically special status of the CNS allowing the occurrence of deleterious immune reactions, neural stem/progenitor cells (NSPCs) appear to be an interesting cell source candidate. In addition to their ability for replacing cell populations lost during the pathological events, NSPCs also display surprising therapeutic effects of neuroprotection and immunomodulation. A better knowledge of the mechanisms involved in these specific characteristics will hopefully lead in the future to a successful use of NSPCs in regenerative medicine for CNS disorders.
Collapse
|
82
|
Immune system in the brain: a modulatory role on dendritic spine morphophysiology? Neural Plast 2012; 2012:348642. [PMID: 22548192 PMCID: PMC3324176 DOI: 10.1155/2012/348642] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/26/2012] [Indexed: 12/14/2022] Open
Abstract
The central nervous system is closely linked to the immune system at several levels. The brain parenchyma is separated from the periphery by the blood brain barrier, which under normal conditions prevents the entry of mediators such as activated leukocytes, antibodies, complement factors, and cytokines. The myeloid cell lineage plays a crucial role in the development of immune responses at the central level, and it comprises two main subtypes: (1) resident microglia, distributed throughout the brain parenchyma; (2) perivascular macrophages located in the brain capillaries of the basal lamina and the choroid plexus. In addition, astrocytes, oligodendrocytes, endothelial cells, and, to a lesser extent, neurons are implicated in the immune response in the central nervous system. By modulating synaptogenesis, microglia are most specifically involved in restoring neuronal connectivity following injury. These cells release immune mediators, such as cytokines, that modulate synaptic transmission and that alter the morphology of dendritic spines during the inflammatory process following injury. Thus, the expression and release of immune mediators in the brain parenchyma are closely linked to plastic morphophysiological changes in neuronal dendritic spines. Based on these observations, it has been proposed that these immune mediators are also implicated in learning and memory processes.
Collapse
|
83
|
Allotransplanted neurons used to repair peripheral nerve injury do not elicit overt immunogenicity. PLoS One 2012; 7:e31675. [PMID: 22347502 PMCID: PMC3276507 DOI: 10.1371/journal.pone.0031675] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/11/2012] [Indexed: 11/24/2022] Open
Abstract
A major problem hindering the development of autograft alternatives for repairing peripheral nerve injuries is immunogenicity. We have previously shown successful regeneration in transected rat sciatic nerves using conduits filled with allogeneic dorsal root ganglion (DRG) cells without any immunosuppression. In this study, we re-examined the immunogenicity of our DRG neuron implanted conduits as a potential strategy to overcome transplant rejection. A biodegradable NeuraGen® tube was infused with pure DRG neurons or Schwann cells cultured from a rat strain differing from the host rats and used to repair 8 mm gaps in the sciatic nerve. We observed enhanced regeneration with allogeneic cells compared to empty conduits 16 weeks post-surgery, but morphological analyses suggest recovery comparable to the healthy nerves was not achieved. The degree of regeneration was indistinguishable between DRG and Schwann cell allografts although immunogenicity assessments revealed substantially increased presence of Interferon gamma (IFN-γ) in Schwann cell allografts compared to the DRG allografts by two weeks post-surgery. Macrophage infiltration of the regenerated nerve graft in the DRG group 16 weeks post-surgery was below the level of the empty conduit (0.56 fold change from NG; p<0.05) while the Schwann cell group revealed significantly higher counts (1.29 fold change from NG; p<0.001). Major histocompatibility complex I (MHC I) molecules were present in significantly increased levels in the DRG and Schwann cell allograft groups compared to the hollow NG conduit and the Sham healthy nerve. Our results confirmed previous studies that have reported Schwann cells as being immunogenic, likely due to MHC I expression. Nerve gap injuries are difficult to repair; our data suggest that DRG neurons are superior medium to implant inside conduit tubes due to reduced immunogenicity and represent a potential treatment strategy that could be preferable to the current gold standard of autologous nerve transplant.
