51
|
Park JH, Mortaja M, Son HG, Zhao X, Sloat LM, Azin M, Wang J, Collier MR, Tummala KS, Mandinova A, Bardeesy N, Semenov YR, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat Commun 2024; 15:4099. [PMID: 38816352 PMCID: PMC11139893 DOI: 10.1038/s41467-024-48441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Mahsa Mortaja
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xutu Zhao
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren M Sloat
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael R Collier
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Krishna S Tummala
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Quantitative Biosciences, Merck Research Laboratories, Boston, MA, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
52
|
Baronaitė I, Šulskis D, Kopu̅stas A, Tutkus M, Smirnovas V. Formation of Calprotectin Inhibits Amyloid Aggregation of S100A8 and S100A9 Proteins. ACS Chem Neurosci 2024; 15:1915-1925. [PMID: 38634811 PMCID: PMC11066842 DOI: 10.1021/acschemneuro.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Calcium-binding S100A8 and S100A9 proteins play a significant role in various disorders due to their pro-inflammatory functions. Substantially, they are also relevant in neurodegenerative disorders via the delivery of signals for the immune response. However, at the same time, they can aggregate and accelerate the progression of diseases. Natively, S100A8 and S100A9 exist as homo- and heterodimers, but upon aggregation, they form amyloid-like oligomers, fibrils, or amorphous aggregates. In this study, we aimed to elucidate the aggregation propensities of S100A8, S100A9, and their heterodimer calprotectin by investigating aggregation kinetics, secondary structures, and morphologies of the aggregates. For the first time, we followed the in vitro aggregation of S100A8, which formed spherical aggregates, unlike the fibrillar structures of S100A9 under the same conditions. The aggregates were sensitive to amyloid-specific ThT and ThS dyes and had a secondary structure composed of β-sheets. Similarly to S100A9, S100A8 protein was stabilized by calcium ions, resulting in aggregation inhibition. Finally, the formation of S100A8 and S100A9 heterodimers stabilized the proteins in the absence of calcium ions and prevented their aggregation.
Collapse
Affiliation(s)
- Ieva Baronaitė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Darius Šulskis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurimas Kopu̅stas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
53
|
Zhou H, Chen M, Zhao C, Shao R, Xu Y, Zhao W. The Natural Product Secoemestrin C Inhibits Colorectal Cancer Stem Cells via p38-S100A8 Feed-Forward Regulatory Loop. Cells 2024; 13:620. [PMID: 38607060 PMCID: PMC11011747 DOI: 10.3390/cells13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cancer stem cells (CSCs) are closely associated with tumor initiation, metastasis, chemoresistance, and recurrence, which represent some of the primary obstacles to cancer treatment. Targeting CSCs has become an important therapeutic approach to cancer care. Secoemestrin C (Sec C) is a natural compound with strong anti-tumor activity and low toxicity. Here, we report that Sec C effectively inhibited colorectal CSCs and non-CSCs concurrently, mainly by inhibiting proliferation, self-renewal, metastasis, and drug resistance. Mechanistically, RNA-seq analysis showed that the pro-inflammation pathway of the IL17 axis was enriched, and its effector S100A8 was dramatically decreased in Sec C-treated cells, whose roles in the stemness of CSCs have not been fully clarified. We found that the overexpression of S100A8 hindered the anti-CSCs effect of Sec C, and S100A8 deficiency attenuated the stemness traits of CSCs to enhance the Sec C killing activity on them. Meanwhile, the p38 signal pathway, belonging to the IL17 downstream axis, can also mediate CSCs and counter with Sec C. Notably, we found that S100A8 upregulation increased the p38 protein level, and p38, in turn, promoted S100A8 expression. This indicated that p38 may have a mutual feedback loop with S100A8. Our study discovered that Sec C was a powerful anti-colorectal CSC agent, and that the positive feedback loop of p38-S100A8 mediated Sec C activity. This showed that Sec C could act as a promising clinical candidate in colorectal cancer treatment, and S100A8 could be a prospective drug target.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Minghua Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Tiantan Xili, Beijing 100050, China;
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Tiantan Xili, Beijing 100050, China;
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| |
Collapse
|
54
|
Richards SM, Gubser Keller C, Kreutzer R, Greiner G, Ley S, Doelemeyer A, Dubost V, Flandre T, Kirkland S, Carbone W, Pandya R, Knehr J, Roma G, Schuierer S, Bouchez L, Seuwen K, Aebi A, Westhead D, Hintzen G, Jurisic G, Hossain I, Neri M, Manevski N, Balavenkatraman KK, Moulin P, Begrich A, Bertschi B, Huber R, Bouwmeester T, Driver VR, von Schwabedissen M, Schaefer D, Wettstein B, Wettstein R, Ruffner H. Molecular characterization of chronic cutaneous wounds reveals subregion- and wound type-specific differential gene expression. Int Wound J 2024; 21:e14447. [PMID: 38149752 PMCID: PMC10958103 DOI: 10.1111/iwj.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023] Open
Abstract
A limited understanding of the pathology underlying chronic wounds has hindered the development of effective diagnostic markers and pharmaceutical interventions. This study aimed to elucidate the molecular composition of various common chronic ulcer types to facilitate drug discovery strategies. We conducted a comprehensive analysis of leg ulcers (LUs), encompassing venous and arterial ulcers, foot ulcers (FUs), pressure ulcers (PUs), and compared them with surgical wound healing complications (WHCs). To explore the pathophysiological mechanisms and identify similarities or differences within wounds, we dissected wounds into distinct subregions, including the wound bed, border, and peri-wound areas, and compared them against intact skin. By correlating histopathology, RNA sequencing (RNA-Seq), and immunohistochemistry (IHC), we identified unique genes, pathways, and cell type abundance patterns in each wound type and subregion. These correlations aim to aid clinicians in selecting targeted treatment options and informing the design of future preclinical and clinical studies in wound healing. Notably, specific genes, such as PITX1 and UPP1, exhibited exclusive upregulation in LUs and FUs, potentially offering significant benefits to specialists in limb preservation and clinical treatment decisions. In contrast, comparisons between different wound subregions, regardless of wound type, revealed distinct expression profiles. The pleiotropic chemokine-like ligand GPR15L (C10orf99) and transmembrane serine proteases TMPRSS11A/D were significantly upregulated in wound border subregions. Interestingly, WHCs exhibited a nearly identical transcriptome to PUs, indicating clinical relevance. Histological examination revealed blood vessel occlusions with impaired angiogenesis in chronic wounds, alongside elevated expression of genes and immunoreactive markers related to blood vessel and lymphatic epithelial cells in wound bed subregions. Additionally, inflammatory and epithelial markers indicated heightened inflammatory responses in wound bed and border subregions and reduced wound bed epithelialization. In summary, chronic wounds from diverse anatomical sites share common aspects of wound pathophysiology but also exhibit distinct molecular differences. These unique molecular characteristics present promising opportunities for drug discovery and treatment, particularly for patients suffering from chronic wounds. The identified diagnostic markers hold the potential to enhance preclinical and clinical trials in the field of wound healing.
Collapse
Affiliation(s)
| | | | - Robert Kreutzer
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Department of PathologyAnaPath Services GmbHLiestalSwitzerland
| | | | - Svenja Ley
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Arno Doelemeyer
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Valerie Dubost
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Thierry Flandre
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Susan Kirkland
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Harvantis Pharma Consulting LtdLondonUK
| | - Walter Carbone
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Research and Development CoordinatorELI TechGroup Corso SvizzeraTorinoItaly
| | - Rishika Pandya
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Judith Knehr
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Guglielmo Roma
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Discovery Data ScienceGSK VaccinesSienaItaly
| | - Sven Schuierer
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Laure Bouchez
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Therapeutics Department, Executive in ResidenceGeneral InceptionBaselSwitzerland
| | - Klaus Seuwen
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Alexandra Aebi
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - David Westhead
- Leeds Institute of Data AnalyticsUniversity of LeedsLeedsUK
| | - Gabriele Hintzen
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Translational ScienceAffimed GmbHMannheimGermany
| | - Giorgia Jurisic
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Imtiaz Hossain
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Marilisa Neri
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Nenad Manevski
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Translational PKPD and Clinical Pharmacology, Pharmaceutical Sciences, pREDF. Hoffmann‐La Roche AGBaselSwitzerland
| | | | - Pierre Moulin
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Annette Begrich
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | | | - Roland Huber
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | | | - Vickie R. Driver
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- INOVA HealthcareWound Healing and Hyperbaric CentersFalls ChurchVirginiaUSA
| | | | - Dirk Schaefer
- Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Barbara Wettstein
- Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Reto Wettstein
- Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Heinz Ruffner
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| |
Collapse
|
55
|
Plana E, Oto J, Herranz R, Medina P, Cana F, Miralles M. Calprotectin as a new inflammatory marker of abdominal aortic aneurysm: A pilot study. Vasc Med 2024; 29:189-199. [PMID: 38457311 DOI: 10.1177/1358863x241231494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Abdominal aortic aneurysm (AAA) is a relevant clinical problem due to the risk of rupture of progressively dilated infrarenal aorta. It is characterized by degradation of elastic fibers, extracellular matrix, and inflammation of the arterial wall. Though neutrophil infiltration is a known feature of AAA, markers of neutrophil activation are scarcely analyzed; hence, the main objective of this study. METHODS Plasma levels of main neutrophil activation markers were quantified in patients with AAA and a double control group (CTL) formed by healthy volunteers (HV) and patients with severe atherosclerosis submitted for carotid endarterectomy (CE). Calprotectin, a cytoplasmic neutrophil protein, was quantified, by Western blot, in arterial tissue samples from patients with AAA and organ donors. Colocalization of calprotectin and neutrophil elastase was assessed by immunofluorescence. RESULTS Plasma calprotectin and IL-6 were both elevated in patients with AAA compared with CTL (p ⩽ 0.0001) and a strong correlation was found between both molecules (p < 0.001). This difference was maintained when comparing with HV and CE for calprotectin but only with HV for IL-6. Calprotectin was also elevated in arterial tissue samples from patients with AAA compared with organ donors (p < 0.0001), and colocalized with neutrophils in the arterial wall. CONCLUSIONS Circulating calprotectin could be a specific AAA marker and a potential therapeutical target. Calprotectin is related to inflammation and neutrophil activation in arterial wall and independent of other atherosclerotic events.
Collapse
Affiliation(s)
- Emma Plana
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Manuel Miralles
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
| |
Collapse
|
56
|
Wang G, Huang K, Tian Q, Guo Y, Liu C, Li Z, Yu Z, Zhang Z, Li M. S100A9 aggravates early brain injury after subarachnoid hemorrhage via inducing neuroinflammation and inflammasome activation. iScience 2024; 27:109165. [PMID: 38420589 PMCID: PMC10901081 DOI: 10.1016/j.isci.2024.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/03/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a stroke subtype with high mortality, and its severity is closely related to the short-term prognosis of SAH patients. S100 calcium-binding protein A9 (S100A9) has been shown to be associated with some neurological diseases. In this study, the concentration of S100A9 in clinical cerebrospinal fluid samples was detected by enzyme-linked immunosorbent assay (ELISA), and the relationship between S100A9 and the prognosis of patients was explored. In addition, WT mice and S100A9 knockout mice were used to establish an in vivo SAH model. Neurological scores, brain water content, and histopathological staining were performed after a specified time. A co-culture model of BV2 and HT22 cells was treated with heme chloride to establish an in vitro SAH model. Our study confirmed that the expression of S100A9 protein in the CSF of SAH patients is increased, and it is related to the short-term prognosis of SAH patients. S100A9 protein is highly expressed in microglia in the central nervous system. S100A9 gene knockout significantly improved neurological function scores and reduced neuronal apoptosis. S100A9 protein can activate TLR4 receptor, promote nuclear transcription of NF-κB, increase the activation of inflammatory body, and ultimately aggravate nerve injury.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Kesheng Huang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhijie Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhan Zhang
- Department of Rehabilitation Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
57
|
Lin Y, Li Y, Liang G, Yang X, Yang J, Hu Q, Sun J, Zhang C, Fang H, Liu A. Single-cell transcriptome analysis of aging mouse liver. FASEB J 2024; 38:e23473. [PMID: 38334462 DOI: 10.1096/fj.202302282r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Aging has a great impact on the liver, which causes a loss of physiological integrity and an increase in susceptibility to injury, but many of the underlying molecular and cellular processes remain unclear. Here, we performed a comprehensive single-cell transcriptional profiling of the liver during aging. Our data showed that aging affected the cellular composition of the liver. The increase in inflammatory cells including neutrophils and monocyte-derived macrophages, as well as in inflammatory cytokines, could indicate an inflammatory tissue microenvironment in aged livers. Moreover, aging drove a distinct transcriptional course in each cell type. The commonly significant up-regulated genes were S100a8, S100a9, and RNA-binding motif protein 3 across all cell types. Aging-related pathways such as biosynthesis, metabolism, and oxidative stress were up-regulated in aged livers. Additionally, key ligand-receptor pairs for intercellular communication, primarily linked to macrophage migration inhibitory factor, transforming growth factor-β, and complement signaling, were also elevated. Furthermore, hepatic stellate cells (HSCs) serve as the prominent hub for intrahepatic signaling. HSCs acquired an "activated" phenotype, which may be involved in the increased intrahepatic vascular tone and fibrosis with aging. Liver sinusoidal endothelial cells derived from aged livers were pseudocapillarized and procontractile, and exhibited down-regulation of genes involved in vascular development and homeostasis. Moreover, the aging-related changes in cellular composition and gene expression were reversed by caloric restriction. Collectively, the present study suggests liver aging is linked to a significant liver sinusoidal deregulation and a moderate pro-inflammatory state, providing a potential concept for understanding the mechanism of liver aging.