Collapse
|
84
|
Wang Q, Wang F, Li X, Yang Q, Li X, Xu N, Huang Y, Zhang Q, Gou X, Chen S, Xiong L. Electroacupuncture pretreatment attenuates cerebral ischemic injury through α7 nicotinic acetylcholine receptor-mediated inhibition of high-mobility group box 1 release in rats. J Neuroinflammation 2012; 9:24. [PMID: 22277256 PMCID: PMC3297509 DOI: 10.1186/1742-2094-9-24] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/26/2012] [Indexed: 02/07/2023] Open
Abstract
Background We have previously reported that electroacupuncture (EA) pretreatment induced tolerance against cerebral ischemic injury, but the mechanisms underlying this effect of EA are unknown. In this study, we assessed the effect of EA pretreatment on the expression of α7 nicotinic acetylcholine receptors (α7nAChR), using the ischemia-reperfusion model of focal cerebral ischemia in rats. Further, we investigated the role of high mobility group box 1 (HMGB1) in neuroprotection mediated by the α7nAChR and EA. Methods Rats were treated with EA at the acupoint "Baihui (GV 20)" 24 h before focal cerebral ischemia which was induced for 120 min by middle cerebral artery occlusion. Neurobehavioral scores, infarction volumes, neuronal apoptosis, and HMGB1 levels were evaluated after reperfusion. The α7nAChR agonist PHA-543613 and the antagonist α-bungarotoxin (α-BGT) were used to investigate the role of the α7nAChR in mediating neuroprotective effects. The roles of the α7nAChR and HMGB1 release in neuroprotection were further tested in neuronal cultures exposed to oxygen and glucose deprivation (OGD). Results Our results showed that the expression of α7nAChR was significantly decreased after reperfusion. EA pretreatment prevented the reduction in neuronal expression of α7nAChR after reperfusion in the ischemic penumbra. Pretreatment with PHA-543613 afforded neuroprotective effects against ischemic damage. Moreover, EA pretreatment reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis and HMGB1 release following reperfusion, and the beneficial effects were attenuated by α-BGT. The HMGB1 levels in plasma and the penumbral brain tissue were correlated with the number of apoptotic neurons in the ischemic penumbra. Furthermore, OGD in cultured neurons triggered HMGB1 release into the culture medium, and this effect was efficiently suppressed by PHA-543,613. Pretreatment with α-BGT reversed the inhibitory effect of PHA-543,613 on HMGB1 release. Conclusion These data demonstrate that EA pretreatment strongly protects the brain against transient cerebral ischemic injury, and inhibits HMGB1 release through α7nAChR activation in rats. These findings suggest the novel potential for stroke interventions harnessing the anti-inflammatory effects of α7nAChR activation, through acupuncture or pharmacological strategies.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
York JM, Blevins NA, Baynard T, Freund GG. Mouse testing methods in psychoneuroimmunology: an overview of how to measure sickness, depressive/anxietal, cognitive, and physical activity behaviors. Methods Mol Biol 2012; 934:243-276. [PMID: 22933150 DOI: 10.1007/978-1-62703-071-7_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity and the surrounding environment. In addition, neuroimmune activation can precipitate feelings of depression and anxiety while negatively impacting cognitive function and physical activity. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on preexperimental conditions that can confound or prevent successful immunobehavioral experimentation.
Collapse
Affiliation(s)
- Jason M York
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | | | | |
Collapse
|
86
|
Niu FN, Zhang X, Hu XM, Chen J, Chang LL, Li JW, Liu Z, Cao W, Xu Y. Targeted mutation of Fas ligand gene attenuates brain inflammation in experimental stroke. Brain Behav Immun 2012; 26:61-71. [PMID: 21802508 DOI: 10.1016/j.bbi.2011.07.235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 07/14/2011] [Accepted: 07/14/2011] [Indexed: 01/10/2023] Open
Abstract
Inflammation is an important contributing mechanism in ischemic brain injury. The current study elucidates a previously unexplored role of Fas ligand (FasL) in post-stroke inflammatory responses that is independent of its well-known effect in triggering apoptosis. Focal cerebral ischemia was induced for 2 h by right middle cerebral artery occlusion (MCAO) in FasL mutant (gld) and wild-type mice. FasL mutation profoundly reduced brain damage and improved neurological performance from 6 to 72 h after ischemic stroke. The production of inflammatory cytokines in the brain was attenuated in gld mice after ischemia in the absence of dramatic change in inflammatory cell apoptosis. FasL mutation attenuated the recruitment of peripheral inflammatory cells (neutrophil) and inhibited the activation of residential glial cells (microglia and astrocyte). FasL mutation reduced CD8(+) T cells and turned the Th1/Th2 balance towards Th2 in the brain and peripheral blood after cerebral ischemia. In contrast to cerebral ischemia, the molecular and cellular inflammatory changes induced by intracerebroventricular injection of lipopolysaccharide (LPS) were also attenuated in gld mice. Moreover, the soluble FasL (sFasL) and phospho-SAPK/JNK were decreased in gld mice, suggesting that the inflammatory role of FasL in experimental stroke might relate to sFasL and the c-Jun N-terminal kinase (JNK) signaling pathway. Taken together, our data suggest a novel role of FasL in the damaging inflammatory responses associated with cerebral ischemia. Neutralization of FasL may be a novel therapeutic strategy to suppress post-stroke inflammation and improve the long-term outcomes of stroke.