Collapse
Affiliation(s)
- Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying Li
- Wuhan Fourth Hospital, Wuhan, China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qi Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Sun
- Department of Biliopancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
58
|
Wang T, Zhao C, Zhang J, Li S, Zhang Y, Gong Y, Zhou Y, Yan L, Zhang S, Zhang Z, Hu H, Liu A, Bai X, Zou Z. Whitening of brown adipose tissue inhibits osteogenic differentiation via secretion of S100A8/A9. iScience 2024; 27:108857. [PMID: 38303710 PMCID: PMC10830855 DOI: 10.1016/j.isci.2024.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
The mechanism by which brown adipose tissue (BAT) regulates bone metabolism is unclear. Here, we reveal that BAT secretes S100A8/A9, a previously unidentified BAT adipokine (batokine), to impair bone formation. Brown adipocytes-specific knockout of Rheb (RhebBAD KO), the upstream activator of mTOR, causes BAT malfunction to inhibit osteogenesis. Rheb depletion induces NF-κB dependent S100A8/A9 secretion from brown adipocytes, but not from macrophages. In wild-type mice, age-related Rheb downregulation in BAT is associated with enhanced S100A8/A9 secretion. Either batokines from RhebBAD KO mice, or recombinant S100A8/A9, inhibits osteoblast differentiation of mesenchymal stem cells in vitro by targeting toll-like receptor 4 on their surfaces. Conversely, S100A8/A9 neutralization not only rescues the osteogenesis repressed in the RhebBAD KO mice, but also alleviates age-related osteoporosis in wild-type mice. Collectively, our data revealed an unexpected BAT-bone crosstalk driven by Rheb-S100A8/A9, uncovering S100A8/A9 as a promising target for the treatment, and potentially, prevention of osteoporosis.
Collapse
Affiliation(s)
- Ting Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chaoran Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahuan Zhang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shengfa Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Youming Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Gong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingyue Zhou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Yan
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopadics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongling Hu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Anling Liu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
59
|
Ortega-Ribera M, Zhuang Y, Brezani V, Thevkar Nagesh P, Joshi RS, Babuta M, Wang Y, Szabo G. G-CSF increases calprotectin expression, liver damage and neuroinflammation in a murine model of alcohol-induced ACLF. Front Cell Dev Biol 2024; 12:1347395. [PMID: 38419842 PMCID: PMC10899467 DOI: 10.3389/fcell.2024.1347395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Background and aims: Granulocyte colony-stimulating factor (G-CSF) has been proposed as a therapeutic option for patients with ACLF, however clinical outcomes are controversial. We aimed at dissecting the role of G-CSF in an alcohol-induced murine model of ACLF. Methods: ACLF was triggered by a single alcohol binge (5 g/kg) in a bile duct ligation (BDL) liver fibrosis model. A subgroup of mice received two G-CSF (200 μg/kg) or vehicle injections prior to acute decompensation with alcohol. Liver, blood and brain tissues were assessed. Results: Alcohol binge administered to BDL-fibrotic mice resulted in features of ACLF indicated by a significant increase in liver damage and systemic inflammation compared to BDL alone. G-CSF treatment in ACLF mice induced an increase in liver regeneration and neutrophil infiltration in the liver compared to vehicle-treated ACLF mice. Moreover, liver-infiltrating neutrophils in G-CSF-treated mice exhibited an activated phenotype indicated by increased expression of CXC motif chemokine receptor 2, leukotriene B4 receptor 1, and calprotectin. In the liver, G-CSF triggered increased oxidative stress, type I interferon response, extracellular matrix remodeling and inflammasome activation. Circulating IL-1β was also increased after G-CSF treatment. In the cerebellum, G-CSF increased neutrophil infiltration and S100a8/9 expression, induced microglia proliferation and reactive astrocytes, which was accompanied by oxidative stress, and inflammasome activation compared to vehicle-treated ACLF mice. Conclusion: In our novel ACLF model triggered by alcohol binge that mimics ACLF pathophysiology, neutrophil infiltration and S100a8/9 expression in the liver and brain indicate increased tissue damage, accompanied by oxidative stress and inflammasome activation after G-CSF treatment.
Collapse
Affiliation(s)
- Martí Ortega-Ribera
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Yuan Zhuang
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Veronika Brezani
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Prashanth Thevkar Nagesh
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Radhika S. Joshi
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Mrigya Babuta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Yanbo Wang
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
| |
Collapse
|
60
|
Wang W, Ren Y, Xu F, Zhang X, Wang F, Wang T, Zhong H, Wang X, Yao Y. Identification of hub genes significantly linked to temporal lobe epilepsy and apoptosis via bioinformatics analysis. Front Mol Neurosci 2024; 17:1300348. [PMID: 38384278 PMCID: PMC10879302 DOI: 10.3389/fnmol.2024.1300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Background Epilepsy stands as an intricate disorder of the central nervous system, subject to the influence of diverse risk factors and a significant genetic predisposition. Within the pathogenesis of temporal lobe epilepsy (TLE), the apoptosis of neurons and glial cells in the brain assumes pivotal importance. The identification of differentially expressed apoptosis-related genes (DEARGs) emerges as a critical imperative, providing essential guidance for informed treatment decisions. Methods We obtained datasets related to epilepsy, specifically GSE168375 and GSE186334. Utilizing differential expression analysis, we identified a set of 249 genes exhibiting significant variations. Subsequently, through an intersection with apoptosis-related genes, we pinpointed 16 genes designated as differentially expressed apoptosis-related genes (DEARGs). These DEARGs underwent a comprehensive array of analyses, including enrichment analyses, biomarker selection, disease classification modeling, immune infiltration analysis, prediction of miRNA and transcription factors, and molecular docking analysis. Results In the epilepsy datasets examined, we successfully identified 16 differentially expressed apoptosis-related genes (DEARGs). Subsequent validation in the external dataset GSE140393 revealed the diagnostic potential of five biomarkers (CD38, FAIM2, IL1B, PAWR, S100A8) with remarkable accuracy, exhibiting an impressive area under curve (AUC) (The overall AUC of the model constructed by the five key genes was 0.916, and the validation set was 0.722). Furthermore, a statistically significant variance (p < 0.05) was observed in T cell CD4 naive and eosinophil cells across different diagnostic groups. Exploring interaction networks uncovered intricate connections, including gene-miRNA interactions (164 interactions involving 148 miRNAs), gene-transcription factor (TF) interactions (22 interactions with 20 TFs), and gene-drug small molecule interactions (15 interactions involving 15 drugs). Notably, IL1B and S100A8 demonstrated interactions with specific drugs. Conclusion In the realm of TLE, we have successfully pinpointed noteworthy differentially expressed apoptosis-related genes (DEARGs), including CD38, FAIM2, IL1B, PAWR, and S100A8. A comprehensive understanding of the implications associated with these identified genes not only opens avenues for advancing our comprehension of the underlying pathophysiology but also bears considerable potential in guiding the development of innovative diagnostic methodologies and therapeutic interventions for the effective management of epilepsy in the future.
Collapse
Affiliation(s)
- Weiliang Wang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Yinghao Ren
- Department of Dermatology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Fei Xu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaobin Zhang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Fengpeng Wang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huijuan Zhong
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Yao
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
61
|
Saad EE, Michel R, Borahay MA. Immunosuppressive tumor microenvironment and uterine fibroids: Role in collagen synthesis. Cytokine Growth Factor Rev 2024; 75:93-100. [PMID: 37839993 PMCID: PMC10922281 DOI: 10.1016/j.cytogfr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Uterine fibroids (UF), also called uterine leiomyoma, is one of the most prevalent uterine tumors. UF represents a serious women's health global problem with a significant physical, emotional, and socioeconomic impact. Risk factors for UF include racial disparities, age, race, hormonal factors, obesity, and lifestyle (diet, physical activity, and stress. There are several biological contributors to UF pathogenesis such as cellular proliferation, angiogenesis, and extracellular matrix (ECM) accumulation. This review addresses tumor immune microenvironment as a novel mediator of ECM deposition. Polarization of immune microenvironment towards the immunosuppressive phenotype has been associated with ECM deposition. Immunosuppressive cells include M2 macrophage, myeloid-derived suppressor cells (MDSCs), and Th17 cells, and their secretomes include interleukin 4 (IL-4), IL-10, IL-13, IL-17, IL-22, arginase 1, and transforming growth factor-beta (TGF-β1). The change in the immune microenvironment not only increase tumor growth but also aids in collagen synthesis and ECM disposition, which is one of the main hallmarks of UF pathogenesis. This review invites further investigations on the change in the UF immune microenvironment as well as a novel targeting approach instead of the traditional UF hormonal and supportive treatment.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
62
|
Zhou Y, Nomigni MT, Gaigneaux A, Tolle F, Wright HL, Bueb JL, Bréchard S. miRNA-132-5p mediates a negative feedback regulation of IL-8 secretion through S100A8/A9 downregulation in neutrophil-like HL-60 cells. Front Immunol 2024; 14:1274378. [PMID: 38292491 PMCID: PMC10824955 DOI: 10.3389/fimmu.2023.1274378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Background Neutrophils are an important source of pro-inflammatory and immunomodulatory cytokines. This makes neutrophils efficient drivers of interactions with immune and non-immune cells to maintain homeostasis and modulate the inflammatory process by notably regulating the release of cytokines. Ca2+-dependent regulatory mechanism encompassing cytokine secretion by neutrophils are not still identified. In this context, we propose to define new insights on the role of Ca2+-binding proteins S100A8/A9 and on the regulatory role of miRNA-132-5p, which was identified as a regulator of S100A8/A9 expression, on IL-8 secretion. Methods Differentiated HL-60 cells, a human promyelocytic leukemia cell line that can be induced to differentiate into neutrophil-like cells, were used as a model of human neutrophils and treated with N- formyl-methionyl-leucyl-phenylalanine (fMLF), a bacterial peptide that activates neutrophils. shRNA knockdown was used to define the role of selected targets (S100A8/A9 and miRNA-132-5p) on IL-8 secretion. Results and discussion Different types of cytokines engage different signaling pathways in the secretion process. IL-8 release is tightly regulated by Ca2+ binding proteins S100A8/A9. miRNA-132-5p is up-regulated over time upon fMLF stimulation and decreases S100A8/A9 expression and IL-8 secretion. Conclusion These findings reveal a novel regulatory loop involving S100A8/A9 and miRNA-132-5p that modulates IL-8 secretion by neutrophils in inflammatory conditions. This loop could be a potential target for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Milène Tetsi Nomigni
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Fabrice Tolle
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Helen L. Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jean-Luc Bueb
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sabrina Bréchard
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
63
|
Jiang H, Zhao Y, Su M, Sun L, Chen M, Zhang Z, Ilyas I, Wang Z, Little PJ, Wang L, Weng J, Ge J, Xu S. A proteome-wide screen identifies the calcium binding proteins, S100A8/S100A9, as clinically relevant therapeutic targets in aortic dissection. Pharmacol Res 2024; 199:107029. [PMID: 38056513 DOI: 10.1016/j.phrs.2023.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Aortic dissection (AD) is a fatal cardiovascular disease with limited pharmacotherapies. To discover novel therapeutic targets for AD, the present study was conducted on ascending aorta samples from AD patients versus those from control subjects using proteomic analysis. Integrated proteomic data analysis identified S100 calcium-binding proteins A8 and A9 (S100A8/A9) as new therapeutic targets for AD. As assessed by ELISA, the circulating levels of S100A8/A9 were elevated in AD patients. In addition, we validated the upregulation of S100A8/A9 in a mouse model of AD. In vitro and in vivo studies substantiated that S100A8/A9, as danger-associated molecular pattern molecules, promotes the smooth muscle cells phenotypic switch by inhibiting serum response factor (SRF) activity but elevating NF-κB dependent inflammatory response. Depletion of S100A8/A9 attenuates the occurrence and development of AD. As a proof of concept, we tested the safety and efficacy of pharmacological inhibition of S100A8/A9 by ABR-25757 (paquinimod) in a mouse model of AD. We observed that ABR-25757 ameliorated the incidence of rupture and improved elastin morphology associated with AD. Further single-cell RNA sequencing disclosed that the phenotypic switch of vascular smooth muscle cells (VSMCs) and inflammatory response pathways were responsible for ABR-25757-mediated protection against AD. Thus, this study reveals the regulatory mechanism of S100A8/A9 in AD and offers a potential therapeutic avenue to treat AD by targeting S100A8/A9.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaping Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Meiming Su
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Lu Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Meijie Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Zhidan Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Zhihua Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Jianjun Ge
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
64
|
Kobayashi Y, Eguchi A, Imami K, Tempaku M, Izuoka K, Takase T, Kainuma K, Nagao M, Furuta N, Iwasa M, Nakagawa H, Fujisawa T, Togashi K. Circulating extracellular vesicles are associated with pathophysiological condition including metabolic syndrome-related dysmetabolism in children and adolescents with obesity. J Mol Med (Berl) 2024; 102:23-38. [PMID: 37874387 DOI: 10.1007/s00109-023-02386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Obesity of children and adolescents (OCA) is often accompanied by metabolic syndrome (MetS), which often leads to adult obesity and subsequent complications, yet the entire pathophysiological response is not fully understood. The number and composition of circulating extracellular vesicles (EV) reflect overall patient condition; therefore, we investigated the pathophysiological condition of OCA, including MetS-associated dysmetabolism, using circulating EVs. In total, 107 children and adolescents with or without obesity (boys, n = 69; girls, n = 38; median age, 10 years) were enrolled. Circulating EV number and EV protein composition were assessed via flow cytometry and liquid chromatography tandem-mass spectrometry, respectively. In a multivariate analysis, relative body weight (standardized partial regression coefficient (SPRC) 0.469, P = 0.012) and serum triglyceride level (SPRC 0.548, P < 0.001) were detected as independent parameters correlating with circulating EV number. Proteomic analysis identified 31 upregulated and 45 downregulated EV proteins in OCA. Gene ontology analysis revealed upregulated proteins to be involved in various biological processes, including intracellular protein transport, protein folding, stress response, leukocyte activation, innate immune response, and platelet degranulation, which can modulate lipid and glucose metabolism, skeletal and cardiac muscle development, inflammation, immune response, carcinogenesis, and cancer progression. Notably, several identified EV proteins are involved in neuro-development, neurotransmitter release, and neuro-protective agents in OCA. Circulating EVs were derived from adipocytes, hepatocytes, B cell lymphocytes, and neurons. Circulating EV number is significantly associated with MetS-related dysmetabolism and the EV protein cargo carries a special "signature" that reflects the alteration of various biological processes under the pathophysiological condition of OCA. KEY MESSAGES: Circulating EV number correlates with physical and laboratory parameters for obesity in children and adolescents. Relative body weight and triglyceride are independent factors for increased circulating EVs. EV composition is significantly changed in obesity of children and adolescents. Identified EV composition changes associated with obesity and involves in metabolism, immune response, and cancer progression. Circulating EVs are partially derived from adipocyte, hepatocytes, B cells, and neurons.
Collapse
Affiliation(s)
- Yoshinao Kobayashi
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Biobank Center, Mie University Hospital, Tsu, Mie, 514-8507, Japan.
| | - Koshi Imami
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Mina Tempaku
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kiyora Izuoka
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takafumi Takase
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Keigo Kainuma
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Mizuho Nagao
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Noriko Furuta
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takao Fujisawa
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Kenji Togashi
- Department of Health and Physical Education, Faculty of Education, Mie University, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
65
|
Zhang X, Niu M, Li T, Wu Y, Gao J, Yi M, Wu K. S100A8/A9 as a risk factor for breast cancer negatively regulated by DACH1. Biomark Res 2023; 11:106. [PMID: 38093319 PMCID: PMC10720252 DOI: 10.1186/s40364-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND S100A8 and S100A9 are members of Ca2+-binding EF-hand superfamily, mainly expressed by macrophages and neutrophils. Limited by the poor stability of homodimers, they commonly exist as heterodimers. Beyond acting as antibacterial cytokines, S100A8/A9 is also associated with metabolic and autoimmune diseases such as obesity, diabetes, and rheumatoid arthritis. While the involvement of S100A8/A9 in breast cancer development has been documented, its prognostic significance and the precise regulatory mechanisms remain unclear. METHODS S100A8/A9 protein in breast cancer samples was evaluated by immunohistochemistry staining with tumor tissue microarrays. The serum S100A8 concentration in patients was measured by enzyme-linked immunosorbent assay (ELISA). The S100A8 secreted by breast cancer cells was detected by ELISA as well. Pooled analyses were conducted to explore the relationships between S100A8/A9 mRNA level and clinicopathological features of breast cancer patients. Besides, the effects of S100A8/A9 and DACH1 on patient outcomes were analyzed by tissue assays. Finally, xenograft tumor assays were adopted to validate the effects of DACH1 on tumor growth and S100A8/A9 expression. RESULTS The level of S100A8/A9 was higher in breast cancer, relative to normal tissue. Increased S100A8/A9 was related to poor differentiation grade, loss of hormone receptors, and Her2 positive. Moreover, elevated S100A8/A9 predicted a worse prognosis for breast cancer patients. Meanwhile, serum S100A8 concentration was upregulated in Grade 3, basal-like, and Her2-overexpressed subtypes. Additionally, the results of public databases showed S100A8/A9 mRNA level was negatively correlated to DACH1. Stable overexpressing DACH1 in breast cancer cells significantly decreased the generation of S100A8. The survival analysis demonstrated that patients with high S100A8/A9 and low DACH1 achieved the shortest overall survival. The xenograft models indicated that DACH1 expression significantly retarded tumor growth and downregulated S100A8/A9 protein abundance. CONCLUSION S100A8/A9 is remarkedly increased in basal-like and Her2-overexpressed subtypes, predicting poor prognosis of breast cancer patients. Tumor suppressor DACH1 inhibits S100A8/A9 expression. The combination of S100A8/A9 and DACH1 predicted the overall survival of breast cancer patients more preciously.
Collapse
Affiliation(s)
- Xiaojun Zhang
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinnan Gao
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Kongming Wu
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
66
|
Zhou Z, Zou M, Chen H, Zhu F, Wang T, Huang X. Forkhead box A1 induces angiogenesis through activation of the S100A8/p38 MAPK axis in cutaneous wound healing. Immunopharmacol Immunotoxicol 2023; 45:742-753. [PMID: 37459395 DOI: 10.1080/08923973.2023.2233693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/30/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The association between S100 calcium-binding protein A8 (S100A8) and angiogenesis has been reported in previous reports. This study focuses on the roles of S100A8 in the angiogenesis of human dermal microvascular endothelial cells (HDMECs) and in cutaneous wound healing in mice. METHODS Candidate genes related to angiogenesis activity were screened using a GSE83582 dataset. The overexpression DNA plasmid of S100A8 was transfected into HDMECs to analyze its effect on cell proliferation, migration, and angiogenesis. Full-thickness skin wounds were induced on mice, followed by adenovirus treatments to analyze the function of gene alteration in wound healing and pathological changes. The upstream regulator of S100A8 was predicted by bioinformatics analysis and verified by luciferase and immunoprecipitation assays. The role of the forkhead box A1 (FOXA1)-S100A8 interaction in p38 MAPK activation and angiogenesis were validated by rescue experiments. RESULTS S100A8 was identified as a gene significantly correlated with angiogenesis. The S100A8 upregulation promoted the proliferation, migration, and angiogenesis of HDMECs, and it promoted p38 MAPK phosphorylation. Treatment of SB203580, a p38 MAPK inhibitor, blocked the promoting effect of S100A8. FOXA1 was identified as an upstream factor of S100A8 promoting its transcription. FOXA1 overexpression in HDMECs increased p38 MAPK phosphorylation and enhanced the activity of cells, which were blocked by the S100A8 inhibition. Similar results were reproduced in vivo where FOXA1 overexpression accelerated whereas the S100A8 knockdown retarded the cutaneous wound healing in mice. CONCLUSION FOXA1 mediates the phosphorylation of p38 MAPK through transcription activation of S100A8, thereby inducing angiogenesis and promoting cutaneous wound healing.
Collapse
Affiliation(s)
- Zhongzhi Zhou
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Meilin Zou
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Hongping Chen
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Furong Zhu
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Tingting Wang
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Xinling Huang
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| |
Collapse
|
67
|
Zhao Y, Qi W, Huang C, Zhou Y, Wang Q, Tian X, Li M, Zhao Y, Zeng X, Zhao J. Serum Calprotectin as a Potential Predictor of Microvascular Manifestations in Patients with Antiphospholipid Syndrome. Rheumatol Ther 2023; 10:1769-1783. [PMID: 37906398 PMCID: PMC10654303 DOI: 10.1007/s40744-023-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION Microvascular manifestations constitute a subtype of antiphospholipid syndrome, and those patients have relatively poor prognoses, so it is important to find markers for microvascular manifestations. This study was conducted to explore whether serum calprotectin could be a predictor of microvascular manifestations in antiphospholipid antibody (aPL)-positive patients. METHODS Consecutive patients with persistent aPL positivity referred to Peking Union Medical College Hospital and age- and sex-matched health controls (HCs) were included. Microvascular manifestations included antiphospholipid syndrome (APS) nephropathy, livedo reticularis, valvular lesions, non-stroke central nervous system manifestations, myocarditis, catastrophic APS, and other microvascular manifestations confirmed by pathology, imaging, or clinical diagnosis. Calprotectin was measured by an enzyme-linked immunosorbent assay (ELISA). The cutoff value was defined as mean + 2 standard deviations of HCs. Multivariable logistic regression analysis was used to analyze risk factors. Pearson correlation analysis was used to detect the correlation between calprotectin and other laboratory data. RESULTS Of the 466 patients included in the study, 281 (60.3%) patients met the 2006 Sydney Revised Classification Criteria; among the latter, 77.2% were patients with primary APS. The mean age was 39.10 ± 13.05 years old, and 77.0% were female. Thirty-eight age- and sex-matched HCs were included in the study. Serum calprotectin levels were increased in aPL-positive patients compared with HCs (649.66 ± 240.79 vs 484.62 ± 149.37 ng/ml, p < 0.001), and were increased in patients with microvascular manifestations compared with patients without (693.03 ± 271.90 vs 639.43 ± 232.06 ng/ml, p = 0.044). The cutoff value was 783.36 ng/ml. Ninety-three patients (20.0%) were positive for calprotectin. Calprotectin positivity was independently associated with microvascular manifestations (odds ratio [OR] 1.90, 95% confidence interval [CI] 1.07-3.36) and platelet count (PLT) < 100 (OR 2.04, 95% CI 1.08-3.88). Age (OR 0.98, 95% CI 0.96-1.00), systemic lupus erythematosus (OR 2.08, 95% CI 1.15-3.75), calprotectin positivity (OR 1.83, 95% CI 1.02-3.26), hypertension (OR 2.73, 95% CI 1.36-5.45), hemolytic anemia (OR 2.66, 95% CI 1.13-6.23), and anti-β2GPI antibodies (OR 2.06, 95% CI 1.11-3.83) could independently predict microvascular manifestations in aPL-positive patients. Serum calprotectin negatively correlated with PLT (R = - 0.101, p = 0.031). CONCLUSION Serum calprotectin levels are increased in aPL-positive patients and could be a potential predictor of microvascular manifestations.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wanting Qi
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Can Huang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yangzhong Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| |
Collapse
|
68
|
Wang Q, Long G, Luo H, Zhu X, Han Y, Shang Y, Zhang D, Gong R. S100A8/A9: An emerging player in sepsis and sepsis-induced organ injury. Biomed Pharmacother 2023; 168:115674. [PMID: 37812889 DOI: 10.1016/j.biopha.2023.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Sepsis, the foremost contributor to mortality in intensive care unit patients, arises from an uncontrolled systemic response to invading infections, resulting in extensive harm across multiple organs and systems. Recently, S100A8/A9 has emerged as a promising biomarker for sepsis and sepsis-induced organ injury, and targeting S100A8/A9 appeared to ameliorate inflammation-induced tissue damage and improve adverse outcomes. S100A8/A9, a calcium-binding heterodimer mainly found in neutrophils and monocytes, serves as a causative molecule with pro-inflammatory and immunosuppressive properties, which are vital in the pathogenesis of sepsis. Therefore, improving our comprehension of how S100A8/A9 acts as a pathological player in the development of sepsis is imperative for advancing research on sepsis. Our review is the first-to the best of our knowledge-to discuss the biology of S100A8/A9 and its release mechanisms, summarize recent advances concerning the vital roles of S100A8/A9 in sepsis and the consequential organ damage, and underscore its potential as a promising diagnostic biomarker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Hong Luo
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Xiqun Zhu
- Hubei Cancer Hospital, Tongji Medical College, HUST, Wuhan 430079, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan 430030, China.