Collapse
Affiliation(s)
- Feng-nan Niu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Yuen CM, Sun CK, Lin YC, Chang LT, Kao YH, Yen CH, Chen YL, Tsai TH, Chua S, Shao PL, Leu S, Yip HK. Combination of cyclosporine and erythropoietin improves brain infarct size and neurological function in rats after ischemic stroke. J Transl Med 2011; 9:141. [PMID: 21864394 PMCID: PMC3177906 DOI: 10.1186/1479-5876-9-141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/24/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND This study tested the superiority of combined cyclosporine A (CsA)-erythropoietin (EPO) therapy compared with either one in limiting brain infarction area (BIA) and preserving neurological function in rat after ischemic stroke (IS). METHODS Fifty adult-male SD rats were equally divided into sham control (group 1), IS plus intra-peritoneal physiological saline (at 0.5/24/48 h after IS) (group 2), IS plus CsA (20.0 mg/kg at 0.5/24h, intra-peritoneal) (group 3), IS plus EPO (5,000IU/kg at 0.5/24/48h, subcutaneous) (group 4), combined CsA and EPO (same route and dosage as groups 3 and 4) treatment (group 5) after occlusion of distal left internal carotid artery. RESULTS BIA on day 21 after acute IS was higher in group 2 than in other groups and lowest in group 5 (all p < 0.01). The sensorimotor functional test showed higher frequency of left turning in group 2 than in other groups and lowest in group 5 (all p < 0.05). mRNA and protein expressions of apoptotic markers and number of apoptotic nuclei on TUNEL were higher in group 2 than in other groups and lowest in group 1 and 5, whereas the anti-apoptotic markers exhibited an opposite trend (all p < 0.05). The expressions of inflammatory and oxidized protein were higher in group 2 than in other groups and lowest in group 1 and 5, whereas anti-inflammatory markers showed reversed changes in group 1 and other groups (all p < 0.05). The number of aquaporin-4+ and glial fibrillary acid protein+ stained cells were higher in group 2 as compared to other groups and lowest in groups 1 and 5 (all p < 0.01). CONCLUSION combined treatment with CsA and EPO was superior to either one alone in protecting rat brain from ischemic damage after IS.
Collapse
Affiliation(s)
- Chun-Man Yuen
- Division of Trauma, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Myeloid lineage cells inhibit neurite outgrowth through a myosin II-dependent mechanism. J Neuroimmunol 2011; 237:101-5. [DOI: 10.1016/j.jneuroim.2011.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 12/25/2022]
|
89
|
Abstract
BACKGROUND Hepatic encephalopathy is a syndrome whose physiopathology is poorly understood; therefore, current diagnostic tests are imperfect and modern therapy is nonspecific. Particularly, it has been suggested that inflammation plays an important role in the pathogenesis of portal hypertensive encephalopathy in the rat. AIM We have studied an experimental model of portal hypertension based on a triple partial portal vein ligation in the rat to verify this hypothesis. METHODS One month after portal hypertension we assayed in the splanchnic area (liver, small bowel and mesenteric lymph nodes) and in the central nervous system (hippocampus and cerebellum) fractalkine (CX3CL1) and stromal cell-derived factor alpha (SDF1-α) as well as their respective receptors (CX3CR1 and CXCR4) because of their key role in inflammatory processes. RESULTS The significant increase of fractalkine in mesenteric lymph nodes (P<0.05) and its receptor (CX3CR1) in the small bowel (P<0.05) and hippocampus (P<0.01), associated with the increased expression of SDF1-α in the hippocampus (P<0.01) and the cerebellum (P<0.01) suggest that prehepatic portal hypertension in the rat induces important alterations in the expression of chemokines in the gut-brain axis. CONCLUSION The present study revealed that portal hypertension is associated with splanchnic-brain inflammatory alterations mediated by chemokines.