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China; Hubei Clinical Research Center for Infectious Diseases, Wuhan 430023, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan 430023, China; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China.
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
69
|
He X, Wang Y, Yang Y, He Q, Sun L, Jin J. Quantitative proteomics reveals plasma protein profile and potential pathways in pulmonary tuberculosis patients with and without diabetes. Tuberculosis (Edinb) 2023; 143:102424. [PMID: 37871493 DOI: 10.1016/j.tube.2023.102424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND The coexistence of pulmonary tuberculosis (PTB) and diabetes mellitus (DM) has emerged as a significant global public health concern. Patients with DM are at higher risk of developing PTB, and PTB is one of the important factors that exacerbate the development of DM. However, the impact of DM on the protein profile and underlying pathways in PTB patients is unclear. METHODS We systematically used data-independent acquisition (DIA)-based liquid chromatography - tandem mass spectrometry (LC-MS/MS) to identify differentially expressed proteins (DEPs) in plasma samples from PTB patients, DM combined with PTB patients, and healthy controls. Then these DEPs were analyzed by bioinformatics. RESULTS Our analysis identified 268 proteins, the results indicated that DEPs in the PTB group as well as in the DM-PTB group were mainly involved in immune responses, complement and coagulation cascade and cholesterol metabolic pathways compared to healthy controls. CONCLUSIONS We analyzed the plasma protein profiles of PTB, DM-PTB, and HC groups using proteomics techniques and identified potential pathways for PTB patients with and without DM. This provides valuable clues to explore the impact of DM on PTB.
Collapse
Affiliation(s)
- Xinxin He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, PR China.
| | - Yunguang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
| | - Yue Yang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, PR China.
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
| | - Lifang Sun
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, PR China; Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, 310003, PR China.
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
| |
Collapse
|
70
|
Pruenster M, Immler R, Roth J, Kuchler T, Bromberger T, Napoli M, Nussbaumer K, Rohwedder I, Wackerbarth LM, Piantoni C, Hennis K, Fink D, Kallabis S, Schroll T, Masgrau-Alsina S, Budke A, Liu W, Vestweber D, Wahl-Schott C, Roth J, Meissner F, Moser M, Vogl T, Hornung V, Broz P, Sperandio M. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat Immunol 2023; 24:2021-2031. [PMID: 37903858 PMCID: PMC10681899 DOI: 10.1038/s41590-023-01656-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
S100A8/S100A9 is a proinflammatory mediator released by myeloid cells during many acute and chronic inflammatory disorders. However, the precise mechanism of its release from the cytosolic compartment of neutrophils is unclear. Here, we show that E-selectin-induced rapid S100A8/S100A9 release during inflammation occurs in an NLRP3 inflammasome-dependent fashion. Mechanistically, E-selectin engagement triggers Bruton's tyrosine kinase-dependent tyrosine phosphorylation of NLRP3. Concomitant potassium efflux via the voltage-gated potassium channel KV1.3 mediates ASC oligomerization. This is followed by caspase 1 cleavage and downstream activation of pore-forming gasdermin D, enabling cytosolic release of S100A8/S100A9. Strikingly, E-selectin-mediated gasdermin D pore formation does not result in cell death but is a transient process involving activation of the ESCRT III membrane repair machinery. These data clarify molecular mechanisms of controlled S100A8/S100A9 release from neutrophils and identify the NLRP3/gasdermin D axis as a rapid and reversible activation system in neutrophils during inflammation.
Collapse
Affiliation(s)
- Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jonas Roth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tim Kuchler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Bromberger
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Matteo Napoli
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Katrin Nussbaumer
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lou Martha Wackerbarth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Chiara Piantoni
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Konstantin Hennis
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Diana Fink
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sebastian Kallabis
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tobias Schroll
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Agnes Budke
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Wang Liu
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, Münster, Münster, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Felix Meissner
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
71
|
Yu J, Zhao B, Pi Q, Zhou G, Cheng Z, Qu C, Wang X, Kong L, Luo S, Du D, Guo Y. Deficiency of S100A8/A9 attenuates pulmonary microvascular leakage in septic mice. Respir Res 2023; 24:288. [PMID: 37978525 PMCID: PMC10655323 DOI: 10.1186/s12931-023-02594-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND We have reported a positive correlation between S100 calcium-binding protein (S100) A8/S100A9 and sepsis-induced lung damage before. However, limited knowledge exists concerning the biological role of S100A8/A9 in pulmonary vascular endothelial barrier dysfunction, as well as the diagnostic value of S100A8/A9 in sepsis. METHODS Sepsis was induced in C57BL/6J mice and S100A9-knockout (KO) mice through the cecal ligation and puncture (CLP). Pulmonary vascular leakage was determined by measuring extravasated Evans blue (EB). Reverse transcription polymerase chain reaction and the histological score were used to evaluate inflammation and lung injury, respectively. Recombinant S100A8/A9 (rhS100A8/A9) was used to identify the effects of S100A8/A9 on endothelial barrier dysfunction in human umbilical vein endothelial cells (HUVECs). Additionally, the diagnostic value of S100A8/A9 in sepsis was assessed using receiver operating characteristic. RESULTS S100A8/A9 expression was up-regulated in the lungs of CLP-operated mice. S100A9 KO significantly reversed CLP-induced hypothermia and hypotension, resulting in an improved survival rate. S100A9 KO also decreased the inflammatory response, EB leakage, and histological scores in the lungs of CLP-operated mice. Occludin and VE-cadherin expressions were decreased in the lungs of CLP-operated mice; However, S100A9 KO attenuated this decrease. Moreover, CLP-induced signal transducer and activator of transcription 3 (STAT3) and p38/extracellular signal-regulated kinase (ERK) signalling activation and apoptosis were mitigated by S100A9 KO in lungs. In addition, rhS100A8/A9 administration significantly decreased occludin and VE-cadherin expressions, increased the phosphorylated (p)-ERK/ERK, p-p38/p38, and B-cell leukaemia/lymphoma 2 protein (Bcl-2)-associated X protein/Bcl-2 ratios in HUVECs. CONCLUSION The present study demonstrated S100A8/A9 aggravated sepsis-induced pulmonary inflammation, vascular permeability, and lung injury. This was achieved, at least partially, by activating the P38/STAT3/ERK signalling pathways. Moreover, S100A8/A9 showed the potential as a biomarker for sepsis diagnosis.
Collapse
Affiliation(s)
- Jiang Yu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Boying Zhao
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400010, China
| | - Qiangzhong Pi
- Department of Respiratory Medicine, Southwest Hospital, Army Military Medical University, Chongqing, P.R. China
| | - Guoxiang Zhou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Cheng
- Department of Cardiology, Chongqing University three Gorges Hospital, Chongqing, 404199, China
| | - Can Qu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400010, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dingyuan Du
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China.
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400010, China.
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
72
|
Hou Q, Jiang J, Na K, Zhang X, Liu D, Jing Q, Yan C, Han Y. Bioinformatics analyses of potentially common pathogenic networks for primary Sjögren's syndrome complicated with acute myocardial infarction. Sci Rep 2023; 13:19276. [PMID: 37935719 PMCID: PMC10630427 DOI: 10.1038/s41598-023-45896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Both primary Sjögren's syndrome (pSS) and acute myocardial infarction (AMI) are intricately linked. However, their common mechanism is not fully understood. Herein, we examined the underlying network of molecular action associated with developing this complication. Datasets were downloaded from the GEO database. We performed enrichment and protein-protein interaction analyses and screened key genes. We used external datasets to confirm the diagnostic performance for these hub genes. Transcription factor and microRNA regulatory networks were constructed for the validated hub genes. Finally, drug prediction and molecular docking validation were performed. We identified 62 common DEGs, many of which were enriched regarding inflammation and immune response. 5 DEGs were found as key hub genes (IGSF6, MMP9, S100A8, MNDA, and NCF2). They had high diagnostic performance in external datasets. Functional enrichment of these five hub genes showed that they were associated with the adaptive immune response. The Type 1T helper cell showed the most association among all cell types related to AMI and pSS. We identified 36 common TFs and 49 identical TF-miRNAs. The drugs, including Benzo, dexamethasone, and NADP, were predicted as potential therapeutic agents. Herein, we revealed common networks involving pSS and AMI etiologies. Knowledge of these networks and hub genes can enhance research into their associated mechanism and the development of future robust therapy.
Collapse
Affiliation(s)
- Qingbin Hou
- Department of Internal Medicine (Cardiovascular), the Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jinping Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
- Department of Cardiology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Kun Na
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Quanmin Jing
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- Department of Internal Medicine (Cardiovascular), the Second Clinical Medical College, Shanxi Medical University, Taiyuan, China.
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
73
|
Zhang C, Sheng M, Lv J, Cao Y, Chen D, Jia L, Sun Y, Ren Y, Li L, Weng Y, Yu W. Single-cell analysis reveals the immune heterogeneity and interactions in lungs undergoing hepatic ischemia-reperfusion. Int Immunopharmacol 2023; 124:111043. [PMID: 37844464 DOI: 10.1016/j.intimp.2023.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
Hepatic ischemia-reperfusion IR (HIR) is an unavoidable pathophysiological process during liver transplantation, resulting in systematic sterile inflammation and remote organ injury. Acute lung injury (ALI) is a serious complication after liver transplantation with high postoperative morbidity and mortality. However, the underlying mechanism is still unclear. To assess the phenotype and plasticity of various cell types in the lung tissue microenvironment after HIR at the single-cell level, single-cell RNA sequencing (scRNA-seq) was performed using the lungs from HIR-induced mice. In our results, we identified 23 cell types in the lungs after HIR and found that this highly complex ecosystem was formed by subpopulations of bone marrow-derived cells that signaled each other and mediated inflammatory responses in different states and different intervals. We described the unique transcriptional profiles of lung cell clusters and discovered two novel cell subtypes (Tspo+Endothelial cells and Vcan+ monocytes), as well as the endothelial cell-immune cell and immune cell-T cell clusters interactome. In addition, we found that S100 calcium binding protein (S100a8/a9), specifically and highly expressed in immune cell clusters of lung tissues and exhibited detrimental effects. Finally, the cellular landscape of the lung tissues after HIR was established, highlighting the heterogeneity and cellular interactions between major immune cells in HIR-induced lungs. Our findings provided new insights into the mechanisms of HIR-induced ALI and offered potential therapeutic target to prevent ALI after liver transplantation.
Collapse
Affiliation(s)
- Chen Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin 300052, China; Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jingshu Lv
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Yingli Cao
- School of Medical, Nankai University, Tianjin 300071, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin 300052, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Ying Sun
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Yinghui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Lian Li
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Wenli Yu
- The First Central Clinical School, Tianjin Medical University, Tianjin 300052, China; Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
74
|
Frade-Sosa B, Sanmartí R. Neutrophils, neutrophil extracellular traps, and rheumatoid arthritis: An updated review for clinicians. REUMATOLOGIA CLINICA 2023; 19:515-526. [PMID: 37867028 DOI: 10.1016/j.reumae.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 10/24/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by the presence of autoantibodies. Research on the pathogenic mechanisms involved in systemic autoimmune diseases has largely focused on the involvement of the adaptive immune system with dysregulated responses of T and B cells. However, in recent years, there is increasing evidence of the significant role played by the innate immune system, particularly neutrophils, in these diseases, particularly in RA. Neutrophil extracellular traps (NETs) are extracellular structures composed of remodeled and concentrated chromatin with DNA, histones, and neutrophil proteins, and were first described in 2004. It has been studied that NETs may play a pathogenic role in RA and could be a source of autoantigens, increasing the immune response in the form of autoantibodies in this disease. The possible role of NETs and other markers of neutrophil activation as biomarkers of activity in RA and other immune-mediated diseases has also been studied. This article reviews the role of NETs in RA. It discusses the role of neutrophils and the latest advances in NETs, especially their involvement in autoimmune phenomena in RA. Finally, a literature review is conducted on the determination of NETs in peripheral blood and their relationship as a biomarker of RA activity, as well as their potential role in disease monitoring.
Collapse
Affiliation(s)
- Beatriz Frade-Sosa
- Servicio de Reumatología, Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Raimon Sanmartí
- Servicio de Reumatología, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
75
|
Lu Y, Luo Y, Zhang Q, Chen W, Zhang N, Wang L, Zhang Y. Decoding the immune landscape following hip fracture in elderly patients: unveiling temporal dynamics through single-cell RNA sequencing. Immun Ageing 2023; 20:54. [PMID: 37848979 PMCID: PMC10580557 DOI: 10.1186/s12979-023-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Hip fractures in the elderly have significant consequences, stemming from the initial trauma and subsequent surgeries. Hidden blood loss and stress due to concealed injury sites could impact the whole osteoimmune microenvironment. This study employs scRNA-seq technique to map immune profiles in elderly hip fracture patients from post-trauma to the recovery period, investigating the dynamic changes of immune inflammation regulation subgroups. METHODS We collected peripheral blood samples from four elderly hip fracture patients (two males and two females, all > 75 years of age) at three different time points (24 h post-trauma, 24 h post-operation, and day 7 post-operation) and applied scRNA-seq technique to analyze the cellular heterogeneity and identify differentially expressed genes in peripheral blood individual immune cells from elderly hip fracture patients. RESULTS In this study, we analyzed the composition and gene expression profiles of peripheral blood mononuclear cells (PBMCs) from elderly hip fracture patients by scRNA-seq and further identified new CD14 monocyte subpopulations based on marker genes and transcriptional profiles. Distinct gene expression changes were observed in various cell subpopulations at different time points. C-Mono2 monocyte mitochondria-related genes were up-regulated and interferon-related and chemokine-related genes were down-regulated within 24 h post-operation. Further analysis of gene expression profiles at day 7 post-operation showed that C-Mono2 monocytes showed downregulation of inflammation-related genes and osteoblast differentiation-related genes. However, the expression of these genes in cytotoxic T cells, Treg cells, and B cell subsets exhibited a contrasting trend. GZMK+CD8+ cytotoxic T cells showed downregulation of chemokine-related genes, and Treg cells showed upregulation of genes related to the JAK/STAT signaling pathway. Furthermore, we examined interactions among diverse immune cell subsets, pinpointing specific ligand-receptor pairs. These findings imply cross-talk and communication between various cell types in the post-traumatic immune response. CONCLUSIONS Our study elucidates the notable alterations in immune cell subpopulations during different stages of hip fracture in elderly patients, both in terms of proportions and differential gene expressions. These changes provide significant clinical implications for tissue repair, infection prevention, and fracture healing in clinic.
Collapse
Affiliation(s)
- Yining Lu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yang Luo
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Qi Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Ning Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Chinese Academy of Engineering, Beijing, 100088, People's Republic of China.
| |
Collapse
|
76
|
Parackova Z, Zentsova I, Bloomfield M, Klocperk A, Horvath R, Malcova H, Cebecauerova D, Sediva A. Expanded population of low-density neutrophils in juvenile idiopathic arthritis. Front Immunol 2023; 14:1229520. [PMID: 37915575 PMCID: PMC10616245 DOI: 10.3389/fimmu.2023.1229520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Juvenile idiopathic arthritis (JIA), a clinically variable disease characterized by autoimmune arthritis, affects children, and its immunopathology remains elusive. Alterations in neutrophil biology play an important role in this disease. In the present study, we aimed to explore the features of low-density neutrophils (LDNs) in patients with JIA. Methods Gene expression of peripheral blood mononuclear cells (PBMCs) from children with distinct subtypes of JIA was analyzed by NanoString Immunology panel. Presence of LDNs was ascertained by flow cytometry and the release of neutrophil-associated products were analyzed by LUMINEX. Results LDNs were detected in patients' peripheral blood mononuclear cells (PBMCs) after density gradient centrifugation. Transcriptomic analysis of JIA PBMCs revealed that genes related to neutrophil degranulation were markedly upregulated. The number of LDNs and level of their degranulation products increased in patients' PBMCs and correlated with serum calprotectin, but not with disease activity, sedimentation rate and C-reactive protein (CRP) levels. The phenotypes of LDNs varied from those of normal-density neutrophils and healthy donor LDNs. Phenotypical analysis revealed LDNs are immature and primed population with decreased suppressive capacity. A negative correlation between surface proteins CD62L, CD66b, and CD11b and the number of inflamed joints/JADAS was established. Conclusion Our results describe LDNs as primed, degranulated, immature cells with impaired suppressive activities. This work thus contributes to the increasing body of evidence that LDNs in JIA are altered and their role in the disease immunopathogenesis and possible clinical associations should be investigated further.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Rudolf Horvath
- Department of Paediatric and Adult Rheumatology, University Hospital in Motol, Prague, Czechia
| | - Hana Malcova
- Department of Paediatric and Adult Rheumatology, University Hospital in Motol, Prague, Czechia
| | - Dita Cebecauerova
- Department of Paediatric and Adult Rheumatology, University Hospital in Motol, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| |
Collapse
|
77
|
Abu Hussein N, Machahua C, Ruchti SC, Horn MP, Piquilloud L, Prella M, Geiser TK, von Garnier C, Funke-Chambour M. Circulating calprotectin levels four months after severe and non-severe COVID-19. BMC Infect Dis 2023; 23:650. [PMID: 37789266 PMCID: PMC10546778 DOI: 10.1186/s12879-023-08653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Calprotectin is an inflammatory marker mainly released by activated neutrophils that is increased in acute severe COVID-19. After initial recovery, some patients have persistent respiratory impairment with reduced diffusion capacity of the lungs for carbon monoxide (DLCO) months after infection. Underlying causes of this persistent impairment are unclear. We aimed to investigate the correlation between circulating calprotectin, persistent lung functional impairment and intensive care unit (ICU) stay after COVID-19 in two university hospital centres in Switzerland. METHODS Calprotectin levels were measured in serum from 124 patients (50% male) from the Bern cohort (post-ICU and non-ICU patients) and 68 (76% male) from the Lausanne cohort (only post-ICU patients) four months after COVID-19. Calprotectin was correlated with clinical parameters. Multivariate linear regression (MLR) was performed to evaluate the independent association of calprotectin in different models. RESULTS Overall, we found that post-ICU patients, compared to non-ICU, were significantly older (age 59.4 ± 13.6 (Bern), 60.5 ± 12.0 (Lausanne) vs. 48.8 ± 13.4 years) and more obese (BMI 28.6 ± 4.5 and 29.1 ± 5.3 vs. 25.2 ± 6.0 kg/m2, respectively). 48% of patients from Lausanne and 44% of the post-ICU Bern cohort had arterial hypertension as a pre-existing comorbidity vs. only 10% in non-ICU patients. Four months after COVID-19 infection, DLCO was lower in post-ICU patients (75.96 ± 19.05% predicted Bern, 71.11 ± 18.50% Lausanne) compared to non-ICU (97.79 ± 21.70% predicted, p < 0.01). The post-ICU cohort in Lausanne had similar calprotectin levels when compared to the cohort in Bern (Bern 2.74 ± 1.15 µg/ml, Lausanne 2.49 ± 1.13 µg/ml vs. non-ICU 1.86 ± 1.02 µg/ml; p-value < 0.01). Calprotectin correlated negatively with DLCO (r= -0.290, p < 0.001) and the forced vital capacity (FVC) (r= -0.311, p < 0.001). CONCLUSIONS Serum calprotectin is elevated in post-ICU patients in two independent cohorts and higher compared to non-ICU patients four months after COVID-19. In addition, there is a negative correlation between calprotectin levels and DLCO or FVC. The relationship between inflammation and lung functional impairment needs further investigations. TRIAL REGISTRATION NCT04581135.
Collapse
Affiliation(s)
- N Abu Hussein
- Department of Pulmonary Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - C Machahua
- Department of Pulmonary Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - S C Ruchti
- Department of Pulmonary Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - M P Horn
- Department of Clinical Chemistry, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - L Piquilloud
- Division of Pulmonary Medicine, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - M Prella
- Department of Diagnostic Laboratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - T K Geiser
- Department of Pulmonary Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - C von Garnier
- Department of Diagnostic Laboratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M Funke-Chambour
- Department of Pulmonary Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
78
|
Jakobsson G, Papareddy P, Andersson H, Mulholland M, Bhongir R, Ljungcrantz I, Engelbertsen D, Björkbacka H, Nilsson J, Manea A, Herwald H, Ruiz-Meana M, Rodríguez-Sinovas A, Chew M, Schiopu A. Therapeutic S100A8/A9 blockade inhibits myocardial and systemic inflammation and mitigates sepsis-induced myocardial dysfunction. Crit Care 2023; 27:374. [PMID: 37773186 PMCID: PMC10540409 DOI: 10.1186/s13054-023-04652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND AND AIMS The triggering factors of sepsis-induced myocardial dysfunction (SIMD) are poorly understood and are not addressed by current treatments. S100A8/A9 is a pro-inflammatory alarmin abundantly secreted by activated neutrophils during infection and inflammation. We investigated the efficacy of S100A8/A9 blockade as a potential new treatment in SIMD. METHODS The relationship between plasma S100A8/A9 and cardiac dysfunction was assessed in a cohort of 62 patients with severe sepsis admitted to the intensive care unit of Linköping University Hospital, Sweden. We used S100A8/A9 blockade with the small-molecule inhibitor ABR-238901 and S100A9-/- mice for therapeutic and mechanistic studies on endotoxemia-induced cardiac dysfunction in mice. RESULTS In sepsis patients, elevated plasma S100A8/A9 was associated with left-ventricular (LV) systolic dysfunction and increased SOFA score. In wild-type mice, 5 mg/kg of bacterial lipopolysaccharide (LPS) induced rapid plasma S100A8/A9 increase and acute LV dysfunction. Two ABR-238901 doses (30 mg/kg) administered intraperitoneally with a 6 h interval, starting directly after LPS or at a later time-point when LV dysfunction is fully established, efficiently prevented and reversed the phenotype, respectively. In contrast, dexamethasone did not improve cardiac function compared to PBS-treated endotoxemic controls. S100A8/A9 inhibition potently reduced systemic levels of inflammatory mediators, prevented upregulation of inflammatory genes and restored mitochondrial function in the myocardium. The S100A9-/- mice were protected against LPS-induced LV dysfunction to an extent comparable with pharmacologic S100A8/A9 blockade. The ABR-238901 treatment did not induce an additional improvement of LV function in the S100A9-/- mice, confirming target specificity. CONCLUSION Elevated S100A8/A9 is associated with the development of LV dysfunction in severe sepsis patients and in a mouse model of endotoxemia. Pharmacological blockade of S100A8/A9 with ABR-238901 has potent anti-inflammatory effects, mitigates myocardial dysfunction and might represent a novel therapeutic strategy for patients with severe sepsis.
Collapse
Affiliation(s)
- Gabriel Jakobsson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Cardiac Inflammation Research Group, Clinical Research Center, 91:12, Jan Waldenströms Gata 35, 21 428, Malmö, Sweden
| | | | - Henrik Andersson
- Department of Anaesthesia and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Megan Mulholland
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Ravi Bhongir
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Irena Ljungcrantz
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | | | - Harry Björkbacka
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Adrian Manea
- Nicolae Simionescu Institute of Cellular Biology and Pathology, Bucharest, Romania
| | - Heiko Herwald
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rodríguez-Sinovas
- Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Michelle Chew
- Department of Anaesthesia and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alexandru Schiopu
- Department of Translational Medicine, Lund University, Lund, Sweden.
- Nicolae Simionescu Institute of Cellular Biology and Pathology, Bucharest, Romania.
- Department of Internal Medicine, Skane University Hospital, Lund, Sweden.