Collapse
|
90
|
Consonni A, Morara S, Codazzi F, Grohovaz F, Zacchetti D. Inhibition of lipopolysaccharide-induced microglia activation by calcitonin gene related peptide and adrenomedullin. Mol Cell Neurosci 2011; 48:151-60. [PMID: 21803157 PMCID: PMC3174421 DOI: 10.1016/j.mcn.2011.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 12/21/2022] Open
Abstract
Calcitonin gene related peptide (CGRP) and adrenomedullin are potent biologically active peptides that have been proposed to play an important role in vascular and inflammatory diseases. Their function in the central nervous system is still unclear since they have been proposed as either pro-inflammatory or neuroprotective factors. We investigated the effects of the two peptides on astrocytes and microglia, cells of the central nervous system that exert a strong modulatory activity in the neuroinflammatory processes. In particular, we studied the ability of CGRP and adrenomedullin to modulate microglia activation, i.e. its competence of producing and releasing pro-inflammatory cytokines/chemokines that are known to play a crucial role in neuroinflammation. In this work we show that the two neuropeptides exert a potent inhibitory effect on lipopolysaccharide-induced microglia activation in vitro, with strong inhibition of the release of pro-inflammatory mediators (such as NO, cytokines and chemokines). Both CGRP and adrenomedullin are known to promote cAMP elevation, this second messenger cannot fully account for the observed inhibitory effects, thereby suggesting that other signaling pathways are involved. Interestingly, the inhibitory effect of CGRP and adrenomedullin appears to be stimulus specific, since direct activation with pro-inflammatory cytokines was not affected. Our findings clarify aspects of microglia activation, and contribute to the comprehension of the switch from reparative to detrimental function that occurs when glia is exposed to different conditions. Moreover, they draw the attention to potential targets for novel pharmacological intervention in pathologies characterized by glia activation and neuroinflammation.
Collapse
Affiliation(s)
- Alessandra Consonni
- Division of Neuroscience, Cellular Neurophysiology Unit, San Raffaele Scientific Institute, via Olgettina 58, I-20132 Milano, Italy
| | | | | | | | | |
Collapse
|
91
|
Niu N, Zhang J, Sun Y, Wang S, Sun Y, Korteweg C, Gao W, Gu J. Expression and distribution of immunoglobulin G and its receptors in an immune privileged site: the eye. Cell Mol Life Sci 2011; 68:2481-92. [PMID: 21061041 PMCID: PMC11114928 DOI: 10.1007/s00018-010-0572-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 10/11/2010] [Accepted: 10/14/2010] [Indexed: 12/24/2022]
Abstract
It has recently been demonstrated that not only mature B lymphocytes, but also non-lymphoid cells, including cancer cells and neurons, express IgG. In the eye, an important immune privileged site, the presence of IgG has been ascribed to IgG entering the eye through breaches of the blood–ocular barrier. Here we demonstrate that the eye itself can produce IgG intrinsically. Applying immunohistochemistry, in situ hybridization, and RT-PCR, several intraocular structures were found to express proteins and mRNA transcripts of IgG heavy chains, light chains, V(D)J rearrangements, and enzymes required for V(D)J recombination. IgG receptors were also detected in the intraocular epithelium and endothelium. The extensive distribution of IgG and its receptors in intraocular structures indicates that locally produced IgG could play a significant role in maintaining the ocular microenvironment and protection of the eyes, and it might also be involved in the pathogenesis of age-related macular degeneration and some inflammatory diseases.