- Cardiac Inflammation Research Group, Clinical Research Center, 91:12, Jan Waldenströms Gata 35, 21 428, Malmö, Sweden.
| |
Collapse
|
79
|
Amaya-Garrido A, Brunet M, Buffin-Meyer B, Piedrafita A, Grzesiak L, Agbegbo E, Del Bello A, Ferrandiz I, Ardeleanu S, Bermudez-Lopez M, Fedou C, Camus M, Burlet-Schiltz O, Massines J, Buléon M, Feuillet G, Alves M, Neau E, Casemayou A, Breuil B, Saulnier-Blache JS, Denis C, Voelkl J, Glorieux G, Hobson S, Arefin S, Rahman A, Kublickiene K, Stenvinkel P, Bascands JL, Faguer S, Valdivielso JM, Schanstra JP, Klein J. Calprotectin is a contributor to and potential therapeutic target for vascular calcification in chronic kidney disease. Sci Transl Med 2023; 15:eabn5939. [PMID: 37672568 DOI: 10.1126/scitranslmed.abn5939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Vascular calcification is an important risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). It is also a complex process involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. In an observational, multicenter European study, including 112 patients with CKD from Spain and 171 patients on dialysis from France, we used serum proteome analysis and further validation by ELISA to identify calprotectin, a circulating damage-associated molecular pattern protein, as being independently associated with CV outcome and mortality. This was confirmed in an additional cohort of 170 patients with CKD from Sweden, where increased serum calprotectin concentrations correlated with increased vascular calcification. In primary human VSMCs and mouse aortic rings, calprotectin exacerbated calcification. Treatment with paquinimod, a calprotectin inhibitor, as well as pharmacological inhibition of the receptor for advanced glycation end products and Toll-like receptor 4 inhibited the procalcifying effect of calprotectin. Paquinimod also ameliorated calcification induced by the sera of uremic patients in primary human VSMCs. Treatment with paquinimod prevented vascular calcification in mice with chronic renal failure induced by subtotal nephrectomy and in aged apolipoprotein E-deficient mice as well. These observations identified calprotectin as a key contributor of vascular calcification, and increased circulating calprotectin was strongly and independently associated with calcification, CV outcome, and mortality in patients with CKD. Inhibition of calprotectin might therefore be a promising strategy to prevent vascular calcification in patients with CKD.
Collapse
Affiliation(s)
- Ana Amaya-Garrido
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Manon Brunet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Alexis Piedrafita
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Lucile Grzesiak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Ezechiel Agbegbo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Arnaud Del Bello
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Inés Ferrandiz
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Serban Ardeleanu
- AURAR Saint Louis Dialysis Center, 97421 Saint Louis, La Réunion, France
| | - Marcelino Bermudez-Lopez
- Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, 25198 Lleida, Spain
| | - Camille Fedou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Jean Massines
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Marie Buléon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Melinda Alves
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Eric Neau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Colette Denis
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Awahan Rahman
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Jean-Loup Bascands
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97491 Sainte Clotilde, La Réunion, France
| | - Stanislas Faguer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Centre Hospitalo-Universitaire de Toulouse, 31400 Toulouse, France
| | - José M Valdivielso
- Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, 25198 Lleida, Spain
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| |
Collapse
|
80
|
Wang C, Zheng X, Zhang J, Jiang X, Wang J, Li Y, Li X, Shen G, Peng J, Zheng P, Gu Y, Chen J, Lin M, Deng C, Gao H, Lu Z, Zhao Y, Luo M. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 2023; 621:830-839. [PMID: 37674079 DOI: 10.1038/s41586-023-06511-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
The immune-suppressive tumour microenvironment represents a major obstacle to effective immunotherapy1,2. Pathologically activated neutrophils, also known as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), are a critical component of the tumour microenvironment and have crucial roles in tumour progression and therapy resistance2-4. Identification of the key molecules on PMN-MDSCs is required to selectively target these cells for tumour treatment. Here, we performed an in vivo CRISPR-Cas9 screen in a tumour mouse model and identified CD300ld as a top candidate of tumour-favouring receptors. CD300ld is specifically expressed in normal neutrophils and is upregulated in PMN-MDSCs upon tumour-bearing. CD300ld knockout inhibits the development of multiple tumour types in a PMN-MDSC-dependent manner. CD300ld is required for the recruitment of PMN-MDSCs into tumours and their function to suppress T cell activation. CD300ld acts via the STAT3-S100A8/A9 axis, and knockout of Cd300ld reverses the tumour immune-suppressive microenvironment. CD300ld is upregulated in human cancers and shows an unfavourable correlation with patient survival. Blocking CD300ld activity inhibits tumour development and has synergistic effects with anti-PD1. Our study identifies CD300ld as a critical immune suppressor present on PMN-MDSCs, being required for tumour immune resistance and providing a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoxiong Wang
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xichen Zheng
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinlan Zhang
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoyi Jiang
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Zhongshan-Xuhui Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuwei Li
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guanghui Shen
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiayin Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peixuan Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunqing Gu
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiaojiao Chen
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changwen Deng
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hai Gao
- Zhongshan-Xuhui Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Zhigang Lu
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Min Luo
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
81
|
Moreira J, Martins S, Saraiva M, Saraiva MJ. Decreased expression of S100A8/A9 in V30M related ATTRv amyloidosis. Amyloid 2023; 30:327-334. [PMID: 36947059 DOI: 10.1080/13506129.2023.2185755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Hereditary Transthyretin Amyloidosis is a rare, progressive and life-threatening systemic disease with predominant peripheral and autonomic nervous system involvement caused by mutation of the transthyretin protein. The most common TTR mutation regarding to ATTRv is a substitution of a Methionine for a Valine at position 30 that predisposes TTR to form aggregates and fibrils. METHODS S100A8 protein levels were measured in plasma samples from ATTRV30M patients and healthy donors. Additionally, S100A8/9 levels were measured in Schwann cells after incubation with human WT or V30M TTR. Moreover, bone marrow derived macrophages of either genetic background were generated and the expression of S100A8/9 was measured in response to toll like receptors agonists. RESULTS S100A8/A9 mRNA levels are decreased in HSF V30M mice as compared with the WT. Moreover, S100A8 protein levels were found downregulated in plasma samples from ATTRV30M patients. Furthermore, we provide evidence for a dysregulated S100 expression by Schwann cells in response to TTRV30M and by mutated macrophages in response to toll like receptors agonists. CONCLUSION The presence of TTRV30M impacts S100 expression, possibly contributing to the impaired immune activation of Schwann cells in nerves from ATTRV30M patients. This may be linked to the diminished immune cellular infiltration in these nerves, contributing in this way for the neuronal dysfunction present in the disease.
Collapse
Affiliation(s)
- João Moreira
- Molecular Neurobiology Group, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Margarida Saraiva
- Immune Regulation Group, i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
82
|
Silva de Melo BM, Veras FP, Zwicky P, Lima D, Ingelfinger F, Martins TV, da Silva Prado D, Schärli S, Publio G, Hiroki CH, Melo PH, Saraiva A, Norbiato T, Lima L, Ryffel B, Vogl T, Roth J, Waisman A, Nakaya HI, da Silva Souza C, Cunha FQ, Cunha TM, Becher B, Alves-Filho JC. S100A9 Drives the Chronification of Psoriasiform Inflammation by Inducing IL-23/Type 3 Immunity. J Invest Dermatol 2023; 143:1678-1688.e8. [PMID: 36921684 DOI: 10.1016/j.jid.2023.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
Psoriasis is a chronic inflammatory skin disorder driven by the IL-23/type 3 immune response. However, molecular mechanisms sustaining the chronicity of inflammation and psoriatic lesions remain elusive. Combining systematic analyses of several transcriptomic datasets, we delineated gene signatures across human psoriatic skin, identifying S100A9 as one of the most up-regulated genes, which was confirmed in lesioned skin from patients with psoriasis and preclinical psoriasiform skin inflammation models. Genetic ablation or pharmacologic inhibition of S100A9 alleviated Aldara-induced skin inflammation. By single-cell mapping of human psoriatic skin and bone marrow chimeric mice experiments, we identified keratinocytes as the major source of S100A9. Mechanistically, S100A9 induced IL-23 production by dendritic cells, driving the IL-23/type 3 immunity in psoriasiform skin inflammation. In addition, the cutaneous IL-23/IL-17 axis induced epidermal S100A9 expression in human and experimental psoriasis. Thus, we showed an autoregulatory circuit between keratinocyte-derived S100A9 and IL-23/type 3 immunity during psoriasiform inflammation, identifying a crucial function of S100A9 in the chronification of psoriasis.
Collapse
Affiliation(s)
- Bruno Marcel Silva de Melo
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Flávio Protásio Veras
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Diógenes Lima
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Timna Varela Martins
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Douglas da Silva Prado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Stefanie Schärli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gabriel Publio
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Hiroji Hiroki
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Paulo Henrique Melo
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - André Saraiva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thainá Norbiato
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Leonardo Lima
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Department of Cell Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Cacilda da Silva Souza
- Department of Internal Medicine, Dermatology Division, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
83
|
von Wulffen M, Luehrmann V, Robeck S, Russo A, Fischer-Riepe L, van den Bosch M, van Lent P, Loser K, Gabrilovich DI, Hermann S, Roth J, Vogl T. S100A8/A9-alarmin promotes local myeloid-derived suppressor cell activation restricting severe autoimmune arthritis. Cell Rep 2023; 42:113006. [PMID: 37610870 DOI: 10.1016/j.celrep.2023.113006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Immune-suppressive effects of myeloid-derived suppressor cells (MDSCs) are well characterized during anti-tumor immunity. The complex mechanisms promoting MDSC development and their regulatory effects during autoimmune diseases are less understood. We demonstrate that the endogenous alarmin S100A8/A9 reprograms myeloid cells to a T cell suppressing phenotype during autoimmune arthritis. Treatment of myeloid precursors with S100-alarmins during differentiation induces MDSCs in a Toll-like receptor 4-dependent manner. Consequently, knockout of S100A8/A9 aggravates disease activity in collagen-induced arthritis due to a deficit of MDSCs in local lymph nodes, which could be corrected by adoptive transfer of S100-induced MDSCs. Blockade of MDSC function in vivo aggravates disease severity in arthritis. Therapeutic application of S100A8 induces MDSCs in vivo and suppresses the inflammatory phenotype of S100A9ko mice. Accordingly, the interplay of T cell-mediated autoimmunity with a defective innate immune regulation is crucial for autoimmune arthritis, which should be considered for future innovative therapeutic options.
Collapse
Affiliation(s)
- Meike von Wulffen
- Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| | | | - Stefanie Robeck
- Institute of Immunology, University of Münster, Münster, Germany
| | - Antonella Russo
- Institute of Immunology, University of Münster, Münster, Germany
| | | | - Martijn van den Bosch
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter van Lent
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Karin Loser
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | | | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany.
| |
Collapse
|
84
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
85
|
Anil S, Malaiappan S, George AK, Joseph B. Calprotectin, S100A8, and S100A9: Potential Biomarkers of Periodontal Inflammation: A Scoping Review. WORLD JOURNAL OF DENTISTRY 2023; 14:559-567. [DOI: 10.5005/jp-journals-10015-2244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
|
86
|
Chuenwipasakul D, Washrawirul C, Panpruk R, Wititsuwannakul J, Charoenchaipiyakul K, Buranapraditkun S, Puangsricharern V, Klaewsongkram J, Rerknimitr P. Correlations between histopathologic findings, serum biomarker levels, and clinical outcomes in Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). Sci Rep 2023; 13:13620. [PMID: 37604858 PMCID: PMC10442337 DOI: 10.1038/s41598-023-40812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe dermatological emergencies. The role of cytokines and chemokines in the pathogenesis, progression of the disease, and histopathologic features is not fully elucidated. To address this gap, we conducted a retrospective study examining the associations between 42 serum biomarkers, histopathologic findings, and clinical outcomes in SJS/TEN patients. We reviewed the medical records of 23 patients diagnosed with SJS/TEN. Regarding histopathology, our study did not reveal any significant associations between the degree of epidermal necrosis, dermal mononuclear cell infiltration, and clinical outcomes. However, an intriguing observation was made regarding the degree of dermal infiltration of CD8 + cells, which showed a negative correlation with the severity of acute ocular complications. Notably, serum levels of IFN-γ positively correlated with the number of CD8 + cells in dermal infiltration. Additionally, higher serum levels of myeloperoxidase were associated with greater degrees of epidermal necrosis, while serum Fas ligand and stem cell factor levels were elevated in individuals with increased dermal mononuclear cell infiltration. Furthermore, the levels of S100A8/A9 were significantly correlated with the SCORTEN and mortality rate. These findings provide insights into the intricate pathogenesis of the disease.
Collapse
Affiliation(s)
- Donlaporn Chuenwipasakul
- Division of Dermatology, Department of Medicine, Chonburi Hospital, Ministry of Public Health, Chonburi, Thailand
| | - Chanudda Washrawirul
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rawiphan Panpruk
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jade Wititsuwannakul
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Kridipop Charoenchaipiyakul
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vilavun Puangsricharern
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Jettanong Klaewsongkram
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Rerknimitr
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- The Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
87
|
Ortín-Bustillo A, Botía M, López-Martínez MJ, Martínez-Subiela S, Cerón JJ, González-Bulnes A, Manzanilla EG, Goyena E, Tecles F, Muñoz-Prieto A. Changes in S100A8/A9 and S100A12 and Their Comparison with Other Analytes in the Saliva of Pigs with Diarrhea Due to E. coli. Animals (Basel) 2023; 13:2556. [PMID: 37627347 PMCID: PMC10451909 DOI: 10.3390/ani13162556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
The family of calgranulins includes S100A8 (calgranulin A), S100A9 (calgranulin B), which can appear as a heterodimer known as S100A8/A9 or calprotectin, and S100A12 (calgranulin C). These proteins are related to different inflammatory conditions, immune-mediated diseases, and sepsis and are considered biomarkers of potential interest. This study aims to evaluate if S100A8/A9 and A12 could change in pigs with diarrhea due to E. coli and to compare the changes of S100A8/A9 and A12 with other analytes in order to explore the possible causes or mechanisms involved. For this purpose, a panel integrated by analytes related to inflammation (haptoglobin, inter-alpha trypsin inhibitor 4 (ITIH4), and total protein); immune system (adenosine deaminase, ADA); stress (alpha-amylase); tissue damage (lactate and lactate dehydrogenase (LDH)); sepsis (aldolase) and redox status (ferric-reducing ability of saliva (FRAS) and advanced oxidation protein products (AOPP)) was evaluated. S100A8/A9 and A12 and the other analytes measured in this study showed increases in the saliva of pigs with diarrhea due to E. coli. S100A8/A9 and/or A12 showed a significant correlation of different magnitude with some of the other analytes evaluated. Further studies should be conducted to gain knowledge about the possible practical applications as biomarkers of the measurements of S100A8/A9 and A12 in the saliva of pigs.
Collapse
Affiliation(s)
- Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - María Botía
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain;
- Cuarte S.L. Grupo Jorge, Ctra. De Logroño, Km 9,2., Monzalbarba, 50120 Zaragoza, Spain
| | - Edgar García Manzanilla
- Pig Development Department, The Irish Food and Agriculture Authority, Teagasc, Moorepark, P61 C996 Fermoy, Ireland;
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Elena Goyena
- Department of Animal Health, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain;
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (A.O.-B.); (M.B.); (M.J.L.-M.); (S.M.-S.); (J.J.C.); (F.T.)
| |
Collapse
|
88
|
Zhao ZB, Bian ZH, Lin ZM, Wu SF, Long J, Cui Y, Li Y, Li W, Sun EW, Lian ZX, He Y. Single-Cell Analysis of Patients with Axial Spondyloarthritis After Anti-TNFα Treatment: Experimental Data and Review of the Literature. Clin Rev Allergy Immunol 2023; 65:136-147. [PMID: 36884135 DOI: 10.1007/s12016-023-08959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
Axial spondyloarthritis (Ax-SpA) is a chronic inflammatory disease that predominantly affects the axial joints and is most common in young men. However, the precise immune cell subset involved in Ax-SpA remains unclear. Our study characterized the periphery immune landscape of Ax-SpA patients before and after anti-TNFα treatment using single-cell transcriptomics and proteomics sequencing and elucidated the effects of anti-TNFα treatment at the single-cell level. First, we found that peripheral granulocytes and monocytes significantly increased in Ax-SpA patients. Second, we identified a more functional subtype of regulatory T cells, which was present in synovial fluid and increased in patients after treatment. Third, we identified a cluster of inflammatory monocyte subset with stronger inflammatory and chemotactic characteristics. A potential interaction between classical monocytes and granulocytes via the CXCL8/2-CXCR1/2 signaling pathway was observed, which decreased after treatment. Together, these results defined the complex expression profiles and advanced our understanding of the immune atlas in Ax-SpA patients before and after anti-TNFα treatment.
Collapse
Affiliation(s)
- Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhen-Hua Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Zhang-Mei Lin
- Department of Rheumatology and Immunology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shu-Fan Wu
- Department of Rheumatology and Immunology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jie Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yang Cui
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wende Li
- Guangdong Laboratory, Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Er-Wei Sun
- Department of Rheumatology and Immunology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Yi He
- Department of Rheumatology and Immunology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
89
|
Zhang B, Yan H, Liu X, Sun L, Ma S, Wang S, Qu J, Liu GH, Zhang W. SenoIndex: S100A8/S100A9 as a novel aging biomarker. LIFE MEDICINE 2023; 2:lnad022. [PMID: 39872551 PMCID: PMC11749476 DOI: 10.1093/lifemedi/lnad022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/10/2023] [Indexed: 01/30/2025]
Affiliation(s)
- Baohu Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoteng Yan
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China
| | - Shuai Ma
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
90
|
Børkja MLB, Giambelluca MS, Ytterhus B, Prestvik WS, Bjørkøy G, Bofin AM. S100A8 gene copy number and protein expression in breast cancer: associations with proliferation, histopathological grade and molecular subtypes. Breast Cancer Res Treat 2023:10.1007/s10549-023-07019-6. [PMID: 37450087 PMCID: PMC10361851 DOI: 10.1007/s10549-023-07019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND AIMS Amplification of S100A8 occurs in 10-30% of all breast cancers and has been linked to poorer prognosis. Similarly, the protein S100A8 is overexpressed in a roughly comparable proportion of breast cancers and is also found in infiltrating myeloid-lineage cells, again linked to poorer prognosis. We explore the relationship between these findings. METHODS We examined S100A8 copy number (CN) alterations using fluorescence in situ hybridization in 475 primary breast cancers and 117 corresponding lymph nodes. In addition, we studied S100A8 protein expression using immunohistochemistry in 498 primary breast cancers from the same cohort. RESULTS We found increased S100A8 CN (≥ 4) in tumor epithelial cells in 20% of the tumors, increased S100A8 protein expression in 15%, and ≥ 10 infiltrating S100A8 + polymorphonuclear cells in 19%. Both increased S100A8 CN and protein expression in cancer cells were associated with high Ki67 status, high mitotic count and high histopathological grade. We observed no association between increased S100A8 CN and S100A8 protein expression, and only a weak association (p = 0.09) between increased CN and number of infiltrating S100A8 + immune cells. Only S100A8 protein expression in cancer cells was associated with significantly worse prognosis. CONCLUSIONS Amplification of S100A8 does not appear to be associated with S100A8 protein expression in breast cancer. S100A8 protein expression in tumor epithelial cells identifies a subgroup of predominantly non-luminal tumors with a high mean age at diagnosis and significantly worse prognosis. Finally, S100A8 alone is not a sufficient marker to identify infiltrating immune cells linked to worse prognosis.
Collapse
Affiliation(s)
- Mathieu Le Boulvais Børkja
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Miriam S Giambelluca
- Department of Clinical Medicine, Faculty of Health Science, UiT- The Arctic University of Norway, Tromsø, Norway
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Borgny Ytterhus
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche S Prestvik
- Department of Biomedical Laboraxtory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Bjørkøy
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboraxtory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Science Centre Nordland, Midtre gate 1, Mo i Rana, 8624, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
91
|
Zhang Y, Zhang X, Han J, Guo Y, He J, Yang F, Mao R, Huang Y, Zhang J. Plasma S100A8 and S100A9 Are Strong Prognostic Factors for Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. Can J Gastroenterol Hepatol 2023; 2023:6164611. [PMID: 37469934 PMCID: PMC10352535 DOI: 10.1155/2023/6164611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Objectives The rapidly evolving organ failure and high short-run mortality of acute-on-chronic liver failure (ACLF) are inseparable from the role of systemic inflammatory response. S100A8 and S100A9 are associated with the excessive cytokine storm and play a decisive part within the process of inflammation. We aimed to clarify the role of them in predicting prognosis of hepatitis B virus-related ACLF (HBV-ACLF). Methods S100A8 and S100A9 levels were analyzed in plasma of 187 transplant-free HBV-ACLF patients, 28 healthy controls and 40 chronic hepatitis B (CHB) patients. S100A8 and S100A9 mRNAs were checked in liver samples from 32 HBV-ACLF patients with liver transplantation, 19 patients undergoing surgery for hepatic hemangioma and 10 CHB patients with needle biopsy. Results The plasma levels of the S100A8 and S100A9 were higher in HBV-ACLF patients than in CHB patients (S100A8 : P < 0.001 and S100A9 : P < 0.001) and healthy controls (S100A8 : P < 0.001 and S100A9 : P < 0.001), and similar results were obtained for mRNA expression. Moreover, both proteins were related to ACLF grade, different types of organ failure, and infection, and they correlated with other prognostic scoring systems. S100A8 and S100A9 can dependently predict 28/90-day mortality (28-day: S100A8: hazard ratio (HR): 1.027; 95% confidence interval (CI): 1.007-1.048; P=0.026, S100A9 : HR: 1.009; 95% CI: 1.001-1.017; P=0.007, 90-day: S100A8 : HR: 1.023; 95% CI: 1.011-1.035; P=0.004, S100A9 : HR: 1.008; 95% CI: 1.004-1.012; and P < 0.001). Among all of the scoring systems, the combined scoring model (S100A8 and S100A9 jointly with the Chronic Liver Failure-Consortium Organ Failure score (CLIF-C OFs)) displayed the highest area under the receiver operating curve (0.923 (95% CI, 0.887-0.961)) in the prediction of 90-day mortality. Conclusions S100A8 and S100A9 are promising biomarkers for the analysis of risk stratification and prognosis in ACLF patients. In addition, combining them with the CLIF-C OFs may better predict the prognosis of ACLF.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing He
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Hepatitis Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
92
|
Cerón JJ, Ortín-Bustillo A, López-Martínez MJ, Martínez-Subiela S, Eckersall PD, Tecles F, Tvarijonaviciute A, Muñoz-Prieto A. S-100 Proteins: Basics and Applications as Biomarkers in Animals with Special Focus on Calgranulins (S100A8, A9, and A12). BIOLOGY 2023; 12:881. [PMID: 37372165 DOI: 10.3390/biology12060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
S100 proteins are a group of calcium-binding proteins which received this name because of their solubility in a 100% saturated solution of ammonium sulphate. They have a similar molecular mass of 10-12 KDa and share 25-65% similarity in their amino acid sequence. They are expressed in many tissues, and to date 25 different types of S100 proteins have been identified. This review aims to provide updated information about S100 proteins and their use as biomarkers in veterinary science, with special emphasis on the family of calgranulins that includes S100A8 (calgranulin A; myeloid-related protein 8, MRP8), S100A9 (calgranulin B; MRP14), and S100A12 (calgranulin C). The proteins SA100A8 and S100A9 can be linked, forming a heterodimer which is known as calprotectin. Calgranulins are related to the activation of inflammation and the immune system and increase in gastrointestinal diseases, inflammation and sepsis, immunomediated diseases, and obesity and endocrine disorders in different animal species. This review reflects the current knowledge about calgranulins in veterinary science, which should increase in the future to clarify their role in different diseases and potential as biomarkers and therapeutic targets, as well as the practical use of their measurement in non-invasive samples such as saliva or feces.
Collapse
Affiliation(s)
- José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Peter David Eckersall
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| |
Collapse
|
93
|
Fang X, Lian H, Liu S, Dong J, Hua X, Li W, Liao C, Yuan X. A positive feedback cycle between the alarmin S100A8/A9 and NLRP3 inflammasome-GSDMD signalling reinforces the innate immune response in Candida albicans keratitis. Inflamm Res 2023:10.1007/s00011-023-01757-5. [PMID: 37335321 DOI: 10.1007/s00011-023-01757-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Fungal keratitis is a severe sight-threatening ocular infection, without effective treatment strategies available now. Calprotectin S100A8/A9 has recently attracted great attention as a critical alarmin modulating the innate immune response against microbial challenges. However, the unique role of S100A8/A9 in fungal keratitis is poorly understood. METHODS Experimental fungal keratitis was established in wild-type and gene knockout (TLR4-/- and GSDMD-/-) mice by infecting mouse corneas with Candida albicans. The degree of mouse cornea injuries was evaluated by clinical scoring. To interrogate the molecular mechanism in vitro, macrophage RAW264.7 cell line was challenged with Candida albicans or recombinant S100A8/A9 protein. Label-free quantitative proteomics, quantitative real-time PCR, Western blotting, and immunohistochemistry were conducted in this research. RESULTS Herein, we characterized the proteome of mouse corneas infected with Candida albicans and found that S100A8/A9 was robustly expressed at the early stage of the disease. S100A8/A9 significantly enhanced disease progression by promoting NLRP3 inflammasome activation and Caspase-1 maturation, accompanied by increased accumulation of macrophages in infected corneas. In response to Candida albicans infection, toll-like receptor 4 (TLR4) sensed extracellular S100A8/A9 and acted as a bridge between S100A8/A9 and NLRP3 inflammasome activation in mouse corneas. Furthermore, the deletion of TLR4 resulted in noticeable improvement in fungal keratitis. Remarkably, NLRP3/GSDMD-mediated macrophage pyroptosis in turn facilitates S100A8/A9 secretion during Candida albicans keratitis, thus forming a positive feedback cycle that amplifies the proinflammatory response in corneas. CONCLUSIONS The present study is the first to reveal the critical roles of the alarmin S100A8/A9 in the immunopathology of Candida albicans keratitis, highlighting a promising approach for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Xiaolong Fang
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Huifang Lian
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Department of Ophthalmology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingcun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Hua
- Aier Eye Hospital, Tianjin, China
| | - Wenguang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaoyong Yuan
- School of Medicine, Nankai University, Tianjin, China.