Collapse
Affiliation(s)
- Na Niu
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- Department of Pathology, Weifang Medical University, Weifang, 261042 China
| | - Jie Zhang
- Department of Human Anatomy, Weifang Medical University, Weifang, 261042 China
| | - Yingui Sun
- Department of Anesthesia, Weifang Medical University, Weifang, 261042 China
| | - Shuna Wang
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, 261031 China
| | - Yonghong Sun
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031 China
| | - Christine Korteweg
- Department of Pathology, Shantou University Medical College, Shantou, 515041 China
| | - Weiwei Gao
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Jiang Gu
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- Department of Pathology, Shantou University Medical College, Shantou, 515041 China
| |
Collapse
|
92
|
Pentón-Rol G, Marín-Prida J, Pardo-Andreu G, Martínez-Sánchez G, Acosta-Medina EF, Valdivia-Acosta A, Lagumersindez-Denis N, Rodríguez-Jiménez E, Llópiz-Arzuaga A, López-Saura PA, Guillén-Nieto G, Pentón-Arias E. C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils. Brain Res Bull 2011; 86:42-52. [PMID: 21669260 DOI: 10.1016/j.brainresbull.2011.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/30/2011] [Indexed: 12/15/2022]
Abstract
Although the huge economic and social impact and the predicted incidence increase, neuroprotection for ischemic stroke remains as a therapeutically empty niche. In the present study, we investigated the rationale of the C-Phycocyanin (C-PC) treatment on global cerebral ischemia/reperfusion (I/R) injury in gerbils. We demonstrated that C-PC given either prophylactically or therapeutically was able to significantly reduce the infarct volume as assessed by triphenyltetrazolium chloride (TTC) staining and the neurological deficit score 24h post-stroke. In addition, C-PC exhibited a protective effect against hippocampus neuronal cell death, and significantly improved the functional outcome (locomotor behavior) and gerbil survival after 7 days of reperfusion. Malondialdehyde (MDA), peroxidation potential (PP) and ferric reducing ability of plasma (FRAP) were assayed in serum and brain homogenates to evaluate the redox status 24h post-stroke. The treatment with C-PC prevented the lipid peroxidation and the increase of FRAP in both tissue compartments. These results suggest that the protective effects of C-PC are most likely due to its antioxidant activity, although its anti-inflammatory and immuno-modulatory properties reported elsewhere could also contribute to neuroprotection. To our knowledge, this is the first report of the neuroprotective effect of C-PC in an experimental model of global cerebral I/R damage, and strongly indicates that C-PC may represent a potential preventive and acute disease modifying pharmacological agent for stroke therapy.
Collapse
|
93
|
Niu N, Zhang J, Guo Y, Zhao Y, Korteweg C, Gu J. Expression and distribution of immunoglobulin G and its receptors in the human nervous system. Int J Biochem Cell Biol 2011; 43:556-63. [DOI: 10.1016/j.biocel.2010.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/08/2010] [Indexed: 11/27/2022]
|
94
|
Abstract
Inflammation of the central nervous system (CNS) (neuroinflammation) is now recognized to be a feature of all neurological disorders. In multiple sclerosis, there is prominent infiltration of various leukocyte subsets into the CNS. Even when there is no significant inflammatory infiltrates, such as in Parkinson or Alzheimer disease, there is intense activation of microglia with resultant elevation of many inflammatory mediators within the CNS. An extensive dataset describes neuroinflammation to have detrimental consequences, but results emerging largely over the past decade have indicated that aspects of the inflammatory response are beneficial for CNS outcomes. Benefits of neuroinflammation now include neuroprotection, the mobilization of neural precursors for repair, remyelination, and even axonal regeneration. The findings that neuroinflammation can be beneficial should not be surprising as a properly directed inflammatory response in other tissues is a natural healing process after an insult. In this article, we review the data that highlight the dual aspects of neuroinflammation in being a hindrance on the one hand but also a significant help for recovery of the CNS on the other. We consider how the inflammatory response may be beneficial or injurious, and we describe strategies to harness the beneficial aspects of neuroinflammation.
Collapse
Affiliation(s)
- V Wee Yong
- University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
95
|
The selective ablation of inflammation in an acute stage of ischemic stroke may be a new strategy to promote neurogenesis. Med Hypotheses 2011; 76:1-3. [DOI: 10.1016/j.mehy.2010.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/25/2010] [Accepted: 07/30/2010] [Indexed: 11/20/2022]
|
96
|
Kainic acid-induced neurodegenerative model: potentials and limitations. J Biomed Biotechnol 2010; 2011:457079. [PMID: 21127706 PMCID: PMC2992819 DOI: 10.1155/2011/457079] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/25/2010] [Indexed: 01/03/2023] Open
Abstract
Excitotoxicity is considered to be an important mechanism involved in various neurodegenerative diseases in the central nervous system (CNS) such as Alzheimer's disease (AD). However, the mechanism by which excitotoxicity is implicated in neurodegenerative disorders remains unclear. Kainic acid (KA) is an epileptogenic and neuroexcitotoxic agent by acting on specific kainate receptors (KARs) in the CNS. KA has been extensively used as a specific agonist for ionotrophic glutamate receptors (iGluRs), for example, KARs, to mimic glutamate excitotoxicity in neurodegenerative models as well as to distinguish other iGluRs such as α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors and N-methyl-D-aspartate receptors. Given the current knowledge of excitotoxicity in neurodegeneration, interventions targeted at modulating excitotoxicity are promising in terms of dealing with neurodegenerative disorders. This paper summarizes the up-to-date knowledge of neurodegenerative studies based on KA-induced animal model, with emphasis on its potentials and limitations.
Collapse
|
97
|
Victório SCS, Havton LA, Oliveira ALR. Absence of IFNγ expression induces neuronal degeneration in the spinal cord of adult mice. J Neuroinflammation 2010; 7:77. [PMID: 21073708 PMCID: PMC2993684 DOI: 10.1186/1742-2094-7-77] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/12/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Interferon gamma (IFNγ) is a pro-inflammatory cytokine, which may be up-regulated after trauma to the peripheral or central nervous system. Such changes include reactive gliosis and synaptic plasticity that are considered important responses to the proper regenerative response after injury. Also, IFNγ is involved in the upregulation of the major histocompatibility complex class I (MHC class I), which has recently been shown to play an important role in the synaptic plasticity process following axotomy. There is also evidence that IFNγ may interfere in the differentiation and survival of neuronal cells. However, little is known about the effects of IFNγ absence on spinal cord neurons after injury. METHODS We performed a unilateral sciatic nerve transection injury in C57BL/6J (wild type) and IFNγ-KO (mutant) mice and studied motoneuron morphology using light and electron microscopy. One week after the lesion, mice from both strains were sacrificed and had their lumbar spinal cords processed for histochemistry (n = 5 each group) and transmission electron microscopy (TEM, n = 5 each group). Spinal cord sections from non-lesioned animals were also used to investigate neuronal survival and the presence of apoptosis with TUNEL and immunohistochemistry. RESULTS We find that presumed motoneurons in the lower lumbar ventral horn exhibited a smaller soma size in the IFNγ-KO series, regardless of nerve lesion. In plastic embedded sections stained with toluidine blue, the IFNγ-KO mice demonstrated a greater proportion of degenerating neurons in the ventral horn when compared to the control series (p < 0.05). Apoptotic death is suggested based on TUNEL and caspase 3 immunostaining. A sciatic nerve axotomy did not further aggravate the neuronal loss. The cellular changes were supported by electron microscopy, which demonstrated ventral horn neurons exhibiting intracellular vacuoles as well as degenerating nuclei and cytoplasm in the IFNγ-KO mice. Adjacent glial cells showed features suggestive of phagocytosis. Additional ultrastructural studies showed a decreased number of pre-synaptic terminals apposing to motoneurons in mutant mice. Nevertheless, no statistical difference regarding the input covering could be detected among the studied strains. CONCLUSION Altogether, these results suggest that IFNγ may be neuroprotective and its absence results in neuronal death, which is not further increased by peripheral axotomy.