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China.
| |
Collapse
|
94
|
Deshmukh M, Subhash S, Hu Z, Mohammad M, Jarneborn A, Pullerits R, Jin T, Kopparapu PK. Gene expression of S100a8/a9 predicts Staphylococcus aureus-induced septic arthritis in mice. Front Microbiol 2023; 14:1146694. [PMID: 37396347 PMCID: PMC10307981 DOI: 10.3389/fmicb.2023.1146694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Septic arthritis is the most aggressive joint disease associated with high morbidity and mortality. The interplay of the host immune system with the invading pathogens impacts the pathophysiology of septic arthritis. Early antibiotic treatment is crucial for a better prognosis to save the patients from severe bone damage and later joint dysfunction. To date, there are no specific predictive biomarkers for septic arthritis. Transcriptome sequencing analysis identified S100a8/a9 genes to be highly expressed in septic arthritis compared to non-septic arthritis at the early course of infection in an Staphylococcus aureus septic arthritis mouse model. Importantly, downregulation of S100a8/a9 mRNA expression at the early course of infection was noticed in mice infected with the S. aureus Sortase A/B mutant strain totally lacking arthritogenic capacity compared with the mice infected with parental S. aureus arthritogenic strain. The mice infected intra-articularly with the S. aureus arthritogenic strain significantly increased S100a8/a9 protein expression levels in joints over time. Intriguingly, the synthetic bacterial lipopeptide Pam2CSK4 was more potent than Pam3CSK4 in inducing S100a8/a9 release upon intra-articular injection of these lipopeptides into the mouse knee joints. Such an effect was dependent on the presence of monocytes/macrophages. In conclusion, S100a8/a9 gene expression may serve as a potential biomarker to predict septic arthritis, enabling the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Meghshree Deshmukh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Santhilal Subhash
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Zhicheng Hu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Jarneborn
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
95
|
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol 2023; 14:1191645. [PMID: 37346040 PMCID: PMC10279876 DOI: 10.3389/fimmu.2023.1191645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. The histopathological features of psoriasis include excessive proliferation of keratinocytes and infiltration of immune cells. The S100 proteins are a group of EF-hand Ca2+-binding proteins, including S100A2, -A7, -A8/A9, -A12, -A15, which expression levels are markedly upregulated in psoriatic skin. These proteins exert numerous functions such as serving as intracellular Ca2+ sensors, transduction of Ca2+ signaling, response to extracellular stimuli, energy metabolism, and regulating cell proliferation and apoptosis. Evidence shows a crucial role of S100 proteins in the development and progress of inflammatory diseases, including psoriasis. S100 proteins can possibly be used as potential therapeutic target and diagnostic biomarkers. This review focuses on the pathogenic role of S100 proteins in psoriasis.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| |
Collapse
|
96
|
Liao WC, Chen CT, Tsai YS, Wang XY, Chang YT, Wu MS, Chow LP. S100A8, S100A9 and S100A8/A9 heterodimer as novel cachexigenic factors for pancreatic cancer-induced cachexia. BMC Cancer 2023; 23:513. [PMID: 37280516 DOI: 10.1186/s12885-023-11009-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Cancer cachexia, occurring in ~ 80% pancreatic cancer (PC) patients overall, is a paraneoplastic syndrome mediated by cancer-induced systemic inflammation and characterized by weight loss and skeletal muscle wasting. Identifying clinically relevant PC-derived pro-inflammatory factors with cachexigenic potential may provide novel insights and therapeutic strategies. METHODS Pro-inflammatory factors with cachexigenic potential in PC were identified by bioinformatic analysis. The abilities of selected candidate factors in inducing skeletal muscle atrophy were investigated. Expression levels of candidate factors in tumors and sera was compared between PC patients with and without cachexia. Associations between serum levels of the candidates and weight loss were assessed in PC patients. RESULTS S100A8, S100A9, and S100A8/A9 were identified and shown to induce C2C12 myotube atrophy. Tumors of PC patients with cachexia had markedly elevated expression of S100A8 (P = 0.003) and S100A9 (P < 0.001). PC patients with cachexia had significantly higher serum levels of S100A8, S100A9 and S100A8/A9. Serum levels of these factors positively correlated with percentage of weight loss [correlation coefficient: S100A8: 0.33 (P < 0.001); S100A9: 0.30 (P < 0.001); S100A8/A9: 0.24 (P = 0.004)] and independently predicted the occurrence of cachexia [adjusted odds ratio (95% confidence interval) per 1ng/ml increase: S100A8 1.11 (1.02-1.21), P = 0.014; S100A9 1.10 (1.04-1.16), P = 0.001; per 1 µg/ml increase: S100A8/A9 1.04 (1.01-1.06), P = 0.009]. CONCLUSIONS Atrophic effects of S100A8, S100A9, and S100A8/A9 indicated them as potential pathogenic factors of PC-induced cachexia. In addition, the correlation with the degree of weight loss and prediction of cachexia in PC patients implicated their potential utility in the diagnosis of PC-induced cachexia.
Collapse
Affiliation(s)
- Wei-Chih Liao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ta Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - You-Shu Tsai
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - Xin-Ya Wang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - Yen-Tzu Chang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei, 10051, Taiwan.
| |
Collapse
|
97
|
Feng X, Wang L, Zhou R, Zhou R, Chen L, Peng H, Huang Y, Guo Q, Luo X, Zhou H. Senescent immune cells accumulation promotes brown adipose tissue dysfunction during aging. Nat Commun 2023; 14:3208. [PMID: 37268694 DOI: 10.1038/s41467-023-38842-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Brown adipose tissue (BAT)-mediated thermogenesis declines with age. However, the underlying mechanism remains unclear. Here we reveal that bone marrow-derived pro-inflammatory and senescent S100A8+ immune cells, mainly T cells and neutrophils, invade the BAT of male rats and mice during aging. These S100A8+ immune cells, coupled with adipocytes and sympathetic nerves, compromise axonal networks. Mechanistically, these senescent immune cells secrete abundant S100A8 to inhibit adipose RNA-binding motif protein 3 expression. This downregulation results in the dysregulation of axon guidance-related genes, leading to impaired sympathetic innervation and thermogenic function. Xenotransplantation experiments show that human S100A8+ immune cells infiltrate mice BAT and are sufficient to induce aging-like BAT dysfunction. Notably, treatment with S100A8 inhibitor paquinimod rejuvenates BAT axon networks and thermogenic function in aged male mice. Our study suggests that targeting the bone marrow-derived senescent immune cells presents an avenue to improve BAT aging and related metabolic disorders.
Collapse
Affiliation(s)
- Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Liwen Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Ruoyu Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Linyun Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008, Changsha, Hunan, China
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008, Changsha, Hunan, China.
| |
Collapse
|
98
|
Kim JP, Yun H, Kim EJ, Kim YG, Lee CS, Ko BJ, Kim BG, Jeong HJ. Generation of a novel monoclonal antibody against inflammatory biomarker S100A8 using hybridoma technology. Biotechnol Lett 2023; 45:589-600. [PMID: 36971774 DOI: 10.1007/s10529-023-03364-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/19/2023] [Accepted: 02/24/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVES S100A8 is highly expressed in several inflammatory and oncological conditions. To address the current lack of a reliable and sensitive detection method for S100A8, we generated a monoclonal antibody with a high binding affinity to human S100A8 to enable early disease diagnosis. RESULTS A soluble recombinant S100A8 protein with a high yield and purity was produced using Escherichia coli. Next, mice were immunized with recombinant S100A8 to obtain anti-human S100A8 monoclonal antibodies using hybridoma technology. Lastly, the high binding activity of the antibody was confirmed and its sequence was identified. CONCLUSIONS This method, including the production of antigens and antibodies, will be useful for the generation of hybridoma cell lines that produce anti-S100A8 monoclonal antibodies. Moreover, the sequence information of the antibody can be used to develop a recombinant antibody for use in various research and clinical applications.
Collapse
Affiliation(s)
- Jong-Pyo Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Hanool Yun
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Eun-Jung Kim
- BioMAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, 02844, Republic of Korea
| | - Byung-Gee Kim
- BioMAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea.
| |
Collapse
|
99
|
Díaz-Perlas C, Ricken B, Farrera-Soler L, Guschin D, Pojer F, Lau K, Gerhold CB, Heinis C. High-affinity peptides developed against calprotectin and their application as synthetic ligands in diagnostic assays. Nat Commun 2023; 14:2774. [PMID: 37198182 DOI: 10.1038/s41467-023-38075-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Common inflammatory disorders such as ulcerative colitis and Crohn's disease are non-invasively diagnosed or monitored by the biomarker calprotectin. However, current quantitative tests for calprotectin are antibody-based and vary depending on the type of antibody and assay used. Additionally, the binding epitopes of applied antibodies are not characterized by structures and for most antibodies it is unclear if they detect calprotectin dimer, tetramer, or both. Herein, we develop calprotectin ligands based on peptides, that offer advantages such as homogenous chemical composition, heat-stability, site-directed immobilization, and chemical synthesis at high purity and at low cost. By screening a 100-billion peptide phage display library against calprotectin, we identified a high-affinity peptide (Kd = 26 ± 3 nM) that binds to a large surface region (951 Å2) as shown by X-ray structure analysis. The peptide uniquely binds the calprotectin tetramer, which enabled robust and sensitive quantification of a defined species of calprotectin by ELISA and lateral flow assays in patient samples, and thus offers an ideal affinity reagent for next-generation inflammatory disease diagnostic assays.
Collapse
Affiliation(s)
- Cristina Díaz-Perlas
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Benjamin Ricken
- BÜHLMANN Laboratories AG, Baselstrasse 55, CH-4124, Schönenbuch, Switzerland
| | - Lluc Farrera-Soler
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Dmitrii Guschin
- BÜHLMANN Laboratories AG, Baselstrasse 55, CH-4124, Schönenbuch, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
100
|
Wang YH, Chen YJ, Lai YH, Wang MC, Chen YY, Wu YY, Yang YR, Tsou HY, Li CP, Hsu CC, Huang CE, Chen CC. Mutation-Driven S100A8 Overexpression Confers Aberrant Phenotypes in Type 1 CALR-Mutated MPN. Int J Mol Sci 2023; 24:8747. [PMID: 37240094 PMCID: PMC10217897 DOI: 10.3390/ijms24108747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Numerous pathogenic CALR exon 9 mutations have been identified in myeloproliferative neoplasms (MPN), with type 1 (52bp deletion; CALRDEL) and type 2 (5bp insertion; CALRINS) being the most prevalent. Despite the universal pathobiology of MPN driven by various CALR mutants, it is unclear why different CALR mutations result in diverse clinical phenotypes. Through RNA sequencing followed by validation at the protein and mRNA levels, we found that S100A8 was specifically enriched in CALRDEL but not in CALRINS MPN-model cells. The expression of S100a8 could be regulated by STAT3 based on luciferase reporter assay complemented with inhibitor treatment. Pyrosequencing demonstrated relative hypomethylation in two CpG sites within the potential pSTAT3-targeting S100a8 promoter region in CALRDEL cells as compared to CALRINS cells, suggesting that distinct epigenetic alteration could factor into the divergent S100A8 levels in these cells. The functional analysis confirmed that S100A8 non-redundantly contributed to accelerated cellular proliferation and reduced apoptosis in CALRDEL cells. Clinical validation showed significantly enhanced S100A8 expression in CALRDEL-mutated MPN patients compared to CALRINS-mutated cases, and thrombocytosis was less prominent in those with S100A8 upregulation. This study provides indispensable insights into how different CALR mutations discrepantly drive the expression of specific genes that contributes to unique phenotypes in MPN.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yi-Hua Lai
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ming-Chung Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yao-Ren Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Hsing-Yi Tsou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chian-Pei Li
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|