Collapse
Affiliation(s)
- Sheila CS Victório
- Department of Anatomy, Cell Biology, Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), CP 6109, CEP 13083-970, Campinas, SP, Brazil
| | - Leif A Havton
- Department of Neurology, University of California, Los Angeles
| | - Alexandre LR Oliveira
- Department of Anatomy, Cell Biology, Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), CP 6109, CEP 13083-970, Campinas, SP, Brazil
| |
Collapse
|
98
|
Mix E, Meyer-Rienecker H, Hartung HP, Zettl UK. Animal models of multiple sclerosis--potentials and limitations. Prog Neurobiol 2010; 92:386-404. [PMID: 20558237 PMCID: PMC7117060 DOI: 10.1016/j.pneurobio.2010.06.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 12/17/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is still the most widely accepted animal model of multiple sclerosis (MS). Different types of EAE have been developed in order to investigate pathogenetic, clinical and therapeutic aspects of the heterogenic human disease. Generally, investigations in EAE are more suitable for the analysis of immunogenetic elements (major histocompatibility complex restriction and candidate risk genes) and for the study of histopathological features (inflammation, demyelination and degeneration) of the disease than for screening of new treatments. Recent studies in new EAE models, especially in transgenic ones, have in connection with new analytical techniques such as microarray assays provided a deeper insight into the pathogenic cellular and molecular mechanisms of EAE and potentially of MS. For example, it was possible to better delineate the role of soluble pro-inflammatory (tumor necrosis factor-α, interferon-γ and interleukins 1, 12 and 23), anti-inflammatory (transforming growth factor-β and interleukins 4, 10, 27 and 35) and neurotrophic factors (ciliary neurotrophic factor and brain-derived neurotrophic factor). Also, the regulatory and effector functions of distinct immune cell subpopulations such as CD4+ Th1, Th2, Th3 and Th17 cells, CD4+FoxP3+ Treg cells, CD8+ Tc1 and Tc2, B cells and γδ+ T cells have been disclosed in more detail. The new insights may help to identify novel targets for the treatment of MS. However, translation of the experimental results into the clinical practice requires prudence and great caution.
Collapse
Key Words
- apc, antigen-presenting cell
- at-eae, adoptive transfer eae
- bbb, blood–brain barrier
- bdnf, brain-derived neurotrophic factor
- cd, cluster of differentiation
- cns, central nervous system
- cntf, ciliary neurotrophic factor
- eae, experimental autoimmune encephalomyelitis
- hla, human leukocyte antigen
- ig, immunoglobulin
- il, interleukin
- ifn, interferon
- ivig, intravenous immunoglobulin
- mab, monoclonal antibody
- mbp, myelin basic protein
- mhc, major histocompatibility complex
- mog, myelin oligodendrocyte glycoprotein
- mp, methylprednisolone
- mri, magnetic resonance imaging
- ms, multiple sclerosis
- nk, natural killer
- odc, oligodendrocyte
- qtl, quantitative trait locus
- plp, proteolipid protein
- tc, cytotoxic t cell
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tnf, tumor necrosis factor
- animal model
- autoimmunity
- experimental autoimmune encephalomyelitis
- immunogenetics
- immunomodulatory therapy
- multiple sclerosis
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Clinical Trials as Topic
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Gene Expression Profiling
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Microarray Analysis
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Multiple Sclerosis/therapy
Collapse
Affiliation(s)
- Eilhard Mix
- Department of Neurology, University of Rostock, Germany
| | | | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Uwe K. Zettl
- Department of Neurology, University of Rostock, Germany
| |
Collapse
|
99
|
Herz J, Zipp F, Siffrin V. Neurodegeneration in autoimmune CNS inflammation. Exp Neurol 2010; 225:9-17. [DOI: 10.1016/j.expneurol.2009.11.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 11/24/2009] [Indexed: 02/06/2023]
|
100
|
Glatiramer acetate-reactive T lymphocytes regulate oligodendrocyte progenitor cell number in vitro: role of IGF-2. J Neuroimmunol 2010; 227:71-9. [PMID: 20637510 DOI: 10.1016/j.jneuroim.2010.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 11/23/2022]
Abstract
Glatiramer acetate (GA) is an immunomodulator approved for therapy of relapsing-remitting multiple sclerosis (RRMS), but recent findings indicate that it may also have additional, neurotrophic effects. Here, we found that supernatants from human GA-reactive T lymphocytes potentiated oligodendrocyte numbers in rodent and human oligodendrocyte progenitor (OPC) cultures. Effects of Th2-polarized lines were stronger than Th1-polarized cells. Microarray and ELISA analyses revealed that neurotrophic factors induced in Th2- and Th1-polarized GA-reactive lines included IGF-2 and BMP-7 respectively, and functional studies confirmed IGF-2 as trophic for OPCs. Our results support the concept that GA therapy may result in supportive effects on oligodendrocytes in RRMS patients.
Collapse
|